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One-loop corrections for a Schwarzschild black hole via 2D dilaton gravity
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We study quantum corrections for the Schwarzshild black hole by considering it as a vacuum solution of a
two-dimensional~2D! dilaton gravity theory obtained by spherical reduction of 4D gravity coupled with
matter. We find perturbatively the vacuum solution for the standard one-loop effective action in the case of
null-dust matter and in the case of minimally coupled scalar field. The corresponding state is in both cases a 2D
Hartle-Hawking vacuum, and we evaluate the corresponding quantum corrections for the thermodynamic
parameters of the black hole. We also find that the standard effective action does not allow boundary condi-
tions corresponding to a 4D Hartle-Hawking vacuum state.@S0556-2821~99!01604-5#
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I. INTRODUCTION

One of the most interesting problems in quantum grav
is the Hawking radiation of black holes@1#. As we do not yet
have a complete quantum theory of gravity, the full descr
tion of this phenomenon is still missing. Note that stri
theory has given a microscopic explanation of this proc
@2#. However, a complete formalism for calculating larg
radius back reaction effects does not exist. These effects
described by the effective action, and in the absence o
complete formalism for calculating the effective action, o
has to resort to various approximations.

One way is to quantize matter fields in the fixed bla
hole background. It is then possible to calculate the quan
corrections to the classical metrics, the spectrum of the
diation, temperature, etc. The back reaction of the radia
to the metric is calculated by defining the appropriate
pected value of the energy-momentum tensor of the ma
field @3–5# and solving the corresponding ‘‘one-loop’’ equ
tion

Rmn2gmnR/25^Tmn&. ~1.1!

This approach brought a fairly clear qualitative picture of t
process. A better approach is to integrate the gravitatio
and matter fields in the functional integral and obtain a o
loop effective action, which would allow a backgroun
independent approach. This, unfortunately, cannot be don
four spacetime dimensions~4D! because of the nonrenorma
izability of gravity. However, in two spacetime dimensio
~2D!, gravity is renormalizable, and this procedure can
done. Therefore if one considers the spherically symme
general relativity with matter as a 2D field theory, then it
possible to calculate the corresponding one-loop effec
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action. It is plausible to assume that such an action would
a good approximation for a full theory for large radius. R
cently several papers have appeared on how to calculate
effective action@6–9#. All these papers gave similar result
modulo ambiguities in coefficients of certain counterterm

Given this action, one can now start to investigate
one-loop back-reaction effects. The simplest thing is to
vestigate the static vacuum solutions. This approach has b
already started in@10# where the quantum corrections to th
Reissner-Nordstrom black hole and the corresponding t
modynamic properties were calculated. In that paper the
thors have used only the Polyakov-Liouville term in the e
fective action, while it is known that the large radius nu
dust action also contains additional local terms@11#. It is
very well known fact@12,13# that the local terms in the ef
fective action can influence the form of the solution. This
one reason why we consider the null-dust model. Anot
reason is that the null dust model can serve as a prepara
study for the more complicated, and more realistic mo
which is spherically symmetric reduction of general relat
ity with minimally coupled scalar field~SSG!. The one-loop
effective action for SSG model is qualitatively different fro
the null-dust action. There is a new nonlocal term due to
coupling between the dilaton and the matter field. Its infl
ence on the form of the one-loop solution could be imp
tant, so that we calculate the correction to the Schwarzsc
black-hole solution and the corresponding corrections to
thermodynamic parameters. As we mentioned, there ex
some ambiguity in the literature about theRF coefficient in
the effective action for SSG, and therefore we investig
how its value affects the physical parameters of the solut

The third motivation is to compare the properties of th
solution to those obtained in 4D via Eq.~1.1! @5#, in order to
see how good is the 2D effective action approach. The p
of the paper is the following. In Sec. II we briefly review th
spherically symmetric one-loop effective action and tra
form it to a local form by using two auxiliary fields which
mimic trace anomaly in our case. As a warm-up exercise
consider first a simpler model of null-dust matter in Sec. I
©1999 The American Physical Society02-1
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BURIĆ, RADOVANOVIĆ, AND MIKOVIĆ PHYSICAL REVIEW D 59 084002
its equations of motion, perturbative solutions, corrections
the radius, temperature, and entropy of the black hole. T
section is very similar to Ref.@10#, but we only consider an
uncharged black hole. In Sec. IV the same is done for
spherically symmetric model, and we present the results
an arbitraryRF coefficient. In Sec. V we present our co
clusions. Appendix A contains all relevant formulas giv
for the action with arbitraryRF coefficient. The alternative
calculation of entropy using the conical singularity method
given in Appendix B.

