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The OSp(2|2)-invariant planar dynamics of =4 superparticle near the horizon of a large mass extreme
black hole is described by ad=2 superconformal mechanics, with tB&(2) charge being the superparti-
cle’s angular momentum. Theon-manifessuperconformal invariance of the superpotential term is shown to
lead to a shift in theSO(2) charge by the value of its coefficient, which we identify as the orbital angular
momentum. The fullSU(1,1]2) invariant dynamics is found from an extension Ne=4 superconformal
mechanics[S0556-282(199)01608-3
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l. INTRODUCTION AND THE OSp(1]|2) MODEL the gravitational and electric forces orsatic superparticle
in an extreme RN black hole background. It was further
The dynamics of a particle described by the action pointed out in[2] that the full superparticle dynamics must

be invariant under the large8U(1,12) superconformal
group because this is the isometry group of the AdS?
1) near-horizon supergeometry. This full dynamics will of
course describe not only the radial motion of the superpar-
ticle but also its motion on the 2-sphere. However, there is
nothing to prevent us from considering only the radial mo-
tion, which will be the equation of motion of an
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is invariant under the grougL(2,R), one of the generators
being the HamiltoniaH. The groupSL(2,R) is the confor-
mal group in a “spacetime” of one dimensigtime), and so ) . o
the actionl is that of a one-dimensional conformal “field” SU(1,12)-invariant generalization of Eq1). _

theory, i.e., a model of conformal mechanics. The model was !N @ddition to considering only the radial equation of mo-
introduced, and its quantum properties investigated.in tion of the superparticle we can also consider a restriction on

Recently, it was shown that it describes the radial motion of1€ full dynamics in which the particle is assumed to move
a particle of massn and chargeq near the horizon of an within an equatorial plane or the further restriction to purely

extreme(i.e., M=|Q|) Reissner-Nordstra (RN) black hole radial motion(i.e., I=0). These restrictions correspond to a
in a limit in which |g|/m tends to unity at the same time as reduction of th_e superconformal symmetry to some subgroup
the black hole mas tends to infinity, withM?(m—|qg[)  °f SU(1,42), in fact to the sequence of subgroups
Limaining finitg2]. The coupling constary is then found to SU1,12)DSU(L,11)=0SH2|2)20SH1[2). (3)

In the first restriction, toSU(1,1/1), the SU(2) group of
rotations is reduced to thg(1) group of rotations in the
plane. The corresponding superconformal mechanics is the
SU(1,11) generalization of Eq(1) constructed and ana-
lyzed in[3,4]. As the above discussion suggests, thel)
charge of this model is directly related to the angular mo-
mentum of a superparticle; the precise relation will be given
Féelow. That the subsequent restriction @Sp(1|2) de-
scribes purely radial motion was justified in detail[&]. Of
principal interest here are th®Sp(2|2) and SU(1,1/2)
odels because they allow:0 and hencey+# 0.

The OSpK(2|2) superconformal mechanics was initially
presented as a particular model Nf=2 supersymmetric
guantum mechanicE3,4]. Its superspace action is a func-
tional of a single world line superfield(t, 4, 7,), where

7, (i=1,2) are anticommuting partners to the world line
time coordinate. This action i$

g=8M2%(m—|q|)+4I(I1+1)/m, 2

wherel is the particle’s orbital angular momentum.

It was also shown ifi2] that the radial motion of a super-
particle in the same background, but with zero angular mo
mentum, is described, in the same Ilimit, by an
OSp[1|2)-invariant superconformalmechanics. However,
because the fermionic gauge symmetries of the superpartic
requirem=|q|, and becausé=0 is assumed, the coupling
constantg of this model vanishes, and the potential term is
therefore absent. This is a reflection of the exact balance df
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when! 0 the particle’s motion is not purely radial, of course,
but by “radial motion” above we mean the equation for the radial
position of the particle. 2The constant is related to the constafitof [4] by f=2I.

