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A semiclassical cosmological model is considered which consists of a closed Friedmann-Robertson-Walker
spacetime in the presence of a cosmological constant, which mimics the effect of an inflaton field, and a
massless, non-conformally coupled quantum scalar field. We show that the back-reaction of the quantum field,
which consists basically of a nonlocal term due to gravitational particle creation and a noise term induced by
the quantum fluctuations of the field, are able to drive the cosmological scale factor over the barrier of the
classical potential so that if the universe starts near a zero scale fattal singularity), it can make the
transition to an exponentially expanding de Sitter phase. We compute the probability of this transition and it
turns out to be comparable with the probability that the universe tunnels from “nothing” into an inflationary
stage in quantum cosmology. This suggests that in the presence of matter fields the back-reaction on the
spacetime should not be neglected in quantum cosmo[&§b56-282(199)04108-9

PACS numbeg(s): 98.80.Cq, 04.62:v, 05.40.Ca

[. INTRODUCTION the preinflationary era and thus enlarges the set of inflating
initial conditions[5,6].

A possible scenario for the creation of an inflationary uni-  In this paper we consider a semiclassical model consisting
verse is provided by cosmological models in which the uni-of a closed FRW cosmology with a cosmological constant in
verse is created by quantum tunneling from “nothing” into a the presence of a quantum massless scalar field. This quan-
de Sitter space. This creation is either based on an instantdaam field may be seen as linear perturbations of the inflaton
solution or in a wave function solution which describes thefield at its stationary point or as some other independent
tunneling in a simple minisuperspace model of quantum coslinear field. Because the field is free, the semiclassical theory
mology[1,2]. is one loop exact. The expectation value in a quantum state

In the inflationary context one of the simplest cosmologi-of the stress-energy tensor of this scalar field influences by
cal models one may construct is a closed Friedmannback-reaction the dynamics of the cosmological scale factor.
Robertson-WalkeFRW) model with a cosmological con- There are here two main effects at play: on the one hand,
stant. The cosmological constant is introduced to reproducsince the field is not conformaly coupled, particle creation
the effect of the inflation field at a stationary point of the will occur and, on the other hand, the quantum fluctuations
inflaton potentiall1]. The dynamics of this universe is de- of this stress-energy tensor induce stochastic classical fluc-
scribed by a potential with a barrier which separates the retuations in the scale fact¢¥,8]. Thus the cosmological scale
gion where the scale factor of the universe is zero, where thfactor is subject to a history dependent term due to gravita-
potential has a local minimum, from the region where thetional particle creation and also to noise due to these quan-
universe scale factor grows exponentially, the de Sitter otum fluctuations. We examine the possibility that a universe
inflationary phase. The classical dynamics of this homogestarting near the local minimum may cross the barrier and
neous and isotropic model is thus very simple: the universemerge into the inflationary region by the back-reaction of
either stays in the minimum of the potential or it inflates. the quantum field on the scale factor. This is, in some sense,

The classical dynamics of the preinflationary era in suchthe semiclassical version of tunneling from nothing in quan-
cosmological models may be quite complicated, however, itum cosmology.
one introduces anisotropies, inhomogeneities or other fields. It is important to stress the difference between this calcu-
Thus, for instance, all anisotropic Bianchi models, exceptation and the usual approach to quantum tunneling. The
Bianchi type IX, are bound to inflate in the presence of ausual approacf9,10,1,11,12begins with the calculation of
cosmological constarit3]. Also in the previous model but an instanton or tunneling solution, which is a solution to the
with an inhomogeneous scalar radiation field the universé&uclidean classicalor sometimes semiclassical; sgE3])
may get around the barri¢4] and emerge into the inflation- equations of motion. Because of symmetry, the scalar field is
ary stage even if initially it was not. set to zero from the start. Its effect, if at all, is considered as

The emergence of an inflationary stage of the universa contribution to the prefactor of the tunneling amplitude
also seems to be aided by semiclassical effects such as péi-1], which is usually computed to one loop accuracy in the
ticle creation which enhances the radiation energy density dest field approximation. The effect of dissipatigid] or
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even of particle creatiofl5] on quantum tunneling has been  Even with this simple setting, it is impossible to make
considered in some quantum mechanical systems but it ougptogress without further simplifications, and we would like
to be noticed that to this date the effects of stress-energio give here a summary of the most significative ones. The
fluctuations on the tunneling amplitude have not been conmost basic simplifying assumption is that the deviation from
sidered in the literature, to the best of our knowledge. Evertonformal coupling, measured by the parametdo be in-
when the instanton is sought as a solution to semiclassicafoduced belowsee Eq.(2)], is small. This will allow us to
equationg 13] this is done under approximations that effec- set up the problem as a perturbative expansion, iwhereby
tively downplay the role of particle creation, and back-we shall stick to the lowest nontrivial order, namév?).
reaction fluctuations are not considered at all. Of course, the quantity of highest interest, the escape prob-
To underlie that the mechanism for barrier penetration taability itself, will turn out to be nonperturbative in; how-
be investigated here is a different physical process than thaver, our procedure ought to capture its leading behavior.
computed from instantons in the test field approximation, we Even to second order im, the closed time patfiCTP)
have chosen to ignore the quantum aspects of the gravitaffective action, whose variation yields the semiclassical
tional field, so that in the absense of back reaction fluctuaequations for the universe scale factor, involves the calcula-
tions the tunneling rate would be zero. From the point oftion of several kernels. We have formal exact expressions for
view of the usual approximation, it could be said that ourthese kernels, but the results are too involved for further
calculation amounts to a nonperturbative calculation of themanipulation. This suggests a second simplification, namely,
tunneling amplitude, since the key element is that we gdo substitute the exact kernels for their analogues as com-
beyond the test field approximation, and consider the fulputed in a spatially flat universe with the same scale factor.
effect of back reaction on the universe. Technically, this amounts to making a continuous approxi-
At least, in principle, it ought to be possible to combine mation in the mode decomposition of the field. This is
both the usual and our approach. The whole scheme wouldearly justified when the separation between the frequencies
ressemble the derivation of the Hu-Paz-Zhang equationfor different modes is small, for example, as compared with
[16,17), once the subtleties of quantum cosmological paththe characteristic rate of the universe espansion. This condi-
integrals are factored ifl8]. tion holds for most orbits within the barrier, excepting
In this paper, we follow the methodology of Langer's maybe those where the universe never grows much larger
classic papef19]; namely, we shall consider an ensemble ofthan Planck’s scales, a case which we shall not discuss, for
universes whose evolution is rendered stationary by the dehe reasons given above.
vice that, every time a member of the ensemble escapes the The semiclassical evolution equations emerging from the
barrier, it is captured and reemitted within the barrier. ThisCTP effective action differ from the usual Einstein equations
fictitious stationary solution has a nonzero flux accross thén three main respect$l) the polarization of the scalar field
barrier, and the activation probability is derived from this vacuum induces an effective potential, beyond the usual
flux. terms associated to spatial curvature and the cosmological
Since semiclassical cosmology distinguishes a particulaconstant; also the gravitational constants are renormalized by
time (that when the quantum to classical transition takesjuantum fluctuations2) there appears a memory dependent
place, it is meaningful to ask whether the stationary solutionterm, asociated to the stress-energy of particles created along
is relevant to the behavior of a solution with arbitrary initial the evolution; and3) there appears a stochastic term associ-
data at the “absolute zero of time.” The answer is that theated to the quantum fluctuations of the scalar field. We shall
stationary solution is indeed relevant, because the relaxatioiocus our attention in the last two aspects, neglecting the one
time which brings an arbitrary solution to the steady one idoop effective gravitational potential. It ought to be noted
exponentially shorter than the time it takes to escape théhat, lacking a theory of what the bare potential is exactly
barrier. We discuss this issue in detail in the Appendix, sublike, the semiclassical theory does not uniquely determine
section 6. the renormalized potential either. Moreover, the presence of
The fact itself of assuming a semiclassical theory, i.e.stochasticity and memory are aspects where the semiclassical
where no gravitational fluctuations are included, indicatephysics is qualitatively different from the classical one, not
that our model must be invalid very close to the cosmologiso for the modified effective potential. In any case, these
cal singularity. Therefore, we are forced to assume that someorrections are very small unless very close to the cosmo-
mechanism forces the universe to avoid this region, whildogical singularity(where in any case the one loop approxi-
being too weak to affect significatively the behavior of largermation is unreliable, as implied by the logarithmic diver-
universes. For example, if we take the cosmological congence of the quantum correction§o assuming again that
stant, in natural units, to be about 18 [which corresponds some mechanism will make it impossible for the universe to
to grand unified theoryGUT) scale inflation, then the pres- stay very close to the singularity, the neglect of the renor-
ence of classical radiation with an energy density of order Inalized potential is justified.
(while the amount necessary to avoid recollapse in the clas- Even after the neglect of the renormalized potential, the
sical theory is 1) would be sufficient. A more sophisti- equations deriving from the CTP effective action are higher
cated possibility would be to appeal to some quantum gravithan second order, and therefore do not admit a Cauchy
tational effect, which could be as simple as Heisenberg'groblem in the usual terms and also lead to possibly unphysi-
uncertainty principle, to make it impossible for the universecal solutions. In order to reduce them to second order equa-
to linger for long times too close to the singularity. tions, and to ensure that the solutions obtained are physical,
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it is necessary to implement an order reduction procedure as The main conclusion of this paper is that the probability
discussed by several authof20]. This order reduction that the universe will be carried over the barrier by the sheer
means that higher derivatives are expressed in terms of lowaffect of random forcing from matter stress-energy fluctua-
ones as required by the classical equations of motion. In thiions is comparable to the tunneling probability computed
spirit, in the memory term, we substitute the history of afrom gravitational instantons. This effect demonstrates the
given state of the universe by the classical trajectory leadingelevance of quantum fluctuations in the early evolution of
up to the same endpoint. Because the classical trajectory [§€ universe.

determined by this end point, in practice this reduces the Besides its relevance to the birth of the universe as a
equations of motion to a local form, although no IongerWhOIe’ this result also may be used to estimate the probabil-

Hamiltonian. ity of the creation of inflationary bubbles within a larger
The equations of motion for the model, after all theseuniverse. We shall report on this issue in a further commu-

simplifications have been carried out, have the property tha!cation. _ ,

they do not become singular when the universe scale factor "€ Plan of the paper is the following. In Sec. Il we

vanishes. As a consequence, the universe goes accross fipmpute the' effective action fOF the Qosmqloglcal scale fgc-

cosmic singularity and emerges in a new “cosmic cycle.”tor and derive the stochastic semiclassical back-reaction

Because the escape time is generally much larger than tfuation for such scale factor. In Sec. Il we construct the

recollapse time, we may expect that this will happen rnan)}:okker-PIanck equation for the probability distribution func-

times in the evolution of a single trajectory. For this reason 1N Of the cosmological scale factor which corresponds to

our model describes a cyclic universe, being created and d&€ Stochastic equation. In Sec. IV we use the analogy with
stroyed many timegbut keeping the memory of the total Kramers’ problem to compute the probability that the scale

amount of radiation and extrinsic curvature at the end of thd@Ctor crosses the barrier and reaches the de Sitter phase. In
previous cyclg and eventually escaping from this fate to the concluqmg Sec. V_vye compare our resu_lts with th<=T guan-
become an inflationary universe. It should be noted that thildm tunneling probability. Some computational details are
does not detract from the rigor of our derivations, since it isncluded in the different sections of the Appendix.

after all a feature of the mathematical model, it being a mat-_ A short summary of this long Appendix is the following:

ter of opinion whether it affects the application of our studiesSuPSection 1 gives some details of the renormalization of the
to the physical universe. For comparison we have studied & 1P €effective action; subsection 2 explains how to handle
different, also mathematically consistent, model in which thd"€ diffusion terms when the Fokker-Planck equation is con-

universe undergoes a single cosmic cycle and obtain similattructed; in subsection 3, we formulate and discuss Kramer's
results(see the Appendix, subsectioh 7 problem in action-angle variables; the short subsection 4,

