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We study the general structure of models for structure formation, with applications to the reverse engineer-
ing of the model from observations. Through a careful accounting of the degrees of freedom in covariant
gravitational instability theory, we show that the evolution of structure is completely specified by the stress
history of the dark sector. The study of smooth, entropic, sonic, scalar anisotropic, vector anisotropic, and
tensor anisotropic stresses reveals the origin, robustness, and uniqueness of specific model phenomenology.
We construct useful and illustrative analytic solutions that cover cases with multiple species of differing
equations of state relevant to the current generation of models, especially those with effectively smooth
components. We present a simple case study of models with phenomenologies similar to thiaCbiva
model to highlight reverse-engineering issues. A critical-density universe dominated by a single type of dark
matter with the appropriate stress history can mimit@DM model exactly]S0556-282(99)04208-3

PACS numbd(s): 95.35+d

[. INTRODUCTION are in most cases new or substantially more general than
those found in the literature. In particular, we derive master
How does one reverse engineer a model for structure forsolutions for models which contain multiple components
mation from observed phenomena? How unique is such awith arbitrary equations of state and smooth, entropic, aniso-
inversion? How robust are the phenomenological distinctiongopic, and sonic stresses. . .
between broad classes of models? With the wealth of high- We begin in Sec. Il with an overview of the basic ele-
precision cosmological data expected in the near future fromfents of a structure formation theory and their traditional
the cosmic microwave backgroum@MB), ga]axy surveys, classification in terms of their initial Conditions, perturbation
and the high redshift universe, the simple initio models ~ type, and clustering properties. We then present a concise but
for structure formation Current'y Considered may be ru|e(genera.| treatment of linear pel’turbation theory in SeC.. Il and
out, forcing us to confront these difficult issues. In this paperdauge issues in Sec. IV. Although these are well-studied sub-
we take the first steps toward answering this question byects(see e.g[1-3]), our treatment has several pedagogical
examining from a general standpoint what makes a model fopnd practical_virtues. It keeps careful 'grack of the degrees of
structure formation behave as it does in linear perturbatioffeedom available to structure formation models and hence
theory. provides a unified treatment applicable to all models, includ-
A model for structure formation is completely specified INg those containing exotic matter like scalar fields or cos-
by its initial conditions and the full temporal and spatial Mological defects. We also explicitly maintain general cova-
behavior of the stresses in its dark sector. The dark sectdiance such that the equations apply, and may be easily
contains the elements in the model that do not interact witiPecialized, to any choice of coordinates or gauge. In Sec. V,
the photons at any observable redshift. It can include, but i¥/e define general classes of stress perturbations and present
not limited to, cold dark mattefCDM), neutrinos, and cos- an overview of their conversion into observables.
mological defects. The remainder of the paper deals with stress histories on a
Unfortunately, the stress history of the dark sector is bycase by case basis. The simplest case involves smooth
definition not directly observable. Its effects come filteredstresses, and we present detailed analytic solutions in Sec. VI
through gravity as mediated by metric fluctuations. Thethat apply to a wide range of models—from simple cosmo-
translation of metric fluctuations into observables in thelogical constant and cold dark matter modelsGDM) to
CMB and evolution of structure is well understood. There-massive neutrino and scalar field models. Pure anisotropic,
fore, the main hurdle in the task of reconstructing a modeEntropic, and sonic stresses are treated in Sec. VIl and mixed
from observations is to understand how stress histories tran§ases in Sec. VIII. To highlight reverse-engineering issues,
late into metric fluctuations and vice versa. we study single-component, critical-density dark matter
Our general philosophy here is to start from elements ofmodels with phenomenologies that mimic th€DM model
the cosmological model that will likely survive the onslaughtin Sec. IX. We conclude in Sec. X by re-examining the tra-
of data: general relativity and a universe whose deviationglitional classification scheme of Sec. Il in light of the phe-
from homogeneity and isotropy are |n|t|a||y small. We pro- nomenological distinctions uncovered in this work.
ceed down the theory pipeline to existing models of structure
formation, making explicit the places where assumptions are [l. CLASSIFICATION OF THEORIES
made and hence could be altered. Where possible, we pro-
vide analytic solutions and approximations that highlight cer-
tain generic behavior and phenomena. These solutions are Perhaps the most fundamental difference between models
useful for describing the behavior of the existing models andor structure formation lies with their initial conditions. Cur-

A. Initial conditions
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rently, inflation is the only known means of laying down S/ST SVT

large-scale density or curvature perturbations in the early AXI Defect

universe. Indeed, inflation in the more general sense of a s {CDM

period of superluminal expansion is required for the causal a

generation of large-scale power. It provides a means of con- 2= B §

necting parts of the universe that are currently space-like 8 sCDM SIC 12 g

separated, i.e. outside the current particle horizon. Models m 5 n%

with initial curvature perturbations are usually called “adia- ~ < < [ocDM HCDM, eb

batic” models. o _ 2 g8 “’j{’éﬁcﬁ“ sico, |£ 5
All other causal models begin with no density or curva- f/,{/._O. o OACD.GDM, | g 2

ture fluctuations on large scales and are hence called <, o) e 20

“isocurvature” models. In thesg r_nodels, stre_ss gradients O/;O', Passive . Active

causally move matter around inside the horizon to form * Perturbation Type

large-scale Strqcture. hani i< al ible for d FIG. 1. Taxonomy of structure formation. Models can be clas-
The generation mechanism is also responsible for eters“lfied by their initial conditiongadiabatic or isocurvatuyepertur-

mining the spectrum and statistics of the fluctuations. Theation type(passive or active and clustering properties of the dark
simplest inflationary models predict a nearly scale-invariantatter(clustered or smooth on large-scale structure staRassive

and Gaussian distribution of fluctuatiop® but higher order fluctuations involve stress responses to other perturbations and can
effects can break scale-invariance and generate norsupport scala¢‘S” ) or scalar and tensgf'ST” ) components. Ac-
Gaussianity[5,6]. Defect perturbations are intrinsically non- tive stresses generate fluctuations and generally possess vector com-
Gaussian but are typically also scale-invariant in the generonents as well*SVT" ). We will examine the extent to which this
alized sense of “scaling’[7]. We are primarily concerned traditional categorization is useful in predicting model phenomenol-
here with the evolution of fluctuations from their initial state ©9Y-

through the linear regime and do not consider these issugs observable effect. Nevertheless, such models generally
further. Note that changes in the spectrum of' perturbationfiave all three types of perturbatiofisSVT" )
are simple to include in linear theory as evolutionary effects

can be factored out into so-called “transfer functions.” C. Clustering properties of dark matter

Finally, the nature of the dark components affects the evo-
lution of perturbations. We define as “dark” any component

The perturbation type for the metric and matter fluctua-that interacts with the CMB photons only gravitationally.
tions is the next most important distinction. A general linearThus, even massless neutrinos are classified as dark matter in
fluctuation can be decomposed into scalar, vector and tensthis scheme.
components. These manifest themselves as density, vorticity, Stresses in the dark components change the evolution of
and gravitational wave perturbations respectively and do ndhe mean density with time and the response of the matter to
interact in linear theory. The scalar modes are the only one@ravitational compression. We will loosely type models
that grow through gravitational instability. Vector modes, onWhose expansion rate is driven by a compressible type of
the other hand, always decay with the expansion. They caffatter (on scales relevant to cosmological structiras
only be actively generated by shearifay anisotropig stress “clustered” models and those which possess matter that is

in the manner. Tensor modes are intermediate. Left to then{lcOMPressible as “smooth” models. We shall see that this

selves, they propagate as gravity waves, but they generagéstinction is in fact rather inexact as it is not time invariant:

and can be generated by transverse-traceigsadrupolar essenua_lly all models pass through phases when they would
. be considered smooth or clustered on the relevant scale.
stresses in the matter.

The simplest inflationary models possess only scalar
(*S™) fluctuations, and tensor fluctuations are generally cos-
mologically negligible in models with energy scales substan- The key to understanding the phenomenology of a given
tially below the Planck scalg8]. However, models whose model for structure formation is the evolution of metric fluc-
initial conditions contain both scalar and ten§t8T” ) fluc-  tuations, in particular the Newtonian gravitational potential.
tuations are possible. Models with only S or ST generallyits qualitative behavior is determined by the initial condi-
have stresses that may be defined as functions of the metritipns, perturbation type, and dark matter content of the
density and velocity perturbations and hence may be viewethodel. We illustrate this taxonomy scheme in Fig. 1.
as “passive” responses through equations of state. The behavior of the gravitational potential is directly re-

“Active” models have stresses that are a consequence dated to the evolution of density perturbations through the
complex internal dynamics in the dark sector that cannot b&oisson equation. Once its evolution is determined as a func-
simply specified as responses to gravitational perturbationsion of scale, not only is the present large-scale structure of
Although this definition is not precise for scalar and tensorthe universe determined but also the whole time history of
modes, the very presence of vector modes indicates an actigtructure formation. The latter is important for predicting the
source because these must be continuously generated to hgyeperties and abundances of high-redshift objects.

B. Perturbation type

D. Phenomenology
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The gravitational potential also generates CMB anisotroamples where the additional component is smooth on all
pies through gravitational redshiff®] and is the ultimate scales and for all time by definition. Variants where the mat-
source of all anisotropies from scalar perturbations. CMBter is only smooth on small scales include the hot and cold
phenomenology can be essentially read off of the time evodark matteHCDM) model[e.g.[12] also called G- HDM
lution of the gravitational potentidl10], although this in- and mixed dark mattefMDM)] with a component of hot
volves understanding the back reaction from density perturdark matter, thepCDM model[13] with a scalar field com-
bations in the CMB itself11]. ponent¢ that tracks the background behavior of the matter,

Similar but simpler considerations apply for vector and@nd QCDM[14,15 with a general scalar field“quintes-
tensor metric perturbations. They also generate anisotropie§ce”). In a string-dominated universstrCDM) [16], the

via gravitational redshifts but do not have unstable modeStind network plays the role of a smooth component with
-ﬁhe same equation of state as spatial curvature. Of course,

and hence do not affect large-scale structure formation i . !
one can have multiple smooth species as well, e JCOM.

linear theory. .
The difference between adiabatic and isocurvature model-ghe generalized DMGDM) class of model§17] phenom-

: ) . . L énologically parametrizes all such models.
plays a direct role in metric evolution because initial curva-

ture (or gravitational potentialperturbations are present in Replacing the CDM with GDM of a different equation of
ure (or gravitational pote perturbations are prese state but no stress perturbations is a phenomenological pos-

one and absent in the other. The perturbation type Changes?bility (GDM) suggested by17]. This is an adiabatic, pas-

the ratio of CMB anisotropies to large-scale structure. Fi'sive, and clustered variant of CDM. We will use the desig-

nally, the dark matter properties affect the evolution of the,stion “CDMV” to represent all such variants of the CDM
gravitational potentials. Smooth components by definition dgy,oqe|.

not contribute to the gravitational potential but do contribute  |gocurvature models have been proposed as alternatives to
to the expansion rate. Th'ey _slow down t'he growth of strucipe “cCDMv” class of models. The simplest examples are
ture and cause the gravitational potential to decay. Hencg,gse in which the initial stress fluctuations are established
they decrease t_he amount of structure and increase the Iarg@y balancing the density perturbations of two different types
angle anisotropies of the CMB. , of matter. Examples include the axion isocurvat(ee|)

~ In'summary, the observable properties of structure formafls] model and the primordial isocurvature bary@RIB)

tion models are encapsulated in the time evolution of thenogel[19], where radiation density fluctuations are balanced
metric fluctuations. This in turn is governed by the stress,y axjons and baryons, respectively. The simplest versions
properties of the matter through both its initial conditionsjn,olve only scalar fluctuations and hence are paséigg )

and intrinsic properties. models. Models with and without smooth cosmological con-
stant or spatial curvature components have been proposed.
E. Current model zoo Versions with Gaussian power-law initial conditions are ob-

The archetypal model for structure formation is the stan-Servationally challengeld 8,21 but more complicated varia-
dard cold dark matter modésCDM), which is an adiabatic, tions exist[20]. Based on our work, one of us has con-
passive, and clustered model. Here, an initial scale-invariarfitructed an isocurvature decaying dark mai@bM) model
spectrum of adiabatic scaldtS” ) perturbations collapses that defies conventional wisdom on isocurvature models and
via the gravitational instability of pressureless cold dark mat=Solves these observational problefag]. _
ter. Although this model is no longer viable from an obser-  Finally, topological defect models such as strings and tex-
vational standpoint, it predicts phenomena sufficiently simi-tures fall into the isocurvature class but have fluctuations that
lar to the observations to act as a good starting point fofe active(*SVT" ). The simplest versions obey scaling and
model building. One of its failings is that it predicts too

much small-scale power for the level of CMB anisotropies Einstein Equations
demanded by the Cosmic Background Expld@OBE) de- Gyy=8nGTyy
tection.

