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One-loop corrections for a Schwarzschild black hole via 2D dilaton gravity
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We study quantum corrections for the Schwarzshild black hole by considering it as a vacuum solution of a
two-dimensional(2D) dilaton gravity theory obtained by spherical reduction of 4D gravity coupled with
matter. We find perturbatively the vacuum solution for the standard one-loop effective action in the case of
null-dust matter and in the case of minimally coupled scalar field. The corresponding state is in both cases a 2D
Hartle-Hawking vacuum, and we evaluate the corresponding quantum corrections for the thermodynamic
parameters of the black hole. We also find that the standard effective action does not allow boundary condi-
tions corresponding to a 4D Hartle-Hawking vacuum stg8©556-282199)01604-3

PACS numbdis): 04.50:+h, 04.70.Dy

I. INTRODUCTION action. It is plausible to assume that such an action would be
a good approximation for a full theory for large radius. Re-
One of the most interesting problems in quantum gravitycently several papers have appeared on how to calculate this
is the Hawking radiation of black hol¢$]. As we do not yet  effective action/6—9]. All these papers gave similar results,
have a complete quantum theory of gravity, the full descripmodulo ambiguities in coefficients of certain counterterms.
tion of this phenomenon is still missing. Note that string  Given this action, one can now start to investigate the
theory has given a microscopic explanation of this procesgne-loop back-reaction effects. The simplest thing is to in-
[2]. However, a complete formalism for calculating large- yestigate the static vacuum solutions. This approach has been
radius back reaction effects does not exist. These effects affready started ifii10] where the quantum corrections to the
described by the effective action, and in the absence of Reissner-Nordstrom black hole and the corresponding ther-
Complete formalism for CalCUIa‘Eing the effective aCtion, Onemodynamic properties were calculated. In that paper the au-
has to resort to various approximations. thors have used only the Polyakov-Liouville term in the ef-
One way is to quantize matter fields in the fixed blackfective action, while it is known that the large radius null-
hole background. It is then possible to calculate the quanturgyst action also contains additional local terfdd]. It is
corrections to the classical metrics, the spectrum of the ragery well known fact{12,13 that the local terms in the ef-
diation, temperature, etc. The back reaction of the radiatiofective action can influence the form of the solution. This is
to the metric is calculated by defining the appropriate expne reason why we consider the null-dust model. Another
pected value of the energy-momentum tensor of the matteieason is that the null dust model can serve as a preparatory
field [3-5] and solving the corresponding “one-loop™” equa- study for the more complicated, and more realistic model
tion which is spherically symmetric reduction of general relativ-
ity with minimally coupled scalar fieldSSGQ. The one-loop
) (1.1 effective action for SSG model is qualitatively different from
the null-dust action. There is a new nonlocal term due to the
This approach brought a fairly clear qualitative picture of thecoupling between the dilaton and the matter field. Its influ-
process. A better approach is to integrate the gravitationagnce on the form of the one-loop solution could be impor-
and matter fields in the functional integral and obtain a onetant, so that we calculate the correction to the Schwarzschild
loop effective action, which would allow a background- black-hole solution and the corresponding corrections to the
independent approach. This, unfortunately, cannot be done ithermodynamic parameters. As we mentioned, there exists
four spacetime dimensioridD) because of the nonrenormal- some ambiguity in the literature about tR& coefficient in
izability of gravity. However, in two spacetime dimensions the effective action for SSG, and therefore we investigate
(2D), gravity is renormalizable, and this procedure can behow its value affects the physical parameters of the solution.
done. Therefore if one considers the spherically symmetric The third motivation is to compare the properties of this
general relativity with matter as a 2D field theory, then it is solution to those obtained in 4D via Ed..1) [5], in order to
possible to calculate the corresponding one-loop effectivgee how good is the 2D effective action approach. The plan
of the paper is the following. In Sec. Il we briefly review the
spherically symmetric one-loop effective action and trans-
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its equations of motion, perturbative solutions, corrections to
the radius, temperature, and entropy of the black hole. This
section is very similar to Ref10], but we only consider an
uncharged black hole. In Sec. IV the same is done for the
spherically symmetric model, and we present the results for
an arbitraryR® coefficient. In Sec. V we present our con-
clusions. Appendix A contains all relevant formulas given
for the action with arbitrar\R® coefficient. The alternative
calculation of entropy using the conical singularity method is
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given in Appendix B.

