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J. A. de Azca´rraga,1,* J. M. Izquierdo,2,† J. C. Pe´rez Bueno,1,‡ and P. K. Townsend3,§

1Departamento de Fı´sica Teo´rica, Universidad de Valencia and IFIC, Centro Mixto Universidad de Valencia-CSIC,
E-46100, Burjassot (Valencia), Spain

2Departamento de Fı´sica Teo´rica, Universidad de Valladolid, E-47011, Valladolid, Spain
3DAMTP, University of Cambridge, Silver Street, Cambridge, CB3 9EW, United Kingdom

~Received 4 December 1998; published 18 March 1999!

TheOSp(2u2)-invariant planar dynamics of aD54 superparticle near the horizon of a large mass extreme
black hole is described by anN52 superconformal mechanics, with theSO(2) charge being the superparti-
cle’s angular momentum. Thenon-manifestsuperconformal invariance of the superpotential term is shown to
lead to a shift in theSO(2) charge by the value of its coefficient, which we identify as the orbital angular
momentum. The fullSU(1,1u2) invariant dynamics is found from an extension toN54 superconformal
mechanics.@S0556-2821~99!01608-2#
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I. INTRODUCTION AND THE OSp„1z2… MODEL

The dynamics of a particle described by the action

I 5E dtF1

2
mẋ22

g

2x2G ~1!

is invariant under the groupSL(2,R), one of the generator
being the HamiltonianH. The groupSL(2,R) is the confor-
mal group in a ‘‘spacetime’’ of one dimension~time!, and so
the actionI is that of a one-dimensional conformal ‘‘field’
theory, i.e., a model of conformal mechanics. The model w
introduced, and its quantum properties investigated, in@1#.
Recently, it was shown that it describes the radial motion
a particle of massm and chargeq near the horizon of an
extreme~i.e., M5uQu) Reissner-Nordstro¨m ~RN! black hole
in a limit in which uqu/m tends to unity at the same time a
the black hole massM tends to infinity, withM2(m2uqu)
remaining finite@2#. The coupling constantg is then found to
be

g58M2~m2uqu!14l ~ l 11!/m, ~2!

wherel is the particle’s orbital angular momentum.1

It was also shown in@2# that the radial motion of a super
particle in the same background, but with zero angular m
mentum, is described, in the same limit, by
OSp(1u2)-invariant superconformalmechanics. However
because the fermionic gauge symmetries of the superpar
requirem5uqu, and becausel 50 is assumed, the couplin
constantg of this model vanishes, and the potential term
therefore absent. This is a reflection of the exact balanc

*Email address: azcarrag@lie1.ific.uv.es
†Email address: izquierd@fta.uva.es
‡Email address: pbueno@lie.ific.uv.es
§Email address: pkt10@damtp.cam.ac.uk
1When lÞ0 the particle’s motion is not purely radial, of cours

but by ‘‘radial motion’’ above we mean the equation for the rad
position of the particle.
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the gravitational and electric forces on astatic superparticle
in an extreme RN black hole background. It was furth
pointed out in@2# that the full superparticle dynamics mu
be invariant under the largerSU(1,1u2) superconformal
group because this is the isometry group of the AdS23S2

near-horizon supergeometry. This full dynamics will
course describe not only the radial motion of the superp
ticle but also its motion on the 2-sphere. However, there
nothing to prevent us from considering only the radial m
tion, which will be the equation of motion of an
SU(1,1u2)-invariant generalization of Eq.~1!.

In addition to considering only the radial equation of m
tion of the superparticle we can also consider a restriction
the full dynamics in which the particle is assumed to mo
within an equatorial plane or the further restriction to pure
radial motion~i.e., l 50). These restrictions correspond to
reduction of the superconformal symmetry to some subgr
of SU(1,1u2), in fact to the sequence of subgroups

SU~1,1u2!.SU~1,1u1!>OSp~2u2!.OSp~1u2!. ~3!

In the first restriction, toSU(1,1u1), the SU(2) group of
rotations is reduced to theU(1) group of rotations in the
plane. The corresponding superconformal mechanics is
SU(1,1u1) generalization of Eq.~1! constructed and ana
lyzed in @3,4#. As the above discussion suggests, theU(1)
charge of this model is directly related to the angular m
mentum of a superparticle; the precise relation will be giv
below. That the subsequent restriction toOSp(1u2) de-
scribes purely radial motion was justified in detail in@2#. Of
principal interest here are theOSp(2u2) and SU(1,1u2)
models because they allowlÞ0 and hencegÞ0.