A simple variation of the sCDM model that attempts to
address this problem involves tilting the initial spectrum of
scalar perturbationgtCDM) to reduce small-scale power
relative to large. Under certain inflationary scenarios, this
brings about the addition of tensor perturbations that further

reduce small-scale density perturbations relative to the s - )
COBE detection. Such a model would be a “ST” variant of
SCDM.

The second class of variations involves changing the mat- £ 2 scalar, vector, tensor decomposition. At the top of the

ter content so as to suppress the clustering of matter, yieldingee of possibilities for structure formation models is the assumption
a “smooth” variant. The prototypical example is theCDM  {hat general relativity holds in the cosmological context and the
model, where an additional component of matter that doegniverse is homogeneous and isotropic in the mean with linear per-
not cluster replaces most of the CDM. Another example igurbations initially. Without further assumptions, the linear fluctua-
the “open” OCDM model where spatial curvature plays the tions may be expanded in scalar, vector, and tensor modes that do
role of the smooth component. Those two represent exaot interact while the fluctuations remain linear.

FRW Background
+

Linear Perturbations
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Scalar Perturbations
Stress + Smooth —> ACurvature

¥ 3
Stress Free | Scalar Stress Stress Free Anisotropic Stress
S, Sp<< S, Syt H 825> (p/pe)TTE) H2) S (p/pen)TTED
FIG. 3. Scalar perturbations. It is useful to subdivide the stress- i i

free class of scalar perturbations from the general possibilities. A
“stress-free” perturbation has dimensionless stres&S§;{) that

are much smaller than the comoving curvature perturbatidwote

that the stress-free perturbation condition does not preclude back-
ground or “smooth” stress.

Free Gravity
Waves

Stress Integral
tCDM (radiation)

tCDM (matter) Defects

FIG. 5. Tensor perturbations. Tensor perturbations propagate as
free gravity waves in the stress-free limit as is the case of a matter-

have only clustering matter but fail to generate enough largedominated expansion. The integral solution in the presence of
scale structure for the observed CMB anisotrogi23,24. stresses is given in Sec. VIII G and may be applied to propagation
Models with a smooth\ component have been prop’osed toduring radiation domination as well as defect sources.

alleviate these problenig5]. o _ o
Hybrid models can also be constructed. If defects formndices run from O to 3 while latin indices run over the
after the inflationary epoch, one has a model with adiabatiSPatial part of the metria.,j=1,2,3. The component corre-
initial conditions and active perturbations. A string modelSpondlng to conformal time
with inflation and cold dark matte(SIC) is a concrete ex- dt
ample[26]. One can also add in smooth components, e.g. x0=g= f ) 1)
spatial curvaturéSICO).

Clearly, the existing models do not even qualitatively ex-
haust the possibilities open to structure formation models. s yp0=—1 and = 7;0=0. Unless otherwise specified,
the rest of the paper, we conduct an examination of theseverdots represent derivatives with respect to conformal time
possibilities beginning with general principles and explicitly and primes derivatives with respect talre=1 throughout.
stating the assumptions that are made in obtaining the mod-
els described as well as their generalizations. We summarize
this analysis in a series of flowchaftigs. 2, 3, 4, 5, 6, and

Stress Free

12) =155
I1l. COVARIANT PERTURBATION THEORY l - \
Clustered Smooth
A. General definitions ¢ = const. ¢ = backgrd.
. . ®= backgrd. ODE
We assume that the background is described by a i:l;g%:u ®= backgrd.
ODE

Friedmann-Robertson-Walke(FRW) metric Eﬂv=a2yw
with scale factoma(t) normalized to unity today and constant ¥ ¥

comoving curvature in the spatial metrig;. Here greek

2 Component 2,3 Component
WiW2 e =1
Ws =Wwp,wy
All Adiabatic ACDM  GDM
OCDM HCDM AHCDM
strCDM  OHCDM
/ \ ¢CDM  QHCDM
QCDM
we=0,wg=-1-1/3
Stress Free Anisotropic Stress (integral)
HED >> (p/pe) TTED HED < (p/per) TTED \/ @/

Pure Decay

FIG. 6. Stress-free scalar perturbations. If all of the matter
which drives the expansion participates in gravitational instability,
the matter is said to be “clustered”; otherwise, there exists a
“smooth” component. In either case, the perturbations depend only

FIG. 4. Vector perturbations. Vector perturbations simply decayon the background“backgnd.”) equation of statev and can be
from their initial value in the stress-free limit. The integral solution tracked with simple techniqugsniddle row), which lead to exact
in the presence of vector stress is given in Sec. VIII F and applies tsolutions(bottom row that describe behavior in a wide range of
defect models. models.

Stress Integral
Decay from Defects
arbitrary initial

conditions
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The background curvature is given t§=— S(l_Qtot)! Fluctuations can be decomposed into the normal modes of

where the Hubble constant i$,=100h kms ! Mpc 2. the Laplacian operatdtl]
The ten degrees of freedom for the pert_urbations in the V200 = —k2Q© S
symmetric metric tensag,,, can be parametrized as '

gooz_aZ(l_ZA), VZQi(il):_kZQi(il)
gOi:_a2Bi VZQ(+2) sz(+2 (4)
gl =a?(yi—2H 4 —2H¥ ) 2) where vector and tensor modes satisfy a divergenceless and

transverse-traceless condition respectively:
We refer to the lapsA as the potential, the three components

of B; as the metric shiftH_ as the curvature perturbation, ViQitY=0, yIQ[P=V'Q|?= 5
and the five components éf} as the metric shear following
the conventions of1,2]. In flat space, these correspond to plane waves times a local
Likewise, the symmetric stress-energy tensor can be pangular basis for the vectors and teng@3].
rametrized by ten components Vector and tensor objects can of course be built out of
scalar and vector normal modes through covariant differen-
To=—p—6p, tiation and the metric tensg]:
TP=(p+p)(vi—By), Q¥=-kviQ®
To=—(p+p)0, 1
0 Q(O)_ 2V V - _7|J Q(O)
Tj=(p+ dp) &+ pIlj, ©)
i.e. the energy density and its perturbatign{5p), the iso- QjV=- k[ViQJ(tl)-i‘VjQi(il)]- (6)

tropic stress(pressurg and its perturbation g+ 8p), the
three components of the momentum densjiy-@)vi, and  the pertyrbations in thith eigenmode can now be written
the five components of the anisotropic stress terdgr. as
Note that the metric shifB; enters inT? but notTh. Corre-
spondingly, we shall see th&; enters into the momentum A:AQ(O) HL:HLQ(O)
but not the energy conservation equation. ' '
By writing the metric and stress energy tensor in this 0) 0)
form, we have maintained general covariance. As a result, Sp=0pQ™",  Ip=5pQ™, v
the equations of motion that result below take the séoma
for any coordinate system where linear perturbation theor
holds. We reserve the term gauge invariant refers for objects

)yvhich possess only scalar components

1
that have the samealuein each frame. 5
B,= :2_ BMQ™
B. Perturbation representation L
While the perturbations are linear, they may be separated _ z ~ (m)(m) 8
. . . . . U|— v Q| ] ( )
by their transformation properties under rotation without loss m=—-1

of generality(see Fig. 2. For covariant techniques that do
not assume linear perturbations from the outset,[8&@8  which possess scalar and vector components, and
and references therein. The five component metric sHgar )

and matter anisotropic stre$$" separate into one scalar, E

two vector, and two tensor components. The scalar stress Hrij= m>Q '

generates potential flowsV(xv=0), whereas the vector

stress generates vorticit¥ ( v=0). The tensor stress gener-

ates tensor shear in the metric, which represents gravity E H(m)Q m 9)

waves in the transverse-traceless gauge. Therefore, the po- m=-2

tential A, curvatureH, , densitydp, and pressurép pertur-

bations are associated with scalar fluctuations alone, the meayhich possess all three types. Here, scalar perturbations are
ric shift B; and velocity v; with scalar and vector denoted with a superscrif0), which is elsewhere omitted.
fluctuations, and the metric sheld¥ and anisotropic stress We Wwill hereafter also omit the caret in the normal mode
11" with all three. Scalar, vector and tensor perturbationgmplitudes since real-space objects will no longer appear.

may be treated independently in linear perturbation theory. Thuso©@=yp.
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C. Gauge covariant equations

1 al :

The equations of motion for the matter follow from the (k?=3K) 3

Einstein equationss,,,=8wGT,,. Furthermore, the Bian-

chi identities guarante& ,,=0 which represents covariant 5

energy and momentum conservation. =4nGa
For the background, energy conservation implies

ap+3§(p+p)<v_5>/k}, (16)

- 1 d a :
. a 2 - I St _ _ 2
=32 (14 w)p, (10 k A+HL+3HT)+ dn+2a (kB—Hq)=8wGa?pll,
a (17)
wherew=p/p determines the background equation of state. g , K i X
As a result of the isotropy of the background, momentum ;A—H_ — sHr—j2(kB—Hr)=4wGa’(p+p)(v-B)/k,
conservation yields no additional constraint. (18)
The Einstein equation determine the evolution of the scale
factor through 2é al? ad K d +é (H +1kB
s a/ ady 3 dnp al\ - 3
a) 871G o BTG L a .
7| Sz @pa=—7a(ptps).
a 3 3 s =47Ga?| Sp+ §5p>. (19

Here we haVe d|V|ded Contributions to the eXpanSion rat@r”y two Of these equations are functiona”y independent_
into the ordinary density and an effective density componentrhe combination of these equations that corresponds to the
that does not participate in gravitational coIIapseT and igonservation equatioB*”.,=0 is automatically satisfied by
hence labeled “S” for smooth. The curvature provides theany choice of the 4 metric variables due to the Bianchi iden-

only component that is smooth by fiat, tities. The remaining degrees of freedom are related to gauge
freedom as we shall see.
3 Momentum conservation for vector perturbations gives
Ps=~ g g’ (12)  the Euler equation
: : - d 2 (x1)_g(=D)
with wg=—1/3. Even the cosmological constant is kept ﬁ+45 [(p+p)(v' =" =B )/K]

smooth simply by dynamics. However, this notation is con-
venient for considering components that are approximately 1 .

smooth. By keeping a generals and p here, we avoid :—5(1—2K/k2)pﬂ(*l), (20
lengthy rederivation of the equations of motion for such

cases. Note thap+ps=pc, the so-called critical density, and the Einstein equations give

and we can define a critical equation of statg by

(1—2K/k?)(kBEYV—HD)

. a _ 2 (+1) _p(*1)
Por=— 35(1+Wcr)pcr- (13 167Ga’(p+p)(v B )k, (2D
, . i+2E (kBEV—HEY) = —87Ga?pll ™Y, (22
Scalar matter perturbations obey the continuity and Euler dgp “a T :
equations
Again the Bianchi identity reduces the number of indepen-
- . dent equations to 2.
i+3f 5p+3§ sp=—(p+p)(kv+3H,), (14 _ For the tensor modes, the Einstein equations reduce to a
dnp “a a single relation
d a (v—B) 2 K { d” +2éi+(k2+2K)}H<i2>=8wGa2pH<i2>
—+4=||(p+p)——|=p— 35| 13| pll d7?  “adyp T '
HptPA, (15 Neither the conservation equations nor the Bianchi identity
say anything about tensor perturbations.
and place 2 constraints on the 4 scalar matter-variables. Although these relations are exact, they do not provide a
The metric and matter are related by the Einstein equaclosed system. There are in general 10 equations for 20 vari-
tions ables in the background and perturbations separately. For the
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background, homogeneity and isotropy brings this to 2 equa- HED ZF{ED 4 (=D (26)
tions for the 3 variablesd), (p,p), where the grouping dis- T T

tinguishes metric and matter categories. For the perturbgor the vector perturbations.

tions, the general relations are broken up into 4 equations for Similarly, they transform the components of the stress-

the 8 variables A,B,H_,Hy), (8p,dp,(p+p)v,pll)  energy tensor ag]
for the scalar perturbations, 2 equations for 4 variables

(BEY, HEY), (01, T1EY) for each set of vector pertur- 8py=23ps—psT,
bations and 1 equation for 2 variabled{{?), (I1*?)) for
each set of tensor perturbations. We can express the remain- op;=dp;—p;T,

ing 1+ 10 degrees of freedom as the ability to choose the
equation of state for the backgroumd=p/p, the 6 stress
fluctuations @p,pII,pII=1) pII(=2)) for the perturbations,
and the gaugéthe 4 quantities §7, dx;) for an arbitrary  for the scalar perturbations and
coordinate shif

vy=v;+L (27)

o =04 LY (28)

D. Multicomponent generalization

for the vector perturbations. All other quantities in the metric
nd matter are gauge invariant. In particular, the tensor
des do not exhibit gauge freedom since the transverse-
celess condition orQ(*?) is sufficient to remove the
gauge ambiguity. The gauge is thus fixed by conditions
on the metric which fully specify the transformation
(T, L, L&) from an arbitrary frame.

