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Singularity-free cosmological solutions in quadratic gravity
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~Received 23 June 1998; published 25 March 1999!

We study a general field theory of a scalar field coupled to gravity through a quadratic Gauss-Bonnet term
j(f)RGB

2 . The coupling function has the formj(f)5fn, wheren is a positive integer. In the absence of the
Gauss-Bonnet term, the cosmological solutions for an empty universe and a universe dominated by the energy-
momentum tensor of a scalar field are always characterized by the occurrence of a true cosmological singu-
larity. By employing analytical and numerical methods, we show that, in the presence of the quadratic Gauss-
Bonnet term, for the dual case of evenn, the set of solutions of the classical equations of motion in a curved
FRW background includes singularity-free cosmological solutions. The singular solutions are shown to be
confined in a part of the phase space of the theory allowing the non-singular solutions to fill the rest of the
space. We conjecture that the same theory with a general coupling function that satisfies certain criteria may
lead to non-singular cosmological solutions.@S0556-2821~99!01804-4#

PACS number~s!: 98.80.Hw, 04.20.Jb, 04.50.1h, 11.25.Mj
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I. INTRODUCTION

Despite the successes of Einstein’s theory of gravitatio
large distances, a quantum theory of gravity, valid at sup
small distances, requires a more general framework.
present, superstring theory@1# seems to provide the mos
appealing framework for such a theory. Superstring the
leads to the unification of gravity with the other fundamen
forces. It also leads to important modifications of the st
dard cosmology, based on the Einstein action, at short
tances of the order of the Planck length. Although the the
has not been fully developed to the point that a deta
cosmology could be constructed, a number of general c
clusions can be drawn regarding new possibilities that dis
guish string cosmology from the standard model. Modific
tions of gravity of stringy origin can be studied through t
superstring effective action corrected by incorporating lo
anda8 effects. The latter are associated with the contribut
of the infinite tower of massive string modes, while t
former are due to quantum loop effects. Although the f
string theory is approximated only in a perturbative sense
the effective action and this is expected to describe phy
only up to energies where quantum gravitational effe
start becoming dominant, it is hoped that the loop-correc
action captures many of the true features of the exact the
The study of the loop-corrected superstring action has
covered interesting possibilities@2# not realized by the
Einstein-Hilbert action such as the existence of novel sta
dilatonic black holes@3# that circumvent the ‘‘no hair’’
theorem in its restricted sense. There are of course altern
approaches to string cosmology. The absence of cosmo
cal singularities in the presence of higher-curvature ter
in various numbers of spacetime dimensions, has b
pointed out in the literature several times@4#. Another ap-
proach is the pre-big-bang scenario@5# which attempts
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to incorporate features of the exact theory such as dua
symmetries.

A remarkable property of the loop-corrected superstr
effective action in the presence of the dilaton and mod
fields is the existence ofsingularity-free solutions with
flat initial asymptotics@6#. These are linked to theR2 gravi-
tational terms with field-dependent coefficients that a
present. These solutions which avoid the initial singular
are possible for a definite sign of the corresponding tr
anomaly for which the strong energy conditions related
the modulus energy-momentum tensor can be violated. T
start from a flat space-time in the infinite past, they pa
through an inflationary period and they end up as a slo
expanding universe. A general field theory of a scalar fi
coupled to gravity through a quadratic Gauss-Bonnet te
j(f)RGB

2 has also been shown to possess singularity-f
solutions in a spatially flat Friedmann-Robertson-Walk
~FRW! background under very mild assumptions on t
coupling functionj(f) @7#. In a subsequent paper by Easth
and Maeda@8#, the case of a closed FRW universe bas
on the loop-corrected superstring action was also show
lead, via numerical methods, to such singularity-free so
tions.

In the article at hand, being inspired by the superstr
effective theory, we consider a generic theory with a sca
field coupled to gravitation through the higher-curvature q
dratic Gauss-Bonnet term. For simplicity, we keep only t
one-loop gravitational quantities that appear in the act
functional of the superstring effective theory. For the case
a spherically symmetric background that we are going

consider, the other one-loop gravitational quantityRR̃
[hmnklRmn

st Rklst vanishes identically. This model capture
the essential features and was shown to possess non-sin
solutions in the flat case for a general class of coupling fu
tions @7#. Here, we extend the analysis of Ref.@7# to the case
of a curved universe, both open and closed. We develo
purely analytical argument and we manage to show that
singular cosmological solutions, characterized by a true
gularity at finite time, are indeed present in the theory b
©1999 The American Physical Society12-1
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they are confined in a certain part of the phase space o
theory. In this way, the non-singular cosmological solutio
are summoned to fill the rest of the space. These results
radically different from those that follow from the sam
theory when the quadratic Gauss-Bonnet term is absen
that case, as we will show, the singular cosmological so
tions cover the whole phase space of the theory, leaving
room for the existence of non-singular solutions.

The structure of this article is as follows: In Sec. II, w
derive the equations of motion for the scalar and grav
tional fields in a curved FRW background. In Sec. III, w
study the cosmological solutions of the theory when
Gauss-Bonnet term is absent. We consider both the cas
an empty universe and a universe dominated by the ene
momentum tensor of a scalar field. In Sec. IV, we deve
our analytical argument for the existence of non-singu
cosmological solutions in the presence of the Gauss-Bo
term. In Sec. V, a numerical analysis for a specific choice
the coupling function serves as an illuminating example
our theory. The last, short section, Sec. VI, is devoted to
conclusions.

II. EQUATIONS OF MOTION OF THE THEORY

We consider the quadratic coupling of a scalar field w
gravity through the Gauss-Bonnet term which is describ
by the action

S5E d4xA2gH R

2
1

1

2
]mf]mf2

1

16
dj~f!RGB

2 J .

~2.1!

Note thatj(f) is, for the time being, a general couplin
function. The Gauss-Bonnet term is defined as

RGB
2 5RmnrsRmnrs24RmnRmn1R2 ~2.2!

and d, which in superstring effective theory is proportion
to the trace anomaly of the theory, plays the role of a c
pling parameter.