II. ONE-LOOP EFFECTIVE ACTION

Spherically symmetric reduction of the Einstein-Hilbe
action in 4D gives the following 2D dilaton gravity action

G05
1

4GE d2xA2ge22F@R12~¹F!212e2F#, ~2.1!

whereG,F,gmn are the Newton constant, dilaton, and tw
dimensional metric, respectively. The 4D line element
given by

ds~4!
2 5gmndxmdxn1e22FdV2 ~2.2!

so thatr 5r 0e2F can be identified as the spatial radius
appropriate gauge (r 0 is an arbitrary length constant, whic
is needed for dimensional reasons!.

If one couples minimallyN scalar 2D fieldsf i to this
action, one gets the null-dust model, with the action

G05
1

4GE d2xA2g

3Fe22F@R12~¹F!212e2F#22G(
i 51

N

~¹ f i !
2G ,

~2.3!

where the number of scalar fieldsN is introduced in order to
obtain the semiclassical approximation from the largeN
limit. If one adds N scalar fields which are minimally
coupled to gravity in 4D and afterwards performs the sph
cally symmetric reduction the action becomes

G05
1

4GE d2xA2g

3Fe22F@R12~¹F!212e2F#22G(
i 51

N

e22F~¹ f i !
2G .

~2.4!

The null-dust model differs from SSG by the absence
coupling between scalar field and dilaton. It can be thou
of as a large radius approximation to SSG, since the res
ing f i→ f i /r in Eq. ~2.4! will give Eq. ~2.3! plus terms of
order 1/r .

The one-loop effective action for the model Eq.~2.3! has
been found in Ref.@11#. The large-N, large-r one-loop part
of the action is given by
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G5
1

4GE d2xA2g

3Fe22F@R12~¹F!212e2F#2
1

2(i
~¹ f i !

2G
2

N

96pE d2xA2gFR
1

h
R2~¹F!212RF G . ~2.5!

Note that this action differs from the one used in Ref.@10# by
the presence of two local terms, (¹F)2 and 2RF. The ac-
tion ~2.5! is very similar to the BPP model@13#. The action
~2.5! can be rewritten as

G5
1

4GS E d2xA2gF r 2R12~¹r !21222G(
i

~¹ f i !
2G

2kE d2xA2gFR
1

h
R22R log r 2

~¹r !2

r 2 G D , ~2.6!

wherer 5r 0e2F andk5 NG/24p . Since we are intereste
in the vacuum solutions, we will takef i50. The action~2.6!
can be transformed into a local form by using an auxilia
scalar fieldc:

G5
1

4GS E d2xA2g@r 2R12~¹r !212#

2kE d2xA2gF2Rc1~¹c!222R log r 2
~¹r !2

r 2 G D ,

~2.7!

wherec satisfies

hc5R.

In the SSG case the quantization of the matter fields gi
the following one-loop correction to the effective actio
@6–9#:

G152
N

96pE d2xA2gS R
1

h
R212R

1

h
~¹F!21cRF D ,

~2.8!

where c is a nonzero constant, whose numerical value
pends on the quantization procedure used. The dimensi
regularization method givesc512 @7,8#. Dimensional regu-
larization with a rescaled metric also givesc512, but after
returning to the original variablesc changes toc514 @9#.
The z-function regularization givesc524 @6#. It will turn
out that this ambiguity does not change any of our calcu
tions essentially, so we will proceed with the valuec512
and summarize the results for the case of an arbitrary c
ficient in Appendix A.

Note that one can also calculate the one-loop contri
tions due to all fields@9#. This calculation simplifies when a
rescaled metricg̃mn5eFgmn is quantized, so that in the
large-N and large-r limit one obtains@9#
2-2
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ONE-LOOP CORRECTIONS FOR A SCHWARZSCHILD . . . PHYSICAL REVIEW D 59 084002
G̃152
N

96pE d2xA2g̃

3S R̃
1

h
R̃212R̃

1

h
~¹̃F!2112R̃F

112(
i

R̃
1

h
~¹̃ f i !

2D . ~2.9!

When compared to Eq.~2.8!, the last term in Eq.~2.9! is
new, and it comes from the finite parts of the gravito
dilaton loops. Since we are interested in vacuum solutio
for which f i50, this difference will not be essential. How
ever, when transforming back to the original metric, thef i
50 limit of Eq. ~2.9! will produce an additional term in Eq
~2.8!, proportional to*A2g(¹F)2, which is of the relevant
order in 1/r . Since it is not clear whether the quantization
the original metric will produce this term, in this paper w
will consider only the quantum corrections given by E
~2.8!, although one should keep in mind that additional cou
terterms are possible due to different quantization pro
dures.

The analysis of the action given by the correction E
~2.8! will simplify if it is written in the local form. Note that
in this case we are dealing with two nonlocal term
R(1/h) R andR(1/h) (¹F)2. This implies that we have to
introduce two auxiliary fields,c andx. After a tedious cal-
culation we get the following local form of the correction

G152
N

96pE d2xA2g@2R~c26x!1~¹c!2

212~¹c!~¹x!212c~¹F!2112RF#. ~2.10!