It is important to bear in mind that both the metric fluc-
tuations @,B,H, ,Hy) and the matter fluctuations
(8p,dp, [p+p]v) take on different numerical values in dif-

IV. COORDINATE CHOICE ferent frames even in this covariant notation. For example, if
A. Gauge transformations p evolves in time, a density perturbatiafp arises simply
- . . ._from the warping of the time hypersurface on which the per-
The additional four component freedom in the Einsteiny hation is defined. Thus, a density perturbation differs neg-

equations is fixed by a choice of coordinates that relate thﬁ ibl v betw f ted Eq(10
perturbations to the underlying smooth background. Thegl y only between frames separated kyee Eq(10)]

The conservation equatiori&4), (15 and (20) are valid
for each species whose stress-energy tensor is independen
covariantly conserved. For example, they apply to thetra
photon-baryon system and the dark sector which only inter
act through gravity. The Einstein equatiofi)—(19), (21
and(23) of course still hold with the appropriate summation
over components, e.g= = ;p;. Note that we do not include
the smooth componenis in the multicomponent sum.

most general coordinate transformation associated with the al ™ ts 0
kth normal mode i$1] T<|(1+w)— = (29
a o]
r=7+TQO),

The common gauge choices of the next section all agree on

- the density perturbation in the clustered component well in-
X=X+ LQV+LIQM+L1Q(™ Y, (249 side the h)(/)rii)zon. P

where T corresponds to a choice in time slicing and
(L, LD, L&Dy a choice of spatial coordinates. Under the

condition that metric distances be invariant, they transform Gauge freedom can be used to simplify the equations of
the metric ag2] motion. Most commonly, it is employed to convert certain

Einstein equations to algebraic relations and/or eliminate
relativistic effects from the conservation equations.

B. Gauge choice

A=A-T-oT,
a 1. Vector gauges

Let us first dispose of the vector degrees of freedom.
There are two natural choicgs]: H{"Y=0 which fixes the
gauge completely an8(*Y=0 which leaves an arbitrary
constant offset irH(Ttl). The latter does not produce a dy-
namical effect and can always be eliminated by specifying an
initial condition for H{=%) .

B=B+L+kT,

~ k a
HL:HL_gL_aT,

2. Comoving (scalar) gauge
for the scalar perturbations and It is useful to consider a scalar gauge where the metric
5 ) and matter fluctuations are simply relateld. Inspection of
BEU=BED + (=1, the Euler and Einstein equations shows us that the coordinate
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choiceB=v simplifies the equations of motion greatly. This  The comoving curvature and density can be usefully ex-
fixes the time slicing through = (v —B)/k. The additional ~Pressed in Newtonian variables
conditionH=0 specifies that = H/k and fixes the gauge

completely. We call this theomovinggauge since here the §:¢+2(\I,_(D,)P_0r (33)
momentum density vanishes. The remaining metric variables p’' '
are labeledA=¢ andH_={. This choice reduces the Euler
equation to the algebraic relation for the potential, 47Ga?sp=(k*—3K)D, (34)
2 btained through Eqg25) and (18). Likewise Eq.(31)
L D)E= — SD+ —(1— 2 o] : gh Eq an . Likewise Eq. can
(ptp)é op 3(1 3K7kDp, (30 be rewritten as
which is also simply related to the curvature through the ol
Einstein equatior{18): - g:(qr_cp')_s_ (35)
p!
.a )
{=g¢tanGai(pstpgulk. (31)  Recall that primes represent derivatives with respectao In

As we shall see, employing both comoving and Newton-

Here we have again rewritten the curvature component as i@h metric variables in the covariant language allows us to
smooth density contribution as in E@.1) for easy generali- €Xxploit the simple relations to comoving stresses in the

zation to approximately smooth cases. former and comoving density perturbations in the latter.
The simple relation between the metric and stress pertur-
bation of Eqs(30) and(31) is what makes this gauge useful. V. STRESS PHENOMENOLOGY

A smooth component complicates these relations because of
the difference between a frame that is comoving wither-

sus the total-momentum-weighted velocityp/(p+ ps). We have seen that the stresses of the matter components
With a constant comoving curvature, the continuity equatiorcompletely determine the evolution of perturbatiofzee

(14) reduces to an ordinary conservation equation since meFigs. 3, 4, and 6 The background stress is completely de-

A. Stress representation

ric changes to the fiducial volume are absent. termined by the equation of state The scalar stress fluc-
tuations are determined by functional relations between the
3. Newtonian (scalar) gauge pressure or isotropic stress perturbatiofis, anisotropic

stress perturbatiorpll and the density perturbatiodp.

and labelsA=W and H =®. The gauge is completely These relations may also involve hidden internal degrees of
o = <, = freedom. A model may also possess background stress with-

specified throught =—B/k+Hy/k® and L=—Hy/k. The 5t stress perturbations and vice versa. We call the former a

Einstein equations are reduced to algebraic relations thalyooth stress and the latter a seed stress. Vector and tensor

generalize the Poisson equation of Newtonian gravity: perturbations likewise depend on the componguit*®)

5 and pII1*?) of the anisotropic stress tensor.
Sp+3—(p+ p)v/ k}, Scalar stress perturbations control the basic elements of
a the structure formation history, and so we pay particular at-
) B ) tention to categorizing their properties. As discussed in Sec.
ko(®+W)=-8nGapll. (320 v B, the isotropic scalar stress poses a special problem in
ethat its value depends on the choice of coordinate or gauge.
The comoving gaugéwhere the momentum density van-
isheg provides a useful choice of gauge because of the
simple relation between the metric and stress fluctuations.
We will use these coordinates to define th&al scalar stress
It is often useful to speak of the variables of say the co-
moving gauge while in a Newtonian representation. Bardeen I s P
[1] introduced a so-called “gauge-invariant” language that =—¢= m_§(1_3K/k )ml'[. (36)
achieves this. We denote such techniques as gauge covariant
since they amount to introducing covariant expressions for It is useful to isolate gauge invariant aspects of the stress
objects that take on the desired meaning only in a specifiperturbation. Thenisotropicscalar stress
frame. The only objects that cannot be made gauge covariant
are those that are ill defined due to coordinate ambiguities. Sy=—8nGapll/k? (37
To avoid confusion, we only use gauge-covariant vari-
ables to describe metric fluctuations £, ®,¥). Matter per-  is gauge invariant by definition; this form of the anisotropic
turbations will always be represented in the comoving gaugstress also enters into the Einstein equations separately from
unless otherwise specified. Note that the same in comov- S.
ing and Newtonian gauges. An adiabatic stress perturbation obeys

Finally, the Newtoniangauge is defined bB=H;=0

(K>—=3K)P=47Ga?

These algebraic relations and the fact that CMB anisotropi
are simply related t@ and¥V make this gauge useful.

4. Gauge-covariant variables
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!

p a a
opa=(p+p)Sa=— p. (38) an T 3519ps= ~K(pst PJus—3 9ps, (44)
p 7 a a
Although 8p, is not gauge invariant, the adiabatic sound d a Us 2 )
speed is ﬁ+45 (pst Po)y=0Ps— g (1=3K/K)pdls.  (45)
2_ Spa_ P’ . L .
Cs=—-=—. (39  The basic principles of how stress fluctuations affect the

gravitational potential still hold but here there is a stress

ontribution that is truly external to the system of metric

This gauge invariance implies that there are no coordinat . ; . ; :
ambiguities when discussing the pressure support of adi luctuations. It is again possible to have large-scale entropic

batic fluctuations. stress perturbation in the absence of initial curvature or den-

- r . .. Sity perturbation.
The remaining gauge-invariant pressure perturbation is The formal solutions to Eqg44) and (45) are

1 p’ 2
Sr:—p+p 5p—;5p)- (40) (pst ps)vs/k:a*‘*f dza®| Sps— §(1—3K/k2)psﬂs},
Unlike adiabatic stresses, these may be present even when a
the comoving density perturbatiofp is negligible[see Eqg. ops= —a‘3J dnad| k(pst pvst 35 ops| -
(34)]. Entropic stresses are the primary means of structure (46)

formation in most isocurvature models.

The comoving-gauge analogues 8f and Sy are also  The task of understanding a seed model like defects reduces
useful. As long asép/dp is less than unity, superhorizon to ynderstanding its stresses, but this is a formidable task in
We call the part oBp/ Sp that is separable in time and space [23)).
the comovingsound speedézf(k)g(n) and the accompa-

nying stresssonic C. From stresses to curvature
Sp These stresses are the fundamental sources and sinks of
Sg= cém. (41)  the metric perturbations. We therefore seek to express the

comoving and Newtonian curvatures in terms of the stresses.

Separability is not a gauge-invariant property, but this is notComblnlng Eqs(33), (35, and(36) with
in itself a problem because the comoving frame is dynami- V=—d+Sy, (47)
cally special.

We call the remaining isotropic stress the entropic stressjields

1 !
SE=p+p(5p—C?;5p), (42) g'=—s+[q>'+q>—snj(p—°f—1), (48)
p
such that the total stress is and
2 k*-3K Jola |" 1p
S=S¢+ S+ ———— 5. (43) el =P sig
St 3811'Ga2(p+p)SH a \/;(D 2 p {+Sn (49
Note that if the comoving sound speed equals the adiabati;y a non-critical (non-flat, p#p.,) universe, we combine
sound speed2=c2=p'/p’, thenSg=S, andS=S. these to eliminat¢ from the evolution equation for the New-

tonian curvature, giving
B. Seed stress

”n

1p’ 1 /+ ! n
1- 2 2P gy [ SRR P g
p' 2 Pu 2 po p’'

Seed stresses provide a special case with unique proper- ®"+
ties. The effects of seed perturbations are in fact simpler to
understand than those of the fluid type because the problem
decouples completely. If the seeds do not interact directly :1 p S+’ +| =
with other types of matter, the conservation equatiti¥d 2 per
and (15) imply that the metric perturbations only affect the
seed perturbations at second order since paendpsterms  Recall that the Newtonian curvature is simply related to the
may be dropped. They becormg0] comoving density perturbation through Eg4).

——) Sn - (50
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In a critical-density universep= p.,), EQs.(48) and(49) 0, 7 L
can be formally solved as integrals over the stress fluctua- m*f dne” {[V—-D+7(0+V)]
tions to yield o

X jilk(m0— )]+ i [Lk(0— M1}, (53)

da
{(a)=£(0)— f ES (51 where we have dropped the small correction due to the po-
larization of the CMB.7 is the optical depth to Compton
scattering between the presenjyj and the epoch in ques-
tion (7); ®4 is the photon temperature perturbation in New-
tonian gauge, and, is the baryon velocity in Newtonian or
\/E da \/; comoving gauge. For an open universe, the spherical Bessel
P=¢- Zf 7[5_5_ SH]“LC?' (52 functionj, is replaced by the hyperspherical Bessel function.
P Note that the prime here and here only refers to a derivative
. . with respect to the argument of the Bessel function. With the
The last term is the decaying mode ®fwhereC=const.  andom phase assumption for tkenodes, the scalar contri-

There are three general conclusions that we can dray,tion to power spectrum of the anisotropies is
from Egs.(51) and(52). The first is that in the absence of an

and

initial comoving curvature perturbationZ(0)=0], a stress 2 (dk , (0F0))
fluctuation will generate one of ordér- —S. The same goes C=—) 1 Sﬁ- (54)
for the Newtonian curvaturé@~ —S. The reason for this (2/+1)

behavior is that a stress gradidndp generates a potential . ]
turbation ofép~ — (k77)28p and hence a curvature perturba- 9rated Sachs-WolfeISW) effect and contributes once the
tion of ®~ — 8p/p.,. Note that this intuitive argument fails OPtical depth to scattering becomes small, i.e. after last scat-
for other gauge choices. tering. The other term€),+ ¥ andv,,, are localized to the
Second, starting with a curvature perturbation and assunf@st scattering surface itself and represent the effective tem-
ing sonic stresse&p=cé5p, it is clear that the same mecha- Perature of the dlstrlbut!on and the Doppler effect respec-
nism of generating flows will generate an opposing curvaturé'vely' They are responsible for the so-called acoustic pegks
quctuationACI>~—c(2:5p/p~—(cckn)2<D that will destroy in the CMB spectrum, thg morphology of which can be di-
the initial curvature fluctuation wheeckn~1. In physical rec_}_lz rgaf(lj off of t?i. metr'c.drt')\.ll'.?g.:\;m{id% d d
terms this occurs because pressure support prevents pertur- € influence of ime variability In¥ an epenas on

bations from collapsing and hence causes the curvature pe ow the variation rate Nz compares with the perturbation

turbation to redshift away. crossing time for soun¢before last scatteringand light(af-