0556-2821/99/5@8)/08401%9)/$15.00 59 084015-1 ©1999 The American Physical Society



J. A. de AZCARRAGA et al. PHYSICAL REVIEW D 59 084015

els of interest here. As a simple illustration of the method we
I= —iJ dt d®»{2miD;xD,x+ 4l logx}, (4 shall now show how th®©Sp(1|2)-invariantN=1 super-
conformal mechanics d2] can be found in this way.
where The superalgebrasp(1]2) is spanned byH,K,D,Q,S).
_ We choose as an “unbroken” subalgebra that spanne'\bél by
T . and Q, to which we associate the independent varialglés
D '=D‘_a_77i_§77iﬁ' 1,j=1.2, {Di.Dj}=—id;a, =(t,7). These parametrize a reél,1)-dimensional super
(5  world line. TheOSQ1|2) group element on the super world

. . ) o line is written as
are the super-world-line covariant spinor derivatives.

The action(4) is manifestly invariant under the two world g(t, n)=e tHel MQeiMt.mSgiz(t.mDgiw(t, nK (7)
line supersymmetries, with corresponding Noether charges
Qi, but is also invariant under the other two supersymmewhere the dependent variablesaind w associated with the
tries of OS[(2|2), with Noether chargeS;. The full set of  “proken” generatorsD and K are commuting world line
Noether charges includes those corresponding to dilatationsuperfields, and is an anticommuting world line superfield
(D), proper conformal transformation&), and theso(2)  associated with the “broken” superchar@e It will prove
charge B. For |=0 these Noether charges obey theconvenient to introduce th@on-exack differential
(antjcommutation relations of thesp(2|2)=su(1,41) al-

gebra. The non-zer@ntijcommutators are i
dTEdt—Endn, (€)

[H,D]=iH, [K,D]=-iK, [H,K]=2iD,

{Qi,.Qi}=6;H, {S.S}=4K,

because we then have

1 d=drd,+dnD,, 9
1Qi,S}=6;D+ 5 €B, where
D O= i DSle i A R
[ in]__EQia [ -3]—§Si, Dn=5]—§nﬁ=8ﬂ—§n&t (10
[K,Qi]=—iS;, [H,§]=iQ;, is the super-world-line covariant spinor derivative satisfying

. _ N 2D?=—i4,. A calculation now yield$
[B.Qil=—i€;Q;, [B,S]=-i¢;S;, 1,j=12. (6)

Whenl # 0 one finds the same algebra lits no longer the _
U(1) Noether charge associated with thé€l) invariance of —[dr(2we *+2)+dn(D,z—i\)]D
Eq. (4). This is not due to any change in this Noether charge,
which continues to be the same fermion bilinear as before

[given by Eq.(65) below]. Let us useB to denote this fer-

ig”'dg=dre ?H—(drA+dy)e ?%Q

. ) [
d’T( w—wz—e_zwz-l-z)\)\eZ)

mion bilinear. ThenB in Eqgs.(6) is given byB=I§+2I; o] dnlD b _ P b K

B=B when|=0 but not otherwise. The main aim of this +dn| Dyo=obyztior= Ee AD oA

paper is to provide a mathematical explanation for why this . o - o
shift of theU (1) charge occurs and a physical explanation of —[d7(Ae"*—we #N)+dn(D,e”"—we *9)]S.
its significance. (12)

The Q;-supersymmetries are linearly realized by the ac-
tion (4). The S;-supersymmetries are non-linearly realized,\We can rewrite this in the forfn
the variables D; x)| being the corresponding Goldstone fer-
mions (where, as usualjs short for|,,i=0). Thus, the above

supgrsymmetric mechanics is one in which Supers_ymmetry i53We assume for the purposes of this calculation, and those to
partlally” broken. In fact, the supersymmetry is “half- to0, that » and A anticommute withQ and S The opposite
broken,” as is to be expected from its superparticle origin,assumption, that they commute, leads to a change of sign of all
and x(t,») is the Nambu-Goldstone superfield. Since thefermion bilinears. Since this sign is not fixed by physical consider-
terms in the action of lowest dimension should be deterations, we are free to make either choice for present purposes. We
mined entirely by(supejsymmetry, we may use the method |eave the reader to decide whether one or the other choice is re-
of non-linear realizations of spacetinf®ipeisymmetrieg5] quired for mathematical consistency.