After this enumeration of the main simplifying assump- gives the exact classical solutions for the cosmological scale

tions to be made below, let us briefly review what we acty-factor; in subsection 5, the averaged diffusion and dissipation

ally do. Our first concern is to derive the semiclassical equacefficients for the averaged Fokker-Planck equation are de-

tions of motion for the cosmological scale factor, by meandiVed; in subsection 6, the relaxation time is computed in
of the CTP effective action. The imaginary terms in this detail; and flnglly in subsection 7, the 'calculauon of the es-
action can be shown to carry information about the stochastif2P€ Probability for the scale factor is made for a model
noises which simulate the effect on the geometry of quanturi/Nich undergoes a single cosmic cycle.

fluctuations of the matter fielf21-27. After these noises

have been identified, the semiclassical equation is upgraded Il. SEMICLASSICAL EFFECTIVE ACTION

to a Langevin equation. In this section we compute the effective action for the

Pl Wekthen t;_ansforrg ':chlstthangew? eqtusuon into a FOklker'scale factor of a spatially closed FRW cosmological model,
anck equation, and further simplify it by averaging along,ith a cosmological constant in the presence of a quantum

classical trajectories. In this way, we find an evolution equa- : :
. i . ' X ; massless field coupled non-conformally to the spacetime cur-
tion for the probability density of the universe being placed P y p

- ) . . : ) vature. The semiclassical cosmological model we consider is
within a given classical trajectory. The actual universe jump

Yescribed by the spacetime metric, the classical source
between classical trajectories, as it is subject to the no Y P ! '

Hamiltoni local t d forcing th q TWhich in this case is a cosmological constant, and the quan-
amiltonian nonlocal terms and forcing from the random, | "\ o0 <o irces.

noises. Finding the above equation of evolution requires a
careful analysis of both effects.

Finally, we investigate the steady solutions of this equa-
tion, and derive the escape probability therein. Again we are The metric for a closed FRW model is given by
forced to consider the problem of very small universes, as
the nontrivial steady solutions are nonintegrable in this limit. ds*=a?(t)(—dt*+g;;(xdx'dx)), i,j,k=1,...n-1,
However, the solutions to the Wheeler-DeWitt equation as- 1)
sociated to our model, which in this limit is essentially the _ . _
Schralinger operator for an harmonic oscillator, shows nowherea(t) is the cosmological scale factdris the confor-
singular behavior for small universes. Thus we shall assummal time, andg”-(x") is the metric of anif—1)-sphere of
that this divergence will be cured in a more complete modelunit radius. Since we will use dimensional regularization we
and accept the nontrivial solution as physical. work, for the time being, im-dimensions.

A. Scalar fields in a closed universe
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Let us assume that we have a quantum scalar diikt*),  turbativelly. Thus we will make perturbation theory with the
where the Greek indices run from 0 to-1. The classical parameten which we will assume small.
action for this scalar field in the spacetime background de- To carry on the quantization we will proceede by mode

scribed by the above metric is separation expanding ¥(x*) in terms of the
(n—1)-dimensional spherical harmonib’%(x‘), which sat-
Su=- | ax'V=g| o, 07,0 isfy [29]
( N2 APTDY(X) =~ 1(1+n—2) Y (X), 9)
+|——<+v|RO*D |, (2 .
4(n—1) where  1=0,12...; =K, =k,=- - - =k,_»,=0:K
=(kq, ..., xk,_2). These generalized spherical harmonics

wheregoo=2ac, 9 =0, 0;; =a°g;j , 9 is the metric determi- ¢, " 5 orthonormal basis of functions on the
nant,v is a dimensionless parameter coupling the field to the{n— 1)-sphere
spacetime curvaturevE&0 corresponds to conformal cou- ’
pling), andR is the curvature scalar which is given by s ,

J \/del...dx“’lle (XY, (x)=38"" 8¢, (10)
A A2

a 1

R=2(n-1) = +(n—-1)(n-4) - +(n—-1)(n-2) =,
a a a

)

where an overdot means derivative with respect to conformal
timet. Let us now introduce a conformally related field

and we may write
lI’(X’*)=|20 > ‘I’:;(t)Y'g(X‘)- (11
=0 ¥

When ¥ is a real field, the coefficientslf:z are not all
independent; for instance in three dimensions we simply
have\If:;* =\If'_l;. Now let us substitute Eq11) into Eq.(5),
use Eq.(9) and note that f—2)%/4+I(I+n—2)=[1+1

V=dan~?? (4)

and the actiors,, becomes

B 1 n—l\/: e (n—2)? . +(n—4)/2]2. If we also introduce a new indekinstead of
Sm= | dtdx---dXT NG WEY - —— P | by k=1+1, so thak=1,2, . . ., weobtain
_ a2 (n—1) _ Tlx 1l R | [
va?RP*W+P* AN Dy, (5) sm—f o|tk21 Ek (VW MWV +UW V]
1. . (12)
whereA( 1 s the (h—1)-Laplacian on ther(—1)-sphere,
where
1
A Dy = 5 (\agia ). 6 n—4
=3di(Vgg'a;¥) (6) M =k+ _ 13
g 2
Let us introduce the time dependent functidt), Note that the coefficients of E¢L1), \If:;(t), are just func-
U(t)=— va2(t)R(1), 7) tions oft (1-dimensional fields and for each setl (IZ) we

may introduce two real functionﬁk(t) and?iﬁ'lz(t) defined by
and the d’Alambertiafi] = — 92+ A("~1) of the static metric
ds?=a"2ds? The action(5) may be written then as 1

V2

then the action(12) becomes the sum of the actions of two
independent sets formed by an infinite collection of decou-
v+ U(t)P*¥|. (8  pled time dependent harmonic oscillators:

W= ——(pp+idp); (14)

sm:f dtdxd- - -dx" Vg

(n—2)?

* —
v*Ow 7

X

o : o 1 - :
. When »=0 this is the action of a scalar field ina S"‘:Ef dtz 2 [(¢:z)2—M§(¢E)Z+U(t)(¢'§)2]+"w
ackground of constant curvature. The quantization of this k=1 g

field in that background is trivial in the sense that a unique (15
natural vacuum may be introduced, the “in” and “out”
vacuum coincide and there is no particle creafid8]. This . i o
vacuum is, of course, conformally related to the physicail-dimensional fieldss.(t).

vacuum; see Eq4). The time dependent functido(t) will We will consider, from now on, the action for the
be considered as an interaction term and will be treated pett-dimensional fieldsﬁk only. If our starting field® in Eq.

where the ellipsis stands for an identical action for the real
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(2) is real, the results from this “half” action, i.e. the written Terla®]=Sa*]-Sla 1+ Sra*1-sta]
term in Eq.(15), are enough, ifd is complex, we simply

have to double the number of degrees of freedom. Sifge Z E

depends ork but not onk, there is no dependence in the 2 2, Tr(In G (19

R k=1«
action on the vectok and we can substitut&; by =;1

which gives the degeneracy of the madeThis is given by whereS, is the pure gravitational actios, is the action of

[11] classical matter which in our case will include the cosmo-
(2k+n—4)(k+n—4)! logical constant term only, an@ _is rhe propagator for the
> 1= | ' ) (16)  modek which solves Eq(17). In principle thel'1p depends
k (k=1)H(n=2)! on the expectation value in the quantum state of interest, the

“in” vacuum here, of botha™ (the classical fielpand of
¢~. To get the previous expression we have substituted the
solution of the dynamical equation for the expectation value
of the scalar field which i¢0,in| #|0,in)=0, so that there is
no dependence on the expectation valuegofin the effec-

e action.

Note that forn=2, i.e. when the space section is a circle
>¢1=2; whenn=3, which corresponds to the case of the
ordinary spherical harmonics;1=2k—1 (or 21 +1 in the
usual notatiojy and forn=4, which is the case of interest
here, the space section of the spacetime are 3-spheres and Wi

1 — 2
haveEkr—k ' ) ) ) o Because of the interaction tertd(t) in Eqg. (17), the
The field equation for the 1-dimensional fieldg(t) are,  propagatorG, cannot be found exactly and we treat it per-
from Eq. (15), turbatively. Thus we can write G,=Gp(1— UG}
S 2,0 | +UG}2UGE+ . -) where the unperturbed propagator is
Pt Micdg=U 0y, (7 (G)) ~t=diag(— 9>~ MZ,d2+M2). This unperturbed propa-

which in accordance with our previous remarks will begator has _four componentSGE)H—AkF, (GQ)--=
solved perturbatibelylJ (t) being the perturbative term. The ~A«p: (Gk)+* —Ag and Gp)-.=A,, where Ay,
solutions of the unperturbed equation can be written as linedhkp @andA; are the Feynman, Dyson and Wightman propa-
combinations of the normalized positive and negative fregators for the modk. This is a consequence of the boundary
quency modest, andf} respectively, where conditions which guarantee that our quantum state is the
in” vacuum |0,in). These propagators are defined with the

1 usuali e prescription by
f(t)= exp(—iM t). 18
» exf —iw(t—t’' )]
. . . AKF(t t ) 2 2
B. Closed time path effective action T)-= @ —(M —ie€)
Let us now derive the semiclassical CTP effective action — [ f (DFE() B(t—t)+ T Fi(t)
I'c1p for the cosmological scalar factor due to the presence
of the quantum scalar fiel®. The computation of the CTP X O(t'—1)], (20

effective action is similar to the computation of the ordinary
(in-out) effective action, except that now we have to intro-

duce two fields, the plus and minus fielde', and use ap- 5 ()= * exp—iot—t)]

propriate “in” boundary conditions. These two fields basi- 27 ) o wz—(MﬁJrie)

cally represent the field¢ propagating forward and

backward in time. This action was introduced by Schwinger =i[frOf(t)o(t—t")+f (Dft) ot —1)],
[30] to derive expectation values rather than matrix elements (21)

as in the ordinary effective action, and it has been used re-
cently in connexion with the back-reaction problem in semi- e ) B ) ] .
clasical gravity[31,21,33. Here we follow the notations and Ak (t—t")=if (Of(t"), A (t—t")=—if () (1").

conventions of Refd.7,8] (22
Note that since we are considering the interaction of the
scale factoa with the quantum fields, in the CTP effective The trace term in the effective actidi9) will now be

action we have now two scalar fields~ and also two scale expanded up to order®. The linear terms irv are tadpoles
factorsa™. The kinetic operators for our 1-dimensional fields which are zero in dimensional regularization. Thus we can
¢{z are given by Ak:diaQ—c?tz— M§+U+(t),(9t2+ Mﬁ write the effective action as
—U7(t)). The propagators per each mokleG,(t,t’), are
defined as usual b, G,= 45, and are X2 matrices with I'erda®]=Sja*]-Sla ]+Shla*]-Sh[a ]+ T
components G) + - . B

To one loop order in the quantum fielgs™ and at three +T 4T, (23
level in the classical fielda™ the CTP effective action for
a* may be written as where
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i e i o]
To=— 2> 2 TMUL(GY.-U-(GY)--], T=—52> > f dtdt’U* (DA (t—t")U™ (1) A, (1
41 % 21 R
o —t). (30)
i
T=5 2 2 TMUL(G),-U-(G)-.]. (4 _ I
k=1 Since this term will not diverge, we can perform the compu-
tation directly inn=4 dimensions. In this casg;1=k? and
The pure gravitational part of the actid,, includes the M, =k; thus using Egs(22) and(18) we have
Einstein-Hilbert action and a quadratic counterterm which is
needed for regularization of the divergences of &9),

T=- IEJ dtowkg1 U (OKAFEADFALHU (L)