Finally, the anisotropic stress contributes to the totalter last scattering For variations on a much shorter time

stressS and thus can both create and destroy comoving Curgcale_((A n=<1 or kCS_A 7<1), only the total cha_ngé\(\lf .
= @) is observable since all photons suffer a uniform gravi-

vature fluctuations. Furthermore, it enters separately into the . . - .
Newtonian curvature through E¢52). This is because the tational redshlf_t. For variations on a much Ionggr time scale
Newtonian frame, unlike the comoving frame, is defined tothe effects mainly cancel out as th.e photqns either traverse
be globally shear freeq=H+1=0). The coordinate transfor- Ma"y wavelengths of the fluctuation during the variation
mation that maps the comoving frame to the shear free fram ith redshifts and b_Iueshﬂ‘ts _cancelllng or equivalently un-
depends on the anisotropic stress and hence aliases ba 2rgo many acoustic OSC|IIat|or_ls. _Changgs whose duration
are synchronized with the oscillation period are the most

ground evolution into contributions to the Newtonian curva- ) ; . ) ;
ture. effective. These general considerations apply to metric varia-
tions of the vector and tensor type as well. Two commonly

Unfortunately, despite their general appearance, &ds. .
and(52) are only formal solutions since the time evolution of enco_untered exa_mples are the cancel_la@ﬂon cutoff atl_mgh .
zé_unlform potential decay and the driving of acoustic oscil-

the stress sources generally depends on the curvature ﬂuI . ¢ hronized potential d in th diati
tuation itself. We will use the special properties of smooth, 21ONS Trom synchronized potential decay in the radiation
flominated epoch.

anisotropic, entropic, and sonic stresses to address this pro .
lem in Secs. VI, VII. and VIII. A constant potential also leads to observable effects

through the effective temperature tefig+ V. Since®y is
the temperature perturbation in Newtonian gauge, it can be
D. From curvature to observables obtained by a gauge transformation from the comoving
As discussed in Sec. Il D, the Newtonian curvature is di-92uge by noting that in that gauge both the density perturba-
rectly related to observables in the CMB and large scaldion and the potentia¢ are negligible because stress pertur-
structure. We are now in a position to quantify these relaations must be negligible for th(_a potential to remain con-
tions. The Newtonian curvatuse and potential’ encapsu-  Stant. Equationg25) and (27) then imply
late all observable properties of scalar fluctuations. The con- )
tribution of a givenk-mode to the amplitude of théth dpy a /k
multipole moment of the CMB anisotropy is given 0] '
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(55 each case, we begin with a general description of the result-
ant phenomenology. We then illustrate the phenomenology
with full solutions of the perturbation equations and discuss

For adiabatic fluctuationsjp.,/p.,xdpl/p and is hence neg- o o ;
ligible outside the horizon b§/ viyrtue of the Poisson equ‘aﬁonappl|cat|0ns within the current generation of structure forma-

(34). SinceW is a constant by assumption, these equationéion models of Sec. Il E. We will follow this pattern through-
can be integrated to give ' out the paper. An overview of the results is given in Fig. 6.

_ a tonian curvature(and hence the density perturbatiofror
V=v/k+ av/ k.

2 A. Clustered case

——, 56 o . . .
3(1+w) (56) We begin with the case in which there is no smooth com-

ponent ps=0) and stress that fluctuations are negligible

and hencé o+ ¥ =¥ (1+3w)/(3w+3). This relation ulti- ~ compared with metric fluctuationsS¢¢). Here, Eq.(48)
mately comes from the fact thdt represents a time shift and simply implies

axt?3(1+*W) [31]. Forw=0, this reduces to the well-known
result that the effective temperature$93 in the adiabatic {=const. (58)
sCDM model[9]. Compared with this model, those that are ) )
dominated by the ISW term (¥ —®)~2W¥ —S;; such as Equation(52) then gives
traditional isocurvature and smooth models potentially have
up to 6 times the anisotropy for a given potential fluctuation. d=¢|1- \/_;f E n \/_;J ﬁSHJrC\/_; (59)

The behavior of the density perturbations that underlies a \/,—) a \/; a’
the large-scale structure is even more directly related to the
Newtonian curvature perturbation. Inside the horizon, all rea- We will focus only on the behavior of the first term. The
sonable choices of gauge agree on the density perturbatiosecond term may be neglectedSii<¢. However, unlikeS
In particular, the comoving gauge density perturbation is al<<{, Sy<€{ is not a consequence of causality and is mildly
gebraically related tob by Eg. (34 and hence allows a violated in the case of free radiatiphO] and can be strongly
simple translation of results for one to the other. Conseviolated in defect model$32]. We return to consider its
quently, the relation between temperature and potential fluceffects in Sec. VII A. The last term is a decaying mode that
tuations discussed in the last paragraph translates directharries no comoving curvaturg €0). For a constant equa-
into a relation between density perturbations and CMBtion of statew, it scales as
anisotropies.

With this relation, the so-called transfer function of the Docg 31tz (60)
density perturbations below the current horizon can be sim- ) )
ply read off of the time history in the potential without the 't IS apparent from the form of the first term that since
usual gauge ambiguity in defining the initial density pertur-c&NNot grow with time W= —1), the first integral in Eq.

@0:

bation, (59) goes to a constant between 0 and 1 with the two ex-
tremes representing—oc andw= —1 respectively. The in-

®(79,k) ®(0,0 tegral is dominated by the most recent epoch; only the equa-

T(k)= (0K (700" (57 tion of state at the epoch in question matters. It is simple to

show that during periods whewe is approximately constant

The power spectrum of density perturbations today is theh33),
proportional toT (K)2Piniia - ANy process that makes the po-

X / a X ® 3+3w
tential decay relative to the=0 mode will produce a down- — )
turn in T(k) and a reduction of small-scale power. { 5+3w

(61)

At each epoch wheres decreases fronw, to w,, the New-
tonian curvature decreases by

Adiabatic models for structure formation, those whose
initial conditions contain true comoving curvature perturba- (D(Wl)_q)(w?): (W1 —Ws) (62)
tions, all go through a period in which the scalar stress per- D (wy) (1+wy)(5+3wy)
turbation may be neglected. This is a direct consequence of ) o
causality. Stress gradients affect structure formation simply These results are easy to understand in the non-relativistic
by the causal motion of matter. On scales larger than thdMmit. In the a_lbsence of stresses, the gradlent_s in the gravita-
horizon, the change in the comoving curvature perturbation§onal potential set up flows as~ (k) ®. The divergence of
due to causal motion can always be neglected. this  flow generates density perturbationss~(1

We begin in Sec. VI A with adiabatic models that have no+W)(k#)°® for constantw. By the Poisson equatiod
smooth components. Although the comoving curvature re= (k7)™ 28, this is exactly the rate of growth needed to keep
mains at the value set by the initial condition, the Newtonianthe potential constant. Here we have used the fact that
curvature depends on the equation of state. We consider thenrGa?p=3(a/a)?/2~ 52 if there are no smooth compo-
in Sec. VI B the effect of a smooth component on the New-nents. Wherw decreases fromw, to w,, the change affects

VI. STRESS-FREE PERTURBATIONS
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the proportionality constants but not the scaling betwéen 1 T T ' W ':_'1'/6' i

and®. This leads to a decrease in the Newtonian potential to i 2 ---1

a new constant. - =~ <3

Full solutions.If the matter is predominantly composed of 08 S

two components with different but constant equations of i S

statew,; and w,, we can solve Eq(59) exactly provided S 06 - SN

Su<<¢. The result is s [ RNy

N L LY

=2 \

e 1 2 F[l L 1 Y U |

—=1——=— =:1+n,—— L Boltzmann \

3 5+3w; | 2 1+y L - Analytic i

0.2 - —4|

1 1 r

=1- 1+y)¥y~"B n,s-nj, I |

3 W1_W2( N7y y/(l+y)( 2 ) P R R Cl ]

0.2 0.4 0.6 0.8 1

(63)
y/(1+y)

= + — :
wheren=(5-+3w,)/(6w;—6w,) and FIG. 7. Stress-free clustered case. In the case where all contri-
Y= polpyocadiwa), (64) butions to the expansion rate also cluster, the comoving curvature is

constant but the Newtonian curvature changes with the equation of

Here, B,(p,q) is the incomplete beta function and statew. For the case of the transition betweep=0 andw, be-
F(a,b;c;x) is Gauss's hypergeometric functigie., ,F,). tween—1 an_df 1/6, we show_ here the analytic sol_ution of EG3)
The combinationy/(1+y) often enters into such solutions ¢0Mpared with a full numerical Boltzmann solution of a QCDM
as it is justp,/py, the fractional density perturbation sup- mode_l(lncludlng radla_tlorjlfor a mode that is outside the_horlzon at
plied by component 2 as a function of time. the given epoch. Notlpe that only fav,=—1 (Eosmologlcal con-
Any case with 2 equal to an integer can be expressed inStanh does the potential decay to zero@s/pe=y/(1+y)—1.
elementary form. In particular, ih=N or N+ 1/2 for an

) matter-dominat h. A comparison of the analyti lu-
integerN=0, then atter-dominated epoc comparison of the analytic solu

tion with full numerical solutions in those cosmologies is
given in Fig. 7. A special case is;=0 andw,=—1, the

N—1 L _ k
F 1E'n+1'x ZE I'(n+HI'(n—k 1/2)/)( 1 matter to cosmological constant transition, whi38,36
2’ P x & T(in—kIT(n+1/2) | x
N o 3 1 1/2,,—5/6
x—1\NT'(n+1)I'(n—N+1/2) 775 1-3(1+y) %y ¥Byy(14y)(5/6,~1/3)|. (68)
X I'(n—N+1)T'(n+1/2) ™

(65)  Asis evident from Eq(61), the cosmological constant is the
only case where the Newtonian curvature decays to zero.

where Note in particular thatv,= — 1/3 does not correspond to the
behavior of spatial curvature in spite of the fact that the
1N1-x, n=N, effect on the expansion rate is the same. The presence of
1 1+ \/— 1 fluctuations in thew, component prevents the gravitational
fn= _|Og_x n=N+ - (66) potential from decaying to zero. Across thg=0 (matter-
2\/; 1— \/; 2 dominated to w,= — 1/3 transition, the Newtonian curvature

goes from /5 to /2. Thus, the string-dominatgdtrCDM)
model which hasvg,= —1/3 does not behave like an open

Applications. These solutions apply to any adiabatic ,nqel on the large scales relevant for the CNt& [16])
model with a matter-dominated epoch and may be used to

explore the behavior of perturbations entering and exiting the

matter-dominated epoch. For example, the matter-radiation B. Smooth components

case reduces t34] We next consider how smooth components affect the
growth of structure. Although curvature is the only compo-

d 3 2 8 16 L 16y1+y nent that is smooth by definition and a cosmological constant

f:§+ 1_5y_ 15y2 N 15y3 " 15y° (67 the only one that is smooth by dynamics, under certain cir-

cumstances other components can be approximately smooth.