Il. ONE-LOOP EFFECTIVE ACTION

Spherically symmetric reduction of the Einstein-Hilbert
action in 4D gives the following 2D dilaton gravity action:

1
FO:EJ’ d?x\—ge 2*[R+2(Vd)2+2e??], (2.1

whereG,®,g,,, are the Newton constant, dilaton, and two-

Note that this action differs from the one used in R&€)] by
the presence of two local termsy®)2 and Rd. The ac-
tion (2.5 is very similar to the BPP mod¢lL3]. The action
(2.5 can be rewritten as

F=%<Jd2x\/—_g |r2Fe+2(Vr)2+2—2c32i (Vfi)z}
1 Vr)?
—KJ d?x\—g RER—ZRIogr—( rrz) ) (2.6

dimensional metric, respectively. The 4D line element is

given by

ds’; =g, dx“dx"+e 2*d0? (2.2
so thatr=r,e”® can be identified as the spatial radius in
appropriate gauger§ is an arbitrary length constant, which
is needed for dimensional reas@ns

If one couples minimallyN scalar 2D fieldsf; to this
action, one gets the null-dust model, with the action

f d?xy—g
|

(2.3

1
e
N

x| e 2[R+ 2(VD)2+2e??]-2G Y, (Vf;)?
=1

where the number of scalar fieldisis introduced in order to
obtain the semiclassical approximation from the lakge-
limit. If one adds N scalar fields which are minimally

coupled to gravity in 4D and afterwards performs the spheri-

cally symmetric reduction the action becomes
r _L f d?xy—g
074G
N

x| e 2[R+ 2(VD)2+2e2?]1-2G D, e 2%(Vf))
i=1

]

(2.4)

wherer =rqoe”® and k= NG/24x . Since we are interested
in the vacuum solutions, we will takie=0. The action(2.6)
can be transformed into a local form by using an auxiliary
scalar fieldy:

= %( f d2x\/—g[r2R+2(Vr)2+2]

s
re |

2.7)

—KJ dZX\/—_g[ZRl//‘l‘(Vl/I)Z—ZR logr —

where ¢ satisfies
Oy=R.

In the SSG case the quantization of the matter fields gives
the following one-loop correction to the effective action
[6-9:

N 1 1
__ | gv=al RER-12R= 2
r, 967TJolx\/ g(RDR 12R= (V)*+cRe |,
(2.9

wherec is a nonzero constant, whose numerical value de-
pends on the quantization procedure used. The dimensional
regularization method gives= 12 [7,8]. Dimensional regu-
larization with a rescaled metric also gives- 12, but after
returning to the original variables changes tac=14 [9].

The {-function regularization gives=—4 [6]. It will turn

The null-dust model differs from SSG by the absence ofout that this ambiguity does not change any of our calcula-
coupling between scalar field and dilaton. It can be thoughtions essentially, so we will proceed with the valoe 12
of as a large radius approximation to SSG, since the resca@nd summarize the results for the case of an arbitrary coef-

ing f,—f;/r in Eqg. (2.4 will give Eq. (2.3 plus terms of
order 1f.

The one-loop effective action for the model Eg.3) has
been found in Ref[11]. The large-N, large- one-loop part
of the action is given by

ficient in Appendix A.
Note that one can also calculate the one-loop contribu-
tions due to all field$9]. This calculation simplifies when a

rescaled metricg,,=e®g,,, is quantized, so that in the
largeN and larger limit one obtaing 9]
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Ill. SPHERICALLY SYMMETRIC NULL-DUST MODEL

We will discuss first the simpler model of null-dust matter
in order to prepare for the more complicated case of spheri-

x| R=R— 12§£("ﬁ¢)2+ 12RD cally symmetric scalar field. We will use the action in the
0 0 form
~1 _ ) 1

+123 R (%1)?). @9 1= szx\/_—g[r2R+2(Vr)2+2]
When compared to Eq2.8), the last term in Eq(2.9) is ) ) (Vr)?
new, and it comes from the finite parts of the graviton- _Kf d™xV—g| 2R+ (V)" —2Rlogr — —o—||.
dilaton loops. Since we are interested in vacuum solutions,
for which f;=0, this difference will not be essential. How- 3.9

ever, when transforming back to the original metric, the
=0 limit of Eq. (2.9 will produce an additional term in Eqg.
(2.8), proportional tof '—g(V®)?, which is of the relevant
order in 1f. Since it is not clear whether the quantization of Oy=R, (3.2
the original metric will produce this term, in this paper we