The OSp(2u2) superconformal mechanics was initial
presented as a particular model ofN52 supersymmetric
quantum mechanics@3,4#. Its superspace action is a func
tional of a single world line superfieldx(t,h1 ,h2), where
h i ( i 51,2) are anticommuting partners to the world lin
time coordinatet. This action is2

l
2The constantl is related to the constantf of @4# by f 52l .
©1999 The American Physical Society15-1
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I 52 i E dt d2h$2miD1xD2x14l logx%, ~4!

where

Dh i
[Di5

]

]h i
2

i

2
h i

]

]t
, i , j 51,2, $Di ,D j%52 id i j ] t,

~5!

are the super-world-line covariant spinor derivatives.
The action~4! is manifestly invariant under the two worl

line supersymmetries, with corresponding Noether char
Qi , but is also invariant under the other two supersymm
tries of OSp(2u2), with Noether chargesSi . The full set of
Noether charges includes those corresponding to dilatat
(D), proper conformal transformations (K), and theso(2)
charge B. For l 50 these Noether charges obey t
~anti!commutation relations of theosp(2u2)>su(1,1u1) al-
gebra. The non-zero~anti!commutators are

@H,D#5 iH , @K,D#52 iK , @H,K#52iD ,

$Qi ,Qj%5d i j H, $Si ,Sj%5d i j K,

$Qi ,Sj%5d i j D1
1

2
e i j B,

@D,Qi #52
i

2
Qi , @D,Si #5

i

2
Si ,

@K,Qi #52 iSi , @H,Si #5 iQi ,

@B,Qi #52 i e i j Qj , @B,Si #52 i e i j Sj , i , j 51,2. ~6!

WhenlÞ0 one finds the same algebra butB is no longer the
U(1) Noether charge associated with theU(1) invariance of
Eq. ~4!. This is not due to any change in this Noether char
which continues to be the same fermion bilinear as bef

@given by Eq.~65! below#. Let us useB̂ to denote this fer-

mion bilinear. Then,B in Eqs.~6! is given byB5B̂12l ; so

B5B̂ when l 50 but not otherwise. The main aim of th
paper is to provide a mathematical explanation for why t
shift of theU(1) charge occurs and a physical explanation
its significance.

The Qi-supersymmetries are linearly realized by the
tion ~4!. The Si-supersymmetries are non-linearly realize
the variables (Di x)u being the corresponding Goldstone fe
mions~where, as usual,u is short foruh i50). Thus, the above
supersymmetric mechanics is one in which supersymmet
partially broken. In fact, the supersymmetry is ‘‘hal
broken,’’ as is to be expected from its superparticle orig
and x(t,h) is the Nambu-Goldstone superfield. Since t
terms in the action of lowest dimension should be de
mined entirely by~super!symmetry, we may use the metho
of non-linear realizations of spacetime~super!symmetries@5#
to construct them. This was done in@6# for a class of
SU(1,1un)-invariant N52n superconformal mechanic
models that include the bosonic model and theN52,4 mod-
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els of interest here. As a simple illustration of the method
shall now show how theOSp(1u2)-invariant N51 super-
conformal mechanics of@2# can be found in this way.

The superalgebraosp(1u2) is spanned by (H,K,D,Q,S).
We choose as an ‘‘unbroken’’ subalgebra that spanned bH
andQ, to which we associate the independent variableszM

5(t,h). These parametrize a real~1,1!-dimensional super
world line. TheOSp(1u2) group element on the super wor
line is written as

g~ t,h!5e2 i tHeihQeil~ t,h!Seiz~ t,h!Deiv~ t,h!K, ~7!

where the dependent variablesz and v associated with the
‘‘broken’’ generatorsD and K are commuting world line
superfields, andl is an anticommuting world line superfiel
associated with the ‘‘broken’’ superchargeS. It will prove
convenient to introduce the~non-exact! differential

dt[dt2
i

2
h dh, ~8!

because we then have

d5dt ] t1dh Dh , ~9!

where

Dh[
]

]h
2

i

2
h

]

]t
[]h2

i

2
h] t ~10!

is the super-world-line covariant spinor derivative satisfyi
2Dh

252 i ] t . A calculation now yields3

ig21dg5dt e2zH2~dt l1dh!e2z/2Q

2@dt~2ve2z1 ż!1dh~Dhz2 il!#D

2FdtS v̇2v ż2e2zv21
i

2
ll̇ezD

1dhS Dhv2vDhz1 ivl2
i

2
ezlDhl D GK

2@dt~l̇ez/22ve2z/2l!1dh~Dhez/22ve2z/2!#S.

