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The field equations for both generic bosonic and generic locally supersymmetric 2D dilatonic gravity
theories in the absence of matter are written as free differential algebras. This constitutes a generalization of the
gauge theoretic formulation. Moreover, it is shown that the condition of free differential algebra can be used to
obtain the equations in the locally supersymmetric case. Using this formulation, the general solution of the field
equations is found in the language of differential forms. The relation with the ordinary formulation and the
coupling to supersymmetric conformal matter are also stud®&eb556-282(199)02408-X]

PACS numbegs): 04.65+e, 04.60.Kz

I. INTRODUCTION bosonic case, field redefinitions can be found that cast the
action in a standard form which is the superfield generaliza-
Low-dimensional models of gravity play an important tion of Eq.(1.1). A further generalization also in the super-
role in present-day theoretical physics due to the complexityield context that relaxes the usual torsion constraints has
of four-dimensional gravity. They are used to investigate thebeen given if8]. However, this paper is mainly concerned
consequences of general covariance or local supersymmetwith an alternative formulation based on free differential al-
in a simpler setting. In two dimensions, although pure grav-gebras, as will be explained in what follows.
ity is trivial, there are some models that include an additional The pure dilaton gravity pafi.e. in the absence of mat-
field which have some properties analogous to the ones ariger) of the CGHS and Jackiw-Teitelboim models can be
ing in four-dimensional general relativity, a fact that may begiven a gauge theoretic interpretation, in which the starting
used to try to answer some fundamental problems alspoints are the two-dimensional extended Poincane de
present in the four-dimensional case. For instance, black hol8itter algebras, respectively. Given a Lie algelgiavith
formation and evaporation can be studied using dilatonicommutators
type models of two-dimensional gravity such as the string-
inspired dilatonic gravity [also known as the Callan- [Ta,To]l=C5pTe, 1.2
Giddings-Harvey-StromingdiCGHS model[1]].
The CGHS model is not the only one that has been studyherea=1, ... r=dimg, the gauge field
ied. Other interesting models are the Jackiw-Teitelboim
model [2] and the more realistic, although less simple, A=AST, (1.3
spherically symmetric reduction of four-dimensional gravity.
In fact, by using appropriate conformal redefinitions of the;ng 4 scalat. with values in the dual of the above algebra,
metric, it is always possible to write the action of a generic; o
first-order model of 2D dilaton gravity conformally coupled =~

to matter in the forni 3] L=7,T% T¥Tp,)=6° (1.9

1
Szf dzx\/—g{mﬁ V(n)— Eaf‘faﬂf , (1.1 are introduced. Then a gauge invariant action for these fields
is given by

wheref is a matter fieldonly one is considered for simplic-

ity), and V(7) is an arbitrarzy potential term. The CGHS |:f L(F(A))zf 7aF?, (1.5

model is obtained wheX =4\ < (for constanf\), the Jackiw- M M

Teitelboim model corresponds t¥=4\?7 and for the

spherically symmetric reduction of four-dimensional gravity where M is the two-dimensional spacetime aR@A) is the

Ve 1/\/7. The case of the model with an exponential poten-curvature of the connectioA, F(A)=dA+ACA. Indeed,

tial (V=4\2%ef”, for constantB) has also been considered under a gauge transformation of the connectlothe curva-

[4]. ture transforms under the adjoint representation of the supe-
The study of the consequences of general covariance iralgebra(1.2). The action(1.5) is then invariant under the

two-dimensional theories has been extended to the locallgauge transformations of the connecti@rprovided thatL

supersymmetric case. This gives information not only aboutransforms under the coadjoint representation of the algebra.

supergravity itself, but also about the consequences its predlote that the Lie algebra does not have to admit a nonde-

ence may have in the bosonic part of the theory, such agenerate invariant inner product but, if it does, EQ5 may

positivity of the energy5,6]. The generalization of Eq1.1)  be replaced by the integral ¢f,F), () being the inner prod-

to the locally supersymmetric case was givefShusing the  uct symbol, where now is analgebravalued quantity. The