1 V2 n—4
Sg:_zf d"xy—gR+ Z—CJ d"x\—gR?,
15 327(n—4) :—f dtdt’ Ut (t)D(t—t")U(t")
(29)
where u. is an arbitrary mass scale which gives the correct —if dtdt’ U (H)N(t—t")HU~(t"), (3D

dimension to the counterterm, ahg= 167G, the square of
the Planck length. To regularize the divergencie§ inwe
need to expand the actig¢@5) in powers ofn—4. Using our
metric (1), we can perform the space integration in E2p)
which leads to the volume to theé { 1)-sphere. Expanding 15

now in powers oh—4, and recalling that the volume of the D(t—t)=—g kZl sin2(t—t")=—1d Sint—t')
three-sphere is 22 we may writeSy= S5+ S, where the

first term stands for the Einstein-Hilbert action in four di- (32
mensions and the second term is the first order correction in
this expansion:

where we have introduced the kern€lsandN as

cogt—t’)

1 o0
N(t-t")=5 gl cos X(t—t’)

s[a] 27Tzfdte o2, (26) 1 [&
al=—— ac| — ,
g 12 a =—{ml > st—t'—nm|—1¢{, (33
16| | i=%
div 1 1 2 2 i i
Sy la,ucl= 16 n=z dtUT(t)+ [ dtfUf(t)In(auc) and we have compu.teq thg correspondmg series. The Kernels
D andN are called dissipation and noise kernel, respectively,

using the definitions of8]. It is interesting to compare with
+2U1(t)U2(t)]]. (27 Refs.[7,8] where a spatially flat universe was considered.
Our results may be formaly obtained from that reference if

) ) ) we change vof ;dk there, where “vol” is the volume of the
HereU(t) andU,(t) are defined by the expansion 0fin space section(assume for instance a finite Boxby

powers ofn—4. That is, from Eqs(7) and(3) we can write 5 25 |y the spatially flat case the noise is a simple

U(t)=U(t) +(n—=4)Uy(1), where delta function(white noise, whereas here we have a train of
deltas. Note also that we have, in practice, considered a real

) 28) scalar field only since we considered only half of the action,

' i.e. the written part of Eq(15). Thus for the complex scalar

field we need to multiply these kernels by 2, i.e., the dissi-

pation kernel is B and the noise kernel isN2 Note also

that the definition of the dissipation kernel here and in Ref.

[21] differ by a sign.

Let us now perform the more complicated calculation of
T*. Since these integrals diverge lir=4, we work here in
arbitrary n (dimensional regularization From Eq.(24) and
stra)= _szf dt a*A*. (29  the symmetries of\r andA,p we have

52

a a a
U;=—6v|-+1], U,=—»|2=-+3—<+5
a a a2

The classical matter terr8S includes in our case the
cosmological constamt* only. It can be understood as the
term which gives the effect of the inflaton field at the sta-
tionary point of the inflaton potentidl]:

i
+_ R E= 2 ’ *oryr
C. Computation of T an T* T —_Zf dtdt’ U= () A p(t—t)HU=(t"), (34

Let us first computd in Eq. (24), which may be written
as where we have introduced
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AIZZID(t_tI)EE

k=1

*» do .
— o a—ie(t—t)
ﬁm 5 € (),

where | (w) is defined after having made an integral an
with appropriate contour; recall the definitio(®0) and(21).
After using Eq.(16) and the definition13) of M, I(w) is
given by

Z 1)A§F/D(t_t')
K

(35

><§ (k+n—4)!
=1 (k—1)H[k+(n—4)/2]°— (w/2)?+i0*}

©

[
EiZ(n_Z)'kZ]_ ak(w):

(36)

where we have introduced the coefficieafsin the last se-

PHYSICAL REVIEW [»9 083513
+7_cR +7_cR - R +
Perl@a™]=Sgn[a”]-Sgn[a” 1+ Se[a™], (40

where the regularized gravitational and classical matter ac-
tions are

.
—+1
a

272
sg{m[a]:Ef dt6a? —2w2f dta*A*

+ %f dt U3(t)In(au,). (42)

To write the remaining parSi , we note that the kernels
A andN in (38), satisfy the symmetrieA(t—t’')=A(t' —t)
andN(t—t’)=N(t’'—t). Taking into account also th&(t
—t')=—D(t'—t) we obtain

SR[ai]=Ef dtdt’ AU(HH(t—t"){U(t’)}
IF 2

+ IEJ dtdt’ AU(t)N(t—t")AU(t"), (42

ries expression. In the Appendix, subsection 1, we prove that i
this series diverges like T 4), and thus we can regularize Where we have defined

it using Eq.(27). Furthermore, its imaginary part is finite and

leads to the noise kerndl defined above.
Thus according to EqsAl), (A3) and (A8) from the
Appendix we can write Eq35) as

2 L[] et—=t) 1. )
AF/D(t_t )=+ Z n—4 _ﬁK (t—t) y
(37
where we have defined
K=(t—t")=16m2[A(t—t')£iN(t—t")]. (39

Here A(t—t') is a finite kernel which will be discussed be-

low. We can now substitute E@37) into Eq. (34) and use
the expansion o) (t) in powers ofn—4 given in Eq.(28) to
get

T =%

1 + + .+
mf dt(UI)Z-FZJ dtUyUsy

. (39

1 + + ’ + ey
_ﬁf dtdt’ U5 ()K= (t—t")UF (1)

D. The regularized CTP effective action

H(t—t")=A(t—t'; se) =D(t—t"), (43)

AU=U"-U", {U}=U*"+U". (44

In Eq. (43) we have explicitly written that the kerndl de-
pends on the renormalization parameter. We note that
this effective action has an imaginary part which involves the
noise kerneIN. However, because of the quadratic depen-
dence of this term il\U, it will not contribute to the field
equations if we derive such equations from
ST crplda*|,=—,=0. This, in fact, gives the dynamical
equations for expectation values of the fielgt).

However, we recall that we are dealing with the interac-
cion of a “system,” our classicalone dimensionalfield
a(t), with an “environment” formed by the degrees of free-
dom of the quantum system and that we have integrated out
the degrees of freedom of the environmémbte that in the
effective action we have substituted the solutions of the field
equations for the expectation value of the quantum Yidhd
this case the regularized acti&} can be understood as the
influence action of the system-environment interaction,
which describes the effect of the environment on the system
of interest{33,34]. The imaginary part of the influence action
is known[21-27 to give the effect of a stochastic force on
the system, and we can introduce an improved semiclassical
effective action,

We are now in the position to compute the regularized

semiclassical CTP effective action. Let us substitute in Eq.

(23) the actiong26), (27) and(29), and the result§31) for T

and (39) for T*. It is clear that the divergent term in Eq.

(39), i.e. the term proportional to Ii(-4), will be cancelled

by the divergent counterterm in E@R7). Also the terms
Jdt U;U, in these equations will cancel. Thus, we finally get

the regularized semiclassical action

Serfa™;€]1=S5[a*1-S} [a”]

1 , , :
+§J dtdt’ AU(HH(t—t"){U(t’)}

+f dté(H)AU(Y), (45)
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whereé(t) is a Gaussian stochastic field defined by the fol-

lowing statistical averages: U(t)=—6v 5+ (49
(§(1))=0, (&(DE&N"))=N(t—t"). (46) The dynamical equation fds(t) is

The kernelH in the effective action gives a nonlocal effect .

(due to particle creation whereas the sourcé gives the M =0. (50)

reaction of the environment into the system in terms of a ob™* b*—b

stochastic force.
The formal derivation of the last term of EGL5) can be  This equation improves the semiclassical equation by taking

seen as follows. The Feynman-Vernon influence functionainto account the fluctuations of the stress-energy tensor of

[33] of the system-environment interaction is defined fromthe quantum field35—37. When averaged ovef the equa-

the influence actios by F\r=exp(Sg). Note now that by tion leads to the usual semiclassical equation for the expec-
using a simple path integral Gaussian identity, the imaginaryation value ofb(t).

part of Eq.(42) can be formally recovered iR with the Now this equation leads to the typical nonphysical run-
following functional Fourier transform  Fe away solutions due to the higher order time derivatives in-
= [D¢EP[ €]expli[Re(Sig) + fdtg(t)AU(t) ]}, where volved in the quantum correction terms. To avoid such spu-

rious solutions we use the method of order reducfi®|
into Eq. (50). In this method one asumes that EfO) is a
perturbative equation in which the perturbations are the

1 — ! !
ex;{—zf dtdt’ ()N~ H(t—t")&(t")

PL&]= 1 , quantum corrections. To leading order the equation reduces
f Dgexp{— EJ dtdt’ g(t)Nl(t—t’)g(t’)} to the classical equation
. 1
can be interpreted as a Gaussian probability distribution for b+b|1- gAbz) =0(»). (52

the field ¢&. That is, the influence funcional may be seen as
the statistical average &f dependent influence functionals
constructed with the “effective” influence action R&f)

+ [dt&(t)AU(t). The physical interpretation of this result,
namely, that the semiclassical equations are now the stochas
tic equations derived from such effective action, may be
seen, for instance, in ReR22].

The terms wittb or with higher time derivatives in the quan-
tum corrections of Eq(50) are then substituted using recur-
rently the classical equatiofpl). In this form the solutions
® the semiclassical equations are also perturbations of the
classical solutions. Thus by functional derivation of Etp),
using Eqg.(48), we can write the stochastic semiclassical
back-reaction equatiofb0) as
E. Stochastic semiclassical back-reaction equation
The dynamical equation for the scale facagt) can now p=—V'(b)=6V'(b)+F(b,p,t) +J(¢,b,p), (52

be found from the effective actig@5) in the usual way, that ) o .

is by functlonal derivation with respect ®"(t) and then where a prime means a derivative with respedb tand we
equatinga®=a =a. These equations include the back- have introducegp=b. The classical potentiaf(b) is

reaction of the quantum field on the scale factor. It is conve-

nient to use a rescaled scale fadboand cosmological con- V(b)= } 2_ Ab“ (53)
stantA defined by

A 14 and its local quantum correction is
b()=—=a(h), A=_—A" (47) -
T v

6V(b)=—

(54)

1 A _
Ebz—ﬁbﬂ'— pIn(bu)|,

4
The regularized act|o m becomes, after one integration

by parts, where we have implemented order reduction in this term. On
the other hand the terfa(b,p,t) involves nonlocal contri-
1 1
- _ 2, 4
m[b] fdt{b — b+ 12Ab

butions and may be written as
au . d?*[au 21 b
? — F(bvpat):_%l_— —| | =6y ———— I,

— 22 In(by) |, (48)

2

b+1

where we have also rescaled the renormalization parametaherel (b,p,t) is defined by

;. The remaining term in Eq45) does not change with this .
rescaling except that now(t) should be written in terms of I(b,p t)Ef dt'H(t—t")U(t"). (56)
b; thus according to Eq28) we have ” —w
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y+Inpe
8

After order reductionJ(t’) must be evaluated on the clas- 1 [6(u)
S(u). (61

sical orbit with Cauchy daté(t)=b, p(t)=p, whereby it H(u)=gP
reduces tdJ = — A vb?. The functionJ is the noise given by

u

The distribution Pf6#(u)/u) should be understood as fol-

_ d_2 § _ E lows. Letf(u) be an arbitrary tempered function; then,
J(é,b)=6v
dt?2\b/ b2
» 6(u) . = f(u)
and, after order reduction, by fﬁxduP —|f(w=lim f du—=+f(0)ne/.
e—0" €
. (62
2 2¢V'(b)  2&p?
Hebpy=6y| - 2R 2V D) 20T o, . -
b p2 b2 b3 The approximation of substituting the exact kernels by

their flat space counterparts is clearly justified when the ra-
with &(t) defined in Eq.(46) in terms of the noise kernel.  dius of the universe is large, which is when the semiclassical
approximation works best. Once the local approximation for
F. Approximate kernels N and H the noise kernel follows, the .correspond@ng expressioeror
can be obtained by demanding that their Fourier transforms