The spacetime background assumes the standard sph
symmetric FRW form

ds25dt22e2v~ t !H dr2

12kr2
1r 2~du21sin2udw2!J ,

~2.3!

wherek50,61 corresponding to a flat, closed and open u
verse, respectively.

Making use of the above metric components and ass
ing further that the scalar fieldf depends solely on the tim
coordinatet, the equations of motion take the form

f̈13ḟv̇224
d f

df
~v̈1v̇2!~v̇21ke22v!50, ~2.4!

2~v̈1v̇2!~118 ḟ v̇ !1~v̇21ke22v!~118 f̈ !1
1

2
ḟ250,

~2.5!
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3~v̇21ke22v!~118 ḟ v̇ !2
ḟ2

2
50, ~2.6!

where f (f)52dj(f)/16. If we set x5ḟ, z5v̇ and y
5e22v, we obtain

ẋ13zx1
3

2
dj8~ ż1z2!~z21ky!50, ~2.7!

~ ż1z2!~422dj8xz!1~z21ky!~22dj9x22dj8ẋ!1x250,
~2.8!

~z21ky!~623dj8xz!2x250. ~2.9!

Rearranging Eqs.~2.7! and ~2.8!, we obtain a new equation
which contains only the time derivative ofz,

ż5
dz

df
x52z22

~22dj9x213dj8zx!~z21ky!1x2

422dj8zx1
3

2
~dj8!2~z21ky!2

,

~2.10!

while from the definition ofy we are led to the following
differential equation:

ẏ5
dy

df
x522yz. ~2.11!

On the other hand, we may solve Eq.~2.9! as an algebraic
equation and writex, the time derivative of the scalar fiel
f, as a function ofz, y anddj8 in the following way:

x52
3

2
dj8z~z21ky!1sA@ 3

2 dj8z~z21ky!#216~z21ky!,

s561. ~2.12!

Note that the set of equations~2.10!,~2.11! is character-
ized by an invariance under the simultaneous change of
signs ofz ands. In order to clarify this point, we suppose th
we have found a solution, for the choices511, described
by the set of equations

ż5
dz

df
x152z22

~22dj9x1
2 13dj8zx1!~z21ky!1x1

2

422dj8zx11 3
2 ~dj8!2~z21ky!2

,

~2.13!

ẏ5
dy

df
x1522yz ~2.14!

wherex1 stands for the value ofx that corresponds to the
choices511. Under the transformationz→2z, the set of
equations~2.13!,~2.14! is replaced by a new one withx2 in
the place ofx1 , wherex2 corresponds to the choices5
21. This means that ifx1 corresponds to a solution~singular
or not! of the equations of motion, thenx2 corresponds to
the same solution with the sign ofz reversed. For this reason
2-2
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SINGULARITY-FREE COSMOLOGICAL SOLUTIONS IN . . . PHYSICAL REVIEW D59 083512
we may keep fixed the sign ofz, e.g.z.0, during the ana-
lytical treatment of the problem.

III. d50 CASE

We first consider the case withd50, that is without the
Gauss-Bonnet term. If we further assume that the scalar
takes on a constant value and setx[ḟ50 in Eqs. ~2.4!–
~2.6!, we obtain

v̇21ke22v50, ~3.1!

v̈1v̇250. ~3.2!

For k50, we obtainv5const, which corresponds to a stat
universe with arbitrary radius. On the other hand, fork5
11, we must havev5const ande2v50 at the same time
which corresponds to a static universe with infinite radi
The only interesting case is the last one,k521, where we
find thatev(t)5a(t);t. This result corresponds to a linearl
eternally expanding universe with an initial singularity, at
50. Note that the rate of expansion is much larger than
the case of the ‘‘radiation’’ (a;t1/2) or the ‘‘matter’’ (a
;t2/3) epoch of the standard cosmological model. This
due to the absence of any matter content of the unive
capable of slowing down the expansion of the universe.

Next, we allow the scalar field to evolve with time (ḟ
Þ0) while keeping the parameterd equal to zero. In this
case, the set of equations~2.10!,~2.11! takes the form

ż5
dz

df
x523z222ky,

ẏ5
dy

df
x522yz, ~3.3!

where

x5sA6~z21ky!, s561. ~3.4!

We are going to study separately the cases of flat and cu
space.

A. Flat space„k50…

The solution of~3.3!,~3.4! with respect to timet takes the
form

ż523z2⇒z~ t !5~c13t !21,

ẏ522yz⇒y~ t !5~c13t !22/3,

ḟ5sA6z⇒f~ t !5sA2

3
ln~c13t !1c8,

~3.5!

where c and c8 are arbitrary constants. The result for th
scale factor of the universe is

ev5a~ t !5~c13t !1/3, ~3.6!
08351
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which corresponds to an expanding universe with a true c
mological singularity at finite time. Note that, here, the ra
of expansion of the universe is smaller than the correspo
ing ones during the two epochs of the standard cosmolog
model. The sole reason for this result is the presence of
energy momentum tensor of the free scalar fieldf on the
right-hand side of the Einstein’s equations which leads to
slowing down of the expansion of the universe in a mo
effective way than the energy momentum tensor of a per
fluid.

B. Curved Space„k561…

In this case, the system~3.3! may be reduced to a singl
equation

ż5
dz

dy
ẏ5

dz

dy
~22yz!523z222ky⇒2ydz23zdy

5
2ky

z
dy. ~3.7!

If we multiply both sides byz/y4, we obtain

dS z2

y3D 5~2k!dS 1

y2D⇒z21ky5c1y3, ~3.8!

wherec1 is a positive constant. Substituting the above in t
differential equation ofy, we get the result

ẏ5
dy

df
x5

dy

df
sA6c1y3522yAy~c1y22k!⇒ ~3.9!

⇒y5
c1k1c2

2 exp$22sA3
2 f%

2c1c2 exp$2sA2
3 f%

. ~3.10!

From the above expression as well as from Eq.~3.9!, it is
evident that there is a further invariance of the solutions
der the interchange of the signs ofs andf. As a result, we
may keep fixed the sign ofs, e.g.s511, while allowingf
to take on both positive and negative values.