superfield formulation of 7], which shows that, as in the field equations of the theory are
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1 (1.10 remains the same, the only difference being that now
F(A)=0, |dA?=-— ECgcAbDAC . d7a+ CEA° =0, G['0G 1= (~1)""(~1)%G]'0G", where the extra fac-
(1.ep  tor (—1)*% (not present in the bosonic caskkes into
. . account thez, parities of G" and G?i (e; and a;, respec-
Ir;lljsltiglsearr t:nrgtr?nzgce):sﬂ:ﬁte t?e?rjiﬂ?vraftfrlglioi dl_ifilg;afnogrethetively)' The use of free. differential algebras in superg_ravity
. . . . dates from 1981, and since then, they have appeared in many
qonnec_tlonA. _Smtable choices for Lie algebras lead to theo'examples[lS].
gi(anier\?g;[gn;cgt;?ar\]/i(tilé? that can be interpreted as two- As shown before, associated to every Lie algebra it is
: ... _possible to construct a FDA by demanding that the curva-
entT []ii glG;iargoﬁﬁgl] ht?]se tl)ae;gcggsltr:;:gdwﬂw Oé:g%g)";fser'tures in Eq.(1.6) vanish, and the same can be said of supe-
M (Lorength gen.erato’rand{Pa' azl%} (translatigon$ and ralgebras a_ntIz-graded FDA's. Adding t_he EuIer-Lagrange_:
' ' (E-L) equations for the Lagrange multipliers, a larger FDA is
commutators obtained. From this point of view, the equations of CGHS
[M,P,]=€’P,, [Pa,Py]=0, (1.7 and Jackiw-Teitelboim models can be written as a FDA that
has a subalgebra that corresponds to a finite-dimensional Lie
was used. The Levi-Civitaymbol €2 is defined here by algebra. For instance, Eq&l.6) in the Jackiw-Teitelboim
€’’=1, and the indices are raised and lowered using th&€ase ardthe exterior product symbal will be omitted from
Minkowski metric 7,,; the spacetime signature has beennow on
chosen to bé—,+). The same definition applies to the cor-
responding Levi-Civitssymbol with space-time indiceg*”,
wheree, is therefore equal te- 1. The formulation based on

de?+ e?, we’=0,

Eqg. (1.7) had some problems that were naturally solved in do— éfabeaeb:o,
[10] by starting from a central extension of this algebra in- 2
stead. This implies introducing a central generdtoiThe a b (1.1
non-vanishing commutators of the new algebra are d7+ 75€%€°=0,
[M,P,]=€%Py, [Pa,Ppl=—eal. (19 d7a= 7pe"a0+ nA €pe"=0,

It was shown in[11] that the Jackiw-Teitelboim model may whereA=e’p,+ oM, ande®=e}dx*, w=w,dx* give the
be formulated as a theory based on the de Sitter algebra wittweibein and spin connection, respectively.

generator{M,P,; a=1,2} and commutators One of the points of the article is to show that the family
) of models(1.1) (and its generalization to the locally super-
[M,P,]=€"3Py, [Pa,Ppl=—AexpM, (1.9  symmetric casecan be given a free differential algebraic

. . . formulation that does not correspond in general to a finite-
where A is a constant. Supersymmetric extensions of thesgimensional Lie(supejalgebra. However, the models still

algebras have been studif?,13 and they lead, by using haye an interpretation in terms of symmetries and as the dual
the Z,-graded version of the procedure just explained, oyt aninfinite dimensional Lie(supetalgebra. Moreover, this
supergravity _theones. In particular it is known _that the alge'approach also provides an alternative method to obtain the
bra(1.7) admits a f,q) supersymmetric extension, the alge- |ocally supersymmetric generalization of Ed.1). It is con-
bra (1.8) admits two differentN=1 supersymmetric exten- yenjent to note here that an approach to generic 2D dilatonic
sions and the algebrd.9) admits a uniqueél,1) extension.  grayities different from that of FDA's is provided by the
The above construction can be reinterpreted in the moregissono models of[16].
general setting of free differential algebrd®DA's). A free The other main point to be presented here is the follow-
differential algebrd14] generated by the differential forms ing. Once the field equations of both dilatonic gravity and
G, wheren; is the degree of the form, is a mapping dilatonic supergravity are written as free differential algebras
Gi“i.edei”i defined by containing one-forms and zero-forms, it is possible to find
their general solution in the differential form languader
_ i n: the solution of Eq(1.1) in a specific gauge see, for instance,
dGinIZEr: o ++§n: a1 “;l JrGjiID"'DGer'! [17]). The general solution in the locally supersymmetric
e case does not exist in the literature, to the author’'s knowl-
Ir (1.10 edge, although the action is known. The search for the gen-
' eral solution without fixing the gauge may be motivated by
whereaf'l”'j' are in general functions of the zero—fom@ﬂ( the fact that in the bosonic case its knowle_dge has been used
such thatn;=0), in such a way that by virtue of Leibniz's to prove that the corresponding models in t_he presence of
. ’ ) n; Ny conformal matter can be related by a canonical transforma-
rule and the expressions faiG;" themselvesd(dG") is 5 1o a theory of free fields with the constraints of a certain
identically zero(i.e., vanishes without using any algebraic string theory[18]. It might happen that something similar is
relation between the formG ). Analogously, it is possible possible in the context of supergravity theories and super-
to defineZ,-graded free differential algebras for which Eq. strings.

