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Singularity-free cosmological solutions in quadratic gravity
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We study a general field theory of a scalar field coupled to gravity through a quadratic Gauss-Bonnet term
(o) RéB. The coupling function has the forg(¢) = ¢", wheren is a positive integer. In the absence of the
Gauss-Bonnet term, the cosmological solutions for an empty universe and a universe dominated by the energy-
momentum tensor of a scalar field are always characterized by the occurrence of a true cosmological singu-
larity. By employing analytical and numerical methods, we show that, in the presence of the quadratic Gauss-
Bonnet term, for the dual case of eventhe set of solutions of the classical equations of motion in a curved
FRW background includes singularity-free cosmological solutions. The singular solutions are shown to be
confined in a part of the phase space of the theory allowing the non-singular solutions to fill the rest of the
space. We conjecture that the same theory with a general coupling function that satisfies certain criteria may
lead to non-singular cosmological solutiofS0556-282(99)01804-4

PACS numbsg(s): 98.80.Hw, 04.20.Jb, 04.56h, 11.25.Mj

[. INTRODUCTION to incorporate features of the exact theory such as duality
symmetries.

Despite the successes of Einstein’s theory of gravitation at A remarkable property of the loop-corrected superstring
large distances, a quantum theory of gravity, valid at supereffective action in the presence of the dilaton and moduli
small distances, requires a more general framework. Afields is the existence osingularity-free solutions with
present, superstring theofil] seems to provide the most flat initial asymptoticd6]. These are linked to thB? gravi-
appealing framework for such a theory. Superstring theoryational terms with field-dependent coefficients that are
leads to the unification of gravity with the other fundamentalpresent. These solutions which avoid the initial singularity
forces. It also leads to important modifications of the stangre possible for a definite sign of the corresponding trace
dard cosmology, based on the Einstein action, at short dissnomaly for which the strong energy conditions related to
tances of the order of the Planck length. Although the the_or)fhe modulus energy-momentum tensor can be violated. They
has not been fully developed to the point that a detailedy,r from 4 flat space-time in the infinite past, they pass

cosmology could be constructed, a number of general Cor"Lhrough an inflationary period and they end up as a slowly

clusions can be drawn regarding new possibilities that d'Stméxpanding universe. A general field theory of a scalar field

guish string cosmology from the standard model. Modifica- . . i
tions of gravity of stringy origin can be studied through theCOUpIed to gravity through a quadratic Gauss-Bonnet term

2 . .
superstring effective action corrected by incorporating Ioopf(d’)RGB has also been shown to possess singularity-free

anda’ effects. The latter are associated with the contributiors0!Utions in a spatially flat Friedmann-Robertson-Walker
of the infinite tower of massive string modes, while the (FRW) background under very mild assumptions on the

former are due to quantum loop effects. Although the fullcOUPling functioné(¢) [7]. In a subsequent paper by Easther

string theory is approximated only in a perturbative sense bnd Maedd8], the case of a closed FRW universe based
the effective action and this is expected to describe physic8n the loop-corrected superstring action was also shown to
only up to energies where quantum gravitational effecté,ead' via numerical methods, to such singularity-free solu-
start becoming dominant, it is hoped that the loop-corrected©"S-

action captures many of the true features of the exact theory., !N the article at hand, being inspired by the superstring
The study of the loop-corrected superstring action has urEffective theory, we consider a generic theory with a scalar

covered interesting possibilitief2] not realized by the field.coupled to gravitation throug_h thg higher—curvature qua-
Einstein-Hilbert action such as the existence of novel stabldratic Gauss-Bonnet term. For simplicity, we keep only the
dilatonic black holes[3] that circumvent the “no hair” one-l_oop gravitational quantities f[hat appear in the action
theorem in its restricted sense. There are of course alternatifénctional of the superstring effective theory. For the case of
approaches to string cosmology. The absence of cosmolog SPherically symmetric background that we are going to
cal singularities in the presence of higher-curvature termsgonsider, the other one-loop gravitational quanti®R
in various numbers of spacetime dimensions, has bees n“””*RZ;RKW vanishes identically. This model captures
pointed out in the literature several timg4]. Another ap- the essential features and was shown to possess non-singular
proach is the pre-big-bang scenarfb] which attempts solutions in the flat case for a general class of coupling func-
tions[7]. Here, we extend the analysis of REf] to the case
of a curved universe, both open and closed. We develop a

*Email address: pkanti@cc.uoi.gr purely analytical argument and we manage to show that the
"Email address: irizos@cc.uoi.gr singular cosmological solutions, characterized by a true sin-
*Email address: tamvakis@cc.uoi.gr gularity at finite time, are indeed present in the theory but
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they are confined in a certain part of the phase space of the Y2

theory. In this way, the non-singular cosmological solutions 3(w?+ke 29)(1+8fw)— —=0, (2.6)

are summoned to fill the rest of the space. These results are 2

radically different from those that follow from the same . .

theory when the quadratic Gauss-Bonnet term is absent. |Whe_r2e f(#)=—06(4)/16. If we setx=¢, z=w andy

that case, as we will show, the singular cosmological solu=€ ~*» We obtain

tions cover the whole phase space of the theory, leaving no 3

room for the existence of non-singular solutions. X+ 32X+ = 8¢ (z+22) (22 +ky) =0, 2.7)
The structure of this article is as follows: In Sec. Il, we 2

derive the equations of motion for the scalar and gravita-

tional fields in a curved FRW background. In Sec. Ill, we (z+2z%)(4—258&'xz) + (22 +Ky) (2 — 5&"x%— 5E'X) +x2=0,

study the cosmological solutions of the theory when the (2.8
Gauss-Bonnet term is absent. We consider both the cases of
an empty universe and a universe dominated by the energy- (Z2+Kky)(6—36¢'x2) —x2=0. (2.9

momentum tensor of a scalar field. In Sec. IV, we develop

our analytical argument for the existence of non-singulaRearranging Eqs2.7) and(2.8), we obtain a new equation
cosmological solutions in the presence of the Gauss-Bonng&thich contains only the time derivative af

term. In Sec. V, a numerical analysis for a specific choice of

the coupling function serves as an illuminating example for . dz , (2— SE"X2+38¢E' zX) (22 +ky) + X2

our theory. The last, short section, Sec. VI, is devoted to our %~ @XZ R 3 -

conclusions. 4—26¢ 7x+ E(55')2(22+ ky)?
(2.10

II. EQUATIONS OF MOTION OF THE THEORY

We consider the quadratic coupling of a scalar field Withwizlerefr:g;? égiaig:?ltlon ofy we are led to the following
gravity through the Gauss-Bonnet term which is describeéj ’
by the action