This solution only holds in the absence of anisotropic stress We define a componentS] to be smooth if its density
perturbations and does not strictly apply to the usual radiafluctuations are small in comparison to those of the cluster-
tion components. The neutrinos carry anisotropic stf&8s  ing components @), i.e. ps<dpc, regardless of whether
as do the photons after recombination. We consider hows<pc. To be maintained dynamically, the respective en-
such effects can be taken into account in Sec. VII A, ergy fluxes must also satisfyp{+ ps)vs<(pc+pc)ve. In

For adiabatic models where there exists a component witthis section, we add the subscrif@) on the remaining mat-
w,<<0 [14,15,11, these solutions describe the exit from the ter to remind the reader that part of the total matter density
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has been designated as effectively smooth in the division of 1+ 3w, \/ Qcy 1+w,
Eqg. (11). Our analysis also applies to cases whéies 4= Toaw | 1T l+249c1+951 A+3w,2)’
< dpc Where the time-average is over the dynamical time of

the C componenisee Sec. VIII G. Qs

One cannot demand thépg be identically zero since the a %AW, (72
continuity equation(14) generates a density fluctuation as

the metric curvature changes unlegs=ps/ps= —1 (a cos-

y:p2/p12051+001

. . ; SO where j=1,2 for the growing and decaying modes corre-
mological constant The fractional density fluctuation is ge- sponding to—,+ in the a; equation. Note that negative

Pheigiaelrlzqa:;ii:g:jgftﬁredzrnter;e CEL\;attlérr?nﬂgﬁgiE(‘jt??hselnhcoerizo r(1:ontributions to the critical density, e.g. positive spatial cur-
due to causality, ener con?érvation forbids smooth com O\{atureK>O, are also covered by these solutions.
Y, gy PO" The hypergeometric solution allows one to identify el-

nents(with wg# 1) on these scales. : . ;
- . mentar lutions mor ily. In particular wher
Components that are smooth within the horizon are pos-e. entary solutions more easily particular, cases where

. . _ C(J:_|N1/2|, (3W1+ 1)/6AW: Nl, or 2a]—(3W1
sible. For example, thé:. component may be d”"ef? to col +1)/6Aw+1/2=N, can be expressed in terms of elemen-
lapse by potential gradients while ti&component is sup-

) . tary functions. Cases of the fornF(a,b;b+Ny;x),
ported against collapse by stress gradiéat® Sec. V_III (08 F(a,b;a+ N, :x), or F(Ny/2N,/2:N4/2:x) can be expressed
Here Sps/ps~ P <Spc/pc - Since these stress gradients are. ; ; )

in terms of elementary functions, incomplete beta functions,
set up exactly so as to keep the component smooth, one can

replace such stress effects in BO) with an additional and/or complete elliptic integrals. Here, the are integers

smooth density componef&7]. The remaining perturbations anda andb are real numbers. For example, the casevor

can then be approximated as stress-free and generate curv:p andw,=—1/6 can be expressed in closed form for any

ture fluctuations as c1/(Qc1tQg):
n 1 ’ 1 /+ ’ ”n yaj 2a,+1+ 1+y
"+ 1_P_,c+_p_cr)q),+(_pcr pc_p_?)q)zo_ (I)J-oc— J —, (73
Pc 2 per 2 pg Pc a (1+\/1+y)20tl+1

(69

) Forw,;=0, any case in which @;+ 1/6w,+ 1/2 is an integer
Now even for constanwc,, @ =0 no longer solves the can pe simplified. One can also simplify the growing mode
equation of motion. Mathematicallyys adds to the expan- of cases withw; =Qg;=0 andw, * equal to an integer.
sion drag (b’) terms but not the gravitationaklY) terms. Finally for completeness, there is a well-known special
Physically, potential flows still create density perturbationscase of Eq(69) that is not completely covered by Ef1)
aspc(pc+Pc) (k) @ but the Poisson equation leads to apy that does have an integral solution. This involves a clus-
smaller potentialb = (k#) ~“pc/(pc+ ps). As this process  tering componentv=0 (CDM) and a smooth component

continues,® decays away. o o composed of an arbitrary admixture wf= —1/3 (curvature
Equation(69) has simple solutions in the limit that;,  andw=—1 (A) pieces[38]:

>p¢, as is usually the case when the smooth component

dominates the expansion. In this case, the general solution to dina
the equation is ‘I’“a_lpng > Pea oy (74)
a"per
ap¢ . . .
®=Cja 1+ Cza_lf dlnaﬁ. (70)  for the growing and decaying modes respectively. Of course,
piﬁz if either the curvature oA component is negligible, the so-

lutions have an analytic form described by E@l). Unfor-
Both terms represent decaying modes as longvgs 2w tunately, this solution cannot be generalized to arbitrary
<1. combinations of smooth components since it relies on the
Full solutions. The full solution to Eq.(69) can be ob- fact thatw= — 1/3 does not accelerate the expansion and that
tained analytically for a clustering component with a con-w=—1 gives a constant density contribution.
stant equation of state and present-day fractional density Applications. Smooth components are widely found in
contribution pair (;,Q¢;), a smooth component with adiabatic models and their description in terms of Ef{)
(wy,Qg), andlor a second smooth component withare given in Table I.
(w2 ,Qg): In fact, all CDM variants(CDMv) go through a phase in
the radiation-dominated epoch when the perturbations in the

D, = ytaw Yy “i radiation are pressure supporte;d leading to an essentially
i 1+y smooth component},,;=Qg with w,=1/3 and also a
smooth baryonic componef),= (g with w;=0 that is
N E_2a+1_ 3witl y 71 held against collapse by Compton coupling to the photons
A 6AwW '1+y)’ (see Sec. VIII C andi39]). In this case, the clustered matter
is the CDM Qcpw={c1), and the solution(71) describes
whereAw=w,—w; with the evolution of the CDM density perturbations via the Pois-
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TABLE I. Correspondence between the analytic solution of Eq. 1 ' T T ' ' ]
(71) and models with smooth componenf3y is the fractional BN 1
effective density supplied by the curvature component. . ]

0.8 |- —
W, W, Q¢ Qg Qg Model I ]
0 1/3 Qeam D Qg CDMv S 06 s
0 - Qumin Q, - HCDM ot N\
0 -1 Qcameb 0 Q, ACDM ® 04l Ny
0 -1 Qeamib Q, Oy AHCDM i Boltzmann \ \\\\\‘\:
0 =1/3  Qcgmib 0 Qg OCDM o2 L ----Analytic \\\:}'
0 =13  Qcgmin Q, Qg OHCDM T \\ )
0 =13  Qgmb 0 Qg strCDM i | x | NN \J
O _ cherb le _ ¢CDM 1 1 1 02 1 1 1 04 1 1 1 0'6 1 1 1 08 1 1 IS 1
O WQ chm+b 0 QQ QCDM, GDM y/(1+y)
0 Wq Qcdmib Q, Qq QHCDM, GDM
0 Wq Qedmib Q, Qq ¢QCDM, GDM FIG. 8. Single smooth component. The same as Fig. 7 except

thatw, is taken to be a smooth component. Here &qd) is com-

pared to a QCDM model but for a mode that is well inside the

son equation. The behavior deep in the radiation domain igorizon aty=1. Discrepancies at early times are due to radiation

given by Eq.(70), which says that density perturbations ac-
tually grow logarithmically. The full solutiori71) maps this

logarithmic mode into a power-law growth across the matter-
radiation transition and is useful for determining the ampli-

contributions in the QCDM models and are particularly pronounced
for w,— 0 since then the epoch when tQeand matter components
are equal is driven into the radiation dominated era for this flat
0,,=0.35 model.

tude of small-scale fluctuations as a function of the baryo’biven in Figs. 8 and 9. Likewise, the solution applies to the

content[39].

GDM generalization[17] where the sound horizon is al-

Smooth components that dominate at late times are alsged to be arbitrary.

described by Eq(71). Many such models have been pro-

Finally, Eq.(74) describes the case of a CDM model with

posed to reduce the amount of small-scale power in the stah curvature and cosmological constant contributions.
dard CDM model. The prototypical examples are A€DM

model whereQg,=Q,=1-0Q,, (w,=—1) and the open
model OCDMQ g=0k=1-Q,, (Ww,=—1/3). The former

C. Vector perturbations

case is special in that it may alternately be considered a The behavior of vector modes is far simpler than that of
clustered componetisee Sec. VI A The latter case must be scalar modes. Vector anisotropic stress can be neglected if
considered as a smooth component, and the growing mode{™>pIIY/p in a gauge wher8(*Y=0. In the ab-

reduces td40]

1 3 3 /1+
<Do<—(1+ \/—ytanh*\/L
y y 'y y 1+y

wherey«a,

The obvious generalization of such models involves a |
smooth component with an equation of state that differs from gi
the curvature or cosmological constant examples. The proto- >
typical case is the HCDM model where a massive neutrino ©
(or hot dark mattercomponent withw;~0 remains smooth
on small scales due to residual relativistic effects. Our gen-
eral solution in fact allows an additional smooth component 1
w,, which could be curvaturéOHCDM), a cosmological - L
constant AHCDM), or even quintessence with an equation 0.01 0.1

sence of stress perturbations, vector modes simply decay
with the expansioiisee Eq.(20)] is solved by

. (79

4

—— Boltzmann
---- Analytic

| 1 1 1

TR B R

—_

of statew,=wqg (QHCDM). In fact, in the case where there a

is no hot component, the latter solution describes the “quin-

FIG. 9. Two smooth components. Equati¢fil) is compared

tessence” mode(QCDM) that has recently received much ith numerical solutions in &\ HCDM which has smooth\ and
attention[14,15. Here, a scalar field supplies a density com-hot (H) dark matterQ, components. Numerical solutions are for

ponent that is smooth inside a sound horizon that corremodes well below the Jeans scale of the hot dark matter and dis-
sponds to the particle horizon. A comparison of the analyticrepancies at early times are due to radiation contributions in the
solution to numerical results for QCDM andlHCDM is model.

083509-14



STRUCTURE OF STRUCTURE FORMATION THEORIES PHYSICAL REVIEW &9 083509

0.2

| LA LA LN I B N B B R B
Ly v b by by by

-0.6

o
—
o
D
o
%)
o

x=kn

FIG. 10. Gravity wave modes. The amplitude of free gravity  FIG. 11. Gravity wave anisotropies generated in free radiation.
waves remains constant outside the horizon and oscillates and dRrumericaJ solutions are from a Boltzmann code with Scattering
cays inside in a manner dependent on the equation of state of thgyyrces removed. Notice that asncreases so do the anisotropies.

background. Shown here is the derivative of the mode since it act$his js directly related to the behavior of the gravity wave modes in
as the source of radiation anisotropies. Note that ascreases the  Fig. 10.

oscillatory phase begins sooner relative to horizon crossing.
freeze-out follow the form of Eq(77) with x=kf°,°]d 7. The

*1 *1 -4 . . .
(ptp)(w*H-BFY)xa™, H,; mode then has damped oscillationsxamcreases from
o) o1 , negative values but freezes in to a finite valueas0 in the
kB=Y—H{F Va2, (76) infinite future.

) ] ] ) ) Applications.The solutions above help us understand the
The metric source is related algebraically to this quantity bysnenomenology of tensor anisotropies in the CMB. The ten-

Eq. (21). sor analogue to E(53) is
D. Tensor perturbations 0, 3 (I+2)! fﬂod —TH(tZ)j'(kA 7)
The tensor anisotropic stress is negligible Hf*"2 2i+1 V(-2 J, 97 T ka2
> pIT(*2)/p.,. In this limit, tensor metric fluctuations remain (79

constant outside the horizon regardless of the expansion rate

and propagate as free gravity waves inside of it. They aravhereA »=7y— 5. The power spectrum is again given by

described by Eq(23) with the sources set to zero. Eq. (54). The appearance of tlee " damping reflects the fact
Full solutions.If the expansion is dominated by a compo- that anisotropic stress cannot be supported in the optically

nent with constant equation of state,>—1/3, the funda- thick limit; we take 7—0 in the examples here to consis-

mental modes of gravity waves are tently neglect all anisotropic stress effects. This in fact is a
good approximation for tensor anisotropies in the neutrino
2™Ir(m+3/2) background radiation.
Hi= TX Jm(X), For a flat universe with constamt> —1/3, the results are

shown in Fig. 11 for the same scale-invariant initial spectrum
S of gravity waves, k3H{"?)|?=const. Notice that the
(m+3/2) . b ] :
= X" (X), (77)  anisotropies decrease ass decreased. Like the scalar ISW
\/; effect discussed in Sec. V D, the contribution of a decaying
_ tensor mode to the anisotropy depends on how long the grav-
with x=kz, m=(1-3w)/(1+3w) andk= yk?’-2K. Note ity wave takes to decay relative to the light travel time across
we have normalized the modes so thigi(0)=1; this mode the perturbation. In the limit that it decays before horizon
drops from unity into damped oscillations when the wave-crossing, the photons experience the full gravitational effect.
length reaches some fraction of the horizon that decreasdtit decays well after horizon crossing, then the effect suffers
with m and hence increases with. In Fig. 10, we plot the cancellation as the photons traverse many wavelengths of the
derivative of these modes, as that determines its effect on thgerturbation. Thus, the relative contribution to the anisotropy
radiation through gravitational redshifts. can be read off the behavior of the normal mode in Fig. 10.
For w<—1/3, the universe accelerates and the horizorAs w increases, changes ki occur at smaller times relative
stops growing with the scale factor. This implies that gravityto horizon crossing. The anisotropy contribution accordingly
waves will also freeze out at some finite value related to theigoes up. The effect is most dramatic for the quadrupole since
amplitude when the universe began accelerating. The solwll k-modes above the horizon contribute to the quadrupole.
tions for the gravity wave behavior relative to the epoch ofThis effect explains why the tensor spectrum in the usual

083509-15



WAYNE HU AND DANIEL J. EISENSTEIN PHYSICAL REVIEW D59 083509

Scalar Stress

. . . . ( B
Anisotropic Entropic Sonic Mixed
¢<Sy S=Sg =S, S11SE,Ss
>SS \
C>Sp C<Sn S>> S c?>0 General
{ = const. { = const. { = Sg-integral { = stress ¢ = stress
®= iterative | | ®= stress ®= {,Sg-integral integral integral
soln. integral = homog. ®= Green's
ODE integral
Perturbative || [I-decaying || Constant Entropy || General Sonic/Entropic Sonic/Aniso- Sonic/Entropic/
All Adiabatic || mode WKB ks>>1 tropic Anisotropic
Models (v) Defects Two Component © = const
iDDM WiWa Two Component | | wy,wa, k >k, Viscous Isocurvature
PIB wi,wa, k3>k, PIB Damping Scaling Seeds
Axion Adiabatic Acoustic ) All Models jlzaditiona?
iDDM Rl o—generation Defect Models
Heat Conduction || ~pisionless Isocurvature Seeds
One Component All Models : General
g .|| Damping ;
QCDM,GDM Smooth Formation Defect Models
All Models (v)