to construct them. This was done [®] for a class of “We shall use a scrigb to denote theyroup covariant derivatives
SU(1,3n)-invariant N=2n superconformal mechanics D,, Dy used in this paper, whil®, or D, =D; will refer to the
models that include the bosonic model and e 2,4 mod-  super-world-linederivatives.
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ig 'dg=d&MEy, A[HA—(DAz)D—(Mw)K—(DAMS(]l,Z)

wheredéM=(dr,d7) andH,=(Hy,H;)=(H,Q). We find
that

i
—eﬂz( an—wD,?Z-l-iw)\—Eez)\Dn)\)
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—\€?

_ ez/2) ’ (13)

e—z _)\e—zlz ez
0 —eZ’Z)’ EAM:(O

and, for example,

EMA:

. . i .
ez( w—wz—e 2w+ EA)\eZ—)\D”w-H\wD,?Z)

(14

Manifestly OSp(1|2)-invariant superspace actions have The equation of motion is equivalent, when combined with

the form

|=f dt d7 (SAetE) £(Daz, Daw, DaN), (15)

the constrain,z=0, to the manifestfyO Sp(1|2)-invariant
equationD,w=0 (and these implyD,A =0). Setting

z=log x?, (20

where £ is an anticommuting world line scalar. The invari- performing the superspace integral, and then setting the fer-
ance is manifest in the sense that &déttransforms as a mions to zero we recover the Lagrangidn with g=0. By
scalar density. The superspace structure group is chosen seetaining the fermions we recover thé=1 superconformal

as to leave invariant the reIatiorDiz —id;. It follows that

the fermion and boson components of the covariant deriva- Note

tives are independent tensdiia fact, scalars in this cagse

mechanics of2].
that it is not possible to construct an
0OSp{1|2)-extension of they/x? potential. This might be

The lowest dimension Lagrangian is therefore proportionapossible if we were to suppose that all supersymmetries are
to theD;w component. All the other choices lead to higher-non-linearly realized, but the resulting action would involve

derivative component actiofisSince

sdetE=—e 72, (16)
we have, discarding a total derivativthe D, term,
|=—imJ’ dtdn(mD,}Z—iw)\-i-iEeZ)\D,])\ . (17
The v and\ equations yield
1 .
w=—§ezz, A=—iD,z, (18

which are equivalent to the manifestySp(1|2)-invariant
constraintsD,z=0, which could have been imposad ini-
tio. Either way, the action then reduces to

i )
I(z)zsz dtdnpe’zD,z. (19

SLet the infinitesimal transformation of the coordinatg¥
=(t,7) be §M=(6t,67). Then, a scalar densitl is one for
which sL=(8ML)dy, .

8Assuming thatD,z=0 is imposed as a constraint to eliminate
and\ as independent superfields, becawseould otherwise be an
independent field with wrong-sign kinetic terms.

variables other than the components of the superfiglg)

and it would not be expressible in superfield form. To find a
suitable supersymmetric generalization of the potential term
we must consider the further extension Ne=2 or N=4.
Similar techniques to those just described were us¢f]ito
obtain the field equations of the=2. superconformal me-
chanics model of [3,4] in manifesty OSp2|2)
=SU(1,1]1) invariant form, as a special case of a construc-
tion valid for SU(1,1n), but no attempt was made to dem-
onstrate themanifestinvariance of the superspaaetion
There is a good reason for this: as we shall see here, the
superpotential term of th&U(1,11) modelcannot be ex-
pressed in a manifestly invariant formhis possibility arises
because manifest invariance is only a sufficient condition for
invariance, not a necessary one.

