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Free differential algebras and generic 2D dilatonic„super…gravities
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The field equations for both generic bosonic and generic locally supersymmetric 2D dilatonic gravity
theories in the absence of matter are written as free differential algebras. This constitutes a generalization of the
gauge theoretic formulation. Moreover, it is shown that the condition of free differential algebra can be used to
obtain the equations in the locally supersymmetric case. Using this formulation, the general solution of the field
equations is found in the language of differential forms. The relation with the ordinary formulation and the
coupling to supersymmetric conformal matter are also studied.@S0556-2821~99!02408-X#

PACS number~s!: 04.65.1e, 04.60.Kz
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I. INTRODUCTION

Low-dimensional models of gravity play an importa
role in present-day theoretical physics due to the comple
of four-dimensional gravity. They are used to investigate
consequences of general covariance or local supersymm
in a simpler setting. In two dimensions, although pure gr
ity is trivial, there are some models that include an additio
field which have some properties analogous to the ones
ing in four-dimensional general relativity, a fact that may
used to try to answer some fundamental problems a
present in the four-dimensional case. For instance, black
formation and evaporation can be studied using dilato
type models of two-dimensional gravity such as the stri
inspired dilatonic gravity @also known as the Callan
Giddings-Harvey-Strominger~CGHS! model @1##.

The CGHS model is not the only one that has been s
ied. Other interesting models are the Jackiw-Teitelbo
model @2# and the more realistic, although less simp
spherically symmetric reduction of four-dimensional gravi
In fact, by using appropriate conformal redefinitions of t
metric, it is always possible to write the action of a gene
first-order model of 2D dilaton gravity conformally couple
to matter in the form@3#

S5E d2xA2g FRh1V~h!2
1

2
]m f ]m f G , ~1.1!

wheref is a matter field~only one is considered for simplic
ity!, and V(h) is an arbitrary potential term. The CGH
model is obtained whenV54l2 ~for constantl!, the Jackiw-
Teitelboim model corresponds toV54l2h and for the
spherically symmetric reduction of four-dimensional grav
V}1/Ah. The case of the model with an exponential pote
tial (V54l2ebh, for constantb! has also been considere
@4#.

The study of the consequences of general covarianc
two-dimensional theories has been extended to the loc
supersymmetric case. This gives information not only ab
supergravity itself, but also about the consequences its p
ence may have in the bosonic part of the theory, such
positivity of the energy@5,6#. The generalization of Eq.~1.1!
to the locally supersymmetric case was given in@5# using the
superfield formulation of@7#, which shows that, as in th
0556-2821/99/59~8!/084017~9!/$15.00 59 0840
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bosonic case, field redefinitions can be found that cast
action in a standard form which is the superfield generali
tion of Eq. ~1.1!. A further generalization also in the supe
field context that relaxes the usual torsion constraints
been given in@8#. However, this paper is mainly concerne
with an alternative formulation based on free differential
gebras, as will be explained in what follows.

The pure dilaton gravity part~i.e. in the absence of mat
ter! of the CGHS and Jackiw-Teitelboim models can
given a gauge theoretic interpretation, in which the start
points are the two-dimensional extended Poincare´ and de
Sitter algebras, respectively. Given a Lie algebraG with
commutators

@Ta ,Tb#5Cab
c Tc , ~1.2!

wherea51, . . . ,r 5dimG, the gauge field

A5AaTa ~1.3!

and a scalarL with values in the dual of the above algebr
i.e.,

L5haTa, Ta~Tb!5db
a ~1.4!

are introduced. Then a gauge invariant action for these fie
is given by

I 5E
M

L„F~A!…5E
M

haFa, ~1.5!

whereM is the two-dimensional spacetime andF(A) is the
curvature of the connectionA, F(A)5dA1A∧A. Indeed,
under a gauge transformation of the connectionA the curva-
ture transforms under the adjoint representation of the su
ralgebra~1.2!. The action~1.5! is then invariant under the
gauge transformations of the connectionA provided thatL
transforms under the coadjoint representation of the alge
Note that the Lie algebra does not have to admit a non
generate invariant inner product but, if it does, Eq.~1.5! may
be replaced by the integral of^L,F&, ^ & being the inner prod-
uct symbol, where nowL is analgebra-valued quantity. The
field equations of the theory are
©1999 The American Physical Society17-1
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F~A!50, S dAa52
1

2
Cbc

a Ab∧AcD , dha1Cab
c Abhc50.

~1.6!