FIG. 12. Scalar stress perturbations. Scalar stress perturbations are divided into three pure classes: anisotropic, entropic, and sonic. If one
of these is dominant, then general techniqtegd row) can be applied to analyze the resultant behavior of fluctuations. Many models
(fourth row) do go through phases where the stresses are dominated by one of the pure stresses. The designations “all models” and “all
adiabatic models” assume a neutrino background and fluctuations that were present before last scattering. Several cases with analytic
solutions illustrate the range of behaviors.

matter-radiation universe shows an upturn in the spectrum as other stresses which only contribute through the causal

one goes from modes that crossed the horizon in the mattenotion of the matter. This is despite the fact that the comov-

dominated epoch to those that crossed in the radiation doming curvatureZ depends only 0. In an isocurvature model,

nated epoclisee Fig. 17. only the comoving curvature need vanish initially, not the
For w<—1/3 the gravity waves freeze out. Since CMB Newtonian curvature.

anisotropies are driven by changes in the gravity-wave am-  gjmijlarly, even thoughl remains constant above the ho-

plitude, the addition of av<—1/3 component should Sup- yizon in adiabatic models, the Newtonian curvatufe

press anisotropies; this prediction is in agreement with th%volves under anisotropic stresssse Eq(52)1. Recall that
effect found inACDM and QCDM model§41,42. P ¥ a(52)]

\ 2
VIl. PURE STRESSES snz—stasz/k2=—3(g) EH/kZ, (79

We have shown in the previous section that in certain Per
regimes stress perturbations can be ignored. However, to
provide a complete history of structure formation, one mussuch that its effect is enhanced by (p,) (k%) ~2 relative to
track the perturbations across all scales and time. We wilB. Note, however, that once the universe enters a period
first consider the pure stress cases in which the dominanthen (p/p.)I1<(k7)?¢, all traces of the anisotropic stress
stress contribution is anisotropic, entropic, or sonic, as defrom any previous period vanish in the relation betwden
fined in Sec. V A. These prototypical cases have analytignd ¢. Its effect does not vanish from the CMB, however,
solutions and are the starting point for the general cases digince anisotropies record a time-integrated history of the
cussed in Sec. VIII. They also have direct application ingravitational potentials.
many models. The anisotropic and sonic solutions are appli- Full solutions.To close this system of equations, we need
cable to all adiabatic variants of the CDM mod@DMv). 3 relation betweeiS;; and . We will consider two limiting
The entropic solutions show how prototypical isocurvaturecases: whers; < ¢ as in the case of stresses from radiation

models such as the bary@RIB) or axion(AXI) isocurvature backgrounds and wheB;>¢ as is possible with models
models form structure. We outline these results in Fig. 12. jnyolving active sources such as defects.

In the former case, anisotropic stress is generally created
as a by-product of gravitational instability. Its anisotropic

Anisotropic stresses play a special role because they enteature suggests that it can be created from shear in the ve-
directly into the Newtonian metric through;, as opposed locity and metric, and its coordinate transformation proper-

A. Anisotropic stress
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ties demand that its source be gauge invariant. The linear @ 3+3w 3 3

combination of these sources that satisfies these requirements? 573w 1+,3[ 1- 5,3[ 1- §(1+W)B}(1+W)] ) :

is (kv —H7). The anisotropic stress can also have a dissipa- (88)

tion time scaley; . Together these considerations imply an

evolution of the form In the opposite limit that the anisotropic stress contribu-
. tion is large compared with the other perturbatio8g¥ ¢,
I+ 7 MI=4(kv —Hy)a. (80 s;>9), the integral solutions for the Newtonian metric re-

. . . . duce to
In this section, we are interested in large-scale effects and

hence want the longest time scale for the dissipation; this is \/; da

set by the expansion time. We will consider cases where the o= —f —5q,

time scale is much smaller than the expansion time in Sec. al \p

VI D.

If we take 7y 1=3a/a, we recover the phenomenological V==®+S. (89)
parametrization df[17] Notice that the integrals remain finite as longSsdiverges
5 at zero no faster thaa %273V and the prefactok/p/a is
I+ 3511 =4(kv—H7)a, (81) Eim[zISyg)t]he decaying mode of the Newtonian curvatisee
q. .

Applications.Collisionless radiation provides an applica-
tion for these results. The anisotropic stress of radiation is
related to the quadrupole moment as defined in(&8§). by

which has the formal solution

H=4a‘3f dnad(kv—Hy)a. (82 1
II,=—06 90
From Eq.(18), we find v 5 2 (%0

(53 also implicitly gives the equation of motion of théh

a multipole as

K2 Pcr(é) 2( a ) on scales much smaller than the curvature radius. Equation
. 4
3 :

=—_g°3 3 -
IT a fdna AT p

(83
for modes well under the curvature scale. Employing Eq. ®|=k I I+1

(61) for the zeroth-order potentials and assuming constant 21-17"71 214371
andp=p,, yields

(91)

This is an infinite set of coupled differential equations rep-

1 5 (1+3w)? resenting the fact that radiative stress depends on internal

7° —2a(kn) (473w (5+3w)" (84  degrees of freedom of the distribution. HoweVe3] intro-
duced an approximation based on a solution of these equa-

for constantw. With this source in Eq(52), the Newtonian tions in the absence of sources
potential becomes
0,

=Cji(kn), (92
® 3+3w 2l+1
which allows us to express
with
. 21+3
w 1 Or:1=(21+3) (k) 10— 5 — 0. (93
B=16 (86)

T+w (4+3w)(5+3w) &
Applying this closure relation to the quadrupole, noting that

if the curvature contributes negligibly to the expansion rate(él/a)zl/,7 in the radiation-dominated era, and rewriting the

If B<1, this process may be repeated to obtain the desiregipole in covariant form®;=uv_,—Hy shows that the aniso-

accuracy. For example, employing the second order form fofropic stress of free radiation in the radiation-dominated era

the Newtonian potential obeys Eq(81) with a=p,/p=p.,/prag-

¥ 34 3w The pho'gons actually QO not b'ehave in this manner before

_ (1+w)], (87) last scattering since thel_r coupll_ng_to _the baryons destroys

any quadrupole moment in the distributisee Sec. VIII D.

However, the same analysis applies to the massless neutri-

nos, whose anisotropic stress can be approximately param-

etrized bya=p, /p,aq- Equation(88) shows that the change

in ® is enhanced by a factor+1(2/15)(p, /p;ag - With Eq.

ta=cZdwy in the notation of17]. (56), we find the effective temperature of the CMB to be

. 5+3w

3 3
1- EB 1- 5(1+W)ﬂ

one can build the third order relation for the curvature
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B. Entropic stress

We next consider the case in which entropic stress domi-
nates the other stress componeBts>Sg,Sy;. In this limit
St does not depend ot and Egs.(51) and (52) are more
than simply a formal solution: they are the integral solutions
for an arbitrary source in the absence of smooth components.
For instance, if the entropic stress has a power-law behavior
Sg<a", then the comoving curvature will have the same be-
havior = — [dInaS«a" assuming/(0)=0.

It is important to note that onc®: turns off,  will remain
constant. Thus entropic stresses that act for only a fixed
amount of time generate curvature fluctuations out of isocur-
TR T T S vature initial conditions that then behave in the same manner
as initial curvature fluctuations.

v A natural way of establishing an entropic stress is to have
fwo components whose sound speeds differ at some point in
the evolution. It is useful to introduce the “entropy”

0.71

0.7

X Boltzmann

0.68

0.67

vl by b b P

o
(@]
©
LA L L L I I

FIG. 13. Anisotropic stress at large scales. The presence of a
isotropic stress affects the Newtonia®) but not comoving )
curvature. IfSp<<¢, solutions for® can be constructed by iteration.

. . . 5[)2 5p1
Here we show an example where the anisotropic stress is produced o= - (97
by massless neutrinos and compare numerical results from a p2tP2 p1tP2
Boltzmann code with the iterative solution. To first ord&; /¢ ) ) . o
=4N,/15(4.4+N,), whereN, is the number of massless neutrino Since its equation of motion is simply
species.

o=—k(vy=v1) (98)
1 Py
Op+¥=— 5‘1': - §§(O)< T Prad) 94 by virtue of Eq.(14), assuming no direct energy exchange
between species. The equivalence principle guarantees that

and the ISW combination to be under purely gravitational evolution the velocity differences
vanish so that a constantis a good approximation outside
4 1 p, the horizon. Tight coupling between the components also
V-b=—-70)|1-—= (95 i fiee o
3 15 prad implies o=0.

Let us assume that the density perturbations are accompa-
to first order. These results are equivalent to but more physiried by sonic stresses in the rest frame of each component,
cally transparent than those f0]. In addition, Eq.(88)
introduces second and third order corrections that are impor- Apy=3dpy— bJ(vJ_ v)/K,
tant for models with additional neutrino species or higher
neutrino temperaturesg,,

Ap;=8py—ps(vs—v)/K, (99)
N, [ 1.401T . .
&—0.68 V( V), (96) with c§=ApJ/ApJ. Under the constant entropy assumption
Py T, vy=v and with the definition of the combined sonic stress,
as shown in Fig. 13. 1624 p! c2
Equations(94) and (95) imply that the neutrinos have szplcl P2C2 (100
significant but opposite effects on the effective temperature ¢ p’ '

and ISW terms in the CMB anisotropy equatiB8). The
degeneracy is broken as the fluctuation enters the horizon, &ise entropic stress becomes
we shall see in Sec. VIII D, leading to detectable effects in

the acoustic peakst4]. Sg (Pipé)

Finally, seed defect sources generally have large aniso- —
o

—=|(c5—c). (101)
tropic stress contributions outside the horizon. Causality dic-
tates thatpJlg behaves as white noise above the horizon
which together with the so-called scaling ansatz leads to afgonsequently, entropic stresses are generated when the

7~ Y2 temporal behavior. This implies thaS;x» 2  sound speeds of the two components differ. Furthermore,
xg~5(1+3W/4 gince this diverges slower thay >2-3W2 jt  they can be much larger than the sonic stressépfp<o

does not imply a divergence of any observal32] and con-  as is the case for isocurvature models.

tributes mainly to the decaying mode of the curvatlig Full solutions.If the sonic stresses are also adiabati§ (
Note that these considerations assume vanishing spatial cu=p}/p}), then Sg=Sr and Sp/o=(p1/p’)’'/3. Equation
vature. (51) then yields

083509-18



STRUCTURE OF STRUCTURE FORMATION THEORIES PHYSICAL REVIEW &9 083509

o ph a wherey«a. Thus, the curvature grows asn the radiation-
{(a)=5—| +£(0). (102  dominated era only to freeze out at the amplitude reached at
3p’ 0 matter-radiation equality.
Motivated by our study, one of us constructed an iDDM
The Newtonian potential follows from E¢52). model that utilizes the mechanism described above where the
For example, in the constamt; andw, case density fluctuations in two radiation species are initially bal-

anced[22]. The resulting constant superhorizon curvature

Sr_ (1+wy)(1+wp)Aw (109 fluctuationf is a property generally associated with adiabatic

o [1+w+(1+wy)y]*” models. Another interesting consequence is that the ratio of
large-scale CMB temperature anisotropies to the Newtonian

¢ 1 (1+wy)y potential is neither 1/3 nor 2. This is because the photons

o 31+w+(l+wy)y’ (109 possess initial perturbations. These can be chosen to make

the ratio greater than or less than 2; in particular it can be
where recall thanw=w,—w; andy=p,/p; and we have arranged to be close to the adiabatic 1/3 relation.
assumed isocurvature initial conditiops(0)=0]. Oncep,
dominates the energy density, the entropic stress has been
converted into a constant comoving curvatdre /3. This . . .
solution may then be substituted into H§2) to obtain the Sonic stresses provide the final pure case. Here
integral solution

C. Sonic stress

(109

D 1 Jl+y yd yn1

1y
Y + n y
o 3r+ty 9Aw y' Jo T \1+y recall that adiabatic stresses are a special case of a sonic
stress where2=c2=p’/p’. Because the stress fluctuation is

2+ ry(3Aw+1
T r():(+ y)V: ) ' (105 related to the comoving density fluctuation by E09) and

in turn to the Newtonian curvature via the hybrid Poisson
equation(34), the evolution equatio(b0) for the Newtonian

wherer =(1+w,)/(1+w,) andn=—(5+3w,)/6Aw. curvature becomes a homogeneous second order differential

The Newtonian curvature has the limits

equation
1+w, ,
(y<1), ’ a 1/2 1 "4 "
(I)_ 5+9W1—6W2y 106 p_j_/z p(,:rq), + zpcr p —p—,+k28’2 =0,
P 1+w, (109 apg;\ p Per p
513w (y>1). (110
2

. ) i where the sound horizon is defined as
The relation between the Newtonian and comoving curvature

in they>1 limit is exactly the same as the stress-free clus-

tered case of Sec. VI A. S=f dnce. (111
Another interesting case is when the two components are

initially both radiationw,(0)=w,(0)=1/3 but the second

S ) ) Here, we have assumed that the wavelength is much smaller
componentw, becomes non-relativistic. Equati¢h02) im-

than the curvature scale, but all results are applicable to the

plies that by the timg,>p,, a curvature fluctuation general case with the replacemédmt \k?— 3K.
o For ks'>1, we can approximate this as an oscillator
(= 3 P1 (107  equation with an effective mass:
Plo
(Meg® ")’ +k?s" 2mgq® =0, (112

is generated from isocurvature conditions.
The more general solutiofl01) covers multicomponent with
models with non-adiabatic sonic stresses in one or both of
the components and for example may be applied to scalar 1/2
field models. Mef=
Applications. Entropy perturbations between the matter -
and the radiation are the basis of the prototypical isocurva- ) ) )
axion isocurvature model. In this case, the integral in EqVarying compared with the frequency of oscillation, the fun-

(113

(105 can be explicitly solved to obtaif84] damental solutions to this equation are
®  16+8y— 2y +y3—16J1+ —p' |\
—= =y Y (108 <D1=(—) cogks),
o 5y Cc
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p 1/2
(DZZ ?) Sln( ks).