A cosmological singularity is encountered whena(t)
→0 or equivalently wheny→`. From the expression
~3.10!, we conclude that, whenk511, y goes to infinity for
f→6` while, for k521, a singular behavior arises onl
for f→2`. Near the singularities, we may evaluate t
approximate expression ofy which can be written in the
following way:

for f→2`⇒y.
c2

2c1
e2A~2/3!f ~ for k561!,

~3.11!

for f→1`⇒y.
k

2c2
eA~2/3!f ~ for k511!.

~3.12!
2-3
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P. KANTI, J. RIZOS, AND K. TAMVAKIS PHYSICAL REVIEW D 59 083512
The corresponding expressions forz can be easily derived
from Eq. ~3.8! and exist only when the solution fory exists
as well. By making use of the differential equation forf, Eq.
~3.4!, we may deduce the dependence of the scalar field
time t near the singularities and, consequently, the exp
sion of the scale factor of the universe in the same reg
Then, we obtain

a~ t !.~c813Ac1t !1/3 ~ for k561!, ~3.13!

a~ t !.~c823Ac1t !1/3 ~ for k511!. ~3.14!

The above expressions describe also a universe with a
cosmological singularity at finite time. We note that fork
511, that is for the case of a closed universe, there
always two branches of singular solutions with vanish
a(t). On the other hand, for the optionsk50,21 which
correspond to the cases of a flat and open universe, res
tively, there is only one branch of singular solutions. Th
result is in perfect agreement with the singularity content
the standard cosmological model. The open and flat u
verses are characterized by only one singularity, the in
one, while in the case of a closed universe we encounter
cosmological singularities, the initial and the final one.

It is also worth noting that, for the choiced50, the group
of singular solutions found above covers the whole ph
space of the theory, leaving no space for the existence
non-singular solutions. The final singularity of the clos
universe~3.14! can be avoided only if we choosek50,21.
On the other hand, the initial singularity~3.13! disappears
only if we setc250. Then, we end up with the totally unre
alistic case of a static universe with infinite radius. As
result, we conclude that, in the absence of the Gauss-Bo
term, the only realistic cosmological solutions that we m
obtain in the framework of the theory~2.1! contain, at least,
one true singularity.

IV. dÞ0 CASE

In this section, we are going to search for non-singu
cosmological solutions in the presence of the quadr
Gauss-Bonnet term in the action functional of the theory
will be useful for our analysis to search for violations of t
energy conditions@9# that indicate the absence of singula
ties. Assuming a perfect fluid form for the energ
momentum tensor of the system, the energy and pressur
defined asT005r,Tii 52pgii . Using the equations of mo
tion ~2.4!–~2.6!, the energy conditions take the form

r1p522~v̈2ke22v!

52~ky1z2!
B124x2z426dj9x4z2~z21ky!

B
,

~4.1!

r13p526~v̇21v̈ !

5
36x2z2

B
~82dj9x2!~ky1z2!2, ~4.2!
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where

B5x4ky15x4z2212x2k2y2224x2kyz2212x2z4

1108kyz4136k3y31108k2y2z2136z6 ~4.3!

and where we have used Eq.~2.5! in order to eliminatedj8.
In this form, we may easily prove that fork50,11 the term
B, being a polynomial with respect tox2 with no real roots, is
always positive definite. Thus the energy conditions can o
be violated, leading to non-singular cosmological solutio
for d.0. Fork521, the analysis is much more complicate
but it can be shown that the energy conditions are viola
for both signs ofd. However, by making use of numerical a
well as analytical arguments, we may show that non-singu
solutions arise only ford.0, too. As a result, in our analysis
we may considerd to be always positive.

Next, we will try to determine all the singular solutions o
the theory with the singularity occurring at finite time, ho
ing that they do not cover the whole phase space, leav
some room for the non-singular ones. The whole treatm
will be analytical, assuming a polynomial dependence of
coupling functionj(f) on the scalar field,j(f)5fn with n
being a positive integer greater than unit. Since a singu
solution is characterized by the vanishing of the scale fac
at some finite time,a(t)[ev(t)→0, we will always demand
that near the singularityy[e22v→`. In the same region
the quantityz[v̇ will be set to approach a constant valu
zero or infinity while the scalar fieldf will be left free to
adopt any possible behavior.

We are going to concentrate our attention on the study
the following cases:

~I! z 5 finite Þ0, f5any, y→`.
If, near the singularity,z remains finite, adopting a con

stant value,z(t)5c, then, from the differential equation fo
y, Eq. ~2.11!, we obtain

ẏ

y
522z⇒y5e22v;e22*z~ t !dt⇒R~ t !;ect ~4.4!

which goes to zero only whenct→2`. This means that the
singularity is approached only at infinite time and for th
reason it must be excluded.

~II ! z→0, f5any, y→`.
In this case, the first derivative of the scalar field wi

respect to time takes the form

x52
3

2
dj8zky1sAS 3

2
dj8zkyD 2

16ky. ~4.5!

We have to consider the following cases:

~A! ( 3
2 dj8zky)2@6ky⇒ 3

8 (dj8z)2ky@O(1). Then,x can
be written as
2-4
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x.2
3

2
dj8zky1

3s

2
zyduj8ku1

2sk

zduj8ku

5H if s511⇒x15
2

dj8z
,

if s521⇒x2523dj8zky.

~4.6!

The above values ofx have been taken for the casej8k
.0. If we change the sign ofj8 according toj8→2j8, we
obtainx6→2x7 . On the other hand, if we change the si
of k in the same way, we are led tox6→7x7 . Note that,
apart from the interchangex1↔x2 , the only thing that
changes is the absolute sign ofx which is not going to be
used in the following analysis. For this reason, we may c
sider only the casesj8.0 andk.0.

We are going to study each expression ofx separately:
th

a

08351
-

~a! x5x152/dj8z. Then, Eq.~2.10! reduces to

ż5
dz

df

2

dj8z
.2z2H 12

8dj9

3~dj8z!4ky
J . ~4.7!