The additional fields then satisfy the equations of motion

hc5R ~2.11!

and

hx5~¹F!2. ~2.12!

Note that it is now easy to obtain the expression for tra
anomaly for the SSG case from Eqs.~2.10!, ~2.11!, and
~2.12!. It is given by

T5
1

24p
@R26~¹F!216hF#. ~2.13!

In the case of the null-dust modelT is given by

T5
1

24p
R, ~2.14!

if we take the Polyakov-Liouville term only, or

T5
1

24p
~R1hF! ~2.15!

in the case~2.7!.
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III. SPHERICALLY SYMMETRIC NULL-DUST MODEL

We will discuss first the simpler model of null-dust matt
in order to prepare for the more complicated case of sph
cally symmetric scalar field. We will use the action in th
form

G5
1

4GS E d2xA2g@r 2R12~¹r !212#

2kE d2xA2gF2Rc1~¹c!222R log r 2
~¹r !2

r 2 G D .

~3.1!

The variation of this action with respect to the fieldsc, r,
andgmn gives the equations of motion

hc5R, ~3.2!

rR22¹2r 52kS R

r
1

~¹r !2

r 3 2
¹2r

r 2 D , ~3.3!

and

22r¹m¹nr 1gmn~¹2r 22~¹r !221!

52kTmn

5kS 22¹m¹nc1¹mc¹nc1gmnS 2R2
1

2
~¹c!2D

12
¹m¹nr

r
23

¹mr¹nr

r 2
1gmnS 22

¹2r

r
1

5

2

~¹r !2

r 2 D D .

~3.4!

From Eqs.~3.3! and ~3.4! we can obtain the expressio
for the scalar curvature:

R5
222~¹r !21 k/r 2

r 2
. ~3.5!

This expression shows that the singularity of the curvatur
at r 50, as in the classical case. The solution of Eq.~3.3! for
the field r is r 5x1, so the fieldr really has the meaning o
the radial coordinate, in accordance with Eq.~2.2!. In Ref.
@10#, the quantum correction shifts the space-time singula
to the valuer cr

2 52k; in our case it stays atr 50. This is a
consequence of the fact that the quantum correction in R
@10# is given by the Polyakov-Liouville term only, while in
our case there are two additional local terms.

The classical solution~corresponding tok50) of the
equations of motion~3.3!, ~3.4! is

r 5x1, ds252 f 0~r !dt21
1

f 0~r !
dr2, ~3.6!

where t5x0, f 0512 2GM/r 512 a/r . We are interested
in the quantum correction of this solution in the semiclassi
approximation. This means that we are searching for the
2-3
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BURIĆ, RADOVANOVIĆ, AND MIKOVIĆ PHYSICAL REVIEW D 59 084002
turbative solution of Eqs.~3.2!–~3.4! by takingk as a small
parameter. By introducing the static ansatz as in Ref.@10#,

ds252 f ~r !e2f~r !dt21
1

f ~r !
dr2, ~3.7!

with f (r )512 a/r 1k @m(r )/r # , we get, in the first order
in k:

c852
f 08

f 0
1

C

f 0
, ~3.8!

f85
k

2r f 0
S 2 f 092

f 82

f 0
1

C2

f 0
2

3 f 0

r 2 D , ~3.9!

m8522 f 091
1

2 f 0
~ f 08

22C2!2
f 08

r
1

5

2

f 0

r 2. ~3.10!

The integration constantC can be determined from the con
dition that the behavior ofT00 at infinity is thermal. This
boundary condition follows from the fact that the static s
lution we are constructing describes a black hole in ther
equilibrium with the Hawking radiation~the black hole emits
as much energy as it absorbs, so that its mass does
change!. Since the matter in this model behaves as a free
scalar field, we take thatT00 at infinity ~in the zeroth order in
k) has the temperature dependence of a 1D free bose
(p/6)TH

2 , where TH is the classical Hawking temperatu
4pTH51/a. This is consistent with the fact that for spheric
null dust ^Tuu&5^Tvv&51/48p(4M )2 in the Hartle-
Hawking vacuum, whereu andv are the asymptotically fla
Schwarzschild coordinates@14#. This givesC251/a2. By in-
tegrating Eqs.~3.9!, ~3.10! we obtain

m~r !52
1

2a
log S r

l D2
r

2a2 2
2

r
, ~3.11!

f~r !5F~r !2F~L !,

F~r !5kF 1

2a2 log S r

l D2
1

arG , ~3.12!

where L and l are the integration constants. We have
sumed that our system is in a 1D spatial box of sizeL(a
!L), and thate2f51 asr→L.

The position of the horizonr h can be found perturbatively
from the conditionf (r h)50:

r h5a2km~a!5a1kF 1

2a
log S a

l D1
5

2aG . ~3.13!