S= J d*x\V—g

. dy

y= %x=—2yz. (2.1)
On the other hand, we may solve HG.9) as an algebraic
equation and writ, the time derivative of the scalar field
Note that&(#) is, for the time being, a general coupling ¢ @s @ function o, y and 5¢" in the following way:
function. The Gauss-Bonnet term is defined as

R1. L
5T 59ub"d— 15 §(P)RGe|-
2.1)

_ 3 ’ 2 3 ' 2 2 2

R(Z;B= RWMR“VP"—4RM,,RW+R2 (2.2 X 255 2(z +ky)+s\/[25§ 2(z7+ky)]°+6(z°+ ky),
and 8, which in superstring effective theory is proportional s==*1. (2.12
to the trace anomaly of the theory, plays the role of a cou-
pling parameter. Note that the set of equatiorf2.10,(2.11) is character-

The spacetime background assumes the standard spheriézgéd by an invariance under the simultaneous change of the
symmetric FRW form signs ofz ands. In order to clarify this point, we suppose that

we have found a solution, for the choise= + 1, described
dr? by the set of equations
ds’=dt*—e**") ——— +r%(d#*+sindde?) ¢,

1=k dz (2— 8E"X% +368¢"zx, ) (22 +Ky) + X2

(2.3 iV
’ 4-25¢'7x, +3(5E") A2+ ky)?

d¢
wherek=0,+1 corresponding to a flat, closed and open uni- (2.13
verse, respectively.
Making use of the above metric components and assum- gy
ing further that the scalar fielg depends solely on the time y= @M =-2yz (2.19
coordinatet, the equations of motion take the form

df wherex, stands for the value of that corresponds to the
b+3pw—24—(w+w?)(w?:+ke 22)=0, (2.4 choices=+1. Under the transformation— —z, the set of
d¢ equationg2.13,(2.14) is replaced by a new one with_ in
L the place ofx,, wherex_ corresponds to the choice=
.t e X e % “o — 1. This means that i, corresponds to a solutigsingular
20t 0T)(1+8fw)+ (o +ke™)(1+80) + §¢ =0, or noy of the equations of motion, thex_ corresponds to
(2.5 the same solution with the sign ofeversed. For this reason,
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we may keep fixed the sign & e.g.z>0, during the ana- which corresponds to an expanding universe with a true cos-

lytical treatment of the problem. mological singularity at finite time. Note that, here, the rate
of expansion of the universe is smaller than the correspond-
. =0 CASE ing ones during the two epochs of the standard cosmological

_ ) _ o model. The sole reason for this result is the presence of the
We first consider the case witd=0, that is without the  energy momentum tensor of the free scalar figldbn the
Gauss-Bonnet term. If we further assume that the scalar fielgjght-hand side of the Einstein’s equations which leads to the

takes on a constant value and set$=0 in Egs.(2.49—  slowing down of the expansion of the universe in a more
(2.6), we obtain effective way than the energy momentum tensor of a perfect
. fluid.
w’+ke 29=0, (3.1
. B. Curved Space(k==1)
w+0?=0. (3.2 pace(

In this case, the systef3.3) may be reduced to a single

For k=0, we obtainw= const, which corresponds to a static equation
universe with arbitrary radius. On the other hand, ket
+1, we must haveo=const ande” “=0 at the same time,
which corresponds to a static universe with infinite radius. y. dy
The only interesting case is the last oke; — 1, where we
find thate®® =a(t)~t. This result corresponds to a linearly, - &ldy. (3.7)
eternally expanding universe with an initial singularity,tat z
=0. Note that the rate of expansion is much larger than in
the case of the “radiation” §~tY? or the “matter” (a  If we multiply both sides byz/y*, we obtain
~12") epoch of the standard cosmological model. This is
due to the absence of any matter content of the universe z° 1
capable of slowing down the expansion of the universe. d(_g) :(_k)d(_2> =2*+ky=cyy°, (3.8

Next, we allow the scalar field to evolve with time( y Y
#0) while keeping the parameter equal to zero. In this
case, the set of equatio2.10,(2.11) takes the form

. dz. dz
7= d_y: —(—Zyz): —322—2ky=>2yd2_ 3Zdy

wherec, is a positive constant. Substituting the above in the
differential equation of, we get the result

dz

7= — x=—37%2—2ky, . dy dy
do V= G6*" dgSVBey’=—2y Yy ~k= (3.9
YA AV (3.3
= x=-2yz, :
Y=d¢ Y cik+c3 exp{—ZS\/;i)}
=y= . (3.10
where 2¢,Co exp{ — S\/gﬁb}
x=8\6(z°+ky), s==1. (3.9

From the above expression as well as from E9), it is
We are going to study separately the cases of flat and curvegident that there is a further invariance of the solutions un-
space. der the interchange of the signs ®&nd ¢. As a result, we
may keep fixed the sign of e.g.s=+1, while allowing ¢
A. Flat space (k=0) to take on both positive and negative values.
) ] ) A cosmological singularity is encountered whexft)
The solution 0f(3.3),(3.4) with respect to time takes the ., or equivalently wheny—. From the expression
form (3.10, we conclude that, whelk= + 1, y goes to infinity for
¢— +oo while, for k=—1, a singular behavior arises only
for ¢— —. Near the singularities, we may evaluate the
approximate expression of which can be written in the

z=—-322=z(t)=(c+3t) 7,

y=—2yz=y(t)=(c+3t)" %, following way:
¢=s\/§z:>¢(t)=3\[§ In(c+3t)+c’, for ¢H_oo:>yzzc_2€—v(2—/3>¢ (for k==1),
(3.5 - (3.1
wherec andc’ are a_rbitrary_ constants. The result for the K
scale factor of the universe is for ¢—+o=y= % e @3¢ (for k=+1).
e’=a(t)=(c+3t)3 (3.6) (3.12
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The corresponding expressions foican be easily derived where

from Eq. (3.8 and exist only when the solution fgrexists

as well. By making use of the differential equation &yrEq.