~11!

We can rewrite this in the form4

3We assume for the purposes of this calculation, and thos
follow, that h and l anticommute withQ and S. The opposite
assumption, that they commute, leads to a change of sign o
fermion bilinears. Since this sign is not fixed by physical consid
ations, we are free to make either choice for present purposes
leave the reader to decide whether one or the other choice is
quired for mathematical consistency.

4We shall use a scriptD to denote thegroupcovariant derivatives
DA , DM used in this paper, whileDh or Dh i

[Di will refer to the
super-world-linederivatives.
5-2
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ig21dg5djMEM
A@HA2~DAz!D2~DAv!K2~DAl!S#,

~12!

wheredjM[(dt,dh) andHA5(H0 ,H1)[(H,Q). We find
that
ve
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s
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A5S e2z 2le2z/2

0 2e2z/2 D , EA
M5S ez 2lez

0 2ez/2D , ~13!

and, for example,
DAv[SD0v

D1v
D 5S ezS v̇2v ż2e2zv21

i

2
ll̇ez2lDhv1lvDhzD

2ez/2S Dhv2vDhz1 ivl2
i

2
ezlDhl D D . ~14!
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Manifestly OSp(1u2)-invariant superspace actions ha
the form

I 5E dt dh ~sdetE!L~DAz,DAv,DAl!, ~15!

whereL is an anticommuting world line scalar. The invar
ance is manifest in the sense that sdetEL transforms as a
scalar density.5 The superspace structure group is chosen
as to leave invariant the relation 2Dh

252 i ] t . It follows that
the fermion and boson components of the covariant der
tives are independent tensors~in fact, scalars in this case!.
The lowest dimension Lagrangian is therefore proportio
to theD1v component. All the other choices lead to highe
derivative component actions.6 Since

sdetE52e2z/2, ~16!

we have, discarding a total derivative~the Dhv term!,

I 52 imE dt dhS vDhz2 ivl1
i

2
ezlDhl D . ~17!

The v andl equations yield

v52
1

2
ezż, l52 iD hz, ~18!

which are equivalent to the manifestlyOSp(1u2)-invariant
constraintsDAz50, which could have been imposedab ini-
tio. Either way, the action then reduces to

I ~z!5
i

4
mE dt dh ezżDhz. ~19!

5Let the infinitesimal transformation of the coordinateszM

5(t,h) be dzM5(dt,dh). Then, a scalar densityL is one for

which dL5(dzML)]Q M .
6Assuming thatDAz50 is imposed as a constraint to eliminatev

andl as independent superfields, becausev would otherwise be an
independent field with wrong-sign kinetic terms.
o

a-

l
-

The equation of motion is equivalent, when combined w
the constraintDAz50, to the manifestlyOSp(1u2)-invariant
equationDAv50 ~and these implyDAl50). Setting

z5 log x2, ~20!

performing the superspace integral, and then setting the
mions to zero we recover the Lagrangian~1! with g50. By
retaining the fermions we recover theN51 superconformal
mechanics of@2#.

Note that it is not possible to construct a
OSp(1u2)-extension of theg/x2 potential. This might be
possible if we were to suppose that all supersymmetries
non-linearly realized, but the resulting action would invol
variables other than the components of the superfield (t,h),
and it would not be expressible in superfield form. To find
suitable supersymmetric generalization of the potential te
we must consider the further extension toN52 or N54.
Similar techniques to those just described were used in@6# to
obtain the field equations of theN52. superconformal me-
chanics model of @3,4# in manifestly OSp(2u2)
>SU(1,1u1) invariant form, as a special case of a constru
tion valid for SU(1,1un), but no attempt was made to dem
onstrate themanifest invariance of the superspaceaction.
There is a good reason for this: as we shall see here,
superpotential term of theSU(1,1u1) modelcannot be ex-
pressed in a manifestly invariant form. This possibility arises
because manifest invariance is only a sufficient condition
invariance, not a necessary one.