It is clear from these that the scalar fieldL is a Lagrange
multiplier that imposes the zero curvature condition for t
connectionA. Suitable choices for Lie algebras lead to the
ries with action ~1.5! that can be interpreted as two
dimensional gravities.

The CGHS model has been constructed out of two diff
ent Lie algebras. In@9#, the Poincare´ algebra with generator
M ~Lorentz generator! and $Pa ; a51,2% ~translations!, and
commutators

@M ,Pa#5eb
aPb , @Pa ,Pb#50, ~1.7!

was used. The Levi-Civita` symbol eab is defined here by
e0151, and the indices are raised and lowered using
Minkowski metric hab ; the spacetime signature has be
chosen to be~2,1!. The same definition applies to the co
responding Levi-Civita` symbol with space-time indicesemn,
wheree01 is therefore equal to21. The formulation based on
Eq. ~1.7! had some problems that were naturally solved
@10# by starting from a central extension of this algebra
stead. This implies introducing a central generatorI . The
non-vanishing commutators of the new algebra are

@M ,Pa#5eb
aPb , @Pa ,Pb#52eabI . ~1.8!

It was shown in@11# that the Jackiw-Teitelboim model ma
be formulated as a theory based on the de Sitter algebra
generators$M ,Pa ; a51,2% and commutators

@M ,Pa#5eb
aPb , @Pa ,Pb#52LeabM , ~1.9!

whereL is a constant. Supersymmetric extensions of th
algebras have been studied@12,13# and they lead, by using
the Z2-graded version of the procedure just explained,
supergravity theories. In particular it is known that the alg
bra ~1.7! admits a (p,q) supersymmetric extension, the alg
bra ~1.8! admits two differentN51 supersymmetric exten
sions and the algebra~1.9! admits a unique~1,1! extension.

The above construction can be reinterpreted in the m
general setting of free differential algebras~FDA’s!. A free
differential algebra@14# generated by the differential form
Gi

ni , where ni is the degree of the form, is a mappin

Gi
ni°dGi

ni defined by

dGi
ni5(

r
(

nj 1
1¯1nj r

5ni11

nj 1
>1¯nj r

>1

a i
j 1¯ j rG

j 1

nj 1∧¯∧G
j r

nj r ,

~1.10!

wherea i
j 1¯ j r are in general functions of the zero-forms (Gi

ni

such thatni50), in such a way that by virtue of Leibniz’
rule and the expressions fordGi

ni themselves,d(dGi
ni) is

identically zero~i.e., vanishes without using any algebra
relation between the formsGi

ni). Analogously, it is possible
to defineZ2-graded free differential algebras for which E
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~1.10! remains the same, the only difference being that n
Gi

ni∧Gj
nj5(21)ninj(21)a ia jGj

nj∧Gi
ni , where the extra fac-

tor (21)a ia j ~not present in the bosonic case! takes into
account theZ2 parities ofGi

ni and Gj
nj (a i and a j , respec-

tively!. The use of free differential algebras in supergrav
dates from 1981, and since then, they have appeared in m
examples@15#.

As shown before, associated to every Lie algebra it
possible to construct a FDA by demanding that the cur
tures in Eq.~1.6! vanish, and the same can be said of su
ralgebras andZ2-graded FDA’s. Adding the Euler-Lagrang
~E-L! equations for the Lagrange multipliers, a larger FDA
obtained. From this point of view, the equations of CGH
and Jackiw-Teitelboim models can be written as a FDA t
has a subalgebra that corresponds to a finite-dimensiona
algebra. For instance, Eqs.~1.6! in the Jackiw-Teitelboim
case are~the exterior product symbol∧ will be omitted from
now on!

dea1ea
bveb50,

dv2
L

2
eabe

aeb50,

~1.11!
dh1haea

beb50,

dha2hbeb
av1hLeabe

b50,

whereA5eapa1vM , andea5em
a dxm, v5vmdxm give the

zweibein and spin connection, respectively.
One of the points of the article is to show that the fam

of models~1.1! ~and its generalization to the locally supe
symmetric case! can be given a free differential algebra
formulation that does not correspond in general to a fin
dimensional Lie~super!algebra. However, the models sti
have an interpretation in terms of symmetries and as the
of an infinite dimensional Lie~super!algebra. Moreover, this
approach also provides an alternative method to obtain
locally supersymmetric generalization of Eq.~1.1!. It is con-
venient to note here that an approach to generic 2D dilato
gravities different from that of FDA’s is provided by th
Poissons models of@16#.