The variation of this action with respect to the fielgsr,
andg*” gives the equations of motion

will consider only the quantum corrections given by Eq. ) R (Vr)2 Vo
(2.8), although one should keep in mind that additional coun- FR=2Vir=—«| -+ —3——=/, (3.3
terterms are possible due to different quantization proce-
dures. and
The analysis of the action given by the correction Eq.
(2.8) will simplify if it is written in the local form. Note that ~ —2rV,V,r+g,,(V2r?—(Vr)?-1)
in this case we are dealing with two nonlocal terms,
R(1/0) R andR(1/0) (V®)2. This implies that we have to ==Kl
introduce two auxiliary fieldsy and y. After a tedious cal- 1
culation we get the following local form of the correction = K( —2V,V,+V gV 4+, 2R— E(sz)
N
F1=—@J d?xv—g[2R(¢—6x) +(Vih)? V.V, VY, V2r 5 (Vr)2
+2 -3— wr| — —+§ 2
1AV ) (Vy)— 124(VD)2+12RD].  (2.10 '
(3.9

The additional fields then satisfy the equations of motion
From Egs.(3.3) and (3.4 we can obtain the expression
O¢=R (2.11) for the scalar curvature:

and 2—2(Vr)%+ klr?
R= > . (3.5
Ox=(V®)>2 (2.12 r

Note that it is now easy to obtain the expression for tracel his expression shows that the singularity of the curvature is

anomaly for the SSG case from Eq®.10, (2.11), and atr=0, asin the classical case. The solution of E&3) for
(2.12. It is given by the fieldr is r=x, so the fieldr really has the meaning of
the radial coordinate, in accordance with Eg.2). In Ref.

1 ) [10], the quantum correction shifts the space-time singularity
T= E[R_G(V(D) +6LP]. (213 to the valuer?,=2k; in our case it stays at=0. This is a
consequence of the fact that the quantum correction in Ref.
In the case of the null-dust modélis given by [10] is given by the Polyakov-Liouville term only, while in
our case there are two additional local terms.
1 The classical solutior(corresponding tox=0) of the
T=5-R (2.14 equations of motior{3.3), (3.4) is
if we take the Polyakov-Liouville term only, or r=xt, ds?=—fo(r)dt2+ %er' 3.6
0
1
T:E(RJFD(D) (2.19 wheret=x°, fo=1— 2GM/r =1— a/r. We are interested
in the quantum correction of this solution in the semiclassical
in the casd?2.7). approximation. This means that we are searching for the per-
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turbative solution of Eq93.2—(3.4) by takingx as a small 1 5
parameter. By introducing the static ansatz as in Rif], 4nTy=_1 1=« 52 TFL)|]. (3.19
ds?= —f(r)e?*"dt>+ idrz, (3.7 The second term in Eq3.15 is the quantum correction of
f(r) the temperature.

In order to calculate the entropy of the quantum corrected

with f(r)=1—a/r +«[m(r)/r], we get, in the first order pj5ck hole solution, we will use Wald techniquigs]. In

in «: Refs.[16—1§ it was shown that for the Lagrangian of the
fr ¢ form L=L(f,Vfn,9,.,Ruipe) (fm are the matter fields
W =— o, = 3.9  the entropy is given by
fo fo’ '
S=-2 o (3.16
, = T LTELRE, s , .
K 2 c2 3f, PPXO0R g
b= | 20— —+ —— 2], (3.9 _ _
2rfy fo fo 1 evaluated at the horizon. Hence the evaluation of the entropy
, via Wald's method does not require the knowledge of the
m = 24 i(f’z—CZ)— f_oJr 5fo (310  Poundary termswhich might occur in the actionwhich are
B 0" 2f, © ro2r? ' necessary if one evaluates the entropy from the Euclidean

action[10]. For the lagrangian given by E¢B.1), we obtain
The integration constar€ can be determined from the con-
dition that the behavior offyy at infinity is thermal. This ma?  kw
boundary condition follows from the fact that the static so- S= < &
lution we are constructing describes a black hole in thermal
equilibrium with the Hawking radiatiofthe black hole emits The first term in Eq(3.17) is the Bekenstein-Hawking en-
as much energy as it absorbs, so that its mass does ntwopy, while the second term is the quantum correction. The
change. Since the matter in this model behaves as a free 2Bame result is obtained when we define properly the bound-
scalar field, we take thdty, at infinity (in the zeroth order in  ary terms for the action Ed3.1), and use the conical singu-
x) has the temperature dependence of a 1D free bose-ghaity method and this calculation is presented in Appendix
(w/6)T2, where T, is the classical Hawking temperature B.
47T, =1/a. This is consistent with the fact that for spherical ~ Using Egs.(3.16 and(3.18 and the first law of thermo-
null dust (T,)=(T,,)=1/487(4M)? in the Hartle- dynamicsTdS=dE [where the local temperature is given by
Hawking vacuum, where andv are the asymptotically flat T= Ty /v —goo(L)], for the energy of the system we get the
Schwarzschild coordinat¢$4]. This givesC?=1/a. By in-  following expression:
tegrating Egs(3.9), (3.10 we obtain