The existence of actions which are invariant but not ma
festly so has often been noted in connection with We
Zumino ~WZ! terms associated with central extensions o
~super!algebra. The WZ term, expressed as an indefinite
tegral, is the variable conjugate to the central generator@7,8#.
In our case, we obtain the superpotential term in the actio
a similar way as the variable conjugate to theU(1) chargeB,
even though this charge is not central. The fact that the
superpotential term in the superspace action@4# cannot be
written in manifestly invariant superspace form leads to
modification of the algebra of Noether charges. This is
close analogy to the modification of the supertranslation c
rents for the superp-branes as a consequence of the no
manifest supersymmetry of the WZ terms in their actions@9#.
5-3
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J. A. de AZCÁRRAGA et al. PHYSICAL REVIEW D 59 084015
The analogy is not complete, however, because in the
under study here the modification can be removed by a
definition of theU(1) charge. It is this redefinition that lead

to thel-dependent expressionB5B̂12l for theU(1) charge
that we mentioned previously. The mathematical explana
for this l-dependence is therefore the non-manifest natur
the superconformal invariance of the superpotential term
the action. Its physical significance is best seen in the con
of an embedding of theSU(1,1u1) model into theSU(1,1u2)
superconformal model, because of the interpretation of
~superspace! field equation of the latter as the radial equati
for a superparticle near an extreme RN black hole.

Many technical aspects of the discussion to follow of t
N52 andN54 superconformal mechanics models are sim
lar to those in@6#, which we became aware of after subm
sion to the archives of an earlier version of this paper. Ho
ever, the thrust of our argument is quite different, center
as it does on our improved understanding of the nature
significance of the superpotential term and the black h
interpretation.

II. N52 SUPERCONFORMAL MECHANICS

We now turn to theOSp(2u2)-invariantN52 supercon-
formal mechanics of@3,4#. The anticommutation relations o
the Lie superalgebraOsp(2u2) are those of Eqs.~6!. We
select (H,Qi)( i 51,2) as the ‘‘unbroken’’ generators assoc
ated with the real super-world-line coordinateszM5(t,h i).
As before, it is convenient to definet[@dt2( i /2)dh ih i #
because we then have

d5dt ] t1h iDi , ~21!

whereDi are the supercovariant derivatives of Eqs.~5!.
We may write theOSp(2u2) group element as

g~ t,h!5e2 i tHeih iQieil i ~ t,h!Sieiz~ t,h!Deiv~ t,h!Keia~ t,h!B.
~22!

Defining djM[(dt,dh i) and HA5(H0 ,Hi)[(H,Qi) we
can rewrite this as
se
e-

n
of
in
xt

e

-

-
g
d

le

ig21dg5djMEM
A@HA2~DAz!D2~DAv!K

2~DAl i !S
i2~DAa!B#, ~23!

where EM
A is the world line supervielbein andDA is the

group-covariant derivative. A calculation yields

EM
A5S e2z 2e2z/2lTR~a!

0 2e2z/2R~a!
D , ~24!

where lT means the transpose ofl i as a two-vector and
R(a) is a 232 rotation matrix:

R~a!5S cosa 2sina

sina cosa D . ~25!

Note that

sdetE521, ~26!

so that manifestly invariant actions have the form

I 5E dt d2h L~DAf!, ~27!

wheref5(z,v,a) denotes the set of world line superfield
The covariant derivatives can be written as

DA5EA
MDM , ~28!

whereEA
M is the inverse supervielbein,

EA
M5S ez 2ezlT

0 2ez/2RT~a!
D , ~29!

andDM5(Dt ,D h i) are the components of the covariant d
rivatives on the~still non-coordinate! basis (dt,dh i). The
transformation properties ofDMf are not as simple as thos
of DAf ~which are super-world-line scalars! but they have a
simpler form. The expressions ofDMf are found to be
DMz5~2ve2z1 ż, Diz2 il i !,

DMv5S v̇2v ż2e2zv22
i

2
ezl̇ il

i , Div2vDiz1 ivl i2
i

2
ezDil jl

j D ,

DMl j5S ez/2l̇kR
k

j2e2z/2vlkR
k

j , ez/2DilkR
k

j2e2z/2vRi j 1
i

2
ez/2l ilkR

k
j D ,

DMa5S ȧ2
i

2
l1l2, Dia2

i

2
e i j l

j D . ~30!