The existence of actions which are invariant but not mani-
festly so has often been noted in connection with Wess-
Zumino (WZ) terms associated with central extensions of a
(supeyalgebra. The WZ term, expressed as an indefinite in-
tegral, is the variable conjugate to the central genefatsi.

In our case, we obtain the superpotential term in the action in
a similar way as the variable conjugate to thé€l) chargeB,
even though this charge is not centrdthe fact that the
superpotential term in the superspace acfiéhcannot be
written in manifestly invariant superspace form leads to a
modification of the algebra of Noether charges. This is in
close analogy to the modification of the supertranslation cur-
rents for the supep-branes as a consequence of the non-
manifest supersymmetry of the WZ terms in their acti@is
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The analogy is not complete, however, because in the case
under study here the modification can be removed by a re-
definition of theU (1) charge. It is this redefinition that leads

to thel-dependent expressid~ B+ 2| for theU(1) charge ) ) ] ) ]
that we mentioned previously. The mathematical explanatiofthere Ey” is the world line supervielbein an®, is the
for this I-dependence is therefore the non-manifest nature dgdroup-covariant derivative. A calculation yields
the superconformal invariance of the superpotential term in
the action. Its physical significance is best seen in the context
of an embedding of th8U(1,1]1) model into theSU(1,12)
superconformal model, because of the interpretation of the
(superspaceield equation of the latter as the radial equation
for a superparticle near an extreme RN black hole.

Many technical aspects of the discussion to follow of the
N=2 andN=4 superconformal mechanics models are simi-

ig tdg=d&é"Ey A HA— (Daz)D— (Daw)K
—(Da\i)S' —(Dpa)B], (23

—e” ZIZ)\TR( a)

—e ??R(a) )’ @49

A e’
EM = O

where \T means the transpose af as a two-vector and
R(a) is a 2X 2 rotation matrix:

lar to those in6], which we became aware of after submis- _[cosa —sina

. . . . . R(a)=| . . (25
sion to the archives of an earlier version of this paper. How- sina cosa
ever, the thrust of our argument is quite different, centering
as it does on our improved understanding of the nature anggte that
significance of the superpotential term and the black hole
interpretation. sdetE=—1 (26)

h ifestly i i i h he f
Il N=2 SUPERCONFORMAL MECHANICS so that manifestly invariant actions have the form
We now turn to theD Sp(2|2)-invariantN=2 supercon- B 2

formal mechanics of3,4]. The anticommutation relations of I= | dtd®y L(Dad), (27)

the Lie superalgebr®sp(2|2) are those of Eqs6). We

select H,Q;)(i=1,2) as the “unbroken” generators associ- ywhere = (z,w,a) denotes the set of world line superfields.

ated with the real super-world-line coordina#$=(t,7').  The covariant derivatives can be written as
As before, it is convenient to define=[dt—(i/2)d%'%;]

because we then have Da=EMD,, (28)
d=drd+7'D;, (21)  whereE, is the inverse supervielbein,
whereD; are the supercovariant derivatives of E@S. " e’ —en\ '’
We may write theOSp(2|2) group element as Ea"=1 o _e??RT(a))" (29

N Sy iy . . . ]
g(t,p)=e e 7 Qg (L mSglzlt MDelelt MKgialt.m)B, andDy=(D,,D ) are the components of the covariant de-

(22

Defining d¢M=(dr,d#;) and Ha=(Hq,H))=(H,Q;) we
can rewrite this as

Dyz=(2we ?*+z, D;z—i\)),

: . [
DMw=<w—wZ—ezw2—§ez7\i)\', Diw—wD;z+iw\i—

DM)\J = ( eZIZXkRkj — efZ/zw)\kRkj ,

o
a— _7\1)\2,

i .
2 Dia——Eij)\J .