(3.4, we may deduce the dependence of the scalar field on ~ B=xX*ky+5x*z*— 12x*k?y*~ 24x°ky 7 — 12x°z*
time t near the singularities and, consequently, the expres- 1 108y Z+ 36k3y3+ 108y 222+ 362° 4.3
sion of the scale factor of the universe in the same region. '
Then, we obtain

and where we have used E@Q.5) in order to eliminateS¢’.

In this form, we may easily prove that f&=0,+ 1 the term

B, being a polynomial with respect #& with no real roots, is

always positive definite. Thus the energy conditions can only

be violated, leading to non-singular cosmological solutions,

46r 5>0. Fork=— 1, the analysis is much more complicated

o : . but it can be shown that the energy conditions are violated

=+1, that is for the case of a closed universe, there are  both si 5 H b i P ical
gns ofs. However, by making use of numerical as

always two branches of singular solutions with vamshmgweII as analytical arguments, we may show that non-singular

a(t). On the other hand, for the options=0,—1 which : . . -
. solutions arise only fo6>0, too. As a result, in our analysis,
correspond to the cases of a flat and open universe, respec-

. ) . : ._We may considep to be always positive.
tively, there is only one branch of singular solutions. This . : : .

. . ; . Next, we will try to determine all the singular solutions of
result is in perfect agreement with the singularity content of

the standard cosmological model. The open and flat unitEhe theory with the singularity occurring at finite time, hop-

verses are characterized by only one singularity, the i”itia|n(?mt:6:togr]:);0?Oth?tnggysei}; tBErW:r?eli ppr?esivflg?ecfrlez?r\]/;%
one, while in the case of a closed universe we encounter Wao ; sing "

. . i o ' will be analytical, assuming a polynomial dependence of the
cosmological singularities, the initial and the final one.

. . . coupling functioné(¢) on the scalar fieldé(¢) = ¢" with n
It is also worth noting that, for the choiag=0, the group being a positive integer greater than unit. Since a singular

of singular solutions found above covers the whole IOhaseolution is characterized by the vanishing of the scale factor
space of the theory, leaving no space for the existence of y 9

non-singular solutions. The final singularity of the c:Iosedat some finite t|'mea(t)'=i‘"(tizuo, we will always demgnd
universe(3.14 can be avoided only if we choose=0,—1. that near _the s!ngu_larltyze —. In the same region,
On the other hand, the initial singularit@.13 disappears the quantityz=w will be set to approach a constant value,
only if we setc,=0. Then, we end up with the totally unre- Z€ro or infinity yvh|le the spalar fieldp will be left free to
alistic case of a static universe with infinite radius. As a2dopt any possible behavior. )

result, we conclude that, in the absence of the Gauss-Bonnet We are going to concentrate our attention on the study of
term, the only realistic cosmological solutions that we maythe following cases:

obtain in the framework of the theo®.1) contain, at least, (1) z = finite #0, ¢=any, y—». _
one true singularity. If, near the singularityz remains finite, adopting a con-

stant valuegz(t) =c, then, from the differential equation for
y, Eq.(2.11), we obtain

a(t)=(c'+3yc,t)!® (for k==+1), (3.13
a(t)=(c'—3yc,t)!® (for k=+1). (3.14

The above expressions describe also a universe with a tr
cosmological singularity at finite time. We note that for

IV. 6#0 CASE
In this section, we are going to search for non-singular ]
cosmological solutions in the presence of the quadratic y e e 2fa)dt o
Gauss-Bonnet term in the action functional of the theory. It )—/= —2z=>y=e ““~e =R(t)~e 4.9

will be useful for our analysis to search for violations of the

energy condition$9] that indicate the absence of singulari-

ties. Assuming a perfect fluid form for the energy- which goes to zero only whert— —o. This means that the
momentum tensor of the system, the energy and pressure asggularity is approached only at infinite time and for this

defined asTy=p, Tii=—pg;; . Using the equations of mo- reason it must be excluded.
tion (2.4—(2.6), the energy conditions take the form () z—0, $p=any, y—=.
. In this case, the first derivative of the scalar field with
p+p=—2(w—ke 2¢) respect to time takes the form
B+ 24x%z*— 6 6£"x*22(22+ k
=2(ky+7?) d ( y), 5
® 355’ ky+ \/(355’ ky| +6k (4.5
X=—506£'2 s\/|56¢&'z . .
4.1 2 Y 2 y y
+3p=—6(w’+a : ,
pT P 6"+ w) We have to consider the following cases:
36x%z° 3 5515\ 25 30 521N 2hys
_ (8= 6¢"x2) (ky+22)2, 4.2 (A) (53 6¢'zky)>6ky=35(6¢'2)°ky>O(1). Then,x can

B be written as
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355' |<+3S 8| &k|+
X=—-0¢'z -z
2 yroty 28| £'K|

2
if s=+1=x,=——,
= 68’z (4.6

if s=—-1=x_=-—36¢&"zky.

The above values ok have been taken for the cagéek
>0. If we change the sign @f’ according to¢’' ——¢’, we

PHYSICAL REVIEW [39 083512

(@) x=x,.=2/6¢'z. Then, Eq.(2.10 reduces to
. dz 2 86¢"
7=— —=—7° 1——f . 4.7
3(6¢'2)%ky

If 8 6&"13(5¢'2)*ky<O(1), then, rearranging the differen-
tial equations forz andy, we obtain 3 z=zy=z>~y which
is inconsistent with our assumption for the behavioz akar
the singularity. Next, we assume thad§/3(5¢'z)*ky=b

obtainx. — —X- . On the other hand, if we change the sign=0O(1). In the same way, we obtaiz?=y(~? which is

of k in the same way, we are led 0. — ¥ x- . Note that,
apart from the interchangg,«<x_, the only thing that
changes is the absolute sign xofwhich is not going to be

consistent with our assumptions only for-{b)<0. How-
ever, the differential equation for gives the resuly®~%
~(t+c), which leads to the conclusion that the singularity

used in the following analysis. For this reason, we may conis approached only at infinite time and for this reason it must

sider only the caseg’' >0 andk>0.
We are going to study each expressiorxafeparately:

. 85¢" d(z?) 8 (8¢)"
= :> f———
3(6¢)*2%ky Ao 3 (s¢')%ky

o d(z?) ( y' )
y y Jor

8
=Y"(9€')2y—y'%(88)2~y'y 8" 6¢' + 7 5€"y=0.

be excluded. If, finally, 8¢"/3(6¢'2)*ky>O(1), we are
led to

4.9

If we assume thaf(¢) = ¢", the only solution of the above singularity which is approached only at infinite time. The
differential equation, compatible with this assumption, is thethird option, 65¢"ky>O(1), leads to

following:
OL ond = 2 4.9
=— an = == .
T Y
provided that
_ 8D 4 b242bbe Cby=0
17 3kn(2—_n) 2nd P2*2D2b1~3b,=0.
(4.10

But, then, we obtain

y!