084015-4
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To proceed, we begin by imposing the manifestly invaria
constraint

DAz50, ~31!

which is equivalent toDMz50 and is solved, algebraically
by

v52
1

2
ezż, l i52 iD iz. ~32!

As in the previous cases, we could arrange for these eq
ties to arise as equations of motion forv andl i , but in this
case it is simpler to impose Eq.~31! as a constraint. As a
direct consequence of Eq.~32!, we then find that theA5 i
components ofDAl j satisfy

D~ il j )50; ~33!

so themanifestlysuperconformal invariant, andSO(2) in-
variant, Lagrangian of lowest dimension must be a lin
combination ofD0a and« i jDil j . If we insist that our action
describe the dynamics of a particle in aone-dimensional
space, with~real! coordinatez(t)5z(t,h i)u, then we cannot
make use ofD0a. In this case, and using thatDAl j for A
5 i is given byezDil j2vd i j 1( i /2)ezl il j , we get

L}« i jDil j522ezS D1l21
i

2
l1l2D . ~34!

Then, using the constraint~32!, adjusting the proportionality
constant, and integrating by parts, we arrive at the action

I kin5
m

2 E dt d2h ezD1zD2z, ~35!

which is the first part of Eq.~4! with z5 logx2. Let the com-
ponents of thez(t,h i) superfield be defined byz(t)5zu,l i
52 iD izu and F852 iD 1D2zu. Then, defining new vari-
ablesx,x,F by

x5ez/2, x i52Am

2
ez/2l i , F52F8, ~36!

and performing theh i integrations, we arrive at a compone
action with the Lagrangian

Lkin5Fm

2
ẋ21

i

2
~x1ẋ11x2ẋ2!1

1

8
mx2F21

i

2
Fx1x2G .

~37!

After elimination ofF by its algebraic equation of motio
the bosonic Lagrangian reduces to that of Eq.~1!, and so we
have now constructed anOSp(2u2)-invariant extension of
the g50 conformal mechanics. All othermanifestlyinvari-
ant actions must involve either higher-derivatives, high
powers of first derivatives or~non-auxiliary! bosonic vari-
ables other thanx(t). Thus, anyOSp(2u2)-invariant gener-
alization of thegÞ0 conformal mechanicscannot be de-
scribed by a manifestly invariant action. This does not
exclude the possibility of an action that is invariant but n
08401
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manifestly invariant. The existence of such ‘‘non-manifes
invariants has usually been associated with the possibility
a central extension of the Lie~super!algebra of the symmetry
~super!group. In such cases the action is a WZ term~see, for
example,@10#!. A number of super-world-line examples o
this were discussed in@8#. In our case, however, there can b
no central extension because the relevant cohomology of
osp(2u2) algebra is trivial. One might therefore be tempt
to conclude that there can be no furtherOSp(2u2)-invariants
and hence that there is noOSp(2u2)-invariant extension of
theg/x2 potential of conformal mechanics. But this would b
wrong, as we now explain.

A further OSp(2u2)-invariant may be found by the
method of @8#. We first note that the bosonic and spin
components ofDAa5(D0a,Dia) are independent super
world-line scalar fields because invariance of the relat
$Di ,D j%52 id i j ] t requires the structure group of the fram
bundle to be justSO(2). Thegroup covariant derivativesDA
transform as aSO(2) doublet forA5 i 51,2; so the mani-
festly OSp(2u2) invariant constraintDia50 is alsoSO(2)
invariant, and equivalent to

Dia2
i

2
e i j l

j50. ~38!

Sincel i52 iD iz @Eq. ~32!#, this new constraint implies tha

D1a5
1

2
D2z, ~39!

and hence that

ȧ5 iD 1D2z. ~40!

This can be integrated to give

a~ t !5aU5 i E t

dt8D1D2z~ t8,h!U5 i E t

dt8d2h z~ t8,h!.

~41!

The variable fielda(t)5au can thus be viewed as a supe
space action in the form of an indefinite integral. This ne
action is superconformal invariant, up to a surface term,
cause Eq.~40! implies that

d~ iD 1D2z!5] tda. ~42!