The Hawking temperature also changes due to the quan
corrections. In the case of the metric of the form~3.7!, it is
given by ~see Appendix B!

4pTH5ef f 8ur 5r h
, ~3.14!

which, after insertion off andm, gives
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4pTH5
1

aF12kS 5

2a2 1F~L ! D G . ~3.15!

The second term in Eq.~3.15! is the quantum correction o
the temperature.

In order to calculate the entropy of the quantum correc
black hole solution, we will use Wald technique@15#. In
Refs. @16–18# it was shown that for the Lagrangian of th
form L5L( f m ,¹ f m ,gmn ,Rmnrs) ( f m are the matter fields!,
the entropy is given by

S522peabexd

]L

]Rabxd
, ~3.16!

evaluated at the horizon. Hence the evaluation of the entr
via Wald’s method does not require the knowledge of
boundary terms~which might occur in the action!, which are
necessary if one evaluates the entropy from the Euclid
action@10#. For the lagrangian given by Eq.~3.1!, we obtain

S5
pa2

G
1

kp

G S 31 log
a

l D . ~3.17!

The first term in Eq.~3.17! is the Bekenstein-Hawking en
tropy, while the second term is the quantum correction. T
same result is obtained when we define properly the bou
ary terms for the action Eq.~3.1!, and use the conical singu
larity method and this calculation is presented in Appen
B.

Using Eqs.~3.16! and ~3.18! and the first law of thermo-
dynamicsTdS5dE @where the local temperature is given b
T5 TH /A2g00(L)], for the energy of the system we get th
following expression:

E5M1
k

4G2M S 7

4
1

1

2
log

L

l D . ~3.18!

The results which we have obtained are qualitatively sim
to those of Ref.@10#. The difference in the numerical coe
ficients is due to the extra terms in the one-loop effect
action. We also have a logarithmic correction to the entro
~term proportional to logM). The main difference is that in
our model the singularity of the curvature stays at the ori
r 50.

IV. SPHERICALLY SYMMETRIC SCALAR FIELD
MODEL

We now examine the more realistic, and more comp
cated case of spherically symmetric scalar field. By add
the actions~2.4! and ~2.8! and by settingf i50 we get the
one-loop effective action

G5
1

4GS E d2xA2g@r 2R12~¹r !212#

2kE d2xA2gFR
1

h
R212R

1

h

~¹r !2

r 2 212R log r G D ,

~4.1!
2-4
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which is, in the local form

G5
1

4GS E d2xA2g@r 2R12~¹r !212#

2kE d2xA2gF2R~c26x!1~¹c!2212~¹c!~¹x!

212
c~¹r !2

r 2 212R log r G D . ~4.2!

Varying the action~4.2! with respect tor , gmn ,x, andc we
obtain the following equations of motion:

2rR12¹2r 56kS 2
c~¹r !2

r 3 22
c¹2r

r 2 22
~¹c!~¹r !

r 2 1
R

r D ,

~4.3!

22r¹m¹nr 1gmn~¹2r 22~¹r !221!

5kFgmnS 2hc212hx212
¹2r

r
1~1216c!

~¹r !2

r 2

2
1

2
~¹c!216~¹c!~¹x! D1¹mc¹nc

212¹mc¹nx22¹m¹nc112¹m¹nx

112
¹m¹nr

r
212

¹mr¹nr

r 2
~c11!G , ~4.4!

hc5R, ~4.5!

hx5
~¹r !2

r 2 . ~4.6!

The vacuum solution of the classical (k50) equations is
the Schwarzschild black hole~3.6!. We will, again, solve
Eqs. ~4.3!–~4.6! perturbatively ink, starting with the static
ansatz~3.7!. Integration of the equations forc andx in the
zeroth order ink gives

c5Cr1Ca log
r 2a

l
2 log

r 2a

r
, ~4.7!

x85
2Dr 222r 1a

2r ~r 2a!
, ~4.8!

whereC,D, and l are the integration constants.
The 00 and 11 components of Eq.~4.4!, to the first order

in k, are

2r f 82 f 115kt0
0

5kS f 8c822R26 f 8x81
1

2
f c8226 f c8x8

26
f c

r 2
16

f 8

r D , ~4.9!
08400
r f 812f8 f r 1 f 215kt1
1

5kS 2 f 8c812R16 f 8x81
1

2
f c82

26 f c8x826~c12!
f

r 2 2 6
f 8

r

22 f c9112f x9D . ~4.10!

From Eqs.~4.9! and ~4.10! we easily obtain

m85t0
0 , f85

k

2r f
~t1

11t0
0!. ~4.11!

Using the expressions forc andx8 ~4.7!, ~4.8!, for m andf
we obtain the solutions

m~r !5
11a

4r 2 1
2516aC

2r
2

1

2
~C2212CD!r

2
5

2a
log

r 2a

r
1

6

r
log

r 2a

r
2

3a

r 2 log
r 2a

r

2
a~C2212CD!