——|y=-y'6¢' =—b,=0(1

yag')y 23 2=0(1)
(4.11)

which is inconsistent with our assumption tha8&(z)2%y
>(0(1).
(b) x=x_=—36¢"zky. Then, Eq.(2.10 takes the form

(56’2)2y=(5§’)2< -

._dz
=3¢

If we assume that 8£"ky<O(1) or 66&"ky=b=0(1), we
obtain exactly the same result as in cdae The first as-

(—36&'zky)=—7%(1-66&"ky).  (4.12

dz
= ﬁ(—35§’zky):z265g"ky=>z~_~(5§')*2

(4.13

z

which goes to zero only ifh— . By using the above result
and for £(¢) = ¢" with n>2, the differential equation foy
givesy~ (8¢") " or equivalently5¢”y= (1) which is in-
consistent with our assumption that"y>O(1). For the
special case afi=2, the same equation leadsyte-In ¢ and
consequently todé’ z)2y< (1) which is again inconsistent
with the assumption&¢’z)%y>O(1).

(B) (3 5¢'zky)?<6ky= 2 (6¢'2)%°ky<O(1). Then,x=
+6ky, which means that the following analysis is valid
only for k=+1. The differential equation foz takes the
form

dz =—7— (B-6587y)y . (4.19
4+3(8¢")%y?

Now, we have to consider the following cases concerning
the quantity §¢’y that appears in the denominator of the
above equation:

(@ 6¢'y=a=(0(1). This means thatp)—0 and conse-
quently that6¢"y>O(1). Then, the differential equation for

sumption leads to infinite while the second one leads to a z takes the form

083512-5
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6 56"y2
A

Z= :det\/Kéd(ﬁg’)y\/y, (4.15

PHYSICAL REVIEW D 59 083512

for z, we obtain thatz~ (8¢')* which goes to zero for\
>0,$p—0) or \<0,p—=). The solution of the differential
equation fory is y~ (8&") "1+ ¢ which leads toy= (1) if

where A=4+32a% Since 5¢'y=const, we easily obtain #—> Ortoyse’=0(1) if ¢—0. The first of these results is

d(6¢’)y=—8¢'dy. Then, we find thaz~ \y which once
again leads to a behavior afradically different from the
assumed.

(b) 8¢'y>0O(1). In this case, and according to our as-

sumption thaté(¢)=¢", we can only haves&’y>O(1).
Then, we obtain

dz 45¢"
—_— = —
dé = (s5&)2 46¢"
=X"X+ =0. (4.19
d(=\6y) dx (6¢')?
T d¢ d¢

The only solution of the above differential equation, compat-

ible with our assumption fo&(¢), is the following:

16(n—1)2
n(2—n) °

However, the above result leads &"y~O(1) which is
inconsistent with our assumption that"y>O(1). More-
over, the above solution foris real only ifn<2 which is in
disagreement with our assumption f(r¢).

where b3=

(4.17)

(c) 6¢'y<O(1). Inthis case, the differential equation for

ztakes the simple form=—(2— 2 5¢"y)y. For the assump-
tions 6&"y<O(1) ands¢’'y=b=0O(1), weobtain the result
z°~y which is different from our assumption thagoes to
zero near the singularity. The other optidg'y>O(1), isa
little more complicated as it leads to

dz 3 s

_d¢xz Eéf Yy 55”)(3

d(+\By) dx =x"+ 7 =0. (4.18
T d¢  do

inconsistent with the assumed behavioryafear the singu-
larity while the second one disagrees with our assumption
thatys¢">O(1).

From the study of the first two cased) and (), we
conclude that in a singular cosmological solution the first
derivative of the quantityw cannot remain finite or vanish
near the singularity. The only option left is the adoption of
an infinite value, just likey, which we are going to study
now.

() z—w ¢=any, y—o.

We are going to study the following cases:

(A) (36¢'2)%(Z2+ky)*>6(Z°+ky)=(5¢'2)*(2°+ky)
>(0(1).

As in cas€(ll), the change of sign af’ or z2+ky leads to
the interchangex, < x_ as well as to the change of the ab-
solute sign ofx. However, the sign ok does not appear
anywhere in our analysis while the interchange between the
two expressions ok does not affect our arguments since
both of them are being studied. As a result, we are going to
assume again that both & and z>+ky always take on
positive values. Then, under the above assumption, the quan-
tity x assumes the expressions =2/(6¢'z) and x_=
—36¢z(z%+ky) for s= + 1, respectively.

(a) x=x,.=2/6¢'z. Then,

dz 2 ) 1_§ 5"
3 (8¢'2)%(22+ky) )
(4.2

First, we assume thaf¢"/(8¢'z)*(z2+ky)<O(1). Rear-
ranging the system of differential equations foandy, we
easily obtain thaz?~y which means that the two quantities
have exactly the same behavior near the singularity and, if
necessary, their sum may be writtenzs- ky=az?, where

a is an arbitrary constant. The differential equation for
gives the resulz?= (8¢+c¢) ! which goes to infinity when

274 sz

In the same way, the only solution of the above differential( §¢+ c)— 0. However, we have to check that this limit takes

equation, foré(¢) = ¢", is the following:

Db h b2_6(n+2) 9
X—\/Tg, where Z—W. (4.1 )

This means that the above solution is real only forl
which is inconsistent with our assumption fé(¢).