The left hand side is the variation of the component Lagra
ian of the new superspace action whereas the right hand
is a total time derivative. By itself, this is not quite sufficie
to establish the desired result. According to Eq.~40!, the
component Lagrangian is itself a total time derivative, and
it is hardly surprising that the same is true of its variation.
course, Eq.~40! tells us nothing about the component L
grangian; instead it provides us with information about t
independent superfielda. However, whilea is an indepen-
dent superfield, its variationda is not. In factda is a func-
tion of the superfieldz and its derivatives, and is independe
of a. Thus, we indeed learn from Eq.~42! that the variation
of the component Lagrangian of the superspace action~41! is
5-5
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a total time derivative, and hence that this action is invari
up to a surface term. We have now deduced that the ac

I 5I kin22i l E dt d2h z, ~43!

where I kin is given in Eq.~35!, is OSp(2u2) invariant for
arbitrary real constantl. Settingz5 logx2 this action is seen
to be precisely that of Eq.~4!. The superpotential term is no
manifestlyinvariant becausez does not transform as a scal
density. A calculation shows thatz fails to transform as a
scalar density by a term that, beinglinear in h, does not
contribute to the variation of the superspace integral. Des
the non-manifest superconformal invariance of the act
~43! the z superfield equationcan be expressed in the man
festly superconformal invariant form

« i jDil j54l /m ~44!

~recall thatDi are theA5 i components ofDA).
The component Lagrangian including the contribution

the superpotential term~obtained by performing the supe
space integrations! is

L5
1

2
mẋ21

i

2
~x1ẋ11x2ẋ2!1

1

8
mx2F21FS l 1

i

2
x1x2D .

~45!

Elimination of F now yields

L5
1

2
mẋ21

i

2
~x1ẋ11x2ẋ2!2

2

mx2 l ~ l 1 ix1x2!. ~46!

Setting the fermions to zero we recover the bosonic Lagra
ian of Eq.~1! with

g54l 2/m. ~47!

Thus, we have found anOSp(2u2) invariant extension of
conformal mechanics. It is just the model constructed
@3,4#. There is an apparent discrepancy with Eq.~2! but this
will be resolved after we have looked at theSU(1,1u2)
model.

III. N54 SUPERCONFORMAL MECHANICS

We turn now to theSU(1,1u2)-invariantN54 supercon-
formal mechanics describing the full superparticle radial
namics. Thesu(1,1u2) superalgebra is spanned by t
sl(2;R) generators (H,K,D), the SU(2) generatorsJa(a
51,2,3), and theSU(2) doublet supersymmetry charge

(Qi ,Si) and the Hermitian conjugates (Q̄i ,S̄i). The superal-
gebra has the following non-vanishing~anti!commutation re-
lations:

@H,D#5 iH , @K,D#52 iK ,

@H,K#52iD , @Ja ,Jb#5 i«abcJc ,

$Qi ,Q̄j%52d j
i H, $Si ,S̄j%52d j

i K,
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t
n

te
n

f

g-

n

-

$Qi ,S̄j%52~sa! j
iJa12id j

i D,

$Q̄i ,Sj%52~sa! i
j Ja22id j

i D,

@D,Qi #52
i

2
Qi , @D,Q̄i #52

i

2
Q̄i ,

@D,Si #5
i

2
Si , @D,S̄i #5

i

2
S̄i ,

@K,Qi #5Si , @K,Q̄i #52S̄i ,

@H,Si #5Qi , @H,S̄i #52Q̄i ,

@Ja ,Qi #52
1

2
Qj~sa! j

i , @Ja ,Q̄j #5
1

2
~sa! j

kQ̄k ,

@Ja ,Si #52
1

2
Sj~sa! j

i , @Ja ,S̄j #5
1

2
~sa! j

kS̄k . ~48!

We take the super-world-line-valued supergroup elemen
be

g~ t,h,h̄ !5e2 i tHei ~h iQ
i1h̄ i Q̄i !ei ~l iS

i1l̄ i S̄i !

3eizDeivKeifJ1eiuJ2eicJ3, ~49!

wherel,l̄, z, v, f,u, c depend on (t,h,h̄). The anti-
commuting coordinatesh i and h̄ i are related by complex
conjugation, i.e., (h i)* 5h̄ i . We shall again define

dt5dt2 i ~h idh̄ i1h̄ idh i !, ~50!

which leads to

d5dt ] t1dh iD
i1dh̄ i D̄ i , ~51!

where

Dh
i [Di5

]

]h i
2 i h̄ i

]

]t
, D̄h i[D̄ i5

]

]h̄ i
2 ih i

]

]t
~52!

are the superspace covariant derivatives satisfying$Di ,D̄ j%

522id j
i ] t . It should also be noted thatD̄ i52(Di)* .