DMa: 2

eZIZDi)\kRkj - efZ/ZwRij +

rivatives on the(still non-coordinatg basis @r,d7'). The
transformation properties @b, ¢ are not as simple as those
of Dp¢ (which are super-world-line scalarsut they have a
simpler form. The expressions @f,,¢ are found to be

i .
EeZDi)\j)\J>,
i

> eZ/Z)\i)\kRkj) ’

(30
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To proceed, we begin by imposing the manifestly invariantmanifestly invariant. The existence of such “non-manifest”
constraint invariants has usually been associated with the possibility of
a central extension of the Lisupejalgebra of the symmetry
Dpz=0, (31)  (supeigroup. In such cases the action is a WZ tésme, for
example,[10]). A number of super-world-line examples of

which is equivalent t®yz=0 and is solved, algebraically, ihig \ere discussed ii8]. In our case, however, there can be

by no central extension because the relevant cohomology of the
1 . osp(2|2) algebra is trivial. One might therefore be tempted
w=— Eezz, Ni=—iD;z. (32  toconclude that there can be no furtl@$ (2|2)-invariants

and hence that there is ®Sp(2|2)-invariant extension of
As in the previous cases, we could arrange for these equaﬁheg/xz potential of conformal mechanics. But this would be

ties to arise as equations of motion ferand\;, but in this wrong, as we now expla_un. .

case it is simpler to impose E¢31) as a constraint. As a A further OSp(2[2)-invariant may be found by the

direct consequence of E¢32), we then find that the\=i method of[8]. We first note that the. bosonic and spinor

components oD,\; satisfy compopents ofDAaz(Doa,Dia) are |r_1dependent super-
world-line scalar fields because invariance of the relation

Di\jy=0; (33)  {D;,Dj}=—idj;d, requires the structure group of the frame

bundle to be jus8O(2). Thegroup covariant derivativeB,

so themanifestlysuperconformal invariant, an8Q(2) in- transform as é&80(2) doublet forA=i=1,2; so the mani-

variant, Lagrangian of lowest dimension must be a lineafestly OSp2]2) invariant constrainD,a=0 is alsoSQ(2)

combination ofDya ands"Di)\j . If we insist that our action invariant, and equivalent to

describe the dynamics of a particle inome-dimensional

space, with(rea) coordinatez(t) =z(t, 7;)|, then we cannot

make use ofDpa. In this case, and using th@,\; for A

=i is given bye’D\j— wdj; +(i1/2)e’\\j, we get

i A
Dia—ieij)\1=0. (38)

Since\j=—iD;z [Eq. (32)], this new constraint implies that

- i
E“S”Di}\j:_zez Dl)\2+§)\l)\2>- (34) 1
Dla: EDzz, (39)
Then, using the constrai82), adjusting the proportionality
constant, and integrating by parts, we arrive at the action and hence that
m S
lkm=5f dtd®ne’D,zD,z, (35) a=iD1Dyz. (40)

o ] ] This can be integrated to give
which is the first part of Eq(4) with z=logx°. Let the com-

ponents of thez(t, ;) superfield be defined by(t)=2z|,\; (., ) (., o )
=—iD;z| and F'=—iD;D,z|. Then, defining new vari- a(t)=a :'f dt’'D,Doz(t", %) :'f dt’'d®y z(t', 7).
ablesx, x,F by (41)
R 3 \ﬁ . . The variable fielda(t)=a| can thus be viewed as a super-
X=€7 xi= 7 \3® i, F=2F, (36) space action in the form of an indefinite integral. This new

. action is superconformal invariant, up to a surface term, be-
and performing the;' integrations, we arrive at a component cause Eq(40) implies that
action with the Lagrangian
8(iD 1Dyz) =4, 5a. (42
m., i . . 1 5
X5 (xaxat xax2) + §mx2F +5FXxxz|. The left hand side is the variation of the component Lagrang-
(37) ian of the new superspace action whereas the right hand side
is a total time derivative. By itself, this is not quite sufficient
After elimination ofF by its algebraic equation of motion to establish the desired result. According to E40), the
the bosonic Lagrangian reduces to that of B¢, and so we component Lagrangian is itself a total time derivative, and so
have now constructed a®Sp(2|2)-invariant extension of it is hardly surprising that the same is true of its variation. Of