The other main point to be presented here is the follo
ing. Once the field equations of both dilatonic gravity a
dilatonic supergravity are written as free differential algeb
containing one-forms and zero-forms, it is possible to fi
their general solution in the differential form language@for
the solution of Eq.~1.1! in a specific gauge see, for instanc
@17#!. The general solution in the locally supersymmet
case does not exist in the literature, to the author’s kno
edge, although the action is known. The search for the g
eral solution without fixing the gauge may be motivated
the fact that in the bosonic case its knowledge has been
to prove that the corresponding models in the presence
conformal matter can be related by a canonical transfor
tion to a theory of free fields with the constraints of a certa
string theory@18#. It might happen that something similar
possible in the context of supergravity theories and sup
strings.
7-2
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FREE DIFFERENTIAL ALGEBRAS AND GENERIC 2D . . . PHYSICAL REVIEW D 59 084017
The organization of the paper is as follows. Section II
devoted to the bosonic case. There, the FDA correspon
to a generic dilatonic gravity model will be given, and i
group theoretical meaning will be explained. The sect
ends with the derivation of the general solution using
FDA structure of the equations. In Sec. III, the locally sup
symmetric case is studied. This will include the generali
tion of the bosonic FDA of the previous section, its relati
with the ordinary formulation, the general solution~which in
this case has some peculiarities!, and the coupling of the
models to conformal matter by using Noether’s method.
nally, there is a section that contains the conclusions
outlook.

II. THE GENERIC BOSONIC CASE

The FDA given by

dea1ea
bveb50,

dv2
V8

2
eaebeab50,

~2.1!
dh1haea

beb50,

dhb1Veabe
a2ea

bvha50,

obviously does not have a subalgebra that can be der
from a finite-dimensional Lie algebra whenV8(h)Þconst,
although it generalizes Eq.~1.11! (V5Lh there!.

That Eq.~2.1! is indeed a FDA can be seen as follows.d2

acting onea is proportional, by using the equation fordv, to
a wedge product of threeea forms, which vanishes in two
dimensions. Applyingd2 to v gives two terms: one of them
is proportional toeaea50, and the other is of the form
V9dheaebeab and hence zero by virtue of the third equatio
Next, d2 acting onh can be seen to vanish from simila
considerations. The only non-trivial identity to check is th
of d2ha . But, using the first, third, and fourth equations,

d2hb52V8hcS ec
deab1

1

2
ec

beadDeaeb, ~2.2!

which vanishes because in two dimensions the iden
ec

[dea]b1 1
2 ec

bead250 (d and a antisymmetrized with
‘‘weight one’’! holds.

Furthermore, Eqs.~2.1! are the Euler-Lagrange~E-L!
equations of the Lagrangian two-form

L5ha~dea1ea
bveb!1hdv2

V

2
eabe

aeb, ~2.3!

which is equivalent to the Lagrangian density~1.1! in the
absence of matter. The equivalence is proved by solving
v andha ,

ha52eb
aeb

m]mh,
~2.4!

vm5e21ern]ren
aeam ,
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where e5det(em
a)5A2g (gmn5em

a en
bhab), and then substi-

tuting them into Eq.~2.3! to obtain an action that only de
pends on h and em

a . In doing so, the relationsL
5Lmndxm∧dxn5emnLmnd2x[Ld2x and emn]mvn5eR are
used. Actually, substituting some E-L equations directly in
the action does not necessarily mean that the equations
tained from the resulting action are the same as the o
obtained by making the substitution in the remaining E
equations. However, this does happen in this case bec
the substituted fields (ha ,v) are precisely the ones the equ
tions of which are used~v andha , respectively!. This fact
also guarantees thatv and ha can be substituted into th
symmetry transformation laws. On the other hand, Eqs.~2.1!
can be obtained from Eq.~1.11! by letting L depend onh
and demanding that the result is still a FDA~this procedure
will be explained in more detail in the locally supersymme
ric case!.

The caseV5const deserves a comment. It corresponds
the CGHS action, but it does not correspond to thegauge
formulation of the CGHS model given in@10# because, by
Eq. ~1.8!, this formulation contains a field~the one corre-
sponding to the central generatorI ), which is not included in
Eq. ~2.1!. If V is taken to be a constant in Eq.~2.1!, the free
differential algebra obtained is one that does have a suba
bra dual to a Lie algebra~the one considered in@9#!, but that
does not correspond to a Lagrangian of the form~1.5!.