(C) (3 5¢'zky)?=6ky= 2 (6¢'2)%ky=1la=0O(1).
Then, x=(3\/2)6¢'zky, whereA=—-1++1+a, and Eq.
(2.10 takes the form

: A2

z=—7° (1+2a)—75§"ky . (4.20
Since (6¢'2)%y=0(1), we will always have¢"y>O(1)
independently of the behavior of the scalar fielchear the

place at finite time. From the expressionxpfwe obtain

z_‘fz 6%\/5& c=(8é+c)~(t+c)?  (4.22

which indeed goes to zero in finite time. It is easy to check
further that our basic assumption8&(z)2(z%+ky)>O(1)
and 5&"1(8¢'2)4 (22 +ky)<O(1) are satisfied provided that
8¢’ #0. As a result, we conclude that the solution

1
2y~
0&(p) — 6&(hs)
is an acceptable singular cosmological solution with the sin-

gularity being approached at finite time.
Next, we consider the casé¢"/(8¢'z)*(z2+ky)=b

(4.23

singularity. By using the above in the differential equation=0(1). Since bothz andy are infinite near the singularity
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and in order to satisfy the above constraint, we must have—0. The same holds i&<4/3 and¢— . In both cases,

5¢'—0. The corresponding solution for is z ?=(1

—b)(8é+c). If z2<y, we obtain @&'2)%(z%+ky)
=(8¢'2)%y>O(1) and thatz’~y1~®. Then,
s 3b
— = (8¢ %2~7%y+C. 4.2
o2y 8 (6¢") y (4.24

The above result leads tas¢’z)?y=O(1) which is incon-

sistent with our assumption. Following an exactly similar

analysis, we may show that whef>y or z2~y, the above

integration yields a constraint which is again in obvious dis-

agreement with our assumption thats&(z)2(z2+ky)
>0(1).

Finally, we assume thad¢”(6¢'z)*(z2+ky)>O(1). If,
furthermore z>~y, we may setz’+ky=az? and the differ-
ential equation forz gives z*~(8¢') "2. But this leads to
(6€'2)%(z22+ky)=0(1) which is inconsistent with our as-

the behavior oz is inconsistent with the one that has been
assumed. Ifz>>y, the equation forz gives z~ (5¢') %5
which goes to infinity only whers¢’ —0. But, then,5¢’ 2
~(8£")Y5—0 which does not agree with our assumption.
Finally, if Z2<y, we obtain thaz~ (5¢') 2 which goes to
infinity only if ¢—0. Then, the differential equation for
givesy~(8¢") "1+ c or equivalentlyy §¢”=O(1) which is
inconsistent with our assumption.

(B) (36¢'2)%(Z°+ky)?*>6(2°+ky)=(5¢'2)*(2°+ky)
<0(1).

In this case, the expression ok becomes x=
+/6(z2+ky) while the differential equation foz takes the
form

. [8—66&"(Z2+ky) (22 +ky)
=-721 . (4.2
z Zl " 472+ 3 (8¢ 2)%(22+ ky)? ] (426

sumption. I1fz>>y, we reach the same result as in the case

z2~vy. Finally, the case?<y has been studied ifiiAa) and
has been shown to lead to the resuli&(z)?(z%+ky)
=(@(1) which is inconsistent with our assumption.

(b) x=x_=—36¢"z(z?+ky). In this case, the equation
for z takes the form

iz—zz[ 1

We start by assuming thatdg”(z2+ ky)2/[42°+ (2> + ky) ]
<(0O(1). Then, from the differential equations faandy, we
obtain z2~y which leads tos¢"z2<O(1). Settingz>+ky
=aZz? and integrating the equation far we find thats¢’ z2

1" (-2 2
| 65¢"(Z2+ky) } 25

472+ (22 +ky)

In order to simplify the analysis, we are going to consider
first the possible relation betweed andy and then study
each case separately.

(@ z2~y. Then, the constraint become¥’ z2<O(1)
and the differential equation farreduces to

. 3
z=-7%(1+2a)— EaZag"zz : (4.27)

where we have set’+ky=az’. If we assume thai¢”
<0O(1), the above equation gives the result
~e* (128 ¢/\8a \yhich goes to infinity only ifp— *o. But,

! H s 2
~ ¢+ - - -, from which we conclude that the scalar field mustthen, 8¢’ —< and there is no way that the constraifg’z

go to infinity near the singularity. Unfortunately,
leads t08£"2%~ 8¢" p(5¢') ~1=O(1) which is inconsistent
with 6&"22<O(1).

If we assume that 6¢"(z2+ky)2/[4Z%+ (Z2+ky)]=b
=(O(1) and, furthermore, that’~y, the differential equa-
tion for z gives the results¢’z2~ ¢+ - - -, which goes to

infinity only when¢— . Substituting this in the same equa-

tion, we obtain thaz~ ¢{2a(1—b)}/[(4a+4b—3ab)]. In
order to assure the assumed behavior néar the singular-
ity, we demand the positivity of the exponentf But then
we conclude that’(¢)<¢ which is inconsistent with our
assumption that(¢)=¢" with n>1. For the cas@’>y,
we obtain the same result with=1. Finally, if z2<y, the
two constraints becomé¢é’y>O(1) and 65¢"y=b. From
the differential equation foy, we obtain thaty ¢’ ~ ¢+ - -
-, which again goes to infinity only ith—o. Substituting
this result in the same equation, we find that ¢*(*®)

this result <O(1) can be satisfied. A similar result arises when

3a26¢"2°=b=0(1). If we assume thab&"z>>O(1), we
find thatz>~ (8¢’ +c¢) ! which goes to infinity only when
5¢'+c—0. But, then, the quantity¢’ z? goes to infinity as
well and this is inconsistent with our initial assumption.

(b) Z?>y. In this case, the results are similar to the ones
of the previous case and they easily arise from them if we set
a=1.

(c) Z2<y. In this case, the constraint become¥(z)%y
<O(1) and the differential equation fartakes the form

. (B-65¢ky)ky

z=-7

(4.28
3
4+ 5 (8¢'ky)?

The above equation has been arisen also and studied in

with 4+ b>0. But this leads once again to the inconsistentcase(llB). There, it was shown that, for the cas&sy> or

resulté’ (@) < .