To simplify the nonlocal termF(b,p,t) and the noise pe related by the same fluctuation-dissipation relation as in
J(é,b,p) we will approximate the kerngH and the noise the exact formula.

kernelN, keeping only the first delta function, i.e=0, in
the train of deltas which define the noise kermel This
amounts to take the continuous limit knin the definition

(33) of N. In fact, we take the sum ikas an integral and we  Now we want to determine the probability that a universe
get starting at the potential well goes over the potential barrier
. into the inflationary stage. In statistical mechanics this prob-
N(u)= f dkcos Xu= 1 s(u). (58) lem is known as Kramers’ problem. To describe such process
0 16 we have the semiclassical back-reaction equa8@h which
is a stochastic differential equati¢a Langevin type of equa-
This is equivalent to assuming that the spacetime spatialon). As is well known[38] to study this problem it is better
sections are flat and of volumen2; see Ref[7]. Similarly  to construct a Fokker-Planck equation, which is an ordinary
the dissipation kerndD defined in Eq(32) becomes differential equation for a distribution function. Thus, the
first step will be to derive the Fokker-Planck equation corre-
sponding to the stochastic equati@®). The key features of
this stochastic equation are a potential given by the local
potentials(53) and(54), a nonlocal term given by the func-
The same approximation may be used to compute the keflon F and a noise ternd. The classical part of the potential
nel A defined in Eqs(36)—(38). The computation of this has a local minimum & =0, then reaches a maximum and

kernel can be read directly from EGA7) (see also Ref.7]);  decreases continuously after that. The inflationary stage cor-
responds to the classical values lobeyond this potential

1 barrier. If we start neab=0, the noise term will take the
m scale factor eventually over the barrier, but if we want to
compute the escape probability, we need to consider both
1 noise and nonlocality.
+ g(y+ln me)d(u), (60) It should do no harm if we disregard the local quantum
correction to the potentiabV(b); the reason is the follow-
ing. This term is a consequence of renormalization, but in
semiclassical gravity there is a two parameter ambiguity in
terms which are quadratic in the curvature in the gravita-
tional part of the action. This ambiguity is seen here only in
the parametep. because we have simply ignored the other

possible parameter which was not essential in the renormal-
ization scheme. Furthermore, we should not trust the semi-

Ill. FOKKER-PLANCK EQUATION

D(u)=— §fo dksin 2ku= — TGPV(G)' (59

ACU) 1J°°dw Siou] |w|—1Pf
W="5)_22° " Mu] 16

where y is Euler's number and Pf means the Hada-
mard principal function whose meaning will be recalled
shortly. To perform this last Fourier tranform we
write In|w|=lim._ ¢+[exp(—€w|)Injw|], use the integrals
Jodw In wcosu)exp(—ew) and [gdw cosu)exp(—ew)
which can be found ih40], and take into account that

[2x tan L(u/€)+ e IN(U+ €)1/ (u2+ €2) classical results too close to=0, since the semiclassical
theory should break down here. Thus the possible divergence
=d[In(u?+ e?)tan Y(u/e)]/du. at b=0 may be disregarded and we should think of this

renormalized term as just a small correction to the classical
When e—07" the last expression gives a representation ofotential, as it is indeed for all radii of the universe unless
wPf(14u|). Finally, using Eqs(59) and (60) the kernel of b<1. Thus the classical potenti®(b) should contain the
interestH (u) =A(u) —D(u) can be written as main qualitative features of the local renormalized potential.
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To construct the Fokker-Planck equation let us introducdor n=0,1,2. To manipulate the difussion term of E§4)

the distribution function we will make use of the functional formula for Gaussian
average$41],
f(b,p,t)=(8(b(t) —b)a(p(t) — p)), (63)
whereb(t) and p(t) are solutions of Eq(52) for a given <§(t)R[b(t),p(t)])=j dUN(t—t’)
realization of¢(t), b andp are points in the phase space, and
the average is taken both with respect to the initial conditions 2
and to the history of the noise as follows. One starts by ><< SE(L)) R[b(t),p(t)]>, (69)

considering the ensemble of systems in phase space obeying
Eq. (52) for a given realization og(t) and different initial ~ whereRis an arbitrary functional of(t). Under the approxi-
conditions. This ensemble is described by the densitynation(58) for the noise kernel
p(b,p,t)=(8(b(t)—b)s(p(t) —p)), where the average is

over initial conditions. Next one defines the probability den- 7T<

sity f(b,p,t) as the statistical average over the realizations of Co= 16

&(t), thatisf(b,p,t)=(p(b,p,t)),
The next manipulations are standdi@B]; we take the

o
——(b(t)—b)é(p(t) —
a0 200 ~DOE() p>>

t/—t

) oAt avA 9
time derivative off, =— Tb%f(b,p,t), (70
Jef = (b (1) dpr, S(b(t) — ) S(p(t) — p) where we have used EA11) in the last step. The expres-
. sions forC,; andC, are similarly obtained; first one uses the
+8(b(t) = b)P(t) Ipr) S(P(1) — P)), time translation invariance of the noise kernel to perform

integration by parts, and then the problem reduces to taking

and note thatdy) 8(b(t) ~b)=—a,d(b(t)—b), and that ;0" yerivatives of Eq(70). The results ar¢see the Appen-

(p(t) o(b(t) —b)S(p(t) —p))=pf(b,p,t). dix, subsection 2, for detajls
Performing similar manipulations for the other terms and ™ ’
using the equations of motiaf2) we find Cy1=(mvA/8)(bdyf —pa,f), (7
ﬂ:{H f}—i[F(b D t)f]—iq) (64) Co=(mvAl8)(2pdyf + V' dpf+bV"d,f). (72
at ' J T Jd '
P P Finally, after substitution in Eq67) and using the equa-
where we have defined tion of motion to lowest order we have
1 e 7TV2A2b2 of 73
H(b,p)= 5P+ V(b); (65 T Y 73

which by Eq.(64) leads to the final form of the Fokker-

thus disregarding the potentiaV(b) in Eq. (52), the curly  pjanck equation

brackets are Poisson brackets, i.e.
272 2

2
2 bapZ' (74)

{H,f}=—p(af/ab)+ V' (b)(at/dp), %={H,f}— %[F(b,p,t)f]Jr T

and . . .
We also notice that in the absense of a cosmological con-

D =(J(&Db,p)8(b(t)—b)d(p(t)— p)). (66) stant, we get no diffusion. This makes sense, because in that
Y case the classical trajectories describe a radiation filled uni-
Equation (64) is not yet a Fokker-Planck equation: to VErse: Such a universe would have no scalar curvature, and

make it one we need to writ® in terms of the distribution SO it should be insensitive to the value ofas well.
function f. This term will be called the diffusion term since

it depends on the stochastic fief(t). A. Averaging over angles
From Egs.(66) and (57) we may write We want to compute the probability that a classical uni-
verse trapped in the potential well &(b) goes over the
C, 2C;p [2Vv' 2p? potential barrier as a consequence of the noise and nonlocal-
P=6v b p2 ?+ 3]0 (67) ity produced by the interaction with the quantum field, and

ends up in the de Sitter phase. A universe that crosses this
potential barrier will reach the de Sitter phase with some
energy which one would expect will correspond to the en-
ergy of the quantum particles created in the previous stage.

n
C,= d—ng(t) s((t)—b)d(p(t)—p)), (68  Note that this differs from the quantum tunneling from noth-
dt ing approach in which the universe gets to the de Sitter stage

where
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tunneling from the potential minimurb=0 with zero en- af  m?A? 9[D(J) of 9

ergy. In practice, this difference will not be so important =1 23 a a3l 73(Sh- (80)
because as the universe inflates any amount of energy den-

sity will be diluted away. This equation may be written as a continuity equatiph

For this computation we will follow closely the solution +9;,K=0, where the probability fluX may be identified
of Kramers’ problenj42] reviewed in the Appendix, subsec- girectly from Eq.(80). We see that, as in Kramers’ problem,

tion 3. The three key features of such computation are, firs%tationary solutions with positive fluk, should satisfy
the introduction of action-angle canonical variabldsd);

second, the asumption thatdepends onl only, i.e. f(J); mv?A? D(J) of

and, third, the use of the averaged Fokker-Planck equation 7 q 73 SIF=—K,. (82)

over the angle variable. Of course, the Fokker-Planck

equation in Kramers’ problem, E¢A16), is much simpler o

than our equatiori74) due to the nonlocal character of the B. Nonlocal contribution S(J)

latter; thus we need to take care of this problem, and it is We need to handle now the ter8(J), defined in Eq.

quite remarkable that a relatively simple solution can beg7g). The problem here lies in the nonlocal tefrgb,p,t)

found. defined in Eqs(55),(56), with U(t) given by Eq.(49). Since
Thus, let us consider Ed74), introduce (,0) and as- this term gives a quantum correction to a classical equation,

sume thatf(J), then in the Appendix we see that the dissi-we will adopt the order reduction prescription. Thus let us

pation term which involveg®f/dp? can be written in terms  assume thab(t') andp(t’) in the integral which defines

of derivatives with respect td [see Eq.(A19)]. Since we are solutions to the classical equations of motion with

now have{H,f}=0 we can write Cauchy datab(t)=b and p(t)=p; then the integrand in
F(b,p,t) will depend explicitly on time only through and
22 2
It _mtAT 1 ﬁ+ p_i(i ﬂ” p. This means that the time dependencelUdt’) may be
at 4 Qa3 QdNQ 3 written asU(b,p,t’ —t). If we now write the Cauchy data in
J DF terms of the action-angle variable3, §), since the equation
—[%F(b,p,t) f— R (75) of motion for the angle variable is simpl'y:Q, we may

write b[B(6,J),P(6,J),t]=b(6+Qt,J) and similarly forp.
l\:e>;t vz_e;] take the a;eragetqf E(5) IWith ;ﬁsptect to the f;g;iz Bf%;ség?;;V?nn;%;‘{?)sftit”te the time derivative opera-
angle 6. The averaged equation involves the two pairs o - - :
s Gy 100 /G Ty e o - oo, iraing  pas S L e
0 J. In fact, let us introduce xpression folJ (t) given by Eq.(49) we get
=
dt\b

_ _ _ _ _ This may be simplified using the equation of moti@1)
changing the integration variable to (see the Appendix, to lowest order; then changirdp by Qdt we have
subsection Bthis integral may be written a8¢$dbb’p, and

(t). (82

1 (2 5= dee
D(J)=—ZWQJ0 déb?p?, (76) 270,

using thatd;p|,=Q/p we have v2A2 (270 [ d o
g thaid,plo=/p S=— f dt| —b2(t) J dt'H(t—t'")b3(t").
q 2 dt o
D 1
il 2 (83
93" 2 dob-. (77
Note that this term is of order®A? as the diffusion term
Similarly, let us introduce (75). Thus it is convenient to introduc® by
1 (e s0=""N g (84)
S(J)ZZ’TT_QJ'O dépF(b,p,t); (79 4

Now we can make use of E¢1) for the kerneH (note that

again by a change of integration variable this integral may bene |ocal delta term does not contribytend introduce a new
written asQ$dbF and by derivation with respect tbwe get | 5riableu=t—t'. instead oft’ to write S as

dS 1 (2= 9 —1 (2mQ d » du
—=_—| do—F(b,p). (79) _ -t g2 f au 2
dd~ 27J, ap S(J) 220 dt dtb(t) Pf o U b*(t—u).
(85
Finally, the average of the Fokker-Planck equati@b)
becomes The equation for the stationary flux, E@®1), becomes
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D(J) of st 4 K 66 (K] = du | 1+Kk>? 2
—_— = =———Ko. = - sru
Q4 T2A2 0 ¢ o u?sr? ul 3
All that remains now is to find appropriate expressionsior - ( L) [1-(1+k?)srPu+k?srf U]UZ} . (92
andS in this equation and follow Kramers’ problem in the snu