2
log

r 2a

l

2
6aC

r
log

r 2a

l
1

3a2C

r 2 log
r 2a

l
, ~4.12!

and

f~r !5k@F~r !2F~L !#, ~4.13!

whereF(r ) is given by

F~r !5
3

4r 2 1
213aC

ar
1

126aC2a2~C2212CD!

2a~r 2a!

1
5

2a2 log
r 2a

r
2

3

r 2 log
r 2a

r

1
~C2212CD!

2
log

r 2a

l
1

3aC

r 2 log
r 2a

l
.

~4.14!

The constantL is chosen as a regularization parameter
large radiusr . As the integration constant inm(r ) can be
absorbed in the definition of the mass of the black hole@4,5#,
in Eq. ~4.12! we have fixed it by using the previously intro
duced length scalel only.

In order to fix the values of the constantsC andD, let us
analyze the properties of the solution~4.12!–~4.14!. Let us
first calculate the determinant of the metric tensor,g5e2f.
In the first order ink we get

g5112f5112k@F~r !2F~L !#,

which, in the vicinity of the pointr 5a reduces to
2-5
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g5const1k
126aC2a2~C2212CD!

a~r 2a!

2k
126aC2a2~C2212CD!

a2 log ~r 2a!.

Obviouslyg is divergent atr 5a unless

126aC2a2~C2212CD!50. ~4.15!

The position of the horizon is determined from the con
tion f (r h)50. If we assume that the correction is perturb
tive, r h5a1kr 1, we get

r 152m~a1kr 1!, ~4.16!

which gives

r 152
1112aC

4a
1

1

2
a~C2212CD!

1
1

2a
log a2

126aC2a2~C2212CD!

2a
log ~kr 1!

23C log l 2
a~C2212CD!

2
log l . ~4.17!

Note that the term proportional to log(kr1), which appears in
this formula, is divergent in the limitk→0, so one should
take that the corresponding coefficient vanishes: 126aC
2a2(C2212CD)50, in order to stay in the region of th
perturbative calculation.

The third argument also forces us to fixC and D in ac-
cordance with Eq.~4.15!. Namely, if we calculate the Hawk
ing temperature for the one-loop corrected geometry us
Eq. ~3.14!, we get

4pTH5
1

r h
@11km8~r h!#ef~r h!. ~4.18!

Using the expressions form, f, andr h ,

4pTH5
1

a S 11
126aC2a2~C2212CD!

ar1

1kS 2
1

2a2 1
3C

a
2~C2212CD!

1
C2212CD

2
log l 2F~L ! D D . ~4.19!

Here, also, there is a nonperturbative term proportional to
factor 126aC2a2(C2212CD). Therefore, Eq.~4.15! fixes
one condition forC andD.

If we calculate the scalar curvatureR in the first order in
k we obtain
08400
-
-

g

e

R5
2a

r 3 1
k

2ar5 „a$3a~12Cr225!236a2C log l

12r @51~C2212CD!r 2#%12~18a225r 2! log r

12$18a2~aC21!1@51~C2212CD!a2#r 2%

3 log ~r 2a!…. ~4.20!

From the last expression we see that the curvature singu
ties arer 50 andr 5a. In order to remove the second sin
gularity and keep the calculation perturbative, we get
second relation betweenC andD:

18aC2131~C2212CD!a250. ~4.21!

The conditions of applicability of perturbative calculatio
~4.15! and ~4.21! give

C5
1

a
, D5

1

2a
. ~4.22!

We will now analyze the behavior of the stress-energy ten
for the SSG case. Using Eqs.~4.12!–~4.14! we get

T005
1

96pr 4F25a214ar212a2Cr118aCr21~C2

212CD!r 4112~a2r !2S log
r 2a

r
2aC log

r 2a

l D G ,
~4.23!

T115
1

96pr 2~a2r !2F11a2212ar212a2Cr118aCr21~C2

212CD!r 4112~a2r !2S log
r 2a

r
2aC log

r 2a

l D G .
~4.24!

From Eqs.~4.23! and~4.24! the ingoing and outgoing fluxe
are given by

Tuu5Tvv5
1

384pr 4 ~6a228ar224Ca2r 136aCr2

12~C2212CD!r 4124~a2r !2@~12aC!log~r 2a!

2 log r 1aC log l # !. ~4.25!

For the values ofC andD given by Eq.~4.22!, the conditions
of the regularity of flux on the horizon calculated in th
Kruscal coordinates~see the Appendix of@19#!