njl

084017-2



FREE DIFFERENTIAL ALGEBRAS AND GENERICD . .. PHYSICAL REVIEW D 59 084017

The organization of the paper is as follows. Section Il iswhere e=det€})=\~g(g,,=€3e>7,y), and then substi-
devoted to the bosonic case. There, the FDA correspondingiting them into Eq(2.3) to obtain an action that only de-
to a generic dilatonic gravity model will be given, and its pends on % and e‘;. In doing so, the relationsL
group theoretical meaning will be explained. The section= L, dx*0dx”= e#"L ,d%=rd?x and €*"d,0,=€eR are
ends with the derivation of the general solution using theysed. Actually, substituting some E-L equations directly into
FDA structure of the equations. In Sec. Ill, the locally super-the action does not necessarily mean that the equations ob-
Symmetric case is studied. This will include the generalizatained from the resumng action are the same as the ones
tion of the bosonic FDA of the previous section, its relationoptained by making the substitution in the remaining E-L
with the ordinary formulation, the general solutiwhich in  equations. However, this does happen in this case because
this case has some peculiarifieand the coupling of the the substituted fields, ,w) are precisely the ones the equa-
models to conformal matter by using Noether’s method. Fitjons of which are useéw and 7a, respectively. This fact
nally, there is a section that contains the conclusions ang|gg guarantees thas and 5, can be substituted into the
outlook. symmetry transformation laws. On the other hand, E24)
can be obtained from Ed1.11) by letting A depend ony
Il. THE GENERIC BOSONIC CASE and demanding that the result is still a FO#his procedure
The FDA given by \r/;/ci:llck;eseexplained in more detail in the locally supersymmet-
The case/= const deserves a comment. It corresponds to
the CGHS action, but it does not correspond to giaeige
/ formulation of the CGHS model given ifl10] because, by
dw— —e?ePe,,=0, Eq. (1.8), this formulation contains a fielthe one corre-
2 sponding to the central generatdr which is not included in
(2 Eq.(2.). If Vis taken to be a constant in E@.1), the free
differential algebra obtained is one that does have a subalge-
bra dual to a Lie algebréhe one considered i®]), but that
does not correspond to a Lagrangian of the fdfnd).

obviously does not have a subalgebra that can be derived Although for a generaV’ the FDA formulation is not the

from a finite-dimensional Lie algebra wher () const gauge theoretic formulation that corresponds to a finite-
although it generalizes EG1.11) (V= A » there ’dimensional Lie algebra, it is still possible to work out the

g gauge symmetries of the FD&.1). A way to do that is to

That Eqa.(lz.l) is indeed a FDA can be seen as follow8. Write Sei=dE®+ F2. sw=d0+ G. whereE? and() are the
acting one? is proportional, by using the equation fow, to d then fix both theriori unk

a wedge product of three* forms, which vanishes in two gauge parameters, and then fix both tneriorl unknown

. : S . . one formsF?, G, and the zero formsy, 67, in such a way
.d|menS|on.s. Apply'ggj _to @ gives two term.s. one of them that the FDA is stable under the variations. The result is
is proportional toe®*e,=0, and the other is of the form

" ab : H :

V'dne 2e €ap and hence zero by virtue of the third eqqat.lon. se*=dE— €2, 0P+ €%, EPw,

Next, d© acting onn can be seen to vanish from similar
considerations. The only non-trivial identity to check is that
of d?7,. But, using the first, third, and fourth equations,

de*+ e?,we’=0,

dn+ 7,€%,e°=0,

d 7]b+V6abea_ Eabw Na= 0,

Sw=dQ+V’ e, E?,

(2.5
1 8n=—12€%E",
d?gp=—V' 7| €gean+ Efcbfad

e?e®, (2.2
651a=—VepEP+ €, Q 7y .