Appendix to comput& . From now on, however, it is more
convenient to use the enerd@yas a variable instead of,
whereE=H(J) and thus we will comput®(E) andS(E) in

snu being the Jacobi elliptic function, and

what follows. JK]= = du [ 1+2k? SFFU_(E[u,k])
o u?srful 3 snu
C. Evaluating S and D
Let us begin by recalling the basic features of the classical X[1=(1+Kk*)srfu+k?srif “]1/2] ' (92
orbits. The most important feature of the classical dynamics
is the presence of two unstable fixed pointspat0, b= whereE[ u,k] is an incomplete elliptic integral of the second

+2\E,, whereE,=3/(2A) is also the corresponding value kind:

of the “energy” E=p?/2+V(b). These fixed points are

joined by a heteroclinic orbit or separatrix. Motion for ener- snu (1—k?x?)

gies greater thaB is unbounded. FOE<Eg, we have outer E[U,k]:f dx\/———— (93

unbound orbits and inner orbits confined within the potential 0 (1=x%)

well. These periodical orbits shall be our present concern. The conclusion of all this is that. while andS individu-
As it happens, the orbits describing periodic motion may, 2 ' ; :

be described in terms of elliptic functiofsee the Appendix, ally behave as=" times a smooth function oE/Es, their

. . ) ratio is relatively slowly varying. At low energy, we fin
subsection # The exact expression for the orbits leads to atio s relatively slowly varying. At low energy, we find

corresponding expressions fbr and S (see the Appendix D~E®/2 and S~E*/4. As we approach the separatrix,
ponding expres. . P ' D—0.96E2 andS—1.1&2. Meanwhile, the ratio of the two
subsection b Introducing a variablé,

goes from 0.5 to 1.23.
This means that we can write the equation for stationary
1-VJ1-E/E L
2— ° (87)  distributions as

C1+1-E/E,
=t [Ro 94
so thatk?~ E/4E for low energy, whilek?—1 as we ap- JE (B)f= 72A%g(E) E ' (94)
proach the separatrix, we find
) o3l whereB andg are smooth order-1 functions. There is a fun-
D(E)= 8E7) (1+Kk7) damental difference with respect to Kramers’ problem,
(B)= 157 K4 namely the sign of the second term on the left hand side. In
the cosmological problem, the effect of nonlocality is to fa-
X {2(1— K2+ Kk*E[K]—(2—3k2+ kHK[K]}, vor diffussion rather than hindering it. We may understand
this as arising from a feedback effect associated with particle
(89 )
creation(see[46]).

whereK andE are the complete elliptic integrals of the first

and second kindésee[44,45): IV. TUNNELING AMPLITUDE
Having found the reduced Fokker-Planck equat{e#),
1 dx we must analyze its solutions in order to identify the range of
K[k]= the fluxKy. We shall first consider the behavior of the solu-

_y2 —1k2y2)
0 V(=X (1-kX7) tions for E<Eg, and then discuss the distribution function

beyond the separatrix. Since our derivation is not valid there,
1 (1-k?x?) for this latter part we will have to return to an analysis from
E[k]= fo dx NS (89 the equations of motion. For concreteness, in what follows it
(1=x%) is convenient to choose the order of magnitude of the cos-
mological constant. We shall assume a model geared to pro-

The corresponding expression f8ris duce GUT scale inflation, thud ~10"'2 and correspond-
ingly E<~ 10 is very large in natural units.

[ 8E?| (1+K?)? - KTk
S(B)= - k4 {alK]E[K] = y[K]K[K]}, (90) A. Distribution function inside the potential well
As we have already discussed, the approximations used in
where building our model break down at the cosmological singular-
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ity, and therefore Eq(94) cannot be assumed to hold in a to the original variabled, p. Also note that we are only
neighborhood oE=0. Thus it is best to express the solution interested in the regime whde=E,; that is, we shall not

4K,

7TVv2A?

for f in terms of its value aE=Eg, consider unbound motion below the top of the potential.
f(E)= +fp(E)} (99 unboundedly large, the effects of spatial curvature become

Let us first consider the behavior of classical orbits in the
E
aexp(j dE'B(E’)
irrelevant. This means that we may approximdte-

(b,p) plane. Our first observation is that as the universe gets
where o is an arbitrary constant and the particular solution—6vb/b, and accordingly the classical equation of motion as

f,(E) is chosen to vanish &=Eg, b~ Ab3/6.
. . , In this regime, classical orbits are quickly drawn to a de
£ (E)ZEXF<J dE’,B(E’))J s dE Sitter type expansion, whereby they can be parametrized as
p ’ 12
E g(E"E
b(t")= b(t) (100
><exp( - JE dE",G'(E”)), (96) 1+ (A/12)b(t)(t—t")
so that After substitutingU «b?, it is easily seen that the nonlocal

term| is proportional tob?(t), and that therefore the nonlo-
f(E)~ 0 oB(EJES 97) cal fprceF vanisheqsee Eq.(55)]. Therefore what we are
S 2A2 o ' dealing with are the local quantum fluctuations of the metric,
which one would not expect to act in a definite direction, but
Because of the exponential suppression, the particular saather to provide a sort of diffussive effect. To see this, let us
lution is dominated by the lower limit in the integral, leading oPserve that if we look at the Fokker-Planck equation as a

to continuity equation; then we may write it as
eiﬂ(Es)(Est) &f
fo(E)~ 5 - 5 : —=-VK,
9(E)ETB(E)+2[E] 9(Es)ES[B(Es)+2/Es] at
(98)

and this allows us to identify the flux. For example, if the

< — 71 - -
For E<1 we see thaf,~E™", but this behavior cannot Fokker-Planck equation reads

be extrapolated all the way to zero as it would mékmn-
integrable. However, we must notice that neither our treat-

ment (i.e., the neglect of logarithmic potential correctipns of _0A B

nor semiclassical theory generally is supposed to be valid gt %Jr%’

arbitrarily close to the singularity. Thus we shall assume that

the pathological behavior of E§94) near the origin will be R ~

absent in a more complete theory, and apply it only fromthen whateveiA and B are, K=—Ab—Bp, where a caret
some lowest energ s~1 on. There are still 12 orders of denoEes a lilnl'[ vector in the corresponding direction. Rather
magnitude betweek s andE;. thanb and p, however, it is convenient to use the compo-

Since we lack a theory to fix the value of the constant nents ofK along and orthogonal to a classical trajectory.

we shall require it to be generic in the following SENse.gince the energ¥ is constant along trajectorie?,E lies in
We already know thatf, vanishes atEs, by design, o orthogonal direction; so the orthogonal component is
and the_n from thg 7t1ransp0rt equatio®4) we derive simply K¢ or, sinceE=H(J), K;.
dfp/dE—_[g(Ezs) E] there. ~ So  unless o Our whole calculation so far amounts to computing the
<[B(Es)9(E)E:] " exi—BEJEI~10 **exp(-10'), f  mean value oK, [see Eq(80)]; indeed the first term acts as
has a positive slope as it approaches the separatrix from bgiffussion, opposing the gradients &f The big surprise is
low. We shall assume a geneticas one much above this the second term being positive, forcing a positive flux to-
borderline value, so that fd€=1 the right hand side of the wards larger energies. Observe that, in particular, the mean
reduced Fokker-Planck equation may be neglected, fandflux across the separatrix is positive. Since for a stationary
grows exponentially: solution the flux is conserved, the flux must be positive ac-
cross any trajectory. Now beyond the separatrix the t8oh
Eq. (80) is absent becaugevanishes and, as we shall s€g,
remains positive. So to obtain a positive flux, it is necessary
that 9f/0E<O, as we will now show.
To computeD beyond the separatrix, we observe that
although there are no longer action-angle variables, we may
Beyond the separatrix, all motion is unbounded and therstill introduce a new pair of canonical variablds, ), where
is no analogue of action-angle variables; so we must returi labels the different trajectories andncreases along clas-

4K0(T

f(E)~ ePBE, (99)

mv2A2

B. Outside the well
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sical trajectories, withr=1. It works as follows. The rela-
tionship betweep andb, p= \2E+ (A/12)b* becomes, for

low energy,
12 Ap .

(101

PHYSICAL REVIEW D59 083513

whereh(E’) is a function which determines the valuefait
7= —o0, It is easy to compute that

fldff(E,T)ocf:dE’ hE")

ey 19

which shows that, for largg, f in fact decreases & "'°.

This same relationship corresponds to a canonical transfo
mation with generating functionaVv,

N \/ng' \/rzE

BE=V1z3~ Vap:

and the new canonical coordinatefollows from

VA

Comparing with Eq(100), this is just
1

12 A

for some constant of integratidg. Indeedr=1, as it must.
Writing the Fokker-Planck equatiof74) in the new vari-

JW

- 10
E b (102

T=

ables g, 1) is an exercise in Poisson brackets, simplified by

the approximatiordb/JE~O0 [to see that this approximation
is justified we may go to one more orderHnin the expres-
sions forp, W and 7 and we find that for largé, db/JE
~—12/(5Ab%)]. Thus from Eq.(74) with F=0, we get

of of

mv2AS3 6(92]‘
—_— = _+
at or

48 g2’

(103

so thatk .= (that is, the universe moves along the classica
trajectory with7=1), and
mv?A3 6 of

48 ~ JE

Keg=

with only the normal diffussive term present, as was ex
pected. Sinc& g must be positivdat least in the averagef

must decrease beyond the separatrix, as we wanted to sho
This result, in fact, can be made more quantitative if we

note that Eq(103) for a stationary distribution functiofis
essentially a heat equation which can be solved in the usu
way. For this it is convenient to change to a new variable
—1/(57°) which is positive semidefinite since the confor-
mal time 7 is negative in the de Sitter region. The equation
then can be written as

af J°f 10
g_ E, ( 4)
whered=36x12. Its solution can be written as
f(E)=— de’e<E—E’>2/4sdh(E') (105
Vamds

r-
C. Tunneling amplitude

After the two previous subsections, we gather that the
stationary solutions to the Fokker-Planck equation display a
marked peak aE=Eg. We may now estimate the flux by
requesting, as we do for Kramers’ problem in the Appendix,
that the total area below the distribution function should not
exceed unity. Unless the lower cutdH; is very small(it
ought to be exponentially small dB; to invalidate our ar-
gumeni the integral is dominated by that peak, and we ob-
tain

Ko< (prefactojexq — B(Es)Es]. (107
The prefactor depends ok, v, g(1), B(1), o and the de-
tails of the peak shape. Usitig=3/(2A), B(Es)=1.23, we

get

84

Ko=<(prefactoyexp — ) (108

In the last section of the Appendix we have computed the
flux when one considers a cosmological model with a single
cosmic cycle. The resu(?82) is qualitatively similar to this
one; it just gives a sligthly lower probability. This semiclas-
sical result must now be compared against the instanton cal-
f:ulations.

V. CONCLUSIONS

In this paper we have studied the possibility that a closed
isotropic universe trapped in the potential well produced by a
cosmological constant may go over the potential barrier as a
consequence of back-reaction to the quantum effects of a
nonconformally coupled quantum scalar field. The quantum

ctuations of this field act on geometry through the stress-
energy tensor, which has a deterministic part, associated with
vacuum polarization and particle creation, and also a fluctu-
a ing part, related to the fluctuation of the stress-energy it-
self. The result is that the scale factor of the classical uni-
verse is subject to a force due to particle creation and also to
a stochastic force due to these fluctuations. We compute the
Fokker-Planck equation for the probability distribution of the
cosmological scale factor and compute the probability that
the scale factor crosses the barrier and ends up in the
de Sitter stage where~ \12/A cosh{yA/12t"), wheret’ is
cosmological timebdt=dt’, if it was initially nearb~0.