3+ log ?) . (3.17

K
2 =M e

! 1| - 3.1
r Z+§Og|_ (3.18

1
m(r)=—£ Iog l—

The results which we have obtained are qualitatively similar
d(r)=F(r)—F(L), to those of Ref[10]. The difference in the numerical coef-
ficients is due to the extra terms in the one-loop effective
1 r action. We also have a logarithmic correction to the entropy
32 Iog(l— , (3.12 (term proportional to lolyl). The main difference is that in
our model the singularity of the curvature stays at the origin
whereL and| are the integration constants. We have as! =0
sumed that our system is in a 1D spatial box of dife
<L), and thate?¢=1 asr—L. IV. SPHERICALLY SYMMETRIC SCALAR FIELD
The position of the horizon,, can be found perturbatively MODEL
from the conditionf(r,)=0:

F(I’)ZK —a

We now examine the more realistic, and more compli-
cated case of spherically symmetric scalar field. By adding
(3.13  the actions(2.4) and (2.8) and by settingf;=0 we get the
one-loop effective action

rp=a—«m(a)=a+k

5
2a

oy
2a 9

The Hawking temperature also changes due to the quantum 1
corrections. In the case of the metric of the fo@@7), itis  I'= E( f d2x\/—g[r2R+2(Vr)2+2]
given by(see Appendix B

1 (Vr)?

1
4nTy=e’f'| -, (3.19 —KJ' dzx\/—g[RaR—lzREr—z—lleogr )

which, after insertion ofp andm, gives 4.1
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which is, in the local form rf/ +2¢ fr+f—1=xri
1 1 ’
I'= 4G(Jd2XV g[r’R+2(Vr)*+2] =K(—f’1p’+2R+6f’X’+§f¢//2
f f’
—Kf dzw—g{ZR(z//— 6x)+(Vp)> =12V ) (Vx) —6y X' ~6(y+2) 5~ 6 —
lﬁ( )
—12 —12Rlogr ||. 4.2 —2f g+ 12" |. (4.10

Varying the action(4.2) with respect ta, g,,,,, x, and¢ we

From Egs.(4.9 and(4.10 we easily obtain
obtain the following equations of motion:

K
Vr)? V2r Vy)(Vr) R m=rn, ¢'= e 4.1
—rR+2V2r=6K(2w(r3) —21’//r2 o "’jé )+7 , 0 = ge (70 (1D
4.3 Using the expressions fa¥ and y’ (4.7), (4.8), for mand ¢
we obtain the solutions
—2rV,LVVr+gW(V2 2—(Vr)2-1)

1la —-5+6aC 1

v2r 2 - 2(C?-12CD
=l g,,| 209— 1200y~ 12—+(12+6¢)(—2)— m(r)= 72 2r 2! )
5I r—a+6I r-a 3aI r-a
1 og— og——_zog_
— 5 (V2+6(V) (V) | +V .4 2 "o r
a(C?>-12CD) r-a
— 12V, 4V x =2V, V +12V V x —~ 5 log —
ViVl Vurvor 6aC r—a 3a?C r-a
#1241 T (D), (4.4) S 0g R g, 412
O¢y=R, (4.5 and
(Vr)? d(r)=x[F(r)—F(L)], (4.13
Oy=——. (4.6)

r whereF(r) is given by

The vacuum solution of the classicat£0) equations is _ _a2/~2_
the Schwarzschild black hol€.6). We will, again, solve F(r) 3 2+3aC+ 1-6aC-a(C"-1XD)