Although for a generalV the FDA formulation is not the
gauge theoretic formulation that corresponds to a fin
dimensional Lie algebra, it is still possible to work out th
gauge symmetries of the FDA~2.1!. A way to do that is to
write dea5dEa1Fa, dv5dV1G, whereEa andV are the
gauge parameters, and then fix both thea priori unknown
one formsFa, G, and the zero formsdh, dha in such a way
that the FDA is stable under the variations. The result is

dea5dEa2ea
bVeb1ea

bEbv,

dv5dV1V8eabE
aeb,

~2.5!
dh52haea

bEb,

dha52VebaE
b1eb

aVhb .

An interesting feature of these variations is that the act
~2.3! is only quasi-invariant~i.e., invariant up to the differ-
ential of a one-form! whenV is not proportional toh. In the
caseV5Lh, these symmetries are the gauge transform
tions of the connections associated to the de Sitter algebr
can be seen by computing the commutator of two such tra
formations. If this is done in general, say, for twoE trans-
formations, the following is obtained:

@dE ,dE8#e
a52ea

beb~V8ecdE
cE8d!,

~2.6!

@dE ,dE8#v5d~V8eabE
aE8b!2V9eabE

aE8b~dh1hce
c
ded!.

Note that unlessV950 the algebra only closes over th
space of solutions. Another characteristic that is due to
7-3
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departure from the gauge formulation is that, even when
field equations are taken into account,

@dE ,dE8#5dV5V8eabEaE8b, ~2.7!

which means that, with the exception of the caseV5const,
the group of transformations that leave the FDA~2.1! invari-
ant is intrinsically gauge~the commutator of twoE rigid
transformations gives a gaugeV transformation!. Alterna-
tively, it may be said that Eq.~2.7! reflects the fact that the
‘‘structure constants’’ depend on the fieldh and are therefore
not constant. This can be seen by computing the~vector
space! dual of Eq.~2.1!, for which the following elementary
differential geometry relations can be used:

d f~X!5X• f , a~X,Y!5X•a~Y!2Y•a~X!2a~@X,Y# !,
~2.8!

where a is a one-form,X, Y are vector fields, andf is a
function. Now, sinceea(Pb)5db

a , ea(M )505v(Pa), and
v(M )51, Eq. ~2.8! lead to

Pa~h!52hbeb
a , Pa~hb!52Veab ,

M ~h!50, M ~ha!5eb
ahb , ~2.9!

@Pa ,Pb#52V8eabM , @M ,Pa#5eb
aPb .

The first two lines of Eq.~2.9! mean thatM andPa are the
vector fields that generate the transformationdh, dha of Eq.
~2.5!, which in the caseV950 is the coadjoint representatio
on the coalgebra of the corresponding Lie algebra. The
line can be viewed as an infinite-dimensional Lie alge
where one of its generators isV8M . The commutator of this
generator gives, by virtue of Leibniz’s rule and Eq.~2.9!,
new ones that are products ofM and Pa by functions ofh
and ha . These in turn produce new generators and so
The end result is, in general, an algebra with an infinite nu
ber of generators. The Lie algebras that arise here should
be identified with the non-linear ones studied in@19#.

An advantage of writing the field equations as in Eq.~2.1!
is that the general solution can be easily obtained in
language of differential forms. The way to do it is to sol
for h in terms ofha insteadof solving for ha in terms ofh
@as it was done in Eq.~2.4!#, so that the solution depends o
the pair of free functionsha . More explicitly, from the equa-
tions for dh anddha it is easy to deduce that

1

2
haha1J5C, ~2.10!

whereJ(h) is defined byJ85V and the constantC is related
to the Arnowitt-Deser-Misner~ADM ! energy@20#. This ex-
pression gives implicitlyh in terms ofha . Next, the equa-
tion for dha can be rewritten as

ea5
1

V
~hav2ebadhb!. ~2.11!
08401
e

st
a

n.
-
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e

If this equation is then substituted into those ofdea anddv,
oneequation involvingv andha is found:

dFvV 1
1

2 S 1

V@C2J#
1

D

C2JD eabhadhbG50, ~2.12!

whereD is another constant. Equations~2.12!, ~2.11!, and
~2.10! constitute the solution of Eq.~2.1!, of the form h
5h(ha ,g), v5v(ha ,g) andea5ea(hb ,g), whereg is an-
other free function which comes from integration of E
~2.12!. Therefore, the number of free functions equals
number of gauge symmetries. Of course, this solution is
construction consistent with Eq.~2.4!. The possibilityV50
may be avoided by considering only functions ofh that are
always different from zero except possibly whenh50 and
excluding the pointsx for which h(x)50 from the space-
time manifold~see, for instance,@21#!. The presence ofC-J
in the denominator is related to the fact that the spacet
points where it vanishes can usually be interpreted as a b
hole horizon.