The result displayed in Eq108) is that such probability is

K0~exy{

A

18
) : (109
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or a similar result, displayed in EgA82), if we consider a in subsection 6, the relaxation time is computed in detail; and
cosmological model undergoing a single cosmic cycle. Thidinally in subsection 7, the calculation of the escape probabil-
result is comparable with the probability that the universeity for the scale factor is made for a model which undergoes
tunnels quantum mechanically into the de Sitter phase frona single cosmic cycle.

nothing [1]. In this case from the classical actiod8)

Sgym[b]; i.e., neglecting the terms of order one constructs 1. Divergences ofl

the Euclidean actioe, after changing the time=i, Here we compute the finite imaginary part of the series

1 _ 1 defined in Eq(36) and prove that the real part diverges like
Se[b]= Ef d7|{ b?+b%— 1—2Ab4 . (110  1/(n—4). The finite real part of the series will not be found
explicitly; its exact form is not needed in the calculation of

The Euclidean trajectory is=y12/A cos(/A/127"), where this paper. Letus now ch:lzn—4, and callF (o) the sgries
7' is Euclidean cosmological timéhis is the instanton so- (36 Which we can write in terms of the gamma functions as

lution). This trajectory gives an Euclidean acti®=4/A. o
The tunneling probability is then Flw)=2, alw)
k=1
8 oo
p~exg — 1. (11D _s I'(k+e+1) 1

= I'(k) +&/2)%— 2t+jo*
This result, which in itself is a semiclassical result, is K= (kte/2)"=(w/2)™+i0

comparable to ours, Eq109), but it is of a very different < F(k+8+1)I

nature. We have ignored the quantum effects of the cosmo- = Tk / 5 5

logical scale factor but we have included the back-reaction of =1 (k) l (k+2/2)*—(w/2)

the quantum fields on this scale factor. Also our universe

reaches the de Sitter stage with some energy due to the par- —imo[(k+&/2)2— (w/2)2]

ticles that have been created. In the instanton solution only

the tunneling amplitude of the scale factor is considered and

the universe reaches the de Sitter phase with zero energy.
Taker} at face value, our .results seem tq imply th_at th%vhere we have used thak£i0")~1=PV(1k)Tim8(x).

nonlocality and randomness induced by particle creation Aot us first concentrate on the imaginary pEftand com-

actually as important as the purely quantum effects. This

conclusion may be premature since after all @49 is only bute, according to Eq35), its Fourier transform
an upper bound on the flux. Nevertheless, our results show ~ s d ,
F| Ef

k

=Fg+iF,, (A1)

w .
that ignoring the back-reaction of matter fields in quantum —e lttE
cosmology may not be entirely justified. We expect to delve

further into this subject in future contributions. T(k+e+1) cogk+e/2)(t—t')

(k) k+e/2 ’

(A2)

|
N| =
=
I 8
™M
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APPENDIX —t).

o : . . Let us now see that the real part of the series diverges like
To facilitate the reading of this appendix we repeat here ) h o
the summary of its contents given in the Introduction: Sub-lls' Using thatl’(x+1)=xI'(x) the principal part of can

section 1 gives some details of the renormalization of thé!SC e written as
CTP effective action; subsection 2 explains how to handle
the diffusion terms when the Fokker-Planck equation is con-
structed; in subsection 3, we formulate and discuss Kramers’
problem in action-angle variables; the subsection 4 gives the
exact classical solutions for the cosmological scale factor; in It is clear from this expression that the divergences when
subsection 5, the averaged diffusion and dissipation coeffie=0 come from the ratio of gamma functions in Eé4)

cients for the averaged Fokker-Planck equation are derivedyhen k is large. Let us now separate the sufj_,ay

I'k+eg) k+e
LK) (k+e/2)2—(wl2)?

(A4)

a(w)=
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=>Nla+3r \a where N>1. We can use now that for We now use the local approximation for the noise kernel
large x, T'(x)=27x* Y21+ 0(1/x)] and the defini- o get
tion of e, e=lim,_.(1+1/Mn)", to prove that I'(k
;—s)/F(k)= k®[1+0O(1/k)]. Substitutinga, by ay, defined c0—1<
y

)
——5(b(t)—b)&
5§()(() )6(p(t) p)>

t/ —t
k+e
(k+e/2)2—(wl2)?’

(A5) and similarlyC; andC,. As we know, this reduces to

ak—k8 1+O

—ml (1)
in the second sum of the previous separation, we can write Co=l—6< —<—5(b(t) b)a(p(t) — p)>

Sr_a=3N ta+ 37 ac. Now we can use the Euler- o&(t')

Maclaurin summation formula[40] to write S;_\ay p(t)

= [rdkac+ - - -, where the ellipsis stands for terms which _<m S(b(t) —b)&(p(t) - p)>

are finite since they depend on succesive derivatives, at

the integration limits. Thus we may writeX,_,a, A functional derivative of the equations of motion leads

=>N"la,— fNdk a.+ f5dk a. The first sum and first inte- 1O
gral of this last equation are finite for alt thus we can take

£=0, in which casea,=a.=k/[k?— (w/2)?]. The sumand 9 9PV _ dp(t)

integral may then be performddvriting 2a, = 1/(k+ w/2) dt sg(t!) - SE(t)’

+1/(k— w/2)] and the IMN which appears in both expres-

sions cancel; the next to_ leading o_rd(_ar terms differ by order sp(t) bt ) 1 d2

O(1/N). Therefore the divergence is in the last integral — —V"[b(t)] —o(t—t")
dt sg(t’) SE(t! ) b(t ) dt?

o % ks+1
dk =f dk : A6 V'[b(t")]
fo = o (k+&/2)2— (wl2)? (A6) +W o(t—t")|,

where here: is an arbitrary parameter. This integral is easily . . )
computed40], and when it is expanded in powers ofwe  Where actually we are computing the right hand side only to

get lowest order inv. This suggests writing
f dka= [ + In( 12)? (A7) op(t) _ G(t—t")o(t—t")+— ov_ d s(t—t")
= — 4+ JInlw —t'),
(L) b(t') dt
Thus, according to Eq$35), (36) and (Al) we compute sb(t) 6
the Fourier transform ofg, ( =R(t—t’)a(t—t’)+—yt9(t—t’),
: o&(t") b(t")
- S(t—t") (A9)

FR: -

) —8A(t—t"), (A8)
which works provided

whereA(t—t’) stands for a finite kerngkee Eq.60)]. dR
—=G, R(0)=0,

2. Diffussion terms dt
We want to compute Eq66) which can be written as Eq. 4G
(67) in terms of the function€,(n=0,1,2) of Eq.(68). The —=—V"[b()]R,
simplest functionC, can be written after using E@69) as dt
6 V'[b(t’ V"[b(t’
Co- | dt'N(t—t'><—5<b<t> b) 8(p(t) ~ p>> G(o)=6u o VIO o by,
o&(t") b(t") b(t")
whereas to write the other two functions we observe that the |n the coincidence limit
noise kernel is translation invariant; so integrating by parts
(in a distribution senge sb(t) Sp(t)
=0, - =2vADb, (A10)
- SE)],

ol s SE(t)
_ J dt'N(t—t’ )— {550, 2O -DEO-p) ).

which leads to
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3. Kramer’s problem

5
——5(b(t)—b)s(p(t
<5§( 0 (b(t)—b)s(p(t)— p)>

For our purposes in this paper we call Kramer's problem
tr—t [42] the computation of the “tunneling amplitude” or, more
9 properly, the escape probability of a particle confined in a
= —ZuAba—f(b,p,t). (A11) potential V(b), such as Eq(53) for instance, which has a
P maximum and a separatrix with an enefgly. The particle is

The diffusive terms also involve the first and second deSubject to a damping forcgp(p=b) and white noise with
rivatives of the propagators with respecttto To find them, ~amplitudeykT, according to the fluctuation-dissipation rela-
we make the following reasoning. We have just seen that, folion, wherey is a friction coefficientk Boltzmann constant

example,R(t,t)=0; therefore, and T the temperature. The Fokker-Planck equation in this
case i938]
’ R(t,t") aR(tt’) G(t,t)=—2vAb of J of
o , =77 ) == ) =—2vAD. oa_ k4 [l
at t/ =t Jt th—t at {H’f}+7ap pf+kT(9p} (A16)
(A12)
With a slight adaptation, we also get whereH is given by Eq(65). Since the particle is trapped in

the potential, it undergoes periodic motion; in this case it is

J J convenient to introduce action-angle varialjlé8] (J,6) as
TG(t i) =E[G(t1t,)|t’—>t] - EG(U’) : canonical variables instead ab,p), thus making a canoni-
J t—t -t cal transformatiorb=B(6,J), p=P(6,J). The action vari-

ableJ is defined b
so that we have Y

1
;G (t,t")]¢_=2vAp. (A13) == fﬁ pdb. (A17)
Iterating this argument, we find Sincep can be written in terms df andH, substitution in
) Eq. (A17) and inversion implies thati=H(J), and
J
—R(t,t") =— —G(t t)— —G(t t") ,
a2 vt vt M 0w (A18)
aJ

where we have permuttect@and at’ derivative and used the

equations of motion. From this we thus get is the frequency of the motion. The other canonical variable,

the angle variabl®, satisfies a very simple equation of mo-

=—4vAp. (A14) tion /=0 and changes from 0 to72 At high energies, that
is, near the separatrix whelh-Jg, the motion ceases to be
periodic and(2—0. At low energies, let us assume that
The last formula of this type that we need is =0 is a stable minimum of the potential; near this minimum
the potential approaches the potential of a harmonic oscilla-
] tor with frequencyw, V(b)~ wb?/2 (in our case we simply
t/'—t

(92
—R(t,t")
at'2

t/—t

&2
—G(t,t")
at'2

aGtt,
at| ot (tt)

havew=1), and then]—0, H~»J and Q) ~ w.

If y=0, then the solution to the Fokker-Planck equation
is an arbitrary function o and — ()t. Stationary solutions
are therefore functions af alone. We may seek a general

, solution as
t/—t

t/—t

i t,t
a—,ﬁ()

which from the equations of motion leads to £(3,6)+ 72 c(3t) gin(6-0v).