which vanishes because in two dimensions the identity . . o . .
€“g€apt t€%eag—=0(d and a antisymmetrized with An interesting feature of these variations is that the action

“weight one”) holds. (2.3 is only quasi-invarianti.e., invariant up to the differ-
Furthermore, Egs(2.1) are the Euler-Lagrang¢E-L)  €ntial of a one-formwhenV is not proportional top. In the
equations of the Lagrangian two-form caseV=A7, these symmetries are the gauge transforma-

tions of the connections associated to the de Sitter algebra, as
vV can be seen by computing the commutator of two such trans-
L= 7a(de*+ e*,0e®) + ndw— Efabeaeba (2.3 formations. If this is done in general, say, for tlotrans-
formations, the following is obtained:

which is equivalent to the Lagrangian densify.1) in the a 2 b cerd

absence of matter. The equivalence is proved by solving for [ .6 ]€7= —€"pe’(V' €cEE'"),

w and 7,4, (2.6)
) [8g, 0 Jo=d(V' €4,E2E'?) — V" €, E2EP(d p+ 7.€%4eY).
Na= — € 23,7,
2.4 Note that unlessV”=0 the algebra only closes over the

1 . .o .
6’)V3Peieaw space of solutions. Another characteristic that is due to the

w#=e
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departure from the gauge formulation is that, even when théf this equation is then substituted into thosedef anddw,

field equations are taken into account, oneequation involvingw and 7, is found:
[ 0,06/ 1= Sa-vre, Eaerb, (2.7) w 1 1 D\ .
dv-l—z m-‘rﬁ €*®ndn,|=0, (2.12

which means that, with the exception of the ca&econst,
the group of transformations that leave the F[2ALD invari- _ )
ant is intrinsically gaugethe commutator of twcE rigid ~ WhereD is another constant. Equatio.19, (2.11), and
transformations gives a gaude transformation Alterna- ~ (2.10 constitute the solution of E¢2.1), of the form 7
tively, it may be said that E¢(2.7) reflects the fact that the = 7(7a,9), @=w(7,,9) ande*=e*(7,,g), whereg is an-
“structure constants” depend on the fieigand are therefore Other free function which comes from integration of Eg.
not constant. This can be seen by computing thector ~ (2.12. Therefore, the number of free functions equals the
space dual of Eq.(2.1), for which the following elementary Number of gauge symmetries. Of course, this solution is by
may be avoided by considering only functionspthat are
df(X)=X-f, a(X,Y)=X-a(Y)=Y-a(X)—a([X,Y]), always different from zero except possibly wher0 and
(2.9 excluding the pointx for which n(x)=0 from the space-
time manifold(see, for instancd21]). The presence dt-J
where « is a one-form,X, Y are vector fields, and is a in the denominator is related to the fact that the spacetime
function. Now, sincee?(P,)= 65, e*(M)=0=w(P,), and points where it vanishes can usually be interpreted as a black

w(M)=1, Eq.(2.8) lead to hole horizon.
- b - _
Pa(m)==1€%, Pal7)=~Vea, lil. GENERIC 2D SUPERGRAVITIES
M(7)=0, M(7,)= €, (2.9 Before considering the locally supersymmetric case, it is
necessary to fix some conventions, which are the following.
[P.,Po]=—V'exM, [M,P,]=eP,. Spinors are taken to be real and two dimensidtiay be-

long to the vector space of the reducilflel) spinorial rep-
resentation of the Poincagroup in two dimensioris corre-
spondingly the gamma matrices are real. In terme?8f the
matrix s is given by y3=3%e,,7*y°. From this, it is pos-
§ible to deduce some useful relations:

The first two lines of Eq(2.9) mean thatM andP, are the
vector fields that generate the transformation 57, of Eq.
(2.5), which in the cas&” =0 is the coadjoint representation
on the coalgebra of the corresponding Lie algebra. The la
line can be viewed as an infinite-dimensional Lie algebra
where one of its generators\N6 M. The commutator of this €€y, 8., = E€pc, eabeie'ﬂ:eew,
generator gives, by virtue of Leibniz's rule and EG.9), (3.2
new ones that are products bf and P, by functions of
and n,. These in turn produce new generators and so on.
The end result is, in general, an algebra with an infinite num- ) ]
ber of generators. The Lie algebras that arise here should ngfid the Fierz reordering
be identified with the non-linear ones studied 119].