If 8dj9/3(dj8z)4ky!O(1), then, rearranging the differen
tial equations forz andy, we obtain 2yż5zẏ⇒z2;y which
is inconsistent with our assumption for the behavior ofz near
the singularity. Next, we assume that 8dj9/3(dj8z)4ky5b
.O(1). In the same way, we obtainz2.y(12b) which is
consistent with our assumptions only for (12b),0. How-
ever, the differential equation fory gives the resulty(b21)

;(t1c), which leads to the conclusion that the singular
is approached only at infinite time and for this reason it m
be excluded. If, finally, 8dj9/3(dj8z)4ky@O(1), we are
led to
ż5
8dj9

3~dj8!4z2ky
⇒d~z2!

df
5

8

3

~dj!9

~dj8!3ky

ẏ522yz⇒ d~z2!

df
52S y8

ydj8
D 8 6 ⇒y9~dj8!2y2y82~dj8!22y8ydj9dj81

8

3k
dj9y50. ~4.8!
e

t

t

id

ing
e

r

If we assume thatj(f)5fn, the only solution of the above
differential equation, compatible with this assumption, is
following:

y5
b1

dj9
and y85

b2

dj8
~4.9!

provided that

b15
8~n21!2

3kn~22n!
and b2

212b2b12
8

3
b150.

~4.10!

But, then, we obtain

~dj8z!2y5~dj8!2S 2
y8

ydj8
D y52y8dj852b25O~1!

~4.11!

which is inconsistent with our assumption that (dj8z)2y
@O(1).

~b! x5x2523dj8zky. Then, Eq.~2.10! takes the form

ż5
dz

df
~23dj8zky!.2z2~126dj9ky!. ~4.12!

If we assume that 6dj9ky!O(1) or 6dj9ky5b.O(1), we
obtain exactly the same result as in case~a!. The first as-
sumption leads to infinitez while the second one leads to
e
singularity which is approached only at infinite time. Th
third option, 6dj9ky@O(1), leads to

ż5
dz

zf
~23dj8zky!.z26dj9ky⇒z.~dj8!22

~4.13!

which goes to zero only iff→`. By using the above resul
and forj(f)5fn with n.2, the differential equation fory
givesy;(dj9)21 or equivalentlydj9y.O(1) which is in-
consistent with our assumption thatdj9y@O(1). For the
special case ofn52, the same equation leads toy; ln f and
consequently to (dj8z)2y!O(1) which is again inconsisten
with the assumption (dj8z)2y@O(1).

~B! ( 3
2 dj8zky)2!6ky⇒ 3

8 (dj8z)2ky!O(1). Then,x.
6A6ky, which means that the following analysis is val
only for k511. The differential equation forz takes the
form

ż5
dz

df
x.2z22

~826dj9y!y

41 3
2 ~dj8!2y2

. ~4.14!

Now, we have to consider the following cases concern
the quantitydj8y that appears in the denominator of th
above equation:

~a! dj8y5a5O(1). This means thatf→0 and conse-
quently thatdj9y@O(1). Then, the differential equation fo
z takes the form
2-5
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ż.
6dj9y2

A
⇒dz.6

A6

A
d~dj8!yAy, ~4.15!

where A541 3
2 a2. Since dj8y5const, we easily obtain

d(dj8)y52dj8dy. Then, we find thatz;Ay which once
again leads to a behavior ofz radically different from the
assumed.

~b! dj8y@O(1). In this case, and according to our a
sumption thatj(f)5fn, we can only havedj9y@O(1).
Then, we obtain

dz

df
x.

4dj9

~dj8!2

d~6A6y!

df
5

dx

df
52z6 ⇒x9x1

4dj9

~dj8!2
50. ~4.16!

The only solution of the above differential equation, comp
ible with our assumption forj(f), is the following:

x5
b1

Adj9
, where b1

25
16~n21!2

n~22n!
. ~4.17!

However, the above result leads todj9y;O(1) which is
inconsistent with our assumption thatdj9y@O(1). More-
over, the above solution forx is real only ifn,2 which is in
disagreement with our assumption forj(f).

~c! dj8y!O(1). In this case, the differential equation fo
z takes the simple formż.2(22 3

2 dj9y)y. For the assump-
tionsdj9y!O(1) anddj8y5b.O(1), weobtain the result
z2;y which is different from our assumption thatz goes to
zero near the singularity. The other option,dj9y@O(1), is a
little more complicated as it leads to

dz

df
x.

3

2
dj9y2

d~6A6y!

df
5

dx

df
52z

J ⇒x91
dj9x3

24
50. ~4.18!

In the same way, the only solution of the above differen
equation, forj(f)5fn, is the following:

x5
b2

Adj
, where b2

25
6~n12!

~12n!
. ~4.19!

This means that the above solution is real only forn,1
which is inconsistent with our assumption forj(f).

~C! ( 3
2 dj8zky)2.6ky⇒ 3

8 (dj8z)2ky51/a.O(1).
Then, x.(3l/2)dj8zky, wherel5216A11a, and Eq.
~2.10! takes the form

ż52z2H ~112a!2
3l2

2
dj9kyJ . ~4.20!

Since (dj8z)2y.O(1), we will always havedj9y@O(1)
independently of the behavior of the scalar fieldf near the
singularity. By using the above in the differential equati
08351
-

l

for z, we obtain thatz;(dj8)l which goes to zero for (l
.0,f→0) or (l,0,f→`). The solution of the differential
equation fory is y;(dj9)211c which leads toy.O(1) if
f→` or to ydj9.O(1) if f→0. The first of these results i
inconsistent with the assumed behavior ofy near the singu-
larity while the second one disagrees with our assump
that ydj9@O(1).

From the study of the first two cases,~I! and ~II !, we
conclude that in a singular cosmological solution the fi
derivative of the quantityv cannot remain finite or vanish
near the singularity. The only option left is the adoption
an infinite value, just likey, which we are going to study
now.