Tvv,`, ~r 2a!21Tuv,`,

~r 2a!22Tuu,` ~4.26!

are fulfilled. It is interesting to note that we could take E
~4.26! as the regularity condition and obtain the same res
~4.22! for C andD.
2-6
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With these values of the constants our system is in
same 2D Hartle-Hawking vacuum state as in the null-d
case. This can be confirmed by performing a direct calcu
tion of ^Tuu& and^Tvv& @20#. From Eq.~4.25! we see that the
system is in the thermodynamical equilibrium, but the em
sion and absorption fluxes at spatial infinity are negati
given by 2 5/192a2. This property of SSG model can b
understood from the fact that unlike the null-dust case,
have a strongly interacting gas in a 1D box, due to stro
dilaton field at spatial infinity which couples to the 2D sca
field. Consequently the effective potential energy density
negative enough to make the total energy density nega
and hence the negative flux. As shown in Appendix A,
constantsC and D which determine the flux at infinity, do
not depend on the regularization-dependent coefficientc, so
that negative flux is not a regularization artifact.

Note that one can find states with positive flux at spa
infinity by choosing the values of constantsC and D such
that C2212CD.0. These will be also states of therm
equilibrium with temperature close to the classical Hawk
temperature. However, the problem with such states is
the scalar curvature will diverge in the vicinity of the hor
zon, so that their physical interpretation is not clear.

The values for the position of the horizon and the te
perature in the 2D Hartle-Hawking vacuum are respective

r h5a1kS 2
23

4a
1

1

2a
log

a

l D ~4.27!

and

4pTH5
1

aF11kS 15

2a2 1
5

2a2 log
L

l D G . ~4.28!

The entropy can be found by using the Wald method. For
Lagrangian given by Eq.~4.2!, from ~3.17! we get

S5
a2p

G
1

pk

G S 2
15

2
15 log

a

l D . ~4.29!

Note that the Euclidean method gives the same expres
for the entropy as Eq.~4.29! ~see the Appendix B for de
tails!. The first term in Eq.~4.29! is the Bekenstein-Hawking
entropy, while the first term is the quantum correction. T
quantum correction is of the same type as in the previ
case. The energy of the system can be obtained from
second law of thermodynamics. This gives

E5M2
5k

4MG2S 7

2
1 log

L

l D . ~4.30!

V. CONCLUSIONS

The 2D Hartle-Hawking boundary conditions which w
have used for the SSG model give negative energy densi
spatial infinity, which is in contrast with the 4D Hartle
Hawking vacuum state where the energy density is posit
If one tries to impose the 4D HH boundary conditions, o
quickly sees that this is impossible in this model. The re
08400
e
t
-

-
,

e
g
r
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e,
e

l
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-
,

e

on

e
s
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e.
e
-

tion between the 4D energy-momentum tensor and the
responding 2D energy-momentum tensor for spherica
symmetric models is given by

Tmn54pr 2Tmn
~4! . ~5.1!

From Eqs.~4.23!, ~4.24!, and ~5.1! it can be seen that the
behavior of Tmn at spatial infinity is such that the corre
spondingTmn

(4) can not describe a 4D Hartle-Hawking~HH!
vacuum sinceT00

(4) has the asymptotics; const/r 2 instead of
; const. This is not surprising because the reflecting bou
ary conditions in 2D~gas in a 1D box! correspond to the
reflection of only thes modes in 4D. For the 4D Hartle
Hawking vacuum one needs boundary conditions co
sponding to a gas in a 3D box. Such boundary conditions
be implemented in a spherically symmetric situation, as
plicitly demonstrated in Ref.@5#; however, the correspondin
2D effective action is clearly not the one given by Eq.~2.8!.
Including the extra local term coming from the action~2.9!
does not improve the situation. Clearly a nontrivial modi
cation is necessary, and further work should be done.

The failure of the action~2.8! ~which was obtained by the
standard perturbative calculation! to describe the most gen
eral situations of interest indicates that performing a sph
cal reduction first and then quantizing is not equivalent
quantizing first and then performing a spherical reducti
This is not surprising, given that in the first approach o
neglects the quantum effects of the angular modes. One
to see the effect of the angular modes is to compare
results of 2D effective action approach to the approach ba
on Eq.~1.1!. This requires further work, because the existi
results in the latter approach@5# use boundary conditions
corresponding to a 4D HH state. For example, the funct
m(r ) is given by

Km~r !5
r 3

3a3 1
r 2

a2 1
3r

a
2

13

3

1F222120S j2
1

6D G r 2a

r

1F302240S j2
1

6D G S r 2a

r D 2

2F112120S j2
1

6D G S r 2a

r D 3

14 log
r

a
1C0

~5.2!

whereK53840p andjR f2 is an additional term in the La
grangian density of the scalar field. Its asymptotic behav
is O(r 3), while the 2D HH vacuum requires the asymptoti
O(r ).

In the 2D effective action approach one can compare
results for various models. Frolov, Israel and Solodukhin
Ref. @10# obtained for the 2D HH state
2-7



es

r-
-

al
a

ki
te
tiv
s
a

ux
n
ru

m

ol
le

in
r-
n-
t

t.

s a

o-

f
-
the

oth
y is

rm
in-

r

an
e
re-

er
the
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m~r !52
7a

4r 2 1
1

2r
2

r

2a2 2
1

2a
log

r

l
. ~5.3!