This equation says that once the fluctuation passes inside th
sound horizon, the Newtonian potential oscillates and det
cays, reflecting analogous behavior in the density perturb

tion through the Poisson equation.

Full solutions.Equation(114) suggests that a change of

PHYSICAL REVIEW D59 083509

wherev=(5+3w;)/(2+6w,). Again, once a given mode is
(1149 well inside the sound horizon, the condition thet andc

be constant can be relaxed.
Applications.Adiabatic stress perturbations in a baryon-
p%oton universe provide the prototypical example. In this
case, the tight coupling between the photons and baryons
athrough Compton scattering prevents the generation of en-
tropy through the motion of mattdsee Sec. VIII §. The
growing mode of Eq(119 becomeg34]

variables to
®  3(k,\? 3 |\ ¥ sin(ks)
112 _ y
Cc —0— —2(?) (1+ Zy) A{ K —COS(kS) y
=<\ & 11 £0) vy S
° ( —p') 9 (120
should simplify the equations of motion. Indeed, Eg10  With k,=(a/a),—, and
becomes
42 1 +4+3y++3y+3 (
= —In . 121)
d?Q F T3k
= y 2+ \/5
(ks +|1 @)Q 0, (116
We have chosen the normalization to match the stress-free
where solution® =2¢/3 initially. In this case, the acoustic oscilla-
tions of the photons are directly related to behavior of the
. 2 [pl+p’ o " 3p"2 potential via the Poisson equation
2s'?|  Por p' p 2p'? 1( k\2 y?
O=5|—| ——F
! " ! ! " 3 k 1+3 /4
Per P__C_C _C_C_CC 2bc (117) y y
2pe\ p' Cc] Cc Cc AcE |’ =(1+3y/4) Y4 (0)cogks) (ks>1). (122

If F is constant, then Eq116) is a variant of the Bessel
equation, and the solutior@ will approach sinks) (up to a
phase at largeks. Furthermore, wherks>|F|'?, the term
with F may simply be neglected, and again the solutions will
be sinks) with arbitrary phase. Because the latter solutions
will match trivially onto the former, we reach the conclusion
that if, for a given modefF is constant untis>|F|Y%/k, then
the appropriate Bessel function solution will hold fal
times, regardless of hoW varies onceks>|F|*2 If c. and

p vary on the Hubble time scale, thénis order unity, and
the solution describes modes that are well inside the horizon

beforeF begins to vary.

The simplest way to arrandgeto be constant is to have a
constant equation of state; and constant sound speed.
For constantw,, s is only defined forw;>—1/3, and we

therefore sep=p.,. Then

1+w;
(1+3w;)?’

independent of the sound speed. The growing and decaying

solutions ford® are then

_p/ks 1/2

QJloc( ) J,(ks),
_p/ks 1/2

CDZOC( Cc ) NV(kS),

Since the acoustic oscillations are responsible for the acous-
tic peaks in the CMB from Eq(53), this determines the
morphology of the acoustic peaks in this simple adiabatic
photon-baryon universe. The important result is that the
acoustic oscillations follow a cdsg) pattern in phase with an
amplitude that is enhanced by the decay of the initial curva-
ture perturbation. These results are in fact generic to adia-
batic models due to similar evolution in the driving poten-
tials [11].

A second example is provided by the QCDM and GDM
models where the equation of state can go negatiwe @)
while the comoving sound speed remains ret%:éO). In
the QCDM model,c%zl by virtue of the scalar-field equa-
tions of motion. In the GDM model, it is allowed to have any
positive value. The solutions are strictly valid only after the
exotic component dominates the expansion rate and fluctua-
tions. To test this solution, we show an extreme example
where the dark matter is all in aQ”” component(no CDM)

(118  with wo=0 (see Fig. 14 The small departures at early and
late times are due to the radiation and baryonic contributions.

VIII. MIXED STRESSES

Although the purely anisotropic, entropic and sonic stress
cases of the last section illustrate many aspects of stress phe-
nomenology, when all three are present they can interact and
create a diverse range of behavior. In this section, we study a
few typical cases: sonic stress generation from entropic

(119 ~ Sstress, entropic stress generation from sonic stress, and an-
isotropic stress dissipation of sonic stress. The first process is
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through Eq.(39) that stop the further growth of density per-
turbations through the same pressure support mechanism dis-
cussed in Sec. VII C. Therefore, entropic growth of curvature
fluctuations generally ceases once the fluctuations cross the
sound horizon of the dominant species.

Full solutions. The solutions for® in Eq. (119 along

Fes e e e
T .
P
—
—

Lo

\

0.1

T T T \1 TT T

Ll

—— & Boltzmann

%10_2 L ----% Analytic _ with the entropic stress from E¢LO1) in Eq. (123 allow us
= —— %, Boltzmann \ to construct the full solution in the presence of a constant
r ] entropy ando= pg,:
1078 ! ‘Q ® 2 —p'S 1/2
E 2 ~ ~
F —=—z-mGl—— dnY
: i p 37 ( o ) f 7Y ()
10-4 OI1 L Lo ..i L L ||1|O| 1 X[JV(kE)N,,(kS)_JV(kS)NV(k“é)], (124)
kn where
FIG. 14. Sonic stresses in a scalar-field dominated universe. TN
Sonic stresses cause scalar-field perturbations to stop growing and Y( )=a2 —pS P1P2 (02—02) (125
hence lead to a decay in the Newtonian curvature in a scalar-field 7 Cc " 2 FU

dominated universe. Here we compare a QCDM model wih
=0 and no CDM with the analytic prediction of E@L19. The  Recall that the combined and component sound speeds were
discrepancy at early times is due to radiation contributions in thejefined in Eqs(100) and (99) respectively. This solution is
QCDM model and those at late times from the baryons. valid for k/k,>1 and k>|K|Y2 (see Sec. VII G

) ) ] ] ) Applications.The case ofv;=1/3 andw,=0 is of special
responsible for generating acoustic phenomen_a in all isoCUknterest because it corresponds to baryon-photon entropy per-
vature models. The second process is responsible for the h%?bations, as in the PIB model before last scattering. The

conduction in fluids and the generation of smooth compoyegit is that on small scales wheke>1 andk/k.>1. the
nents. The last process is responsible for viscous dissipatiof),ryature behaves 484] Y

of acoustic phenomena and also provides an alternate means

of generating a smooth component. We briefly discuss seed d 3

(defec) stresses, which carry not only all three types of sca- —=—
: o 4y

lar stress but also vector and tensor stresses as well. Finally,

we consider the effect of te_nsor ar_lisoj[ropic s_tress on graviyhich is again directly related to the temperature oscillations
tational waves and CMB anisotropies in passive models. py Eq. (122). The first term in brackets is due to density
perturbations in the baryons remaining from the constant en-
A. Formal solution tropy conditiono= 8,— § 8,~8,. The second term repre-

If the equations of motion for a sonic stress perturbatiorsents decaying acoustic oscillations from the adiabatic pres-
are known to be solved b$, and®,, the full solution can sure. The extra factor ok,/k reflects the fact that the

ky> 2[ V3ky (4+3y)%
2 k

be written in integral form as curvature grows as until sound horizon crossing &y
= (ky /K) [45].
O=Ad,(a)+BPd,(a) An interesting result is that the acoustic oscillation fol-

lows a sink9) relation, implying the opposite phase in the

ad_a Py(a)®(a) ~ Py(a)Px(a) acoustic peaks compared with the dap@diabatic casgl0].

0 a ®(a)dy(a)—d}(a)d,(a) This result is rather generic to isocurvature models again due
to the similar behavior of the driving potentials. For ex-

1p’ , 1 pitp  p" ample, axionic isocurvature models where the entropy is be-
SFFFan i e —— o St (123 tween the radiation and the CDM also follows this pattern.

For this reason, isocurvature seed pressure also tends to
s generate this type of acoustic patt¢irl]. These stresses are

merely formal unless the remaining stress sources can Ha@und in topological defect models; indeed the dominant sca-

specified independently &. We now consider some special /&' modes of strings, monopoles, texiures, and non-
cases. topological textures do behave in this manf#3]. However,

only in the latter two are the other modes sufficiently small at

the first few peaks to yield clean acoustic peaks even for the

scalar perturbations alone. Defect models generically have
A model that begins with isocurvature initial conditions vector and tensor stresses that generate comparable levels of

will generate adiabatic density fluctuations through the acanisotropy and further obscure acoustic phenomena.

tion of entropic stresses, as discussed in Sec. VII B. These It is possible to construct isocurvature models with an

density perturbations carry with them sonic perturbations‘adiabatic” pattern of acoustic peaks. The simplest way to

where A and B are arbitrary constants. This solution i

B. Entropic and sonic stress
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arrange this is to create constant comoving curvature pertudown before acoustic oscillations even start. In this case,
bations{ through entropic stresses that turn off well beforecomponents can decouple completely and form subsystems
the perturbation crosses the horizon. A concrete example afhere sonic, anisotropic, or smooth effects can occur sepa-
this kind of mechanism is given {122]. As is clear from Sec. rately. Here it is simpler to describe the behavior of indi-
VII B and originally pointed out by11], for an isocurvature vidual subsystems through variables that are comoving with
model to generatscale-invariantcurvature perturbations re- respect to the individual specids The sound speed; and
quires that the entropic stress have superhorizon scale corréhe contribution to the Newtonian potential are usdhde
lations which cannot be generated causally without an inflaEq. (99)]:
tionary epoch.
®;=47GAp;/(k*—3K), (130
C. Sonic and entropic stress . . . ) . )
which implies® =% ;®;. If the density fluctuations in the

Likewise, an adiabatic or sonic fluctuation will not gener- pther species are still below their own sound horizon, then
ally remain so as it crosses the horizon. Inside the horizonye oscillating components can become effectively smooth in
the fact that components with different equations of statgomparison. From that time forward, we can treat the system
have different pressure responses to gravitational compregs having a smooth component, and the curvature fluctuation
sion will cause the species to move independently. The gensgntributed by the other species is governed by (E@).
eration of entropic stresses is in fact a primary mechanism Applications. The case of a short entropic timescaje
for creating the smooth components of matter discussed i%n is realized in the photon-baryon fluid before recombina-
Sec. VIB. _ tion and is relevant for considering the damping of acoustic

Full solutions.The case of two components with constant yhenomena in the CMB for all models of structure formation

w; andw, again provides an instructive example. The equa{46 47. Here the entropic time scale is derived from the
tion of motion for the entropy, Eq98), is constructed out of  paryon Euler equation

combining the continuity equationd4) of the two species

and has the formal solution Dy~ 7 'Ro, (131)

0'=0'(O)—kf dn(v,—vy). (1277 WhereR=3py/4p,,. Inserting this into Eq(127), we obtain
7r=7 'R under the rapid oscillation assumption. The dis-