~III ! z→` f5any, y→`.
We are going to study the following cases:

~A! ( 3
2 dj8z)2(z21ky)2@6(z21ky)⇒(dj8z)2(z21ky)

@O(1).
As in case~II !, the change of sign ofj8 or z21ky leads to

the interchangex1↔x2 as well as to the change of the a
solute sign ofx. However, the sign ofx does not appea
anywhere in our analysis while the interchange between
two expressions ofx does not affect our arguments sinc
both of them are being studied. As a result, we are going
assume again that both ofj8 and z21ky always take on
positive values. Then, under the above assumption, the q
tity x assumes the expressionsx152/(dj8z) and x25
23djz(z21ky) for s561, respectively.

~a! x5x152/dj8z. Then,

ż5
dz

df

2

dj8z
.2z2H 12

8

3

dj9

~dj8z!4~z21ky!
J .

~4.21!

First, we assume thatdj9/(dj8z)4(z21ky)!O(1). Rear-
ranging the system of differential equations forz andy, we
easily obtain thatz2;y which means that the two quantitie
have exactly the same behavior near the singularity and
necessary, their sum may be written asz21ky5az2, where
a is an arbitrary constant. The differential equation forz
gives the resultz25(dj1c)21 which goes to infinity when
(dj1c)→0. However, we have to check that this limit tak
place at finite time. From the expression ofx, we obtain

df

dt
5

2

dj8
Adj1c⇒~dj1c!;~ t1c8!2 ~4.22!

which indeed goes to zero in finite time. It is easy to che
further that our basic assumptions (dj8z)2(z21ky)@O(1)
anddj9/(dj8z)4(z21ky)!O(1) are satisfied provided tha
dj8Þ0. As a result, we conclude that the solution

z2;y;
1

dj~f!2dj~fs!
~4.23!

is an acceptable singular cosmological solution with the s
gularity being approached at finite time.

Next, we consider the casedj9/(dj8z)4(z21ky)5b
.O(1). Since bothz andy are infinite near the singularity
2-6
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SINGULARITY-FREE COSMOLOGICAL SOLUTIONS IN . . . PHYSICAL REVIEW D59 083512
and in order to satisfy the above constraint, we must h
dj8→0. The corresponding solution forz is z225(1
2b)(dj1c). If z2!y, we obtain (dj8z)2(z21ky)
.(dj8z)2y@O(1) and thatz2;y(12b). Then,

dj9

~dj8z!4y
5

3b

8
⇒~dj8!22;z2y1c8. ~4.24!

The above result leads to (dj8z)2y.O(1) which is incon-
sistent with our assumption. Following an exactly simi
analysis, we may show that whenz2@y or z2;y, the above
integration yields a constraint which is again in obvious d
agreement with our assumption that (dj8z)2(z21ky)
@O(1).

Finally, we assume thatdj9(dj8z)4(z21ky)@O(1). If,
furthermore,z2;y, we may setz21ky5az2 and the differ-
ential equation forz gives z4;(dj8)22. But this leads to
(dj8z)2(z21ky).O(1) which is inconsistent with our as
sumption. Ifz2@y, we reach the same result as in the ca
z2;y. Finally, the casez2!y has been studied in~IIAa! and
has been shown to lead to the result (dj8z)2(z21ky)
.O(1) which is inconsistent with our assumption.

~b! x5x2523dj8z(z21ky). In this case, the equatio
for z takes the form

ż.2z2H 12
6dj9~z21ky!2

4z21~z21ky!
J . ~4.25!

We start by assuming that 6dj9(z21ky)2/@4z21(z21ky)#
!O(1). Then, from the differential equations forz andy, we
obtain z2;y which leads todj9z2!O(1). Setting z21ky
5az2 and integrating the equation forz, we find thatdj8z2

;f1•••, from which we conclude that the scalar field mu
go to infinity near the singularity. Unfortunately, this resu
leads todj9z2;dj9f(dj8)21.O(1) which is inconsistent
with dj9z2!O(1).

If we assume that 6dj9(z21ky)2/@4z21(z21ky)#5b
.O(1) and, furthermore, thatz2;y, the differential equa-
tion for z gives the resultdj8z2;f1•••, which goes to
infinity only whenf→`. Substituting this in the same equ
tion, we obtain thatz;f$2a(12b)%/@(4a14b23ab)#. In
order to assure the assumed behavior ofz near the singular-
ity, we demand the positivity of the exponent off. But then
we conclude thatj8(f),f which is inconsistent with our
assumption thatj(f)5fn with n.1. For the casez2@y,
we obtain the same result witha51. Finally, if z2!y, the
two constraints becomedj8y@O(1) and 6dj9y5b. From
the differential equation fory, we obtain thatydj8;f1••

•, which again goes to infinity only iff→`. Substituting
this result in the same equation, we find thaty;f4/(41b)

with 41b.0. But this leads once again to the inconsiste
resultj8(f),f.

Finally, we consider the case where 6dj9(z2

1ky)2/@4z21(z21ky)#@O(1). If z2;y, the differential
equation for z gives z;(dj8)22a/(41a) which leads to
dj8z2;(dj8)(423a)/(41a). If we sety5(a21)z2, the differ-
ential equation fory gives the resultz;f2a/(3a24). If a
.4/3 andf→0, the constraintdj8z2@O(1) is satisfied but
08351
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z→0. The same holds ifa,4/3 andf→`. In both cases,
the behavior ofz is inconsistent with the one that has be
assumed. Ifz2@y, the equation forz gives z;(dj8)22/5

which goes to infinity only whendj8→0. But, then,dj8z2

;(dj8)1/5→0 which does not agree with our assumptio
Finally, if z2!y, we obtain thatz;(dj8)22 which goes to
infinity only if f→0. Then, the differential equation fory
gives y;(dj9)211c or equivalentlyydj9.O(1) which is
inconsistent with our assumption.

~B! ( 3
2 dj8z)2(z21ky)2@6(z21ky)⇒(dj8z)2(z21ky)

!O(1).
In this case, the expression ofx becomes x5

6A6(z21ky) while the differential equation forz takes the
form

ż.2z2H 11
@826dj9~z21ky!#~z21ky!

4z21 3
2 ~dj8z!2~z21ky!2 J . ~4.26!

In order to simplify the analysis, we are going to consid
first the possible relation betweenz2 and y and then study
each case separately.