= +
Egs. (4.3 —(4.6) perturbatively ink, starting with the static 4r? ar 2a(r—a)
ansatz(3.7). Integration of the equations fa¥ and y in the 5 r—a 3 r—a
zeroth order ink gives + 232 log — s log -
Crical _a_| E 4 (C2—12CD) r-a 3aC_ r-a
y=Cr alog °g 4.7 + log + ——log
2 | r I
. 2Dr?-2r+a (4.14
X" 2r(r-a) “3 . N
The constant is chosen as a regularization parameter for
whereC,D, and| are the integration constants. large radiusr. As the integration constant im(r) can be
The 00 and 11 components of Ed.4), to the first order absorbed in the definition of the mass of the black (4],
in «, are in Eq. (4.12 we have fixed it by using the previously intro-
duced length scalkonly.
—rf —f+1= m.g In order to fix the values of the constarisandD, let us
analyze the properties of the solutioh.12—(4.14). Let us
1, ., first calculate the determinant of the metric tengpre®?.
=«| Py —2R-6f" Y + 5Ty “—6Ty'x’ In the first order ink we get
fu fr g=1+2¢=1+2k[F(r)—F(L)],
—6—;+6—J, (4.9 o o .
r which, in the vicinity of the point =a reduces to
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1-6aC—a?(C?-12CD)

2a K
R=—7 + m(a{3a(12c:r—25)—36azc log|

g=const+ ar—a) .
1—6aC—a2(Cz—12CD)I ( ) +2r[5+(C?—12CD)r?]}+2(18a%—5r?) logr
— K 2 Og r—a).
a +2{18a%(aC—1)+[5+(C2—12CD)a?]r?}
Obviouslyg is divergent ar =a unless xlog(r—a)). (4.20
1-6aC—a2(C?—12CD)=0. 4.15 From the last expression we see that the curvature singulari-

ties arer=0 andr=a. In order to remove the second sin-

» ) ) ) _gularity and keep the calculation perturbative, we get the
The position of the horizon is determined from the condi-gecond relation betweed andD:

tion f(r,)=0. If we assume that the correction is perturba-

tive, rp=a+«r,, we get 18aC— 13+ (C%2—12CD)a*=0. (4.21
ry=—m(a+«ry), (4.16  The conditions of applicability of perturbative calculation
(4.15 and (4.2)) give
which gives - 1 o 1 w22
1+12aC 1 a’ 2a; '
ri=————+-a(C-12CD)
4a 2 We will now analyze the behavior of the stress-energy tensor
1 | 1-6aC—a?(C?—12CD) | for the SSG case. Using Eq&.12—(4.14) we get
+£ og a— 5a 0og(«rq) 2 ) 2 2
Too=57—7 —5a+4ar—12a°Cr+18aCr-+(C
a(C2—12CD) 00" 96rr 4 (
—-3Clogl — ———— logl. 4.17

2 r—a

r—a
—12CD)r*+ 12(a—r)2( IogT—aCIog -

Note that the term proportional to lagy), which appears in
this formula, is divergent in the limik—0, so one should (4.23
take that the corresponding coefficient vanishes:6aC

—aZ(CZ—' 12CD)=0, in order to stay in the region of the )= , 2[11a2—12ar—12a2Cr+18aCr2+(Cz
perturbative calculation. 96m7r<(a—r)
The third argument also forces us to fixandD in ac-
cordance with Eq4.15. Namely, if we calculate the Hawk- —12CD)r+12(a— r)2< log r-a —aClog r-a _
ing temperature for the one-loop corrected geometry using r |
Eq. (3.14), we get (4.24
1 From Egs.(4.23 and(4.24) the ingoing and outgoing fluxes
Using the expressions fan, ¢, andry,, TuuzTUU:3847Tr4(6a2—8ar—24Ca2r+36aCr2
- 1 ( L 1-6aC—a?(C2—12CD) +2(C?—12CD)r*+24(a—r)’[(1—aC)log(r —a)
TI=_=
a ar — logr+aClogl]). (4.25
1 3C . "
+ k| —5—+——(C?-12CD) For the values o€ andD given by Eq.(4.22), the conditions
2a a of the regularity of flux on the horizon calculated in the

C2-12CD Kruscal coordinate¢see the Appendix df19])
+TlogI—F(L))>. (4.19
Tvv<ooi (r—a)_lTuU<oo,
Here, also, there is a nonperturbative term proportional to the (r—a) 2T, < (4.26
factor 1—6aC—a?(C?—12CD). Therefore, Eq(4.15 fixes
one condition forC andD. are fulfilled. It is interesting to note that we could take Eq.
If we calculate the scalar curvaturein the first order in  (4.26) as the regularity condition and obtain the same result