An advantage of writing the field equations as in Etjl) _ 1 1— 1
is that the general solution can be easily obtained in the MZ/ZE?\Yble—EMIﬁL PRRELAE (3.2
language of differential forms. The way to do it is to solve
for nin terms of , insteadof solving for 7, in terms of 5 . . .
[as it was done in E¢2.4)], so that the solution depends on for any two spinors\, #. The following realization of the
the pair of free functions), . More explicitly, from the equa- 98mMma matrices will be usetunderlined indices are flat

y373=1, Y y3= €%,

tions ford» anddz, it is easy to deduce that space indices
1 & 43eC (2.10 0 0 -1 L 0 1 1 0
277 77a - 1 . 7__ 1 0 ] 7'_ 1 0 [} 7,3_ 0 _1 .
(3.3

whereJ( ) is defined byd’ =V and the constar@ is related
to the Arnowitt-Deser-MisnefADM) energy[20]. This ex-  as announced in the Introduction, the generalization to the
pression gives implicitlyy in terms of 7, . Next, the equa- |ocally supersymmetric case of E.1) will be obtained
tion for d», can be rewritten as from the FDA that leads to the supersymmetric Jackiw-
1 Teitelboim model, which is the graded de Sitter—Lie super-
a_T,.a _ _ba algebra OS(,11) [12]. The field equations for the latter
€ V(n = erdnp). (213 define the free differential algebra
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de*+ eabweb+2iZya¢=0 whereu(#) is an arbitrary function. In fact, these relations
are the Euler-Lagrange equations derived from the Lagrang-
ian two-form

dw—2mPe,pe?e®+4imyyp=0,
L= 7a(de?+ €, we’+ 2i ry2y) + pdw — 2uU’ ,,6%€°

1

dy+ 5 wyst meyay=0, — o _ 1

+4|u¢y3w+|u')(eaya¢+|}(d¢+ Ewyg,:p)
(3.9

d7,— ppeaw+4mPePey ,+imyy,=0, iu”

. + Eeabeaeb)()(. (3.6

i

a Ab . —
A7+ macne +2X731’/, 0 Note that the anti—de Sitter case is recovered when
=mu. It is now simple to look for the local supersymmetry
1 transformations under which this algebra is invariéthte
dx+Meyax+ 5 0ysx+ 47,7 +8Myysy=0, Lagrangian two-form is then in general quasi-invariant, as it
happened in the bosonic cas&he comments made about

from which the Lie superalgebra can be immediately recovin€ bosonic symmetrie2.5), as well as how to obtain them,
ered by duality A=e3P,+wM+y°Q,, andQ, are the also apply here. The transformatlop ru!e iprhas to be of
supersymmetry generatordNext, the parameten is taken the form 5:,0=de+_a, Wherge is the infinitesimal parameter
to be a function ofy. If this is done in the action, the E-L of the transformation and is a one-form that can be deter-
equations of which are Eq€3.4), a new term proportional to mined by substituting thls.expressmn into the third _equatlon
Xe*v.i has to appear in the equation fw. The result is, of Eq. (3.5, and der_nandmg .that the terms contamtmg
however, not dree differential algebra because computing €@ncel- Moreover, this condition may be used to obtain the
dd for each form and equating the result to zero would give/@rm of the variation for the remaining one-forms. Having
extra algebraic relations between the forms. To convert thdone that, it may be checked that the Lagrangian two-form is
algebra into a free one, the terms proportionaftare sub- ndeed quasi-invariant under the variation, except when
stituted by terms of the same form but multiplied by un-=Mm7, in which case it is strlctly_ invariant. The following
known functions ofy. On the other hand, the first equation /0¢@! supersymmetry transformations are obtained:

of Eqg. (3.4) should remain unaltered because it gives the 4 . a

usual torsion corresponding te. Then, imposing thatid €® de’=4iyye,

=0 identically, makes it necessary to add a term propor-
tional to e®’e e,y in the equation ford$, which has to
come from another one in the Lagrangian two-form propor-
tional to e?’e e,y x. This term introduces new elements in =
the equations ofiz7, anddw. The requirementid=0, when dw=—8iu"eyzy—iu"eyxe,,