~a! z2;y. Then, the constraint becomesdj8z2!O(1)
and the differential equation forz reduces to

ż.2z2F ~112a!2
3

2
a2dj9z2G , ~4.27!

where we have setz21ky5az2. If we assume thatdj9
!O(1), the above equation gives the resultz
;e6(112a)f/A6a which goes to infinity only iff→6`. But,
then,dj8→` and there is no way that the constraintdj8z2

!O(1) can be satisfied. A similar result arises wh
3
2 a2dj9z25b.O(1). If we assume thatdj9z2@O(1), we
find that z2;(dj81c)21 which goes to infinity only when
dj81c→0. But, then, the quantitydj8z2 goes to infinity as
well and this is inconsistent with our initial assumption.

~b! z2@y. In this case, the results are similar to the on
of the previous case and they easily arise from them if we
a51.

~c! z2!y. In this case, the constraint becomes (dj8z)2y
!O(1) and the differential equation forz takes the form

ż.2z22
~826dj9ky!ky

41
3

2
~dj8ky!2

. ~4.28!

The above equation has been arisen also and studie
case~IIB !. There, it was shown that, for the casesdj8y@ or
!O(1), there was no real solution of the corresponding d
ferential equation forx compatible with the assumption tha
j(f)5fn with n>2. On the other hand, for the casedj8y
5a.O(1), we were led toz;Ay which is again inconsis-
tent with our assumption thatz2!y.

~C! ( 3
2 dj8z)2(z21ky)2.6(z21ky)⇒ 3

8 (dj8z)2(z21ky)
51/a.O(1).
2-7
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Since bothz andy approach infinity near the singularity
the only way to fulfill the above condition is to havef
→0. The expression ofx becomesx5 3

2 ldj8z(z21ky),
wherel5216A11a, while the differential equation forz
takes the form

ż.2z22
~8a2dj9ax2!~z21ky!

4a28l14~z21ky!/z2
. ~4.29!

We consider the following cases:
~a! z2;y . Then, we may setz21ky5bz25b̃y and the

equation forz reduces to

ż.2z2H 11
4ab

2a24l12b
2

3l2b2dj9z2

2a24l12bJ . ~4.30!

We assume further thatdj9z2!O(1) or equivalently that
dj9y!O(1). Then, the differential equation fory gives the
result dj8y;(f211c) which leads todj8y.O(1) or,
sincey;z2, to dj8z2.O(1). Substituting this in the above
equation forz, we obtain thatz;e2Bf, whereB is a combi-
nation ofa, l andb. This means that near the singularit
z→0 which is inconsistent with the assumed behavior ofz. If
we assume thatdj9z25b.O(1), we are led toexactly the
same result. Finally, we consider the casedj9z2@O(1). The
equation forz leads to the resultz;(dj8)2lb/(2a24l12b) and
in order to fulfill the condition thatdj8z2.O(1) we demand
that 2a24l12b14lb50. By using the dependence ofl
on a, we find that the solution of the above algebraic eq
tion is b5152a. This means thatz21ky5bz25z2 or
equivalently thatz2@y which is inconsistent with our as
sumption.

~b! z2@y . Now, the constraint becomes (dj8z2)258/3a
while the differential equation forz is the same as in the
previous case where we have setb51. The first two options,
namelydj9z2!O(1) anddj9z25b.O(1), lead to the in-
consistent resultz→0. The third option, dj9z2@O(1),
leads, as above, to an algebraic equation with the sole s
tion a521. However, from our constraint, it follows thata
is always a positive constant which reveals the inconsiste
of this solution as well.

~c! z2!y . Then, the differential equation forz takes the
form

ż.2z2H ~112a!2
3l2

2
dj9yJ . ~4.31!

We start by assuming thatdj9y!O(1). In this case, the
differential equation fory gives the resultdj8y;f1c
.O(1) since, as we concluded above,f→0 near the singu-
larity. Then, we obtain that (dj8z)2y;(z2/y)!O(1) which
is clearly in disagreement with our initial assumption. T
same result arises for the casedj9y5b.O(1). Finally, we
assume thatdj9y@O(1). Then, as in case~IIC!, we obtain
that y;(dj9)211c or equivalently thatdj9y.O(1) which
is again inconsistent with our assumption thatdj9y
@O(1).

So the only singular solution found, with the singulari
occurring at finite time, has the form
08351
-

lu-

cy

z2;y;
1

dj~f!2dj~fs!
;

1

~ t2ts!
2

, ~4.32!

wherefs and ts stand for the value of the scalar field an
time, respectively, at the singularity. Sincey[e22v, the
scale factor of the universe in this case behaves near
singularity as

a~ t !;~ t2ts!→0 when t→ts ~4.33!

which corresponds to a linearly expanding universe with
true cosmological singularity att5ts . During our analysis,
no restriction on the value of the parameterk has been arisen
and, for this reason, the above singularity can be conside
either as an initial or as a final one. Note that the rate
expansion is much larger that the corresponding ones du
the ‘‘radiation’’ or the ‘‘matter’’ epoch of the standard cos
mological model. The same result was found in the first s
tion in the case of an empty universe. However, when
presence of the energy momentum tensor of the scalar
was taken into account the linear dependence of the s
factor on timet changed into the milder dependence;t1/3.
Now, after the addition of the Gauss-Bonnet term in t
theory, we find again a scale factor linearly dependent
time. This could be interpreted in the following way: a
though the addition of the Gauss-Bonnet term has made
search for singular cosmological solutions much more co
plicated, the net result of its presence in the theory is
cancel exactly the contribution of the energy momentum t
sor of the scalar field leaving behind an ‘‘empty,’’ linear
expanding universe. The only difference between these
cases is that while the truly empty universe gives rise only
an open universe, as one would expect, the virtua
‘‘empty’’ Gauss-Bonnet universe can be interpreted as
closed or open universe.