Finally, we consider the case where 68(z>
+ky)?/[4Z2%+ (Z2+ky) > O(1). If Z2~y, the differential
equation for z gives z~(6¢') 2¥(4*a which leads to
S5E' 72~ (8¢")A~3)/(4+a) | we sety=(a—1)z?, the differ-
ential equation fory gives the resulz~ ¢?¥(32=4_|f a
>4/3 and¢— 0, the constrainbé¢’z2> (1) is satisfied but

<(O(1), there was no real solution of the corresponding dif-
ferential equation fox compatible with the assumption that
&(¢p) = ¢" with n=2. On the other hand, for the cagg¢’y
=a=(0(1), wewere led toz~ \/y which is again inconsis-

tent with our assumption thaf<y.

(©) (36¢'2)%(Z+ky)?=6(2+ky)=3(5¢'2)%(2°+ky)
=1/a=0(1).
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Since bothz andy approach infinity near the singularity,
the only way to fulfill the above condition is to hawg
—0. The expression ok becomesx=3\5¢'z(z2+ky),
whereN = — 1%+ /1+a, while the differential equation far
takes the form

_ (8a- S5&"ax?)(z2+ky)

z2 .
4a—8\+4(Z%+ky)/Z?

7=— (4.29
We consider the following cases:

(@ 2~y . Then, we may set’+ky=Bz°=By and the
equation forz reduces to

. 4ap 3N2B26¢"7?
2a—4N+2B 2a—4N+2B]"

z=—-731 (4.30
We assume further thaig”z>< (1) or equivalently that
6&"y<<O(1). Then, the differential equation for gives the
result 5¢’y~ (¢ 1+c) which leads to5¢'y=0O(1) or,
sincey~z?, to 6¢'z%=((1). Substituting this in the above
equation forz, we obtain thaz~e™ B¢, whereB is a combi-
nation ofa, N andp. This means that near the singularity,
z—0 which is inconsistent with the assumed behaviar. ¢f
we assume tha&”z>=b=0(1), we are led teexactly the
same result. Finally, we consider the ca#géz>>(O(1). The
equation forz leads to the resuli~ (5¢')2MA/(2a=4\+25) gng
in order to fulfill the condition thas¢’ z°= (1) we demand
that 2a— 4\ +28+ 4\ B=0. By using the dependence »f

PHYSICAL REVIEW D 59 083512

2 __\j— 1 ~ !
2T SE ) e (o) (t—tg)?’

where ¢4 andtg stand for the value of the scalar field and
time, respectively, at the singularity. Singe=e 2“, the
scale factor of the universe in this case behaves near the
singularity as

(4.32

a(t)~(t—ty)—0 when t—tg (4.33

which corresponds to a linearly expanding universe with a
true cosmological singularity at=ts. During our analysis,

no restriction on the value of the parameitdras been arisen
and, for this reason, the above singularity can be considered
either as an initial or as a final one. Note that the rate of
expansion is much larger that the corresponding ones during
the “radiation” or the “matter” epoch of the standard cos-
mological model. The same result was found in the first sec-
tion in the case of an empty universe. However, when the
presence of the energy momentum tensor of the scalar field
was taken into account the linear dependence of the scale
factor on timet changed into the milder dependence®”>.

Now, after the addition of the Gauss-Bonnet term in the
theory, we find again a scale factor linearly dependent on
time. This could be interpreted in the following way: al-
though the addition of the Gauss-Bonnet term has made the
search for singular cosmological solutions much more com-
plicated, the net result of its presence in the theory is to

on a, we find that the solution of the above algebraic equacancel exactly the contribution of the energy momentum ten-

tion is B=1=—a. This means that?+ky=Bz2=27% or
equivalently thatz?>y which is inconsistent with our as-
sumption.

(b) 22>y . Now, the constraint becomes{’z?)?>=8/3a
while the differential equation for is the same as in the
previous case where we have get 1. The first two options,
namely 6¢"z°<O(1) and 6&"z°=b=0(1), lead to the in-
consistent resulz—0. The third option, 5¢"z?>O(1),

sor of the scalar field leaving behind an “empty,” linearly
expanding universe. The only difference between these two
cases is that while the truly empty universe gives rise only to
an open universe, as one would expect, the virtually
“empty” Gauss-Bonnet universe can be interpreted as a
closed or open universe.

The question which arises next is whether the presence of
the Gauss-Bonnet term affects the singular cosmological so-

leads, as above, to an algebraic equation with the sole sollftions in such a way that they are restricted in only a region

tion a= —1. However, from our constraint, it follows that

of the phase space of the theory leaving some room for the

is always a positive constant which reveals the inconsistencjon-singular ones. The singular solutiq@s32 were deter-

of this solution as well.
(c) Z<y . Then, the differential equation fartakes the
form

. 3\?
z=-7° (1+2a)—75§”y . (4.31)

We start by assuming that¢"y<<O(1). In this case, the
differential equation fory gives the resulté¢’'y~¢+c
=((1) since, as we concluded abovk~0 near the singu-
larity. Then, we obtain thatd¢’ z)2y~ (z%/y)<O(1) which

mined under the assumptiors: 2/6¢'z and 8¢’ #0. Thenx
tends to zero only asymptotically, when the singularity is
approached, keeping a definite sign otherwise. If we assume
that the singular solutions are characterizeck0, then we
must always havet’>0 since & is always positive. If
&(¢) = ¢" with n even, the first derivativé’, and hence, is
positive only if ¢ is positive as well. This leads to the re-
striction of the singular solutions in the positigehalf-plane

in a z-¢ graph leaving the other half for the non-singular
ones. The above argument leads to the selection of even
values ofn since for odd values the first derivative of the

is clearly in disagreement with our initial assumption. Thecoupling function retains always a positive sign, for all val-

same result arises for the ca8¢’y=b=0(1). Finally, we
assume thab¢"y>O(1). Then, as in casédIC), we obtain
thaty~ (8¢") 1+ c or equivalently tha¢”y= (1) which
is again inconsistent with our assumption that"y
>0(1).

ues of ¢, and this leads to the non-confinement of the sin-
gular solutions in a part of the phase space of the theory.
Finally, it is worth noting that for the casds=0 andk
=—1 the singular solutions are restricted not only in the
positive ¢ half-plane forx>0 and §>0 but, moreover, in