Kk We obtain (4.22 for C andD.
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With these values of the constants our system is in théion between the 4D energy-momentum tensor and the cor-
same 2D Hartle-Hawking vacuum state as in the null-dustesponding 2D energy-momentum tensor for spherically
case. This can be confirmed by performing a direct calculasymmetric models is given by
tion of (T, and(T,,) [20]. From Eq.(4.25 we see that the
system is in the thermodynamical equilibrium, but the emis-
sion and absorption fluxes at spatial infinity are negative, T,LV=47TTZTL4V)- (5.9
given by — 5/19232. This property of SSG model can be
understood from the fact that unlike the null-dust case, we .
have a strongly interacting gas in a 1D box, due to stron{rom Egs.(4.23, (4.24, and (5.]) it can be seen that the
dilaton field at spatial infinity which couples to the 2D scalarPehavior of T, at spatial infinity is such that the corre-
field. Consequently the effective potential energy density ispondingT!;) can not describe a 4D Hartle-HawkirigiH)
negative enough to make the total energy density negative/acuum sincel g‘(‘)) has the asymptotics constf? instead of
and hence the negative flux. As shown in Appendix A, the~ const. This is not surprising because the reflecting bound-
constantsC and D which determine the flux at infinity, do ary conditions in 2D(gas in a 1D box correspond to the
not depend on the regularization-dependent coefficiesb  reflection of only thes modes in 4D. For the 4D Hartle-
that negative flux is not a regularization artifact. Hawking vacuum one needs boundary conditions corre-

Note that one can find states with positive flux at spatialsponding to a gas in a 3D box. Such boundary conditions can
infinity by choosing the values of constartsand D such  be implemented in a spherically symmetric situation, as ex-
that C2—12CD>0. These will be also states of thermal plicitly demonstrated in Ref5]; however, the corresponding
equilibrium with temperature close to the classical Hawking2D effective action is clearly not the one given by E2.8).
temperature. However, the problem with such states is thdhcluding the extra local term coming from the acti¢h9)
the scalar curvature will diverge in the vicinity of the hori- does not improve the situation. Clearly a nontrivial modifi-
zon, so that their physical interpretation is not clear. cation is necessary, and further work should be done.

The values for the position of the horizon and the tem- The failure of the actiori2.8) (which was obtained by the
perature in the 2D Hartle-Hawking vacuum are respectivelystandard perturbative calculatjoto describe the most gen-
eral situations of interest indicates that performing a spheri-
cal reduction first and then quantizing is not equivalent to
quantizing first and then performing a spherical reduction.
This is not surprising, given that in the first approach one
and neglects the quantum effects of the angular modes. One way

to see the effect of the angular modes is to compare the
15 5 results of 2D effective action approach to the approach based
232" 2a2 log T) } 428 Eq.(1.1). This requires further work, because the existing

results in the latter approadib] use boundary conditions
The entropy can be found by using the Wald method. For theorresponding to a 4D HH state. For example, the function

rh:a+K

23 1| a 40
“2at2al097 (4.27)

1+«

47TTH :5

Lagrangian given by Eq4.2), from (3.17) we get m(r) is given by
s a’r  wk 15+5| a 4.29
=—t— = - 3 2
G Gl 2z ) 429 Km(r) = 2 gt g o 23
3° a? a 3
Note that the Euclidean method gives the same expression ] ;
for the entropy as Eq(4.29 (see the Appendix B for de- 1|29 12d £— E —a
tails). The first term in Eq(4.29 is the Bekenstein-Hawking I 6)) r
entropy, while the first term is the quantum correction. The i ] )
guantum correction is of the same type as in the previous +|30- 24({ £ E) r-a
case. The energy of the system can be obtained from the I 6/ |\ r
second law of thermodynamics. This gives - I\ /r—a\3 ;
. 5« (7 I L s __11_1245_6) T +4Ioga+C0
Y AMG? §+ Og|_ ' (4.30 (5.2)

V. CONCLUSIONS . -, .
whereK =3840r and éRf? is an additional term in the La-

The 2D Hartle-Hawking boundary conditions which we grangian density of the scalar field. Its asymptotic behavior
have used for the SSG model give negative energy density & O(r?), while the 2D HH vacuum requires the asymptotics
spatial infinity, which is in contrast with the 4D Hartle- O(r).