applied to the other equations, fixes the arbitrary functions of ) 3.7

iving the result I
79Mng 81== 5 X V36,

1
Sy=de+ §w736+ u’'ety,e,

de?+ e? we+ 2i Yy =0, o
Oma=—iU'XVae€,
dw—2(uU’)’ €, +4iu’ Yy Y= —BUyse—An.yie.
+iu” xelyay+ 1|—6u”’eabeaeb7)(=0, An immediate consequence of E.7) is that the model
with ue«/n is yet another supersymmetrization of the CGHS
model, different from the ones considered[2]. Specifi-
cally, the transformation rule fog is Syy=de+ (1/8)w y;€
+¢(1/\n)e?y,e, wherec is a constant, in contrast with the
two cases of12], for which either there is ne?y,e term or
b . o — P b— there is a term of the form (& y3)e?y,€ times a constant.
d7a— 7pe a0 +4uu’ € epatiu’ Y yath— gl €ba® xx=0, As explained in the previous section, to connect this for-
mulation with the ordinary one the standard procedure is to
i write all the forms and scalars on spacetine®= eidx*‘,
dn+ 7,€%e°+ = xy34=0, w=w,dx*, y=14,dx*) and then to solve forp, In the
2 fourth equation of Eq(3.5) to obtain

1 1
dy+ 5(»731/14— u'ety g+ gu"eabeaeb)(=0, (3.5

1 i
dy+u'ety.x+ Ew'y3x+47jaya¢+8uy3¢=0, naz—ebaegaﬂn— E)('ygljfﬂegeba, (3.9
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and use the first equation of E¢3.5) to determinew,, in 1
terms ofe, andy, as Vx=dx+u'eyax+ 5 0ysx. (3.149
wM=e‘1ePV&pe";‘eaﬂ+ 2ie‘lep”%y#¢v In some cases, this equation does not deterrmfibecause it
. P is not possible to divide by the factoG8tiu’ yx. This hap-
=w,t2ie "y, 4, (3.9  pens wherC is a Grassmann even number without an ordi-

_ ) ) ) nary number parti.e., when the body ofC is zerg, and
where w,, is the torsion-free spin connection. These two\yhen c=0. The first case will not be considered because
equations are then used to substityeand w both into the  finging the solution implies having to separate the compo-
action and into the local supersymmetry transformationspenis ofC in terms of its components in a basis of the Grass-
The ordinary Lagrangian is obtained from the Lagrangiannann algebra, and the use of non-commuting numbers is just

two-form as in the bosonic case, and is given by a device motivated by the anticommuting character of the
. — . A corresponding quantum operators and does not have a physi-
Lsg=eRp+4eud +4iue "y, vz, +iu' e*’e xva, cal meaning by itself. However, t@=0 case still has to be
ieu considered, and it will be dealt with at the end of the section.
+ier" XD b, — TYX—Mlie(Dﬂdf“%W In the other cases, E3.13 can be solved without using the

Grassmann algebra structure, and the result can be substi-

—, ) — = tuted into the fourth equation of E¢3.5), which in turn
Yty D)+ 28 yaib Y (3.10 givese® as an expression involving, 7%, andy. Once the
expressions fom, ¢, ande?® are known, they can be substi-
tuted into the first three equations of E§.5). They all give
The same equation fap [this is something that can be de-
duced from the integrability conditions of the last three equa-
tions of Eqg.(3.9)], so it is possible to write the solution in
“terms of »? and x. The result is given by Eq3.12 plus

®,: D, ,=d,,t30,y3%,, and similarly for other
spinors. This is the locally supersymmetric version of Eq
(1.1), which coincides, apart from conventions, with the su
perfield formulation of 5], once the appropriate field redefi-
nitions are used to g (®)=0 andJ(P)=0 there. Note L
that, whenu”#0, it is possible to solve the algebraic equa- B —

tion for y, which gives a Lagrangian density independent of == %[1_ sc! XX}(”aya_"zu%)VX’
x- The local supersymmetry transformations are

. . _1
[ i
— a__ [T s . N2, -
5e2:4|%ya6’ e*=|4uu 8u xx+ 4C(u )Uxx
_ ' S v i _
81, =D e+ U'€] vae=ih,y, 4,7, 81 X naw(l—l— EU'XX)—Ecadﬂc
) :—I—_ € iu’ cay, b
M= T XYsE tgc€ Xve(mpy’+2uys)dy |,

- (3.19
Ox=—8Uyzet+4d, ny" yset2ix vy, v  vze.