So the only singular solution found, with the singularity the positivez quarter-plane. This can be justified if we ex-

occurring at finite time, has the form

amine Eq.(2.9) written in the form
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-10 -5

-20

FIG. 1. The dependence of the quantitpn the scalar fieldp é
for a family of singular and non-singular solutions for the clse
=+1, s=+1 and6=0.5. FIG. 2. The dependence of the scale factaf the universe on
the scalar fieldp for a family of singular and non-singular solutions
(22+ky)(6—35§’zx)=xz. (4.34) for the cas&k=+1, s=+1 and5=0.5.

have analytically proved in the previous section, the singular
golutions, in az¢ graph, are confined in the positivg
half-plane, with thez-axis playing the role of a barricade for
them, since we have chosés 0.5>0. Changing gradually
the boundary conditions of the numerical integration, the sin-
gular solutions cease to exist as we approactzives while

ﬁhe non-singular solutions start to develop and cover the
negative¢ half-plane. According to our analysis of Sec. IV,
the singular solutions are characterized by the simultaneous
givergence of the quantityand of the quantity or, equiva-
ently, the vanishing of the scale factar As we also noted,
both singular and non-singular solutions can traverse the

result, the valug=0 is not an acceptable one for the option ¢-axis and extend at the upper as well as at the lower

k=0 and the singular solutions are again restricted in one Oguarter—plane. The.\./aluz-.=0, fork=+1,1s an acceptable_
the twoz quarter-planes. value for both families since they obey the same equation

(4.34). The dependence of the scale factor of the universe is
displayed in Fig. 2 where the avoidance of the initial as well
V. NUMERICAL ANALYSIS as of the final singularity of the closed universe is obvious.

In this section, we are going to demonstrate numerically}soth Figs. 1 and 2 have been drawn for the chaieet 1.

the existence of non-singular solutions in the presence of théccordlng to our argument of Sec. lll, the solutions, singular

Gauss-Bonnet term in the action functional of the theory.Or not, of Egs(2.10,(2.1) are invariant ur_lder the simulta-
eous change dof ands. This means that if we choose=

The analytical study of the previous section has led to the' _ _ . .
result that the singular solutions, characterized by the occur-, 1, _F|gs_. 1 and 2 will remain unchanged apart from the sign
ring of a cosmological singularity at finite time, exist in the ofzin Fig. 1. . . .
context of the theory but they do not cover the whole phase € @symptotic form of the non-singular solutions, for the
space. As we will see, it is the non-singular solutions of the“@Sek=+1, for early and late times can be found by making
theory that are summoned to fill the rest of the space. use of the ansatz

As we have already mentioned, the coupling function of
the scalar field to the quadratic Gauss-Bonnet term is of the
form £(¢) = ¢" with n even. As an illuminating example, we
are going to assume the simpler case, that#s2, in our
numerical analysis. The system of the differential equation
(2.10,(2.11) together with the algebraic equati@¢@.12) is

numerically integrated yielding a solution fa=w and a
=e®. Since the cask=0 has already been studied in Ref. b=y , +—, (5.2
[7], we are going to concentrate our attention on the other Jé 2 \/m
two cases, namelg=*+1.

The solution for the cade= +1 is depicted in Figs. 1 and where ¢, and w; are arbitrary constants. According to the
2 for a family of singular and non-singular solutions. As we above solution, the asymptotic regiogs— oo correspond

If we assume thak= +1, then the valuez=0 is indeed
acceptable by the above equation which means that, in th
case, the singular solutions can traverse the axig af the
point wherex?= 6y and extend at both the upper and lower
z quarter-planes. On the other handkie — 1, the valuez
=0 must be excluded in order to ensure the reality.dfhis
means that, now, the singular solutions remain confined i
one of the twaz quarter-planes according to the sigredhat
has been initially chosen. Finally, kf= 0, settingz=0 in the
above equation leads to the result that the singular solutio
traverse thep-axis at the point wher@=0. However, this
point is only reached near the singularity where . As a

d=po+ pitP, w=wo+ wqt? (5.1)

Substituting the above expressions in the system of equations
§2.4)—(2.6), we find that the only acceptable non-singular
solution has the form

w3
w==In| =

2t 1 (36
2
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-5

FIG. 3. The dependence of the quantitgn the scalar field for

. . - FIG. 5. The scalar curvatur versus the scalar fiele for a
a family of non-singular solutions for the cake —1, s=—1 and

family of non-singular solutions for the cage=+1, s=+1 and
6=0.5. 5=05

exactly tot— = modulo a constant coefficient. Then, as is L ) ) )
obvious from Fig. 2 as well, the non-singular solutions areSPonding invariance of Eq$2.10,(2.11). According to Fig.

characterized in both limits by the same constarparam- 4 the scale factor adopts a non-vanishing, constant value in
etrized in terms of the parametéror, equivalently by the e limit ¢—ce while it increases rapidly ag— —c. Given
same constant scale fac@rwhich means that our solutions that the dependence of the scalar figddon time t is a
interpolate between the same static Einstein universe witho@mooth function leading to the asymptotic behavipr-
undergoing a cosmological singularity, either initial or final. =* Whent— =, we may conjecture that the non-singular
A family of non-singular solutions, for the choide= open universe interpolates between a static Einstein universe
—1, is depicted in Figs. 3 and 4. As we note in Fig. 3, theat early times and an expand_lng universe at late times.
singularity-free solutions cover the whole positizehalf- In order to complete the picture, we display the graph of
plane without being able to cross teaxis since this would the gravitational scalar curvatui@=g*'R,,= 6w+ 1202
lead to an imaginary value ofaccording to Eq(4.34. The  +6ke 2“ versus the scalar fielep, for the cases of the
singular solutions, although not shown in Fig. 3, cover theclosed and open universe, in Figs. 5 and 6, respectively. The
lower-right-hand-side quarter-plane of the graph, for theabsence of divergences, which implies the absence of cos-
choice §=0.5>0, and they are completely separated frommological singularities, is obvious in both figures. For the
the non-singular ones. In Fig. 4, the dependence of the scalise of the closed univerdes + 1, the scalar curvature in-
factor a on the scalar field is displayed with the absence ofterpolates between two constant valuesgpas + o, while in
the initial singularity of the open universe being obvious.the case of the open univerdes —1, the scalar curvature
Figures 3 and 4 have been drawn for the ch@iee-1. As  adopts a constant value, in the lingt—, reaches a maxi-
in the previous case, the alternative chosce+1 leads to mum value neagp=0 and vanishes quickly as we approach
the same graphs apart from the signzaflue to the corre- the asymptotic regiog— — .