The left-invariant 1-form can be written as

ig21dg5djM@EM
AHA2~DMz!D2~DMv!K2~DMl! iSi

2~DMl̄ ! i S̄
i2~DMf!J12~DMu!J22~DMc!J3#,

~53!

where

djM5~dt,dh i ,dh̄ i !, HA5~H,Qi ,Q̄i !. ~54!

A calculation yields
5-6
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EM
A5S e2z ie2z/2l lsj

l
2 ie2z/2l̄ l~s21! l

j

0 2e2z/2sj
i 0

0 0 2e2z/2~s21! i
j D . ~55!

We shall need the inverse supervielbein
s
c

m
to

08401
EA
M5S ez iezl j 2 iezl̄ j

0 2ez/2~s21! j
i 0

0 0 2ez/2si
jD . ~56!

Further calculation yields
DMz5~2ve2z1 ż, Diz12l̄ i , c.c.!,

DMv5S v̇2v ż2e2zv21 i ~ll̇̄1l̄l̇ !ez2
1

36
~ l̄sl!2ez,

Div2vDiz22vl̄ i2 i ~lDi l̄1l̄Dil!ez2
i

3
ez~ l̄sal!~sal̄ ! i , c.c.D

DMl i5S S l̇ke
z/22ve2z/2lk1

i

6
ez/2~ l̄sal!~lsa!kD si

k,

S D jlke
z/22 ive2z/2dk

j 2
1

2
ez/2~ l̄sa! j~lsa!k2

1

2
ez/2l̄ jlkD si

k,

S D̄ jlke
z/22

1

2
ez/2~lsa! j~lsa!k1

1

2
ez/2l jlkD si

kD ~57!

and

DMf5„ḟ cosu cosc2 u̇ sinc1 i @Ad~s21!#a1l̄sal, Dif cosu cosc2Diu sinc22i @Ad~s21!#a1~ l̄sa! i , c.c.…,

DMu5„u̇ cosc1ḟ cosu sinc1 i @Ad~s21!#a2l̄sal, Diu cosc1Dif cosu sinc22i @Ad~s21!#a2~ l̄sa! i , c.c.…,

DMc5„ċ2ḟ sinu1 i @Ad~s21!#a3l̄sal, Dic2Dif sinu22i @Ad~s21!#a3~ l̄sa! i , c.c.…, ~58!

where the explicit forms ofsi
k and @Ad(s21)# are

si
k5~eics3/2eius2/2eifs1/2! i

k,

@Ad~s21!#5S cosu cosc 2cosf sinc1sinf sinu cosc sinf sinc1cosf sinu cosc

cosu sinc cosf cosc1sinf sinu sinc 2sinf cosc1cosf sinu sinc

2sinu sinf cosu cosf cosu
D . ~59!
int

tor.
t

r

The supercovariant derivativesDAz, etc., can now be found
from the formulaDA5EA

MDM . We begin, as before, by
imposing the manifestly invariant constraintDAz50, which
yields

v52
1

2
ezż, l i5

1

2
D̄ iz. ~60!

This leavesz as the only independent superfield. Manife
SU(1,1u2) invariants will be expressed as full superspa
integrals of the form*dtd4h sdetEL whereL is a super-
world-line scalar, but there is now no Lagrangian built fro
covariant derivatives ofz that has a dimension low enough
t
e

yield a kinetic term containing anẋ2 term. This problem
could be circumvented by imposing the complex constra

« i jD i l̄ j50. ~61!

The linearization of this constraint yields« i j D
iD jz50. This

is the reduction toD51 of the D54 ‘‘linear’’ superfield
constraint, which is solved in terms of a conserved vec
The reduction toD51 of a conserved vector is a triple
Xi

j (X
i
i50) and a singletX subject to the constraintẊ50.

The latter constraint means that the equation of motion foX
~obtained by variation of an action in whichX is treated as an
5-7
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unconstrained superfield! is actually the time-derivative o
the true equation of motion. Thus, the true field equation
the once-integratedX-equation in which there is an arbitrar
integration constant. This analysis will apply equally to t
full constraints~60! except that their solution in terms ofXi

j
and X will be more involved.7 We thus deduce that the re
maining equations of theSU(1,1u2) superconformal me
chanics have the form of anSU(2) triplet equation forz and
a singlet equation involving an arbitrary constant. Both m
be constructed from the supercovariant derivativesDAl and
complex conjugates in order to be manifes
SU(1,1u2)-invariant equations of the appropriate dimensio
There is only one candidate for the triplet equation:

D~ il j50. ~62!