Hawking vacuum state where the energy density is positive. In the 2D effective action approach one can compare the
If one tries to impose the 4D HH boundary conditions, oneresults for various models. Frolov, Israel and Solodukhin in
quickly sees that this is impossible in this model. The relaRef.[10] obtained for the 2D HH state
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7a 1 r 1 r this case it would be useful to use the null-dust model as a
m(N=— 2+ 5 " 522" 25 997 (5.3 zeroth-order approximation, since it is exactly solval2a).

At the end of calculation our solutions contain two-
dimensional constantsandL. This is the common case in
the literature[10,4,9: | is short-distance cutoff, of order of

2 r 1 r the Planck length, while. describes the infrared divergen-
m(r)=—-——=——>—log-. (5.4) cies related to the radiated matter and is of order of the
2a® 2a magnitude of space.
) ) We obtained the entropy from the Wald approach in both
In the SSG model case the 2D Hartle-Hawking state gives cases which we analyzed. The same value for the entropy is
a1 s . 6 3 obtained from the Euclidean method. The logarithmic form
_ r rosa r of the correction to the classical entropy is obtained, contain-
m(r)= 4r2 * 2r * Er * 2a log I r log I_jL Id log [ ing the cutoff parametersandL. This also occurs in other
(5.5 models of quantum black hol¢40,23,24. Let us note that
the calculation of entropy is more straightforward in 2D than
while the states with positive Hawking fluffor some C) in 4D. By using the black hole thermodynamics laws we

Our result for the null-dust case is

have determined the corrected energy of the black hole. Our re-
sults imply thatr,#2G My, in the quantum case. It would
lla —-5+6aC 1-6aC be interesting to calculate the Arnowitt-Deser-Misner
mN=-g2z+t 5~ 222 ' (ADM) mass of the one-loop solution and compare it to the
value obtained from the thermodynamics.
3a 6 5 r—a
T2 log r
APPENDIX A
3a’C 6aC 1-6aC r—a
Yz "% 97— GO The general form of the action is

where Eq.(4.15 is taken. Note that the logarithmic diver-

gence in Eq(5.5) for r —a is superficial, as the correspond- g— i“ dzx\/—_g[r2R+2(Vr)2+2]
ing coefficient goes to 0 in this limit. 4G

As it can be seen, the form of the correctionswfr) in
all given cases is similar; they all diverge as>0, which is - Kf d2X\/—_g[2R(l/I_ 6x)+(V)2—12V)(Vy)
to be expected. But it is interesting to note the lardeehav-
ior of m(r): it goes as in the 2D case whilg? in the 4D W(Vr)?
case. This means that the metric diverges for large the -12 2 —12yRlogr ) (A1)

4D model[5], while in 2D models it is finite. This gives
some restrictions on the applicability of 4D perturbative cal-
culations. The 2D results which we noted above are all quali- . .
tatively similar. Unlike Ref.[10], we obtained that the Wherey=c/12.In the previous analysig;=1. o
Schwarzschild singularity stays &0 in the null dust and The perturbative solution of the equations of motion is
the SSG case. The usual 2D HH state has negative Hawking

flux in the SSG case, which is the consequence of the inter-
action between the dilaton an the matter field. The positive (r)
Hawking flux states exist in the SSG model, but their physi-

cal interpretation is not clear due to curvature singularity at

r=a. This is related to the pathological behavior of the flux _ E(Cz_ 12CD)r — i log r-a + E log r-a
for the freely falling observer at the horizon in this case. One 2 2a r r r
may think that these states may be related to a 4D Unruh

_(36y-25a 19-24y+6aC
B 4r2 2r

3a r—a a(C?’-12CD) r-a

vacuum, but the relatioT,,)=(T,,) does not allow this. ~ > log log
The quantum corrections for the entropy have similar forms r r 2 |
in various 2D models. 2
. . . 6aC r—a 3aC r-a
The SSG action was recently used in R&l] to obtain — log I + —— log — (A2)
r r

the quantum correction to the Schwarzschild—de Sitter solu-
tion, which represents a nonasymptotically flat black hole.
We succeeded to put this action in the local form introducing
the two auxiliary fields, which, we believe, will be of impor- d(r)=«[F(r)—F(L)], (A3)
tance in future investigations of this model. It would be in-

teresting to see how our perturbative analysis extends to the

case of nonvacuum solutions which are time dependent. lwhereF(r) is given by
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3(4y—3) 2+3aC 1-6aC—a%(C?>-12CD) wherea is the regularization parameter. The simplest choice
F(r)= +

4r2 ar 2a(r—a) for the functionu is
N 5 | r-a 3 | r—a s 2 o
2299 7 pzlog u=22
Z’+a’ -
+(CZ—12CD) I r—a+3aC| r— A4
2 %97 rZ 097 (Ad) Instead of the manifoldvl ,(C,) we will consider the

regularized manifoldvl ,(C,). On the regularized manifold

The values of the constan@ and D do not depend ony. our effective action4.2) takes the form

Using Egs.(A2)—(A4), it is straightforward to obtain the
expressions for the temperature, entropy, etc.