400

5
R(¢)
4 300
a(¢)
N
200
2L
100 | |
1 L
2 4 6 8 1‘0 -10 -5 ; 10 15 20
¢ ¢
FIG. 4. The dependence of the scale fagt@n the scalar field FIG. 6. The scalar curvatur@ versus the scalar fielep for a
for a family of non-singular solutions for the cage=—1, s= family of non-singular solutions for the cage=—1, s=—1 and
—1 andé=0.5. 6=0.5.
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VI. CONCLUSIONS verse which explains the appearance of non-singular cosmo-

. . . ' ogical solutions only for positive values & According to
In this article, we have studied a general field theory tha{he above, in the limi—0, that is when we eliminate the

describes the coupling of a scalar field to higher_Curvatur%auss-Bonnet term from the action functional of the theory

gravqy thro_ugh the quadr(_amc Gauss-Bonnet term. AS We[he asymptotic value of the scale factor goes to zero and we
mentioned in the Introduction, the presence of this term to

the action functional of the superstring effective theory ha recover the singular cosmological solutions of Sec. Ill. For

led to the existence of new black hole solutions and non%-he casek=—1, we may conjecture that the universe inter-

singular cosmological solutions. For reasons that will bepolates bereen_a static E'”St‘?'” universe at early times and
e . . an expanding universe at late times. For both valuds tife
clarified shortly, we have chosen to study a slightly dlfferentabsence of cosmological singularities, a feature that owes its
guadratic gravitational theory where the coupling function istence to the rgsence %f the hi’ her-derivative Gauss-
between the scalar field and the Gauss-Bonnet term has tlﬁé( the pr 9
: o : e onnet term, is obvious.
polynomial formé&(¢) = ¢", with n being a positive integer.

: o . As is well known, similar results arise in the context of
The classical, scalar and gravitational, equations of mo- . . . .
he superstring effective theory where the coupling function

tion were solved initially in the absence of the Gauss-BonneeE o th lar field and the G B (1 has th
term. Assuming a constant or a time-evolving scalar field, w etween he Scalar field an € f-auss-bonnet term has he

determined the cosmological solutions that correspond to alf™™

empty universe or to a universe that is dominated by the

energy-momentum tensor of a scalar field, respectively. In 4

both cases, the cosmological solutions were found to be &(¢)=In[2e’ 7% (ie?)], (6.2)

characterized by, at least, one true cosmological singularity

which could not be avoided if a realistic solution was de-

manded. where 7 is the Dedekind function. However, the above form
In the presence of the Gauss-Bonnet term, the energy coand the polynomial form that we have chosen during this

ditions were shown to be violated, allowing the existence ofarticle share a number of important characteristics. More

non-singular cosmological solutions. Hoe0,+ 1 this vio-  analytically, they are both invariant under the chanfge:

lation holds only for6>0 while for k=—1 the conditions — ¢, they both have a global minimum a&=0 and they

are violated for both signs aof. However, only for6>0 do  both take on an infinite value ag— *=%«. As a result, we

non-singular solutions arise in the context of the theorymay state the following “theorem”Any theory of the form

Next, the equations of motion were solved analytically near2.1) that describes the coupling of a scalar field with the

the region of the cosmological singularity. A family of sin- Gauss-Bonnet term through a coupling function which (i) is

gular cosmological so!utions was detgrminet_j and was ShOWHuaI, (i) has a global minimum and (i) asymptotically

to correspond to a linearly expanding universgf)~(t  tends to infinity may lead to singularity-free cosmological

—ts), with a true cosmological singularity at finite time.  g|ytions Superstring effective theory is a characteristic ex-

This singularity can be considered as an initial or a final O”eample of such a theory but it is not the only one. Another
and the corresponding universe can be interpreted as open oice, as we have demonstrated both analytically and nu-

closed. One of the basic conclusions drawn from this analyfnerically is the theory2.1) with £(#)=¢?" and a number

sis was that these solutions are confined to a part of the phage 5 e native choices may follow as long as the correspond-
space of the theory, leaving the rest of the space for th

fhg coupling functions satisfy the three aforementioned cri-
non-singular ones. This remarkable feature holds only whe ¢ ping v

. . ) ria.
the ncoupllng function has the dual, polynomial foi(i) An important subject which has not been addressed in this
=¢", wheren is an even, integer number.

o , g _ , article is the stability of our singularity-free solutions. Here,

The specific choic&(¢)=¢" was studied numerically e have focused our attention on the existence itself of these
and the solution for the parameterand the scale facto  gqytions. The question of their stability under linear or even
was determined. For both values of the paramiténe sin- o jinear perturbations is an independent subject which still
gular cosmological solutions were confined to a part of thgemains open. If our singularity-free solutions turn out to be
phase space of the theory, as predicted, and completely sepgaple that will constitute a great achievement towards the
rated from the non-singular ones. For the daset 1, itwas  regoution of the initial singularity problem. If, on the other
even possible to find the asymptotic, analytic form of thepang, these solutions turn out to be unstable, their collapse in
non-singular solutions in the limit— <. According to this  {he early universe may have led to the creation of primordial

form and our numerical results, the universe, for the dase 50k holeg10]. We hope to come back to these open ques-
=11, interpolates between the same asymptotic, static Einjons in a future publication.

stein universe with constant scale factor passing through an
intermediate phase of expansion and contraction. By making
use of the asymptotic form of the non-singular solutions
(5.2) for early and late times, we may easily find that the
scale factor asymptotically adopts the valat)=e® P.K. would like to acknowledge financial support from
=/36/2. This means that the coupling parameiqilays the the research prograifdi ENEA-95 of the Greek Ministry of
role of the asymptotic value of the scale factor of the uni-Science and Technology.
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