The question which arises next is whether the presenc
the Gauss-Bonnet term affects the singular cosmological
lutions in such a way that they are restricted in only a reg
of the phase space of the theory leaving some room for
non-singular ones. The singular solutions~4.32! were deter-
mined under the assumptionsx52/dj8z anddj8Þ0. Then,x
tends to zero only asymptotically, when the singularity
approached, keeping a definite sign otherwise. If we ass
that the singular solutions are characterized byx.0, then we
must always havej8.0 since d is always positive. If
j(f)5fn with n even, the first derivativej8, and hencex, is
positive only if f is positive as well. This leads to the re
striction of the singular solutions in the positivef half-plane
in a z-f graph leaving the other half for the non-singul
ones. The above argument leads to the selection of e
values ofn since for odd values the first derivative of th
coupling function retains always a positive sign, for all va
ues off, and this leads to the non-confinement of the s
gular solutions in a part of the phase space of the theory

Finally, it is worth noting that for the casesk50 andk
521 the singular solutions are restricted not only in t
positive f half-plane forx.0 andd.0 but, moreover, in
the positivez quarter-plane. This can be justified if we e
amine Eq.~2.9! written in the form
2-8
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SINGULARITY-FREE COSMOLOGICAL SOLUTIONS IN . . . PHYSICAL REVIEW D59 083512
~z21ky!~623dj8zx!5x2. ~4.34!

If we assume thatk511, then the valuez50 is indeed
acceptable by the above equation which means that, in
case, the singular solutions can traverse the axis off at the
point wherex256y and extend at both the upper and low
z quarter-planes. On the other hand, ifk521, the valuez
50 must be excluded in order to ensure the reality ofx. This
means that, now, the singular solutions remain confined
one of the twoz quarter-planes according to the sign ofz that
has been initially chosen. Finally, ifk50, settingz50 in the
above equation leads to the result that the singular solut
traverse thef-axis at the point wherex50. However, this
point is only reached near the singularity wherez→`. As a
result, the valuez50 is not an acceptable one for the optio
k50 and the singular solutions are again restricted in on
the twoz quarter-planes.

V. NUMERICAL ANALYSIS

In this section, we are going to demonstrate numerica
the existence of non-singular solutions in the presence of
Gauss-Bonnet term in the action functional of the theo
The analytical study of the previous section has led to
result that the singular solutions, characterized by the oc
ring of a cosmological singularity at finite time, exist in th
context of the theory but they do not cover the whole ph
space. As we will see, it is the non-singular solutions of
theory that are summoned to fill the rest of the space.

As we have already mentioned, the coupling function
the scalar field to the quadratic Gauss-Bonnet term is of
form j(f)5fn with n even. As an illuminating example, w
are going to assume the simpler case, that isn52, in our
numerical analysis. The system of the differential equati
~2.10!,~2.11! together with the algebraic equation~2.12! is
numerically integrated yielding a solution forz[v̇ and a
5ev. Since the casek50 has already been studied in Re
@7#, we are going to concentrate our attention on the ot
two cases, namelyk561.

The solution for the casek511 is depicted in Figs. 1 and
2 for a family of singular and non-singular solutions. As w

FIG. 1. The dependence of the quantityz on the scalar fieldf
for a family of singular and non-singular solutions for the casek
511, s511 andd50.5.
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have analytically proved in the previous section, the singu
solutions, in az-f graph, are confined in the positivef
half-plane, with thez-axis playing the role of a barricade fo
them, since we have chosend50.5.0. Changing gradually
the boundary conditions of the numerical integration, the s
gular solutions cease to exist as we approach thez-axis while
the non-singular solutions start to develop and cover
negativef half-plane. According to our analysis of Sec. IV
the singular solutions are characterized by the simultane
divergence of the quantityz and of the quantityy or, equiva-
lently, the vanishing of the scale factora. As we also noted,
both singular and non-singular solutions can traverse
f-axis and extend at the upper as well as at the lowez
quarter-plane. The valuez50, for k511, is an acceptable
value for both families since they obey the same equa
~4.34!. The dependence of the scale factor of the univers
displayed in Fig. 2 where the avoidance of the initial as w
as of the final singularity of the closed universe is obvio
Both Figs. 1 and 2 have been drawn for the choices511.
According to our argument of Sec. III, the solutions, singu
or not, of Eqs.~2.10!,~2.11! are invariant under the simulta
neous change ofz and s. This means that if we chooses5
21, Figs. 1 and 2 will remain unchanged apart from the s
of z in Fig. 1.

The asymptotic form of the non-singular solutions, for t
casek511, for early and late times can be found by maki
use of the ansatz

f5f01f1tb, v5v01v1ta. ~5.1!

Substituting the above expressions in the system of equat
~2.4!–~2.6!, we find that the only acceptable non-singul
solution has the form

f5f01
2t

Ad
, v5

1

2
lnS 3d

2 D1
v1

Autu
, ~5.2!

wheref0 and v1 are arbitrary constants. According to th
above solution, the asymptotic regionsf→6` correspond

FIG. 2. The dependence of the scale factora of the universe on
the scalar fieldf for a family of singular and non-singular solution
for the casek511, s511 andd50.5.
2-9
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exactly tot→6` modulo a constant coefficient. Then, as
obvious from Fig. 2 as well, the non-singular solutions a
characterized in both limits by the same constantv param-
etrized in terms of the parameterd or, equivalently by the
same constant scale factora, which means that our solution
interpolate between the same static Einstein universe with
undergoing a cosmological singularity, either initial or fin

A family of non-singular solutions, for the choicek5
21, is depicted in Figs. 3 and 4. As we note in Fig. 3, t
singularity-free solutions cover the whole positivez half-
plane without being able to cross thef-axis since this would
lead to an imaginary value ofx according to Eq.~4.34!. The
singular solutions, although not shown in Fig. 3, cover
lower-right-hand-side quarter-plane of the graph, for
choice d50.5.0, and they are completely separated fro
the non-singular ones. In Fig. 4, the dependence of the s
factor a on the scalar field is displayed with the absence
the initial singularity of the open universe being obviou
Figures 3 and 4 have been drawn for the choices521. As
in the previous case, the alternative choices511 leads to
the same graphs apart from the sign ofz due to the corre-

FIG. 4. The dependence of the scale factora on the scalar field
for a family of non-singular solutions for the casek521, s5
21 andd50.5.