Our result for the null-dust case is

m~r !52
2

r
2

r

2a2 2
1

2a
log

r

l
. ~5.4!

In the SSG model case the 2D Hartle-Hawking state giv

m~r !5
11a

4r 2 1
1

2r
1

5

2
r 1

5

2a
log

r

l
2

6

r
log

r

l
1

3a

r 2 log
r

l
,

~5.5!

while the states with positive Hawking flux~for someC)
have

m~r !52
11a

4r 2 1
2516aC

2r
2

126aC

2a2 r

1S 2
3a

r 2 1
6

r
2

5

2aD log
r 2a

r

1S 3a2C

r 2 2
6aC

r
2

126aC

2a D log
r 2a

l
, ~5.6!

where Eq.~4.15! is taken. Note that the logarithmic dive
gence in Eq.~5.5! for r→a is superficial, as the correspond
ing coefficient goes to 0 in this limit.

As it can be seen, the form of the corrections ofm(r ) in
all given cases is similar; they all diverge asr→0, which is
to be expected. But it is interesting to note the larger behav-
ior of m(r ): it goes asr in the 2D case whiler 3 in the 4D
case. This means that the metric diverges for larger in the
4D model @5#, while in 2D models it is finite. This gives
some restrictions on the applicability of 4D perturbative c
culations. The 2D results which we noted above are all qu
tatively similar. Unlike Ref. @10#, we obtained that the
Schwarzschild singularity stays atr 50 in the null dust and
the SSG case. The usual 2D HH state has negative Haw
flux in the SSG case, which is the consequence of the in
action between the dilaton an the matter field. The posi
Hawking flux states exist in the SSG model, but their phy
cal interpretation is not clear due to curvature singularity
r 5a. This is related to the pathological behavior of the fl
for the freely falling observer at the horizon in this case. O
may think that these states may be related to a 4D Un
vacuum, but the relation̂Tuu&5^Tvv& does not allow this.
The quantum corrections for the entropy have similar for
in various 2D models.

The SSG action was recently used in Ref.@21# to obtain
the quantum correction to the Schwarzschild–de Sitter s
tion, which represents a nonasymptotically flat black ho
We succeeded to put this action in the local form introduc
the two auxiliary fields, which, we believe, will be of impo
tance in future investigations of this model. It would be i
teresting to see how our perturbative analysis extends to
case of nonvacuum solutions which are time dependen
08400
-
li-

ng
r-
e
i-
t

e
h

s

u-
.

g

he
In

this case it would be useful to use the null-dust model a
zeroth-order approximation, since it is exactly solvable@22#.

At the end of calculation our solutions contain tw
dimensional constantsl and L. This is the common case in
the literature@10,4,5#: l is short-distance cutoff, of order o
the Planck length, whileL describes the infrared divergen
cies related to the radiated matter and is of order of
magnitude of space.

We obtained the entropy from the Wald approach in b
cases which we analyzed. The same value for the entrop
obtained from the Euclidean method. The logarithmic fo
of the correction to the classical entropy is obtained, conta
ing the cutoff parametersl andL. This also occurs in othe
models of quantum black holes@10,23,24#. Let us note that
the calculation of entropy is more straightforward in 2D th
in 4D. By using the black hole thermodynamics laws w
determined the corrected energy of the black hole. Our
sults imply thatr hÞ2GMbh in the quantum case. It would
be interesting to calculate the Arnowitt-Deser-Misn
~ADM ! mass of the one-loop solution and compare it to
value obtained from the thermodynamics.

APPENDIX A

The general form of the action is

S5
1

4GS E d2xA2g@r 2R12~¹r !212#

2kE d2xA2gF2R~c26x!1~¹c!2212~¹c!~¹x!

212
c~¹r !2

r 2 212gR log r G D , ~A1!

whereg5c/12. In the previous analysis,g51.
The perturbative solution of the equations of motion is

m~r !5
~36g225!a

4r 2 1
19224g16aC

2r

2
1

2
~C2212CD!r 2

5

2a
log

r 2a

r
1

6

r
log

r 2a

r

2
3a

r 2 log
r 2a

r
2

a~C2212CD!

2
log

r 2a

l

2
6aC

r
log

r 2a

l
1

3a2C

r 2 log
r 2a

l
, ~A2!

f~r !5k@F~r !2F~L !#, ~A3!

whereF(r ) is given by
2-8
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F~r !5
3~4g23!

4r 2 1
213aC

ar
1

126aC2a2~C2212CD!

2a~r 2a!

1
5

2a
log

r 2a

r
2

3

r 2 log
r 2a

r

1
~C2212CD!

2
log

r 2a

l
1

3aC

r 2 log
r 2a

l
. ~A4!