4 iou
—_t +
UU, 8 (UU,)ZXX w

. i . . 2 D
The general solution of the field equations written as a d( (uu’[C—2u2]+ C—2u2)

Z,-graded free differential algebra can be found by using the

same procedure as in the bosonic case, although there are a iu’ i
few differences. First, it is easy to check, by using the last X| 1= —5 7 Yx) + —5 2
three equations of Ed3.5), that glC-2u] 1eu[C—2u7]
x( u” 2 . 8u2)_ . 4
1 i N2 ~T ~2 |XX|€ MUy
5 772t 207 = 2y =C, (3.12 uu)® € C
{1 2u\__ d i — gy =

[cf. Eq. (2.10] whereC is a constant. This expression de- 1l 5c0 g2 Xrsdx ~ gz max Yidx (=0,

fines implicitly 7 in terms of »® and x. The last equation in

Eq. (3.5 can be used to obtaigr in terms ofe?, w, %, and  whereD is another constant. Note that there are five arbitrary

X Multiplying it by 5,y*+ 2uvy; and then using Eq3.12,  functions: %, x and the one that comes from the integration

the following equation is obtained: of the last equation in Eq3.15. This number coincides with
the number of gauge symmetries of the FDA. Of course, a

(7ay®+2uy3)Vx+(8C+iu"xx)¥=0, (3.13  gauge fixing greatly simplifies this expression but, as stated

before, it may be important to control the gauge degrees of

where freedom.
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A. The C=0 case because expressions involving the product of thyepinors
When C=0, Eq. (3.13 may, in principle, be solved for vanish. By virtue of the second and last equation in Egs.

the components af in a basis of the underlying Grassmann (3-7: solving the equations is the same as, given a bosonic
algebra, although it is not completely determined due to thdi€!d configuration, looking for values of the supersymmetry
fact that the body ofyx is zero. This is not desirable from paramete(x) such that supersymmetry is preserved. These

the point of view of the quantum theory, so it is convenientParticular values o(x) receive the name of Killing spinors.
to restrict the space of solutions to those which can be exNot every configuration admits Killing spinors, but it turns

pressed in terms of the fields themselves and not their confut that those witlC=0 do, and in fact these are the only
ponents. This means that to solve E8.13 yx# has to configurations that are solutions of the field equations in the

vanish. Then it makes sense to try a solution of the fgrm 2Psence of matter and have Killing spingas can easily be
= wx, whereu is a one-form to be determined. Indeed, it seen by computing the square of the matrix in the second

can be checked, following the same procedure as inCthe equation _Of Eqs(3.18]. To'fir'ld the explicit expre;sion of
£0 case, thatD, D’ are constanis the solution of EQ.(3.18), it is con\(en_lent to definey..
=79+ 71, 7==1no— 11 (underlined indices correspond to
- - - - L
flat space indicesand writey = (gR) in the basis correspond-
ing to Eq.(3.3). The solution may then be written

!

= Twzeaﬁax,

i -t - !
ea=<4uu’— gu”yx) (nPw—e"dny), d(|7-|"*%R) =0, fLZZ 7. E8. (3.19
i In this way, the closed formr of Eq. (3.17) gives a free
739+ 4uZ— ZU’)()(:O, (3.16  function, and the first equation of E(.19), when applied to
, gives another one. Hence, the number of free functions is
five as expected.

d

4 i u _
RN —— —
uu’ 8(UU/)2XX w

i(l u”

INERa
2 1\2
u=\ 32 (uu’) B. The coupling to conformal matter

iu’_ 1 D aq bl _ When studying the physical consequences of 2D models,
* ( 1+ RFXX) (W * ﬁ) €ap7°d7" =0, such as black hole formation and evaporation, it is necessary
to add matter fields. For this reason it may be interesting to
together withV =0 and»,y®x+ 2uysx=0, provides a so- do it in the supersymmetric case, providing explicit expres-
lution of the FDA Eq.(3.5 whenC=0. sions in components. The next thing to do is, therefore, to
However, Eq.(3.16 is not the only solutior(this is not  couple these locally supersymmetric dilatonic gravity models
surprising, since it is expected that the solution includes twao conformal matter. Here, this will be done by using the
arbitrary functions to account for local supersymmgtly  Noether method, although the same result can be easily ob-
¥,e%, 0,7 is a solution, the sew)’,e*,w,n with '=¢ tained using superfields. The starting point is the flat space,
+ox+xx{ is also a solution provided is a closed one- rigid (1,1) supersymmetry invariant matter Lagrangian
form and and¢ obeys 7,v2{+2uy3{=0 andV{=0. The
final result is, therefore, Eq3.16) except for the first equa-

1 i—
= — MV )\ M
tion, which takes the form Lm 27 Iufd,f+ 4 AYRIuN, (3.20

!