FIG. 3. The dependence of the quantityz on the scalar field for
a family of non-singular solutions for the casek521, s521 and
d50.5.
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sponding invariance of Eqs.~2.10!,~2.11!. According to Fig.
4, the scale factor adopts a non-vanishing, constant valu
the limit f→` while it increases rapidly asf→2`. Given
that the dependence of the scalar fieldf on time t is a
smooth function leading to the asymptotic behaviorf→
6` when t→7`, we may conjecture that the non-singul
open universe interpolates between a static Einstein univ
at early times and an expanding universe at late times.

In order to complete the picture, we display the graph
the gravitational scalar curvatureR5gmnRmn56v̈112v̇2

16ke22v versus the scalar fieldf, for the cases of the
closed and open universe, in Figs. 5 and 6, respectively.
absence of divergences, which implies the absence of
mological singularities, is obvious in both figures. For t
case of the closed universe,k511, the scalar curvature in
terpolates between two constant values, asf→6`, while in
the case of the open universe,k521, the scalar curvature
adopts a constant value, in the limitf→`, reaches a maxi-
mum value nearf50 and vanishes quickly as we approa
the asymptotic regionf→2`.

FIG. 6. The scalar curvatureR versus the scalar fieldf for a
family of non-singular solutions for the casek521, s521 and
d50.5.

FIG. 5. The scalar curvatureR versus the scalar fieldf for a
family of non-singular solutions for the casek511, s511 and
d50.5.
2-10
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VI. CONCLUSIONS

In this article, we have studied a general field theory t
describes the coupling of a scalar field to higher-curvat
gravity through the quadratic Gauss-Bonnet term. As
mentioned in the Introduction, the presence of this term
the action functional of the superstring effective theory h
led to the existence of new black hole solutions and n
singular cosmological solutions. For reasons that will
clarified shortly, we have chosen to study a slightly differe
quadratic gravitational theory where the coupling functi
between the scalar field and the Gauss-Bonnet term ha
polynomial formj(f)5fn, with n being a positive integer

The classical, scalar and gravitational, equations of m
tion were solved initially in the absence of the Gauss-Bon
term. Assuming a constant or a time-evolving scalar field,
determined the cosmological solutions that correspond to
empty universe or to a universe that is dominated by
energy-momentum tensor of a scalar field, respectively
both cases, the cosmological solutions were found to
characterized by, at least, one true cosmological singula
which could not be avoided if a realistic solution was d
manded.

In the presence of the Gauss-Bonnet term, the energy
ditions were shown to be violated, allowing the existence
non-singular cosmological solutions. Fork50,11 this vio-
lation holds only ford.0 while for k521 the conditions
are violated for both signs ofd. However, only ford.0 do
non-singular solutions arise in the context of the theo
Next, the equations of motion were solved analytically n
the region of the cosmological singularity. A family of sin
gular cosmological solutions was determined and was sh
to correspond to a linearly expanding universe,a(t);(t
2ts), with a true cosmological singularity at finite timets .
This singularity can be considered as an initial or a final o
and the corresponding universe can be interpreted as op
closed. One of the basic conclusions drawn from this an
sis was that these solutions are confined to a part of the p
space of the theory, leaving the rest of the space for
non-singular ones. This remarkable feature holds only w
the coupling function has the dual, polynomial formj(f)
5fn, wheren is an even, integer number.

The specific choicej(f)5f2 was studied numerically
and the solution for the parameterz and the scale factora
was determined. For both values of the parameterk, the sin-
gular cosmological solutions were confined to a part of
phase space of the theory, as predicted, and completely s
rated from the non-singular ones. For the casek511, it was
even possible to find the asymptotic, analytic form of t
non-singular solutions in the limitt→6`. According to this
form and our numerical results, the universe, for the cask
511, interpolates between the same asymptotic, static
stein universe with constant scale factor passing through
intermediate phase of expansion and contraction. By mak
use of the asymptotic form of the non-singular solutio
~5.2! for early and late times, we may easily find that t
scale factor asymptotically adopts the valuea(t)[ev

.A3d/2. This means that the coupling parameterd plays the
role of the asymptotic value of the scale factor of the u
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verse which explains the appearance of non-singular cos
logical solutions only for positive values ofd. According to
the above, in the limitd→0, that is when we eliminate the
Gauss-Bonnet term from the action functional of the theo
the asymptotic value of the scale factor goes to zero and
recover the singular cosmological solutions of Sec. III. F
the casek521, we may conjecture that the universe inte
polates between a static Einstein universe at early times
an expanding universe at late times. For both values ofk, the
absence of cosmological singularities, a feature that owe
existence to the presence of the higher-derivative Ga
Bonnet term, is obvious.

As is well known, similar results arise in the context
the superstring effective theory where the coupling funct
between the scalar field and the Gauss-Bonnet term has
form

j~f!5 ln@2efh4~ ief!#, ~6.1!

whereh is the Dedekind function. However, the above for
and the polynomial form that we have chosen during t
article share a number of important characteristics. M
analytically, they are both invariant under the changef→
2f, they both have a global minimum atf50 and they
both take on an infinite value asf→6`. As a result, we
may state the following ‘‘theorem’’:Any theory of the form
~2.1! that describes the coupling of a scalar field with th
Gauss-Bonnet term through a coupling function which (i)
dual, (ii) has a global minimum and (iii) asymptoticall
tends to infinity may lead to singularity-free cosmologic
solutions. Superstring effective theory is a characteristic e
ample of such a theory but it is not the only one. Anoth
choice, as we have demonstrated both analytically and
merically, is the theory~2.1! with j(f)5f2n and a number
of alternative choices may follow as long as the correspo
ing coupling functions satisfy the three aforementioned c
teria.

An important subject which has not been addressed in
article is the stability of our singularity-free solutions. Her
we have focused our attention on the existence itself of th
solutions. The question of their stability under linear or ev
non-linear perturbations is an independent subject which
remains open. If our singularity-free solutions turn out to
stable, that will constitute a great achievement towards
resolution of the initial singularity problem. If, on the othe
hand, these solutions turn out to be unstable, their collaps
the early universe may have led to the creation of primord
black holes@10#. We hope to come back to these open qu
tions in a future publication.
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