The values of the constantsC and D do not depend ong.
Using Eqs.~A2!–~A4!, it is straightforward to obtain the
expressions for the temperature, entropy, etc.

APPENDIX B

In this appendix we will present the other derivation
the entropy of the corrected Schwarzschild solution. We w
calculate entropy using the conical singularity method,
veloped in Refs.@10,24,25#. In order to define thermody
namical properties of the system, one considers the Euc
ean theory. In that case, the free energy of the systemF is
proportional to the Euclidean action. We will consider t
system at the arbitrary temperatureT̄5(2pb̄)21.

In Euclidean theory,t5 i t , the metric~3.7! takes the form

ds25 f ~r !e2f~r !dt21
1

f ~r !
dr2, ~B1!

wheretP@0,2pb̄#. If we definer5* @dr/Af (r )#, the met-
ric ~B1! becomes

ds25g~r!dt21dr2, ~B2!

whereg(r)5e2f f . Near the horizonr'0, Eq.~B2! may be
written in the form

ds25
r2

bH
2

dt21dr2, ~B3!

where 1/bH 52pTH5
1
2

ef f 8ur 5r h
. From Eq. ~B3! we see

that for regular solutionb̄5bH , meaning that the conica
singularity in Eq.~B3! is absent. The metric~B2! can be
conformally related to the metric of the coneCa @10,25#:

ds25esS dz21
1

bH
2

z2dt2D 5esdsCa

2 . ~B4!

Conformal factors and coordinatez can be found easily
The conical metrics in Eq.~B4! must be regularized at the ti
of the cone. This is done using@25# the regular metrics

dsC̃a

2
5u~z,a,a!dz21

z2

bH
2

dt2, ~B5!
08400
ll
-

d-

wherea is the regularization parameter. The simplest cho
for the functionu is

u5
z21a2a2

z21a2 .

Instead of the manifoldMa(Ca) we will consider the
regularized manifoldM̃a(C̃a). On the regularized manifold
our effective action~4.2! takes the form

G52
1

4GS E
M̃a

d2xAg@r 2R12~¹r !212#

2kE d2xAgF2R~c26x!1~¹c!2212~¹c!~¹x!

212
c~¹r !2

r 2 212R log r G D
2

1

2GS E
]M̃a

r 2kds2kE
]M̃a

~2c212x212 logr !kdsD .

~B6!

In the action~B6! we added appropriate surface terms.k is
the external curvature of the boundary of the manifold. Af
the conformal transformation~B4!, from ~B6! we get the
action

G52
1

4GS E
C̃a

d2xAg̃@r 2R̃2r 2¹̃2s12~¹̃r !212#

2kE
C̃a

d2xAg̃@R̃c̃212R̃x̃22sR̃1s¹̃2s

112~¹̃s!~¹̃x!112x̃¹̃2s

212s¹̃2x̃212R̃ log r 112 logr ¹̃2s# D
2

1

2GE r 2S k̃1
1

2
ñm]̃ms D1

k

GE S c̃ k̃23c̃ña]ax̃

1
1

4
sñm]̃ms1

1

4
c̃ñm]mc̃1S k̃1

1

2
ñm]ms D

3~2s26x̃26 logr ! D , ~B7!

where R̃5 u8/zu2 is the curvature of the regularized con
C̃a , while c̃5c2s and x̃5x. k̃5 1/zAu is the external
curvature of the boundary ofC̃a . We now take the limit
C̃a→Ca . After that it is easy to rewrite the effective actio
in terms of quantities defined on the manifoldMa /S andS,
whereS is the tip of the cone. Finally, we obtain
2-9
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G52
1

4GS E
Ma /S

d2xAg@r 2R̄12~¹r !212#

2kE
Ma /S

d2xAgF2R̄~ c̄26x̄ !1~¹c̄!2

212~¹c̄!~¹x̄!212
c̄~¹r !2

r 2 212R̄ log r G D
2

p

G
~12a!r 2~S!1

2pk

G
~12a!~c̄~S!

26x̄~S!26 logr ~S!!2
1

2GS E
]Ma

r 2k̄ds2kE
]Ma

~2c̄

212x̄212 logr !k̄dsD 1O~~12a!2!, ~B8!

whereR̄ is the regular part of curvature,c̄ is the solution of
d

r.

tt.

D

08400
the equation~4.5! in the casea51. Also, x̄5x, while k̄
5kua51. Using the definition of entropy

S5S a
]

]a
21DGua51 ~B9!

from Eq. ~B8! we easily get

S5
p

G
@r h

22k~2ch212xh212 logr h!# ~B10!

up to the numerical coefficient. From Eqs.~4.7!, ~4.8!, and
~4.27! and ~B10! we get the expressions for the entrop
which are equal to Eq.~4.29!.

A similar calculation can be done for the null dust cas
with the same conclusion that the expression for the entr
is the same as Eq.~3.18!.
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