Lyin=

the g=0 conformal mechanics. All othenanifestlyinvari-  course, Eq.(40) tells us nothing about the component La-
ant actions must involve either higher-derivatives, highergrangian; instead it provides us with information about the
powers of first derivatives ofnon-auxiliary bosonic vari- independent superfield. However, whilea is an indepen-

ables other tham(t). Thus, anyOS[(2|2)-invariant gener-  dent superfield, its variatioda is not. In factda is a func-
alization of theg#0 conformal mechanicsannot be de- tion of the superfield and its derivatives, and is independent
scribed by a manifestly invariant actiorThis does not of a. Thus, we indeed learn from E¢42) that the variation
exclude the possibility of an action that is invariant but notof the component Lagrangian of the superspace affibnis
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a total time derivative, and hence that this action is invariant
up to a surface term. We have now deduced that the action

PHYSICAL REVIEW D 59 084015
{Q,S)}=2(05);13,+2i 5D,

{Qi, 5} =2(0,)13,-2i 8D,

I=Ikin—2ilfdtd27yz, (43
_ i — i —

wherel;, is given in Eq.(35), is OSp(2|2) invariant for [D,Q1=-5Q [D,Ql=-5Q,
arbitrary real constarit Settingz=1logx? this action is seen
to be precisely that of Ed4). The superpotential term is not
manifestlyinvariant because does not transform as a scalar
density. A calculation shows thatfails to transform as a
scalar density by a term that, beitigear in #, does not
contribute to the variation of the superspace integral. Despite
the non-manifest superconformal invariance of the action
(43) the z superfield equatiosan be expressed in the mani-
festly superconformal invariant form

(D.51-5S. [DSl=355.

[K,Q1=S, [K.Ql=-5,
[H,S1=Q', [H,S]=-Q,

. . 1 : — 1 —
e1D)\;=41/m (44) [92,Q1=-5Q(a)", [32.Qj1=5(7a) Q.

(recall thatD,; are theA=i components 0D,).

The component Lagrangian including the contribution of
the superpotential terrfobtained by performing the super-
space integrationss

) 1 . ) — 1 —
[Ja,S']:—ESJ(a-a)J-" [Ja-Sj]ZE(O'a)ijk- (48)

We take the super-world-line-valued supergroup element to

1 . i . . 1 i be
(45) g(t, 7, 7) =6 HelmQ QNS TN'S)
Elimination of F now yields x e/7DelKel dl1gl Mgl (49

1

R . 2 _ where\,\, z, o, ¢,0, ¢ depend ont,7,7). The anti-
»C:mez"‘E(X1X1+X2X2)_W|(|+'X1X2)- (46) —

commuting coordinates;' and 7; are related by complex

. . . conjugation, i.e., §')* = ;. We shall again define
Setting the fermions to zero we recover the bosonic Lagrang- 119 &) =mn 9

ian of Eq.(1) with

dr=dt=i(ndy +7'dn), (50)
— 212
g=4%/m. (47) which leads to

Thus, we have found a®Sp(2|2) invariant extension of e
conformal mechanics. It is just the model constructed in d=d7d+d7D'+d7'Di, (51)
[3,4]. There is an apparent discrepancy with E).but this h
will be resolved after we have looked at ti&U(1,12) where
model.

D —pi=" iy D,=Di=t—ins (52

. N=4 SUPERCONFORMAL MECHANICS 7 97 at’ " | ’77li ot

We turn now to theSU(1,1]2)-invariantN=4 supercon- ; I . =
. N . ) are the superspace covariant derivatives satisfyidgD .
formal mechanics describing the full superparticle radial dy- persp — fygD;}

namics. Thesu(1,12) superalgebra is spanned by the = _2idjd;. It should also be noted tha;=—(D')*.
sl(2;R) generators 4,K,D), the SU(2) generators],(a The left-invariant 1-form can be written as
=1,2,3), and theSU(2) doublet supersymmetry charges i
(Q',S) and the Hermitian conjugate€)(,S;). The superal-

gebra has the following non-vanishif@ntijcommutation re-
lations:

g 'dg=dé"[Ey Ha— (Dyz)D — (Dyw)K—(DyN)'S

— (DS — (D) I — (Dy )3~ (Dy i) I3],
(53)