III. GENERIC 2D SUPERGRAVITIES

Before considering the locally supersymmetric case, i
necessary to fix some conventions, which are the followi
Spinors are taken to be real and two dimensional@they be-
long to the vector space of the reducible~1,1! spinorial rep-
resentation of the Poincare´ group in two dimensions#; corre-
spondingly the gamma matrices are real. In terms ofeab, the
matrix g3 is given byg3[ 1

2 eabg
agb. From this, it is pos-

sible to deduce some useful relations:

emnebmecn5eebc , eabem
a en

b5eemn ,
~3.1!

g3g351, gag35ea
bgb,

and the Fierz reordering

lc̄5
1

2
l̄gbcgb2

1

2
l̄c1

1

2
l̄g3cg3 ~3.2!

for any two spinorsl, c. The following realization of the
gamma matrices will be used~underlined indices are fla
space indices!:

g0I 5S 0 21

1 0 D , g1I 5S 0 1

1 0D , g35S 1 0

0 21D .

~3.3!

As announced in the Introduction, the generalization to
locally supersymmetric case of Eq.~2.1! will be obtained
from the FDA that leads to the supersymmetric Jack
Teitelboim model, which is the graded de Sitter–Lie sup
algebra OSp~1,1u1! @12#. The field equations for the latte
define the free differential algebra
7-4
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dea1ea
bveb12i c̄gac50,

dv22m2eabe
aeb14imc̄g3c50,

dc1
1

2
vg3c1meagac50,

~3.4!
dha2hbeb

av14m2ebeba1 imx̄gac50,

dh1haea
beb1

i

2
x̄g3c50,

dx1meagax1
1

2
vg3x14hagac18mhg3c50,

from which the Lie superalgebra can be immediately rec
ered by duality (A5eaPa1vM1caQa , and Qa are the
supersymmetry generators!. Next, the parameterm is taken
to be a function ofh. If this is done in the action, the E-L
equations of which are Eqs.~3.4!, a new term proportional to
x̄eagac has to appear in the equation fordv. The result is,
however, not afree differential algebra because computin
dd for each form and equating the result to zero would g
extra algebraic relations between the forms. To convert
algebra into a free one, the terms proportional tom are sub-
stituted by terms of the same form but multiplied by u
known functions ofh. On the other hand, the first equatio
of Eq. ~3.4! should remain unaltered because it gives
usual torsion corresponding tov. Then, imposing thatddea

50 identically, makes it necessary to add a term prop
tional to eabeaebx in the equation fordf, which has to
come from another one in the Lagrangian two-form prop
tional to eabeaebx̄x. This term introduces new elements
the equations ofdha anddv. The requirementdd50, when
applied to the other equations, fixes the arbitrary function
h giving the result

dea1ea
bveb12i c̄gac50,

dv22~uu8!8eabe
aeb14iu8c̄g3c

1 iu9xeagac1
i

16
u-eabeaebx̄x50,

dc1
1

2
vg3c1u8eagac1

1

8
u9eabeaebx50, ~3.5!

dha2hbeb
av14uu8ebeba1 iu8x̄gac2

i

8
u9ebae

bx̄x50,

dh1haea
beb1

i

2
x̄g3c50,

dx1u8eagax1
1

2
vg3x14hagac18ug3c50,
08401
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e
e

e
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whereu(h) is an arbitrary function. In fact, these relation
are the Euler-Lagrange equations derived from the Lagra
ian two-form

L5ha~dea1ea
bveb12i c̄gac!1hdv22uu8eabe

aeb

14iuc̄g3c1 iu8x̄eagac1 i x̄S dc1
1

2
vg3c D

1
iu9

16
eabeaebx̄x. ~3.6!

Note that the anti–de Sitter case is recovered whenu
5mh. It is now simple to look for the local supersymmet
transformations under which this algebra is invariant~the
Lagrangian two-form is then in general quasi-invariant, a
happened in the bosonic case!. The comments made abou
the bosonic symmetries~2.5!, as well as how to obtain them
also apply here. The transformation rule forc has to be of
the formdc5de1a, wheree is the infinitesimal paramete
of the transformation anda is a one-form that can be dete
mined by substituting this expression into the third equat
of Eq. ~3.5!, and demanding that the terms containingde
cancel. Moreover, this condition may be used to obtain
form of the variation for the remaining one-forms. Havin
done that, it may be checked that the Lagrangian two-form
indeed quasi-invariant under the variation, except whenu
5mh, in which case it is strictly invariant. The following
local supersymmetry transformations are obtained:

dea54i c̄gae,

dc5de1
1

2
vg3e1u8eagae,

dv528iu8ēg3c2 iu9ēgaxea ,
~3.7!

dh52
i

2
x̄g3e,

dha52 iu8x̄gae,

dx528ug3e24hagae.