B a — where the first term corresponds in curved space to the usual
U= 1a2€ X TOXTXXE. (317 conformal matter Lagrangian, and the spinorial term makes it
supersymmetric for the rigid variation
Both y and { have to satisfy the same system of equations,

with €, w,n given in Eq.(3.16. Explicitly, writing ¢ to of =ien,
denote either the spinor or the spinorial one-form, (3.2)
ON=—24,Fy"e.
1
d+ Swystu'ety, =0, The curved space version of E(B.20 [which is the one
(3.18 needed to cogplle it to Eq3.10] is obviously_ not !nvariant
(7a7%+ 2U7ys) E=0. under the variation$3.21) when they are written in curved

space and the parameteris made spacetime dependent.
The solution given in Eq(3.16 is, as far as the bosonic There are terms in the variation that come from the variation
fields are concerned, equal to the solution of the theory withof €3, and there are also terms proportional @g,e that
out fermions plus some corrections proportional Y. would also appear even in flat space because the variation is
These corrections are irrelevant when so|ving Bq]_a' due now local. The latter can be cancelled by addlng to the action
to the presence ofy multiplying Egs.(3.18 when ¢é¢=¢  terms that iﬂvolvez,bﬂ. They can be seen to be equal to
[see Eq.(3.17] and to the presence qf itself whené= y, A L=ied, f,y*y"N. Among the other terms, plus the new
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ones coming from the variation df, £, there are some that

PHYSICAL REVIEW D 59 084017

IV. CONCLUSIONS AND OUTLOOK

containD ,\. These can be cancelled by adding a new piece g paper shows that a generic two-dimensional dilatonic

to the var|at|on of\: 8'\= 2|)\<p y*e. The new variation
contains terms mvolvngMe WhICh means that the term

AyL=—Si, yty ", AN must be added to the action. The

gravity theory in the absence of matter can be expressed as a
free differential algebra. This has several consequences.
First, there is room for a symmetry interpretation which gen-

process stops here because at this point the complete varieralizes that of the gauge theoretic formulation. Second,
tion vanishes up to a total derivative. The resulting Lagrangprovides a method for obtaining the general solution in terms

ian density is then

1
L=Lgq4 eg’”& fo f+i— )\y“D A
H m v e— v )
+ied, fy, vty N 2y Y AN, (322

and the local variation of the matter fields is given by

Sf=ieN,

_ (3.23
ON=—29,Fy e+ 2iNg, y"e.

Due to the fact that the matter multiplet is the one corre-
sponding to a conformally coupled matter fididthe cou-

pling of matter to the locally supersymmetric models is ex-

actly the same as that for the pure Poincasse. If a
coupling of the formeh(#)g*"d,fd,f was addedan inter-

esting case, corresponding to a scalar field in four dimen-

sions isVec 1/\/7, h(77)= 7], both the variation of the matter

of differential forms in both the bosonic and the locally su-
persymmetric case. Third, it provides an alternative method
to obtain the generic supergravity Lagrangians.

It is still to be investigated how the free functions appear-
ing in the solutions obtained relate to the different gauge
fixings. This will be important when the program of relating
the dilatonic theories to free field theories is carried out for
the locally supersymmetric case. In that context, having a
general solution of the starting models in the absence of mat-
ter might help one to find the new canonical variables, or to
prove that they exist. Another point to be analyzed is
whether it is possible to couple the models to matter while
maintaining the symmetries of the free differential algebras,
as was done if22] for the CGHS model. Finally, many
aspects of the derivation presented in this paper do not apply
to the case of non-trivial topology. For instance, it is not
guaranteed that a generic dilatonic action can be cast in the
form (1.1). On the other hand, finding the general solution
relies on the integration of certain closed forms, which may
then be non-exact. These issues deserve further study.
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