1
APPENDIX B r=- E( JM d?x\g[r?R+2(Vr)?+2]
In this appendix we will present the other derivation of
the entropy of the corrected Schwarzschild solution. We will _ Kf dzx\/§ 2R(—6x) + (Vih)2— 12V h)(V x)
calculate entropy using the conical singularity method, de-

veloped in Refs[10,24,29. In order to define thermody- W(VT)2

namical properties of the system, one considers the Euclid- 12—~ —12R|ogr
ean theory. In that case, the free energy of the sys$tem r

proportional to the Euclidean action. We will consider the

|

e T 1
system at the arbitrary temperatufe= (278) . — —( f 5 r2kds—Kf _ (2¢—12¢—12log )kds|.
In Euclidean theoryr=it, the metric(3.7) takes the form 2G| i, Ma
(B6)
1 . . .
ds?=f(r)e?*d2+ —dr?, (B1) In the action(B6) we added appropriate surface terrkss

f(r)
wherere[0,278]. If we definep=f[dr/\f(r)], the met-

the external curvature of the boundary of the manifold. After
the conformal transformatiofB4), from (B6) we get the

ric (B1) becomes action
_ 2 2 1 - - ~
ds*=g(p)dr*+dp®, ®2) FZ_E( ﬁ d2x\gr 2R 12V 20+ 2(Vr)2+ 2]
[
whereg(p) =e?#f. Near the horizop~0, Eq.(B2) may be ¢
written in the form ) ~~ ~ = =s
— i | xVGIRI— 1Ry — 20R+ 0V 20
Ca
2
ds?="_dr2+dp?, (B3) +12%0) (Fy) + 1% 20
H
1 —12072}—12ﬁlogr+12Iogrvza])
where 18y, =277TH=§e¢f’|r=rh. From Eq.(B3) we see
that for regular solutiorﬁ= By, meaning that the conical _ i r2| k+ E'ﬁ,u:? ol+ ff (@F—&?/ﬁat? Y
singularity in Eq.(B3) is absent. The metri¢B2) can be 2G 2 K G &

conformally related to the metric of the cofig, [10,25: 1

1. - [~ 1
+ ZO’I’I’LL&MO"F Zl/fn“%llf‘F ( k+ En“%a)

d52=e"(d22+ B%#d#) =e"ds§a. (B4)

2 X(—o—6x—6logr)|, (B7)

Conformal factore and coordinatez can be found easily. - _ _
The conical metrics in EqB4) must be regularized at the tip WhereR= u’/z\? is the curvature of the regularized cone

of the cone. This is done usiig5] the regular metrics C,., While =y~ and y=x. k= 1/z\u is the external
curvature of the boundary of,. We now take the limit
22 C,—C,. After that it is easy to rewrite the effective action
ds(% =u(z,a,a)dz?+ —2d7'2, (B5)  interms of quantities defined on the manifdit], /> and3,
“ H whereX, is the tip of the cone. Finally, we obtain
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1 , — , the equation(4.5) in the casea=1. Also, =y, While k.
I'=-7¢ fM /zd XVo[r?R+2(Vr)?+2] =k|,—1. Using the definition of entropy
_ 2 YA - Y J
KfMd/Ed xg| 2R(U=6x)+(V¥) S:(“ﬁj—l)Ua_l (B9)
— . y(Vn?
—12AVy)(Vy) —12—7—~ 1Rlogr from Eq. (B8) we easily get

T 27K —
— 21— a)r¥(3)+ - (1-a)(U3) T
G G S=glri-x(2¢n—12x,~12logry)]  (B10)

—6x(2)—6logr(3) —%(f rzkds—xf (2¢
Ma Ma up to the numerical coefficient. From Ed4.7), (4.8), and
(4.27 and (B10) we get the expressions for the entropy
+0((1-a)?), (B8  which are equal to E¢4.29.
A similar calculation can be done for the null dust case,
. o with the same conclusion that the expression for the entropy
whereR is the regular part of curvature; is the solution of is the same as E@3.18).

—12y—12logr)kds
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