An immediate consequence of Eq.~3.7! is that the model
with u}Ah is yet another supersymmetrization of the CGH
model, different from the ones considered in@12#. Specifi-
cally, the transformation rule forc is dc5de1(1/8)vg3e
1c(1/Ah)eagae, wherec is a constant, in contrast with th
two cases of@12#, for which either there is noeagae term or
there is a term of the form (12g3)eagae times a constant.

As explained in the previous section, to connect this f
mulation with the ordinary one the standard procedure is
write all the forms and scalars on spacetime (ea5em

a dxm,
v5vmdxm, c5cmdxm) and then to solve forha in the
fourth equation of Eq.~3.5! to obtain

ha52eb
aeb

m]mh2
i

2
x̄g3cmeb

meb
a , ~3.8!
7-5
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and use the first equation of Eq.~3.5! to determinevm in
terms ofem

a andcm as

vm5e21ern]ren
aeam12ie21ernc̄rgmcn

5v̄m12ie21ernc̄rgmcn , ~3.9!

where v̄m is the torsion-free spin connection. These tw
equations are then used to substituteha andv both into the
action and into the local supersymmetry transformatio
The ordinary Lagrangian is obtained from the Lagrang
two-form as in the bosonic case, and is given by

Lsg5eRh14euu814iuemnc̄mg3cn1 iu8emnem
a x̄gacn

1 i emnx̄Dmcn2
ieu9

8
x̄x24h ie~Dmc̄mgncn

1c̄mgnDmcn!12ex̄g3cnc̄mgmcn, ~3.10!

where use is made of the fact thatemn]mv̄n5eR, andDm is
the covariant derivative with respect to the spin connect
v̄m : Dmcn5]mcn1 1

2 v̄mg3cn , and similarly for other
spinors. This is the locally supersymmetric version of E
~1.1!, which coincides, apart from conventions, with the s
perfield formulation of@5#, once the appropriate field redefi
nitions are used to getK(F)50 andJ(F)50 there. Note
that, whenu9Þ0, it is possible to solve the algebraic equ
tion for x, which gives a Lagrangian density independent
x. The local supersymmetry transformations are

dem
a 54i c̄mgae,

dcm5Dme1u8em
a gae2 i c̄rgmcngrne,

~3.11!

dh52
i

2
x̄g3e,

dx528ug3e14]mhgmg3e12i x̄g3cmgmg3e.

The general solution of the field equations written as
Z2-graded free differential algebra can be found by using
same procedure as in the bosonic case, although there
few differences. First, it is easy to check, by using the l
three equations of Eq.~3.5!, that

1

2
haha12u22

i

8
u8x̄x5C, ~3.12!

@cf. Eq. ~2.10!# whereC is a constant. This expression d
fines implicitly h in terms ofha andx. The last equation in
Eq. ~3.5! can be used to obtainc in terms ofea, v, ha, and
x. Multiplying it by haga12ug3 and then using Eq.~3.12!,
the following equation is obtained:

~haga12ug3!¹x1~8C1 iu8x̄x!c50, ~3.13!

where
08401
s.
n

n

.
-

-
f

a
e
e a
t

¹xªdx1u8eagax1
1

2
vg3x. ~3.14!

In some cases, this equation does not determinec because it
is not possible to divide by the factor 8C1 iu8x̄x. This hap-
pens whenC is a Grassmann even number without an or
nary number part~i.e., when the body ofC is zero!, and
when C50. The first case will not be considered becau
finding the solution implies having to separate the com
nents ofC in terms of its components in a basis of the Gra
mann algebra, and the use of non-commuting numbers is
a device motivated by the anticommuting character of
corresponding quantum operators and does not have a p
cal meaning by itself. However, theC50 case still has to be
considered, and it will be dealt with at the end of the secti
In the other cases, Eq.~3.13! can be solved without using th
Grassmann algebra structure, and the result can be su
tuted into the fourth equation of Eq.~3.5!, which in turn
givesea as an expression involvingv, ha, andx. Once the
expressions forh, c, andea are known, they can be subst
tuted into the first three equations of Eq.~3.5!. They all give
the same equation forv @this is something that can be de
duced from the integrability conditions of the last three eq
tions of Eq.~3.5!#, so it is possible to write the solution in
terms ofha andx. The result is given by Eq.~3.12! plus

c52
1

8C F12
i

8C
u8x̄xG~haga12ug3!¹x,

ea5F4uu82
i

8
u9x̄x1

i

4C
~u8!2ux̄xG21

3FhavS 11
i

16C
u8x̄x D2ecadhc

1
iu8

8C
ecax̄gc~hbgb12ug3!dxG ,

~3.15!