[H,D]=iH, [K,D]=—iK, where

[HKI=2ID. s, Jo]=ieapcle, deM=(dr,dyl.d7), Ha=(H.Q.Q). (59

{Q.Q;}=25H, {S.S}=25K, A calculation yields
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e ? ie”?\s e ?Al(s™h),] e’ ie?\; —ie?\]
—27/2a 1 /20 =1y i
Eyh= 0 -—-e %% 0 | 5 EM= 0 —e”(s) 0 . (56)
0 0 —e (s 0 0 —e?%g
We shall need the inverse supervielbein Further calculation yields

Dyz=(2we ?+z, D'z+2\, c.c),

: . - 1 _
Dsz(w—wz—eZw2+i()\)\+)\)\)ez— %()\0)\)262,
. . - - _
D'w—wD'Z—ZwA'—I()\D')\-H\D')\)eZ—§ez()\a'a)\)(o'a)\)', c.c.)
. i —

Dy\;= ( ()\kez’z— we 2\ + geﬂ()\aax)(ma)k) sk,
i 212__; —2/2 qj 1 220N ] 1 zI2y ] k
DN e —iwe 6k—§e (Noa) ()\aa)k—ze NAg]Ssi®,

( Djhe?2- %em(xaa) i)t %eﬂx jxk) sik) (57)
and
Dy b= (¢ cosf cosy— Osing+i[Ad(s D ]ahoah, D' cosdcosy—Digsing—2i[Ad(s ) ](Aaa)', c.c.),
Dy 6= (0 cosyr+ ¢ cosfsiny+i[Ad(s D ]ahoah, D'Ocosy+D'¢cosdsing—2i[Ad(s ) ]p(Noa)',  c.c.),
D= (p— psind+i[Ad(s H]ashoa\, D'yp—D'¢sing—2i[Ad(s ) ]as(ron)', c.c.), (58

where the explicit forms o§¥ and[Ad(s™1)] are

S| k_— (ei 11/0'3/2ei 90’2/2ei 450'1/2) i k,

C0SfCcosy —Cos¢sinyg+singsinfdcosy  Sing sinyg+ cose sin 6 cosy
[Ad(s 1)]=| cosfsinyg cos¢cosy+singsingsing  —sing cosy+cosgsingsing | . (59
—sing sing cosé COS¢ cosd

The supercovariant derivativé®,z, etc., can now be found vyield a kinetic term containing an? term. This problem
from the formulaD,=E,\MD,,. We begin, as before, by could be circumvented by imposing the complex constraint
imposing the manifestly invariant constraib,z= 0, which

yields e D'NI=0. (61)

w=——ezi, )\i:

5 Dz (60)

The linearization of this constraint yields;D'D’z=0. This

is the reduction taD=1 of the D=4 *“linear” superfield
This leavesz as the only independent superfield. Manifestconstraint, which is solved in terms of a conserved vector.
SU(1,12) invariants will be expressed as full superspacelhe reduction toD=1 of a conserved vector is a triplet
integrals of the formfdtd*» sdeEL where £ is a super- X';(X'i=0) and a singleX subject to the constrairX=0.
world-line scalar, but there is now no Lagrangian built from The latter constraint means that the equation of motiorXfor
covariant derivatives o that has a dimension low enough to (obtained by variation of an action in whieis treated as an

2
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unconstrained superfiglds actually the time-derivative of : . .