2
a—G(t,t’) =-2vAV'(b)+ iV”[b(t)]R(t,t’)
ot'2 at’ in this case we have,f=d,J|,d,f. From Eq.(65) we have
vt that p=[2(H— V(b))]l’2 and consequentlyd;p|,=Q/p
=—2vAV'(b)—V"[b]2vAb whose inverse is)pJ|,=p/€. This can be used to write
9*f/9p? in terms of derivatives with respect th and since
_ —2vA (bV [b]). (A15) now {H,f(J)}=0 we can write the Fokker-Planck equation

(A16) in the new variables as, keeping only first order terms,
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of JCp in wJs Es

_ _ (6—Qt) __s

ot +7n¢0 at (J,ve Ko<y el — 5/ (A25)
Ly p? AN i p? a1t (A19) WWhere we have used that near the separéirixwJs. Typi-
Y Q a4 Q91 Q\Q cally the flux is very small so that the probability of finding

the particle in the potential well is nearly 1; therefore the
Fourier expanding the coefficients on the right hand sidevalue ofK, approaches the right hand side of E425).
we obtain a set of equations for thg coefficients. The We should remark here that in the order reduction scheme
equation forf itself follows from the average of this equation that we are following, to compute the noise and the nonlocal
over the angle variablé. Let us change the integration vari- terms we use the classical equations of motion. In fact, these
able in the definition/A17) of J, db=4,b|;d6, taking into  terms have a quantum origin in our case and its computation
account that over a classical trajectdris constant, and that is one of the tasks we have to perform in order to define our
9= we haved,b|,=p/Q(J). Thus, we can write Eq. Particular Kramer's problem. Thus the use of the action-
(A17) as angle variables, which is convenient for the classical equa-
tions of motion, is also conveniefafter order reductionin
1 (2= our approach to the Kramer's problem.
—f dop=3Q(J). (A20)
2 0
4. A look at the orbits

Using this result we can now take the average of Eq. In what follows, we shall quote extensively from
(A19) over 6. This average reads, simply, Abramowitz and Steguf44] (AS) and Whittaker and Wat-
son[45] (WW).

kT of The motion is described by the Hamiltonian

Q 4

of 7 (]
a Yol Tt

) . (A21)

— 1 2 2 A 4
As one would expect exp(E/KT) is a solution of this H 2(IO +b%) 24b ' (A26)
equation. Let us now see whether this equation, which is a
transport equation, admits stationary solutions with positivelThe energy is conserved, and on an energy surfaeeE,
probability flux[19]. Note that we may write this equation as the momentum igp?=2E — b2+ Ab*/12. The classical turn-
a continuity equatiom,f + 9;K=0, where the flux can be ing points correspond t@=0. Introducing the separatrix
read directly from Eq(A21). Therefore a stationary solution energyEs=3/(2A),we can write the four turning points as
with positive fluxK, should satisfy

E
KT of Ko b2 =4E{ 1+ \/1— =| (A27)
ORI E (A22) )
two of them=b_ are inside the barrier, and twab_ are
which can be integrated to give outside it. The momentum can now be written as
Ko E/kaJOdg E b’ b?
— - - (§IKT 2_ 2
f )/kTe ;£ Q(ée : (A23) p =2E 1-k b_2 1_b_2 ) (A28)

For anyK,, f diverges logarithmically whed—0; how-  \yhere we have introducdd= (b_ /b, )% see Eq(87). The
ever, this is an integrable singularity thand this is not a  gquation for the orbit id9=Db_x(t), where

problem as we will see shortly. In our problem the action

variableJ satisfies thal<Jg and Eq.(A23) proves that there b.t
is a real and positive solution for anyin such a range, X:S,-{;'k ' (A29)
which corresponds to choosirg=Js. VBEs

Given a solution we may determine the fligy, imposing . o .
the condition that the probability of finding the particle Where sn is the Jacobi Elliptic Functidwe follow the no-
trapped in the potential well should not be greater than unityation from WW 22.11; to convert to AS, put=k?, and see

[19], i.e. fésf(J)ngl. This is equivalent to AS 16.1.5. o ) _ o _ _
The Jacobi elliptic function is periodic with period

Ko [ (Isdé ¢ 4K[k], whereK is the complete elliptic integral of the first
1= TT( — QO (&)eEOKT f dJe‘E“‘T). (A24)  kind (AS 16.1.1 and 17.3)1[see Eq.(89)]. The period in
Y 0§ 0 physical time isT= 8E4Kb!, and the frequency
Since the integral is regular at zero, it is dominated by the
S o . b,
contribution from the upper limit, and the integral may be Q=—" (A30)
evaluated approximately. One gets 2VBEKIK]
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5. D and S functions
The functionD is given by

1 (270

D(J):E 0

dt b%p?,

which by introducingb=b_x can be written as

D(J)= %4fol(b_dx)(b2_x2) V2E(1-k?X?)(1—x?)

2 3
= —V2Eb? ofk], (A31)

where

o[k]= Joldx X\(1—Kk?x%)(1—x3). (A32)

Following a suggestion in WW 22.72, this can be reduced

PHYSICAL REVIEW 39 083513

To proceed, we must appeal to the addition theorem for
elliptic functions(AS 16.17.). Next we use the differential
equation for Jacobi elliptic function®S 16.16.} and inte-
grate by parts to get

s= =i pr[ s wplke s, (A3
- 0 u
where
Ik (1)
p[n]—fodx ] , (A35)

which can be expressed in terms of complete elliptic inte-
grals

a
K[k]—ﬁE[k]—cH[n,k]J,
(A36)

p=(—k2){

c’+i
k2

to complete elliptic integrals of the first and second kindswhere the last term is the complete elliptic integral of the

(we will need the third kind for thes function), to get the
result quoted in the main text.
The functionS is given by

_1 T
S=—| dt

¢ b2(t)
a 472 )o

dt

=du
Pff —b?(t—u).
o u

Let us consider an orbit beginninglat0)= 0, and divide the
time interval in four quarters(l) 0<t<T/4; (ll) T/4<t
<T/2; (Il) T/2<t<3T/4; (IV) 3T/4<t<T. We have the
following relationshipsi(l) in the first quarterb,=b(t), p,
=p(t), () in the second quartehy, (t)=b,(T/2—1), p; =
—p(T/2—t), (lll) in the third quarter,by, (t)=—b,(t
=T/2), pyy=—p(t—=T/2), (IV) in the fourth quarter,
by(t)=—b/(T—1t), p,=p,(T—t). This suggests param-
etrizing time in terms of a unique variable 0<7<T/4, as
follows: (1) In the first quartert=7; (ll) in the second quar-
ter, t=T/2—7; (lll) in the third quarterf=T/2+7; (IV) in
the fourth quarter{=T— 7.

We can then write

b2( 7—U)

=1 (T4 = du
S_FJO dTb(T)p(T)Pffo T

—b? +b?

-
E+T—u) —bX(T—71-u)

57U

Sinceb? is an even function of with period T/2, we have

—1 (T/4

S=—
0

drb - du b? b?
=), ¢ (ppe| - w b2 )

and since the second integrand is obviously even,

1 (T4 =du ,
S:?fo dTb(T)p(T)Pff_ 4 P(rtu). (A33)

[

third kind (AS 17.7.3, with sina=k,

11

nn

(1+k?)
3k?

(1+Kk?)
n k2

3k2 N

1 2 1/1
n

|
|

Since in our application we allways hamesk?, we may use
formulas AS(17.7.9 and (17. 4.28 to get the result in the
text [recall thatE/Eq=4k?/(1+k?)?].

(1+Kk?)
k2

K nin

111 1/1
n

6. Relaxation time

The aim of this section is to estimate the time on which a
solution to the transport equation with arbitrary initial con-
ditions relaxes to a steady solution as discussed in the main
body of the paper, in Sec. IV. The way this kind of problem
is usually handled47] is to write the Fokker-Planck equa-
tion (74) in a way ressembling &Euclidean Schralinger
equation

of

E:Lf.

(A37)

Then if a complete basis of eigenfunctions of theperator
can be found,

Lfa(p,a)=Enfn(p,q), (A38)
a generic solution to EqA37) reads
f(p,a,t)=2 cafn(p,q)em". (A39)
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Therefore, provided no eigenvalue has a positive real pargte; (3) the eigenfunctions of.° are not normalizable. In
the relaxation time is the inverse of the real part of the largesspite of this, the basic routine from quantum mechanics text-
nonzero eigenvalue. THe operator may have purely imagi- books still works.
nary eigenvalues, in which case it does not relax towards any
steady solution. b. Perturbations to nonzero eigenvalues

This problem differs from the ordinary quantum mechani- | o g seek the first order correctioniq . We write the
cal one in several aspects, the most important _b_elng that t.heexact eigenvalue &8, =E° +E! +--- corresponding to
L operator does not have to be either Hermitian or ant|—th t eigenf t"Xh 2)]20 :]{1 ‘.. d obtai
Hermitian. That is why the eigenvalues will be generally € exact elgentunctiohn, =Ty T x » and obtain
complex, rather than just real or imaginary. Also, it is impor- 140 0¢l _ 1 0 0 £1
tant to notice that the “right” eigenvalue problem, Eg. Lot Lo = Baofnat Enfoe (A45)

(A38), is different from the “left” eigenvalue problem: For m+n we multiply both sides of the equation tbﬁ’gfg,

gnL=Eqgn. For example, for any of the formL=4,K',  yse thatl. is anti-Hermitian and integrate ovérand 6, to
where theK’s are themselves operatogy=1 is a solution  get

to this (left) equation(with zero eigenvalug while it may

not be a solution to Eq(A38) at all. (omé|L|ony)
(Om§|1nX)= W (A46)
a. Our problem nx  —mé¢
In our case, the. operator can be read from E¢r4). In them=n#0 case, the same operation yields
Since we are taking as a small parameter, it is natural to
write L=L%+L?, where Ef(Onglony) = (Ong|L*|ony) —[E] |, —EQ 1(0ng|1ny),
(A47)
LOf={H,f}, (A40) :
and we may write
L1g 0 (FH+ 7Tv2A2b2 *f (Ad1) ing
T 4 2 L0 = R+il], A48
P ap n,x \/ﬁ[ ] ( )
The spectral decomposition df® is very simple. In where
action-angle variables,
of R=L15(J— &) nZTrVZAZbZ( i )26(J £)
Lof=—-0(J)—. (A42) B 4 ap|P '
a0 (A49)
Imposing periodicity in¢ we find the following eigenvalues: Whatever the imaginary paitis, it is not relevant to the
0 and relaxation time; in a similar way, the average of the first term
) in Eq. (A49) yields no term proportional to (©|Ony)
Ep,=—inQ(x), (A43)  Therefore, we conclude that
with n integer (note thatL® is anti-Hermitian. The eigen- N 277,,2/\2 27 ,( 30 2
value 0 is infinitely degenerate: any functionbélone is an REE, \J=—n"—— JO b ap e
eigenvector with zero eigenvalue. TE,%’X have eigenfunc- I=x (A50)
tions

We see on dimensional grounds alone that the relaxation

fg (3.6)= 5(3—x), (A44) time (th_e inverse of this equatignvill be of orderE [recall_
: o= that Eq=3/(2A)], much shorter than the average tunneling

time, which is proportional to the inverse of HJ.08).

and, barring accidental degenergglye ratio of frequencies ~ The expressioifAS0) may be slightly simplified by using
for two different actions being rationalare nondegenerate. the identity @6/9p)|,=—(db/dJ)|,, which follows from
These eigenfunctions are normalized with the Hilbert prodthe transformation from one set of variables to the other be-
notation. ReE! ]=-n? 0| —

Having solved the eigenvalue problem fof, it is only e 327 dJ
dinary textbook problem(1) L! is neither Hermitian nor by term, and use Parseval’s identity, to conclude that, in any
anti-Hermitian;(2) one of the eigenvalues &f° is degener- case,

(A51)

Je o c ) ical .
uct (g|f):fo f% dJdog*f as (M&Oony)=é8(é—x), ing canonical. We may write
where here and in the rest of this section we use Dirac’s 7TV2A2J’27T (abz )2
LT . 07 1a=x
natural to see that df as an exercise in time independent
perturbation theory. There are three differences with the orwe may Fourier transforrb? as a function o®, derive term
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272 2 m’A%2(d D d 1dS Q&

(A52) —7 |dindl 2d3 ap|YTMY (ASD)

d (2w

el 2
a3, déb

IRGEL J|=n?
’ (87)2

J=x
) o . Recall that we have seen in Sec. Il tiais an increasing
The integral in this expression can be performed; recall thanction of E (or J). Therefore, multiplying by#* and in-

b=b_x(t) wherex(t) is given in Eq.(A29). We recall also  tegrating, we see that must be real and negative. This is an
that 0=t with ) given in Eq.(A30), and then use as jmportant result.

integral defined in Eq(89), to get finally

V2N
ﬁ(“@) |

TveA2
(4)

d

1 2
|RqEn,X]|>n ﬁ

write Eq. (A57) usingE as independent variable insteadJof
(dE/dJ=Q), and then introduce a new functian by ¥

Rather than a general formula, let us investigate the lim= yI\D. Finally Eq.(A57) becomes
iting cases. ForJ—0, we haveJ~E, k*~E/(4E), b2 1
~2E, E[K]~(w/2)(1—K?/4), andK[K]~ (7/2)(1+k?/4). — =" +V (E)y=0 (A59)
In this limit we thus get 2