dH F 4

uu8
1

i

8

u9

~uu8!2 x̄xGv1F S 2

uu8@C22u2#
1

D

C22u2D
3S 12

iu8

8@C22u2#
x̄x D1

i

16u@C22u2#

3S u9

u~u8!2 2
2

C
1

8u2

C2 D x̄xGeabhadhb

1 i S 1

2Cu
2

2u

C2D x̄g3dx2
i

C2 hax̄gadxJ 50,

whereD is another constant. Note that there are five arbitr
functions:ha, x and the one that comes from the integrati
of the last equation in Eq.~3.15!. This number coincides with
the number of gauge symmetries of the FDA. Of course
gauge fixing greatly simplifies this expression but, as sta
before, it may be important to control the gauge degrees
freedom.
7-6



r
n
th

n
e
om

it
e

tw

-

ns

c
ith

qs.
nic

try
se

.
s

ly
the

ond
f

o

-

s is

els,
sary

to
s-

, to
els
he
ob-
ce,

sual
s it

t.
ion

n is
tion
to
w

FREE DIFFERENTIAL ALGEBRAS AND GENERIC 2D . . . PHYSICAL REVIEW D 59 084017
A. The C50 case

When C50, Eq. ~3.13! may, in principle, be solved fo
the components ofc in a basis of the underlying Grassman
algebra, although it is not completely determined due to
fact that the body ofx̄x is zero. This is not desirable from
the point of view of the quantum theory, so it is convenie
to restrict the space of solutions to those which can be
pressed in terms of the fields themselves and not their c
ponents. This means that to solve Eq.~3.13! x̄xc has to
vanish. Then it makes sense to try a solution of the formc
5mx, wherem is a one-form to be determined. Indeed,
can be checked, following the same procedure as in thC
Þ0 case, that (D, D8 are constants!

c5
u8

16u2 eahax,

ea5S 4uu82
i

8
u9x̄x D 21

~hav2ebadhb!,

haha14u22
i

4
u8x̄x50, ~3.16!

dH F 4

uu8
1

i

8

u9

~uu8!2 x̄xGv2F i

u2 S 1

32

u9

~uu8!2 1D8D x̄x

1S 11
i

16

u8

u2 x̄x D S 1

u3u8
1

D

2u2D Geabh
adhbJ 50,

together with¹x50 andhagax12ug3x50, provides a so-
lution of the FDA Eq.~3.5! whenC50.

However, Eq.~3.16! is not the only solution~this is not
surprising, since it is expected that the solution includes
arbitrary functions to account for local supersymmetry!. If
c,ea,v,h is a solution, the setc8,ea,v,h with c85c
1sx1x̄xz is also a solution provideds is a closed one-
form and andz obeyshagaz12ug3z50 and¹z50. The
final result is, therefore, Eq.~3.16! except for the first equa
tion, which takes the form

c5
u8

16u2 eahax1sx1x̄xz. ~3.17!

Both x and z have to satisfy the same system of equatio
with ea,v,h given in Eq. ~3.16!. Explicitly, writing j to
denote either the spinor or the spinorial one-form,

S d1
1

2
vg31u8eagaD j50,

~3.18!
~haga12ug3!j50.

The solution given in Eq.~3.16! is, as far as the bosoni
fields are concerned, equal to the solution of the theory w
out fermions plus some corrections proportional tox̄x.
These corrections are irrelevant when solving Eq.~3.18!, due
to the presence ofx̄x multiplying Eqs. ~3.18! when j5z
@see Eq.~3.17!# and to the presence ofx itself whenj5x,
08401
e

t
x-

-

o

,

-

because expressions involving the product of threex spinors
vanish. By virtue of the second and last equation in E
~3.7!, solving the equations is the same as, given a boso
field configuration, looking for values of the supersymme
parametere(x) such that supersymmetry is preserved. The
particular values ofe(x) receive the name of Killing spinors
Not every configuration admits Killing spinors, but it turn
out that those withC50 do, and in fact these are the on
configurations that are solutions of the field equations in
absence of matter and have Killing spinors@as can easily be
seen by computing the square of the matrix in the sec
equation of Eqs.~3.18!#. To find the explicit expression o
the solution of Eq.~3.18!, it is convenient to definehÞ

5h0I 1h1I , h55h0I 2h1I ~underlined indices correspond t

flat space indices! and writex5(jR
jL

) in the basis correspond
ing to Eq.~3.3!. The solution may then be written

d~ uh5u21/2jR!50, jL5
1

2u
hÞjR. ~3.19!