the true equation of motion. Thus, the true field equation i that the canonicalantjcommuttation relations of the
the once-integrated-equation in which there is an arbitrary quantum theory are

integration constant. This analysis will apply equally to the _

full constraints(60) except that their solution in terms f; [x,p]=i, {xi.xj}=—25;. (67)
and X will be more involved’ We thus deduce that the re-

maining equations of th&U(1,12) superconformal me- The anticommutation relations are realized by the operators
chanics have the form of &U(2) triplet equation foz and —io —io-. in which caseB= . We see from this

a singlet equation involving an arbitrary constant. Both mustt® ' © X2~ 192 . 8-

be constructed from the supercovariant derivatiZga and that the eigenvalues dB as an operator in the quantum
complex conjugates in order to be manifestly theory arex1. On the+1 eigenspace we have

SU(1,12)-invariant equations of the appropriate dimension. 2
There is only one candidate for the triplet equation: H= L + 9 (68)
2m = 2x?
DiNi=0. 2
(A =0 ©2 itn
The singlet equation is g=41(1+1)/m, 69)
Di)\i+5f=8|/m; (63)  which is them=q case of Eq(2). On the— 1 eigenspace of

B we can takd — —1| to arrive at the same result. Thus, our
as anticipated, it involves an arbitrary integration constantresults are consistent with those obtaineddhonce quan-
Choosing the constant as above, one finds that the bosonigm effects are includeths they implicitly were if2]). We
field equation is precisely equivalent to that derived from Eqthus confirm the identification of the constdrih the super-

(1), again withg=412/m. conformal mechanics model as the orbital angular momen-
tum of a particle near the horizon of a large mass extreme
RN black hole.
IV. SUPERPARTICLE/BLACK HOLE The operatoB is the Noether chargécalled B in [4]).
INTERPRETATION Whenl #0 this is not to be identified with thg(1) charge

We claimed in the Introduction that tié=2 andN=4 B in the superalgehrég). Instead, we have

models of superconformal mechanics describe a particular
limit of the (planar or ful) radial dynamics of a superparticle
near the horizon of an extreme RN black hole. In order t
justify this claim we must first account for the discrepanc
between the formul#é47) for g with the formula(2) found
from the superparticle. To do so we must take into account )

guantum mechanics. The Hamiltonian corresponding to the ZIJ dtfa(t)—iD,D,z[] (71
Lagrangian(46) is

B=B+2l. (70)

OThat this is a consequence of the non-manifest invariance of
Ythe superpotential term can be seen as follows. The action

is manifestly invariant; so the Noether charg€scomputed

p2  41(1+B) from this action by the prescriptiosl = fc- A, wherec is a
H= >m +—, (64) set of parameters promoted to function of time, must close to
2mx? the algebra of Eqg6). But a shifts by a constant undér(1)
so that the Noether charge fbe1,;,+ Eq. (71) is now the
where B of Eq. (70). Dropping thea term from Eq.(71) leaves us

with the actual, but non-manifest, invariant superconformal
o mechanics action without thel Zontribution to theU(1)
B= E[XLXZ]- (65) charge. Note that the only additional contribution to the No-

ether charge froma in Eq. (71) comes from the group varia-
tion a’(t")—a(t) of the first component of the superfield
The phase space Lagrangian is a(t, ;) which is only affected by thé&J(1) transformations.
As we have shown, th© Sp(2|2) invariant superconfor-
i mal mechanics is a truncation of &U(1,12) invariant
L= p5<+—5ini§(j—H, (66) model. The same is true of the superalgebras; if one sets
2 Q?=0 andQ!=Q, and similarly forS, and alsoJ;=J,
=0, then one arrives at the algebra®€(1,1/1) in which
(Q,9) is the complexsU(1,1) doublet of supercharges and
It was shown in[11] how such non-linear constraints may be J3 is the U(1) charge. We can now writ®@=Q+iQ?
solved, at least in principle. where Q' are the real supercharges of the isomorphic

084015-8
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osp(2|2) superalgebra and similarly f& Comparison with fro_m the presence pf_ the potential terr_n in th(_a action, and a
the osp(2|2) (antjcommuatiton relations given earlier then SPIN component, arising from the fermion variables.
leads to the identification3=B. Hence,

1.
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