The singlet equation is

D il i1D̄i l̄
i58l /m; ~63!

as anticipated, it involves an arbitrary integration consta
Choosing the constant as above, one finds that the bos
field equation is precisely equivalent to that derived from E
~1!, again withg54l 2/m.

IV. SUPERPARTICLE/BLACK HOLE
INTERPRETATION

We claimed in the Introduction that theN52 andN54
models of superconformal mechanics describe a partic
limit of the ~planar or full! radial dynamics of a superparticl
near the horizon of an extreme RN black hole. In order
justify this claim we must first account for the discrepan
between the formula~47! for g with the formula~2! found
from the superparticle. To do so we must take into acco
quantum mechanics. The Hamiltonian corresponding to
Lagrangian~46! is

H5
p2

2m
1

4l ~ l 1B̂!

2mx2
, ~64!

where

B̂5
i

2
@x1 ,x2#. ~65!

The phase space Lagrangian is

L5pẋ1
i

2
d i j x i ẋ j2H, ~66!

7It was shown in@11# how such non-linear constraints may b
solved, at least in principle.
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so that the canonical~anti!commutation relations of the
quantum theory are

@x,p#5 i , $x i ,x j%522d i j . ~67!

The anticommutation relations are realized by the opera

x15 is1 ,x25 is2 , in which caseB̂5s3 . We see from this

that the eigenvalues ofB̂ as an operator in the quantum
theory are61. On the11 eigenspace we have

H5
p2

2m
1

g

2x2 ~68!

with

g54l ~ l 11!/m, ~69!

which is them5q case of Eq.~2!. On the21 eigenspace of
B we can takel→2 l to arrive at the same result. Thus, o
results are consistent with those obtained in@2# once quan-
tum effects are included~as they implicitly were in@2#!. We
thus confirm the identification of the constantl in the super-
conformal mechanics model as the orbital angular mom
tum of a particle near the horizon of a large mass extre
RN black hole.

The operatorB̂ is the Noether charge~called B in @4#!.
When lÞ0 this is not to be identified with theU(1) charge
B in the superalgebra~6!. Instead, we have

B5B̂12l . ~70!

That this is a consequence of the non-manifest invarianc
the superpotential term can be seen as follows. The acti

2l E dt@ ȧ~ t !2 iD 1D2zu# ~71!

is manifestly invariant; so the Noether chargesN computed
from this action by the prescriptiondI 5* ċ•N, wherec is a
set of parameters promoted to function of time, must close
the algebra of Eqs.~6!. But a shifts by a constant underU(1)
so that the Noether charge forI 5I kin1 Eq. ~71! is now the
B of Eq. ~70!. Dropping theȧ term from Eq.~71! leaves us
with the actual, but non-manifest, invariant superconform
mechanics action without the 2l contribution to theU(1)
charge. Note that the only additional contribution to the N
ether charge fromȧ in Eq. ~71! comes from the group varia
tion a8(t8)2a(t) of the first component of the superfiel
a(t,h i) which is only affected by theU(1) transformations.

As we have shown, theOSp(2u2) invariant superconfor-
mal mechanics is a truncation of anSU(1,1u2) invariant
model. The same is true of the superalgebras; if one
Q250 and Q15Q, and similarly for Si , and alsoJ15J2
50, then one arrives at the algebra ofSU(1,1u1) in which
(Q,S) is the complexSU(1,1) doublet of supercharges an
J3 is the U(1) charge. We can now writeQ5Q11 iQ2

where Qi are the real supercharges of the isomorp
5-8
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osp(2u2) superalgebra and similarly forS. Comparison with
the osp(2u2) ~anti!commuatiton relations given earlier the
leads to the identification 2J35B. Hence,

J35 l 1
1

2
B̂. ~72!

If we restrict the dynamics of the particle described by
SU(1,1u2) model to motion in an equatorial plane, thenJ3 is
the particle’s angular momentum. We see from Eq.~72! that
this angular momentum has an orbital componentl, arising
nd

r

08401
e

from the presence of the potential term in the action, an
spin component, arising from the fermion variables.
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