In this way, the closed forms of Eq. ~3.17! gives a free
function, and the first equation of Eq.~3.19!, when applied to
z, gives another one. Hence, the number of free function
five as expected.

B. The coupling to conformal matter

When studying the physical consequences of 2D mod
such as black hole formation and evaporation, it is neces
to add matter fields. For this reason it may be interesting
do it in the supersymmetric case, providing explicit expre
sions in components. The next thing to do is, therefore
couple these locally supersymmetric dilatonic gravity mod
to conformal matter. Here, this will be done by using t
Noether method, although the same result can be easily
tained using superfields. The starting point is the flat spa
rigid ~1,1! supersymmetry invariant matter Lagrangian

Lm52
1

2
hmn]m f ]n f 1

i

4
l̄gm]ml, ~3.20!

where the first term corresponds in curved space to the u
conformal matter Lagrangian, and the spinorial term make
supersymmetric for the rigid variation

d f 5 i ēl,
~3.21!

dl522]m f gme.

The curved space version of Eq.~3.20! @which is the one
needed to couple it to Eq.~3.10!# is obviously not invariant
under the variations~3.21! when they are written in curved
space and the parametere is made spacetime dependen
There are terms in the variation that come from the variat
of ea

m , and there are also terms proportional toDme that
would also appear even in flat space because the variatio
now local. The latter can be cancelled by adding to the ac
terms that involvecm . They can be seen to be equal
D1L5 ie]m f c̄ngmgnl. Among the other terms, plus the ne
7-7
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ones coming from the variation ofD1L, there are some tha
containDml. These can be cancelled by adding a new pi
to the variation ofl: d8l52i l̄cmgme. The new variation
contains terms involvingDme, which means that the term
D2L52 e

4 c̄ngmgncml̄l must be added to the action. Th
process stops here, because at this point the complete v
tion vanishes up to a total derivative. The resulting Lagra
ian density is then

L5Lsg2
1

2
egmn]m f ]n f 1 i

e

4
l̄gmDml

1 ie]m f c̄ngmgnl2
e

4
c̄ngmgncml̄l, ~3.22!

and the local variation of the matter fields is given by

d f 5 i ēl,
~3.23!

dl522]m f gme12i l̄cmgme.

Due to the fact that the matter multiplet is the one cor
sponding to a conformally coupled matter fieldf , the cou-
pling of matter to the locally supersymmetric models is e
actly the same as that for the pure Poincare´ case. If a
coupling of the formeh(h)gmn]m f ]n f was added@an inter-
esting case, corresponding to a scalar field in four dim
sions isV}1/Ah, h(h)}h], both the variation of the matte
fields and the matter Lagrangian density itself would have
involve the fieldx, becausedh52( i /2)x̄g3e. However, it
is not immediate how to apply the Noether method in t
case, and superspace methods would presumably be
appropriate here.
er
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,
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IV. CONCLUSIONS AND OUTLOOK

This paper shows that a generic two-dimensional dilato
gravity theory in the absence of matter can be expressed
free differential algebra. This has several consequen
First, there is room for a symmetry interpretation which ge
eralizes that of the gauge theoretic formulation. Second
provides a method for obtaining the general solution in ter
of differential forms in both the bosonic and the locally s
persymmetric case. Third, it provides an alternative meth
to obtain the generic supergravity Lagrangians.

It is still to be investigated how the free functions appe
ing in the solutions obtained relate to the different gau
fixings. This will be important when the program of relatin
the dilatonic theories to free field theories is carried out
the locally supersymmetric case. In that context, havin
general solution of the starting models in the absence of m
ter might help one to find the new canonical variables, or
prove that they exist. Another point to be analyzed
whether it is possible to couple the models to matter wh
maintaining the symmetries of the free differential algebr
as was done in@22# for the CGHS model. Finally, many
aspects of the derivation presented in this paper do not a
to the case of non-trivial topology. For instance, it is n
guaranteed that a generic dilatonic action can be cast in
form ~1.1!. On the other hand, finding the general soluti
relies on the integration of certain closed forms, which m
then be non-exact. These issues deserve further study.
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