(A53)

2,2 where

14
IR4E;  1|=n? (A54)

V,(E)= ! dS+ Sz+D” D? a (A60)
For J—J, (near the separatiixve can use the following “~" 4D(dE 2D 2D Q)
approximations:  b? ~4EJ1- 1—E/E], K?~[1 3
—2J1I-E/E.], K[K]~(1/2)In16/(1— k)]~ (1/4)I64/(1 which looks like a Schrdinger equation with an unusual
_E/E s ,E K]~ 1+ (1/4)\1—EJE{IN[64/(1— E/E potential. We have therefore transformed the problem of
9l [K] (1/4) s{In[64/( . )] finding the eigenvalues of EgA57) into the question of for
—1}, anddE/dJ=Q~ «/(2K[k]). Thus the correction to

the eigenvalue diverges. In both cases, we get that the rela)\(\/hICh values of a particle of zero energy has a bound state

ation time is much smaller than the tunneling time In the potentialV o(E).
9 ' To get an idea of what is going on, let us make the ap-

¢. Perturbation of the zero eigenvalue proximationD~cE?, S~ gD, wherec and 8 are constant;

then,
We now confront the harder problem of finding the first
order correction to the zero eigenvalue. The idea, as in quan- B B_, a
tum mechanics, is that the first order eigenvalues shall be the V(E)= 2E2 2E+SE YOk (A61)

eigenvalues of the restriction bf* to the proper subspace of
the zero eigenvalue, namely, the infinite dimensional space
of all ¢ independent functions. If,, corresponds to an
eigenfunction with null eigenvalue, the first order secular
equation becomes

Whena=0, we should get back some results of Sec. IV.
Indeed, in this case the solutions for large go like
exp(xBE/2), which, after the equation relatingwith W,
means that the solutions either are exponentially growing or
bounded. The first ones correspond to steady solutions with
nonzero fluxthose in Sec. 1Y, while the second ones are the

stationary solutions with no flux. Note that the change from

We e!iminate th_e sgcond term .in the left hand si_de of thisy o , which we made previously, enforces the pathologi-
equation by projecting back oft independent functions, by 5/ E-1 |ow energy behavior we found in Sec. IV.
averaging ove®. Fortunately the average oveérof L! act- For a#0, the effective potentiaV, has two classical
ing on a¢ independent function is precisely what we did in turning points, i.e. points wherd,(E)=0. For smallE we
Sec. Ill; so using Eqs80) and(84) we can write down the g E,~al(2cpB) [we use that)(E;)~1], and for largeE

L0, + L5, =Eg,fo,- (A55)

eigenvalue problem we find E, given by Q ~1(E,)~cB?EZ/ (2a), which, under
- the asymptotic formf) ~1(E)~In[64/(1—E/EJ)]/(\27), is
wv°Ac d|D d 5 ! 4
T2 2 gli=at, (A56)  Ex~Eg{1-64exg—mcp’EY(V2a)]}. The first classically
4 dJQdl allowed region sits precisely where the theory is unreliable,

_ ) ) ) and we ought to disregard it as an artifact. Therefore the low
where we calk the eigenvalue, to avoid confussion with the , ejgenstates must be related to the presence of the second
energy. The left hand side of this equation is a sum of twoyjlowed region, near the separatrix. This is consistent with
terms, the first one being Hermitian, and the second undene fact that the zeroth order eigenvalues ai@(} [see Eq.
fined. However, if we introduce a new functioll by f (A43)], and so they tend to accumulate around 0 as we ap-
=V exd 3/5dE’' B(E’)] where 3=S/D, we can write proach the separatrix.
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In the second classically allowed regifargeE) we may  ishes ad— 0. For example, if the initial stages of expansion

approximate (and the final stages of collapsare replaced by an inflation-
ary (deflationary period, thenp~b?, p~b?, etc. We shall
V. (E)~ @ ( 1 1 (A62) assume such an evolution in what follows. In these models,
“ 4cE§[Q(E2) QE)| the singularity is literally pushed to the edge of time.
As an estimate, we may look for values @fsuch thatV,, a. D and S functions
satisfy a Bohr-Sommerfeld condition The D function is given by Eq(76), where now we av-
£ erage over a half period only. However, the periodicity of the
f SdE\/Ta(E)NmT (A63)  integrand is preciselY¥/2; so the average over a half period
E, is the same as the full average. Therefdbe; E%/2 at low

) ) ) _energy, and 0.98° close to the separatrix as we had in the
(this only makes sense if we treat the separatrix as a turning,any cycles model.

point). To perform the integral, we introduce a new variable  Fqor the functiorS, let us begin from Eq(78), modified to
x=In[(1-E,/E)/(1—-E/Ey)]. The integral turns out to be represent average over a half period,

nmw~ \/;(1—E2/Es)f§’dx \/;e*"/ 2\/577c, and so the ei-
genvalues are the roots of 1 (T2
S(J)=—| dtpF(b,p,t), (A67)
\/EchZEﬁ n=%c mJo
 a T 128

ap eX (A64)

and then use E(q55) for F and integrate by parts twice to
The relevant value o€ being 0.96 near the separatfixee  get
the end of Sec. I)| thus 8~1.23. Taking the logarithm of
Eqg. (A64), we find the lowest eigenvalue

_ emepEL [
“n(128/282E2 )|
+

This is the result we were looking for. Going back to the ™ Jo
beginning, we translate this into eigenvalues of the Fokker-
Planck operatofsee Egs(A38)] and (A56),

TI2 6v TI2

0 v

6v

v

d
Patb

X
Pb

S(J)=
0

(A65)

Inin Eg
InEg

Gymtbpbmt AGS
— b p2 (b,p,t). (A68)

The discussion above on the approach to the singularity

9712 \/Zrc,Bz means that the integrated term; vanish. In the remaining term

32 In(128/2B%E%w)’

(AB6)  \ve use the equations of motidr= p=—V’(b) and get

where we have used E¢A58) and thatE;=3/(2A). Thus vA (T2 db?

we conclude that the relaxation time grows logarithmically S()=—|  dt-1b,p.b). (A69)
with Eg, while the tunneling time grows exponentially. In 0

fact, the tunneling time is proportional to the inverse of Eq.

(108), and so it goes like-exp(1.2FE;). Therefore it is to-  Next use Eqs(56), (61), (49), (51) and the redefinitiori84)
tally justified to analyze tunneling under the assumption thato write

all transient solutions have died out, and we only have the

steady solutions discussed in Sec. IV.
1 (72 db?_ (tdu
. _ S=——| dt——Pf| —b?t—u), (A70)
7. Single cosmic cycle 272)o dt ou

The purpose of this section is to discuss whether it is

possible to generalize the discussion of the paper to mode{§here we have truncated theintegral to restrict it to the
with a single cosmic cycle. The basic problem is that anyange where the equations of motion hold.
universe emerging from the singularity with a finite expan-  |stead of looking for a general expression, we shall only

sion rate is bound to lead to infinite particle productidBl.  consider the low energy limit and the behavior close to the
Therefore, in order to make sense, it is unavoidable t%eparatrix.

modify the behavior of the model close to the singularity,
and there is no unique way to do this. Of course, a possibility
is to assume that the singularity behaves as a perfectly re-
flecting boundary, which is equivalent to what we have done For low energyb= (2E/Q)sin(t. Substituting this into
so far. Another possibility, to be discussed here, is that th&q. (A70), changing the order of integration and performing
evolution is modified for very smal universes, so thatan-  some simple integrations we obtain

b. Low energy limit
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E? Ti2du
S:—Pff —[1—cos 200u+ 7 sin 2Qu]
27204 Jo U
E2
=6.89——, A71
27204 ( )

where the last integration has been performed numerically.

PHYSICAL REVIEW 39 083513

To evaluateC, we integrate by parts and take the linfit
—500

. b4I(T 1 fmdtdbzfd (s db?
“2n2"a) T 2 )o Mt o PN Gy

g
+0| 7). (A74)

Thus, S retains the main features as in the previous case, the

most important being the sign and energy dependence.

c. Close to the separatrix

Close to the separatrix, we must make allowance for the S= —[
fact that the orbit spends an increasing amount of time near 2
It is thus convenient to isolate the

the turning pointb_ .
central portion of the orbit. Let us rewrite EGA70) as

T4 db? rtdu
f dt f —b?(t—u)
0 u
T2

dt Jo

+ dtdbzftdubz(t )

— | —b?(t-u
Ta dt Jo u

1

S=—
272

. (A72)

Divide theu integral by quarter orbits, write=T/2—t’ in

some of these integrals, and use the periodicity and parity

b? anddb?/dt. We can then rewrit&S as

S=A+B (A73)
where

1 T4 db? T4+t du 5
A=—2—7T2 fo dtW o Tb (t—u)

Tia  db? (T4t du 5

—fo dtm o Tb (t+u) |,

1 Tia  dpb? T4+t du )

B—Z—W2 fo dtWJt Tb (t—U)

JT/4 db? 72—t du )
+ dt—j —b(t+u
0 dt Jru-¢ u (t+w

Observe that the factatb?/dt effectively cuts off thet in-
tegrals at times much shorter thd@. So we can take the
limit T—o, wherebyA converges to the expression f8mof
the previous case, i.e. EA33). Here, our problem is to
estimateB.

Let us writeB=C+D, where

1 (T4
C=—
272Jo

1 (T/4
o [
272J)o

b?(v),

db? T4 dy
tWJO tTo

dbzfm dv b2
Yt ), T—o—t> W)

Let us use the same argumentn take the limit and ad®
to getB. The final result is

[ide
o dt Jo "

o)

In(t+ db
- n( U)m
Using that at the separatrbx= \J4E tanh¢/\/2), the double
integral in the above expression gives 13!58&2772), and

we finally have
8E§I T
77-2 n E .

%{bZ(H— u)—b2(t—u)}

2

(A75)

S=0.7CE2+

(A76)

%or T we have the resulfct. Eq. (A30)] T=42K[k]/(1

+J1-E/E), and when k—1, K[k]~(1/4)InN64/(1
—E/Eg)], andS can then be written as

S=0.42E2 8E§| | o4 AT7

=0. s+? n n?/ES . ( )

d. Flux

We shall now show that, in spite of the divergenc&irf
itself remains finite as we approach the separatrix. Basically,
the arguments in Sec. IV still hold; so the equation to solve is

I I—64 f=0
B+ aln nl—E/ES =0,

where 8=0.44(0.42/0.96) andv=0.84(8/0.96r%). Let us
now call 6™ *=1-E/Eg; then dE=64E,e *dx and the
equation becomes

dE (A78)

df
— —64E B+ alnx]e *f=0,

0 (A79)

which is well behaved ag— .

In order to estimate the flux, we now need the integral of
f in a neighborhood of the separatrix, nam&ly '~ [dE f.
With the same change of variables as above, we get

e} X ,
K*1~64Esf dxexp{64ESf dx'(B+alnx’)e ™ —x|.

(A80)

The integral peaks when B4(8+ a Inx)e *=1, which de-
finesxy=In(64E) + In(B+ aIn xy), and thus
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1 X ’
K1~ WEX%GLI’ESJ OdX/(,B‘l' aln X’)e_X
0
(A81)

In order to get back the old result when=0, we must
assume a lower limit for the integral at-In64~4.16, which
corresponds t&c~ 0. This limit is high enough that the in-
tegral is dominated by the lower limie(* In x peaks below
e); so we finally obtain

PHYSICAL REVIEW D59 083513

K~(B8+ aInxg)exd — (B+1.62%)E]

2.71

~(prefactoiex;< ) (A82)

This result should be compared to our previous result
(108 or (109. In spite of everything, we are still above the
guantum tunneling probability111). Thus, considering a
cosmological model which undergoes a single cosmic cycle
does not qualitatively change our conclusions.
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