Recall that the entropy is related to the entropic stress by Eqersion relation then becomgs7]
(101). Note that entropy leads to entropic stress only if the
two components differ in their equation of statésa(# 0).
Since we are interested in the generation of entropy, we
will assume that the initial entropy perturbatier{0) van-
ishes. Two interesting cases are when the entropy generatidihese entropic pressure techniques provide a simpler and
time scaley is small compared to the expansion time andmore transparent derivation of this well-known result than

1. R
w=xtkes+i k%71

when it is comparable to the expansion time scale. exists in the literature. Note that heat-conduction damping is
In the former case, the entropy will lead to dissipativesuppressed by in the photon-dominated epoch, and we
behavior if shall see that in that case viscous damping from the aniso-
tropic stress is more important.
o~—Kknrv, (128 The opposite limit of an entropic timescale on order the

_ o expansion timexnr~ 7 is applicable to all models with
where 7y is some characteristic time scale for entropy gen-cpm. The CDM never participates in the acoustic oscilla-
eration. While this form is not gauge invariant even though tions of the baryon-photon system even during the radiation-
is, the ambiguity vanishes inside the horizon. Hence, Edgominated era. In Fig. 15, we show an example of a pertur-
(128 is a good approximation in the desired cage<7.  pation deep in the radiation-dominated era in a CDM model
Substituting Eq.(128) into Eq. (101) and then Eq(15) i ijth the usual neutrino content. Before horizon crossing
Newtonian gauge and assuming a solution of the ferm y, <1 the perturbations are adiabatic and the total potential

xexp(/wdz), we obtain the dispersion relation @ is constant with contributions from the phototbs, and
1 olo the neutrinosb,. The sound horizon for the radiation $s
1pp _ < . o
w=*KCo—iZ 1 2( %_ %)kzﬂr, (129 7/\/3, and oncek 7> /3, the potential contnbgnon of tl_1e
2 52 photons starts to decay as in E420). The neutrino contri-

butions decay even faster due to their anisotropic stress, as
where recalcc was defined in Eq(100). Note that we have we will discuss in the next section. The CDM contribution
assumedznr/7n<<1 in order to replace rest-frame sound ®.py then turns over and behaves®gpy < In(Ca)/a where

speeds with comoving sound speeds. C is some constant39]. This is exactly the behavior pre-
This describes an exponential damping of sound waves adicted by Eq.(69) assuming that the radiation component is
the wavelength passes the “diffusion” scale= (7 7) 1. smooth. In actuality, the photon component is not smooth

In the opposite regime, where the entropy is generated ooompared with the CDM component but oscillates suffi-
the horizon scale, the sonic nature of the total system brealkdently rapidly that its time-average is negligible.
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QCDM subcategory havegpy=1, but components with
lower sound speeds are possible in principle. The sound
speed tells us how long after horizon crossing the GDM
component stabilizes due to pressure support. If the pertur-
bation is already within the sound horizon by the time the
GDM comes to dominate the expansion rate=(1), then the
total potential will behave under E(9) as if the potential is
smooth regardless of the exact value of the sound speed. As
the sound speed is lowered such that crossing occurs near
(y=1), we see effects from the finite sound speed. In the
limit where the perturbation remains above the sound hori-
zon until the present, the solution returns to the clustered
case of Eq(59).
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FIG. 15. Creation of a smooth radiation background. Numerical \We have seen in Sec. VII A how anisotropic stress can
results in aACDM model are shown here. Notice that upon cross-generate Newtonian curvature perturbations but, like adia-
ing the sound horizon, the photon contributidn to the total cur-  patic stress, it can also destroy them. In this context, aniso-
vature @ damps and oscillates, while the neutrino contributionstropic stress represents the “frictional force” set up in re-
damp much more rapidly due to collisionless damping from itsshonse to the non-uniform bulk flow of matter and shear in
anisotropic stress. The oscillating photon perturbations yield Iittlethe metric. As we shall see. this sort of behavior is not con-
time-averaged effect, and the CDM evolves under &), leading o tg fluids. It represents another mechanism for generat-
to the well-known logarithmic tail in the CDM transfer function ing a smooth component
[48]. Full solutions.The phenomenological parametrization of

] ] . ) anisotropic stress in Eq80) yields two interesting limits.

T_h_ese conS|derat|0ns_ also apply to models 'n_Wh'Ch arhe short time scale limitkKy<1,7/7<1) leads to vis-

additional component witlvgpy<0 comes to dominate at ¢oys or collisional damping. Here, the anisotropic stress is

late times. Quintessence and GDM modeise Fig. 16are  gigepraically related to the velocity in shear-free frames
examples thereof. In Sec. VII C, we considered the case

where the GDM completely dominated the expansion. Here M=4any(kv—Hy). (133
we consider the effect of adding a component of CDM. . . _ _
The critical parameter here is the comoving sound speel/nder the same assumptions used to derive the dispersion

of the GDM cgpy - Slowly rolling scalar fields found in the 'elation for heat conduction, E¢129), we find the viscous
dispersion relation

¢

T T T T

4
_ )
w=*Kkcc+i 3 k annp+pa, (139

0.1

T

implying dissipation at a characteristic scéle 1/\/ n 7.

If the dissipation time scale is comparable to the expan-
sion time scale, the damping occurs at horizon crossing but is
o L more gradual. The formal solution in this limit is given in

cGou=1/3 AT Eq. (82) and approximates the effects of collisionless damp-
CEpn=1 ' h ing.

Applications.Collisional damping occurs in the photon-
baryon fluid before last scattering and is the primary dissipa-
tion mechanism for acoustic oscillations in the CNU&].
Equation(133 then describes the anisotropic stress of the
photonslI,, with a=2/5 andy; =471 Repeating the cal-
culation leading to Eq(132), the dispersion relation for the

FIG. 16. Creation of a smooth quintessence or GDM componenPScillations becomefst6,49
with wgpy= — 1/3. As shown in Fig. 14, sonic stresses in the GDM
component prevent perturbation growth inside the sound horizon w=+ke+i E kZ%fli (135
A . . —_ C .
cepmkn~ 1. If this occurs well before GDM domination §t=1, 45 1+R
then the total Newtonian curvature will evolve as if the component
were always smootfi.e. under Eq(71)]. If this occurs well after, [N comparison to the heat conduction dissipation of Eq.
the Newtonian curvature will behave as if all components were(132), viscous dissipation is more effectiveRk 1, which is
fully clustered[i.e. under Eq(63)]. For a given scale, this depends the case for the baryon content implied by big bang nucleo-
on the comoving sound speegdpy ; for quintessencegpy=1. synthesige.g.[50]).
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Collisionless damping occurs in free radiation. Free radiaanisotropic stresses. This implies that vector modes are
tion behaves in this “frictional” manner because gradientsunique to the active stress models, of which defects are an
in the potential flow are dissipated as radiation streams fronexample.
one part of the flow to the next. In terms of the multipole  Full solutions. The solutions in the presence of stress
moments, power in the dipole gets transferred to the quadrisources can be constructed via Green’s function techniques
pole and so on through the hierarchy equatid®¥). As from the stress-free solutions of E((6). For the vector
such, the anisotropic stress acts as the gateway for anisotropyodes, the solution becomes
generation in the CMB. It also leads to a damping of density
and velocity perturbations inside the horizon for all species
of free radiation and is the reason that in Fig. 15 the neutrino
contributions damp more rapidly than the photon contribu-
tions. More generally, it is responsible for smoothing out
components when entropic stresses cannot be generated, e.g.
whenc3—c?=0.

These dissipational terms may also be important in stabiywhere C=const represents the decaying mode. The remain-

I|zmg_ other forms 01_‘ mat_ter. One way to ge_:nera}te a smootqng metric perturbatiorkB(*1)— I'_I_(rtl) is related algebra-
density component is to introduce an effective viscous rather

: . : . ically to Eq. (136) through Eq.(21).
than sonic streddl 7]; a mechanism of this type is thought to L . : : )
be involved in stabilizing the StrCDM modéL6). Turok Applications.The discussion of scalar seed stress in de

[51] ted { le of thi +in which th fect models in Sec. VIII E also applies to vector stresses with
suggested an extreme example ot this sort, In WNICN NG <o, aqgitional considerations. Defect models generally

comoving sound s_peed of the seeds is imaginary but thﬁave comparable scalar, vector, and tensor anisotropic stress
anlsotroplc 5”?55 is perfectly ba_lanced to pounter the OtheE'ources above the horiz¢f2]. Since CMB anisotropies are
wise exponential growth of density fluctuations. primarily generated at horizon crossing, these sources tend to
yield comparable anisotropy contributions for modes that
E. Sonic, entropic, and anisotropic seed stress cross after last scattering. Vector modes that cross before last

The seed stresses of topological defect models provide a#fattering do not contribute due to suppression of tensor
example where all types of stresses coexist. While the corgnisotropies in the CMB from scattering. Thus, vector modes
sequences of a given seed stress for structure formation ag@n obscure the first few scalar acoustic features in defect
straightforward to work out, the behavior of the seed stresgnodels. On the other hand, vector modes have a special sig-
itself is more difficult and requires simulations to work out in nature in the CMB polarization that may assist in their iso-
detail. lation [29,53.

Full solutions.The two-point statistics of complicated de-
fect models can be accurately modeled as the incoherent G. Tensor stresses
(quadraturg sum of a relatively small number{10-20) of
simple seed stress historifs1,23. Each individual source
may then be determined by the techniques ajeee Egs.
(44) and (45)].

Applications.The simplest defect models typically have

1
v(il)—B(ﬂ):a_“(erp)_l[C—5(1—2K/k2)

7 o~
x k f dya’plI=b |, (136
0

Tensor anisotropic stresses provide sources and sinks for
gravity waves. It is well known that quadrupolar stresses
generate gravity waves. Furthermore, a passing gravity wave
will also impart some energy to the radiation backgrounds

two other properties that have important phenomenologica\(ia differenti.al gravita}tional redshifts and thereby decay.
consequences. Defect models are causal in the classical Full solutions. An integral s_olut|on may be constructed
sense. The stress perturbatiafs, and pgll must fall off at out of the homogeneous solutions of Sec. VI D as

least as white nms&_ekf’) out_S|de the horlz_o_n and the initial H(Tﬂ)(ﬂ)=C1H1( 7)+ CoHa(7)

curvature must vanish(0)=0]. The traditional string and

texture models also obey a scaling relation that states that the 7 ~Hi(Ho(7)—Hy(n)HA(7)
stress histories depend on wavelength only through the com- f N— = =~ —= =
bination k. This ensures self-similarity of the structure at 0 Hi(m)Ha(7)—Hi(mHa(7)

ho_rizon qrossing and Ieads.to nearly s_cale-invariant CMB X 8wGaZpll*?), (137
anisotropies. Because the simplest versions of these models

run into difficulties when CMB anisotropies are compared
with large-scale structure, phenomenological models that d
not obey the scaling relation have recently received somé&
attention[25].

y)vhere C, and C, are constants associated with the initial
onditions.

Applications.We show the damping effect of anisotropic
stress in the radiation backgrounds in Fig. 17. It is generally
not included in standard Boltzmann codes that solve CMB
anisotropieq54]. The reason is that it is negligible at large

We next consider the effect of vector anisotropic stressesangles since the corresponding modes entered the horizon
Recall that in the absence of vector stress, the vector pertuwell into matter domination when the anisotropic stresses are
bation decays. In order to generate an observable effect, venegligible. Since this feedback effect is typically small, Eq.
tor perturbations must be continuously generated by vecta137) may in principle be used to iterate to a solution from

F. Vector stress
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FIG. 17. The effect of tensor anisotropic stress on tensor i ~---GDM
anisotropies. Gravity waves generate tensor anisotropic stress in  1qs | 2
radiation that absorbs energy and damps the gravity wave. For free Bl Ll Ll -

radiation like the neutrino background radiation, this reduces the 0.001 0.01 0.1

anisotropies generated on small scales. For the CMB, the elimina- k (h Mpc™)
tion of tensor anisotropic stresses by scattering cuts off small-scale

contributions as well. FIG. 18. Mimicking ACDM. Models with the same stress his-

tories in the dark sector have the same observable consequences

the fr ravity wav f E(78). However, the evol regardless of differences in how that sector is composed. Here nu-
€ Iree-gravily wave case o *0). MOWEVET, € EVOIU- o iea solutions for the CMB anisotropy and large-scale structure

tion of the amsotroplc stress ha}s amore important effect. Ju fower spectra in & CDM universe and a single-component critical
as scalar anisotropic stresses in the photons are destroyed 8\ gominated universe of Eq139 are shown to be identical.
scattering before last scatterifgee Sec. VI D, tensor an- However, variations ircc, A®, and A away from this tuned
isotropic stresses are destroyedeas. This cuts off the ten-  gyress history do have observable consequences.

sor contributions to the anisotropies before last scattering as

indicated in Eq.(78) and shown in Fig. 17. The feedback | et ys address the first question. We know that the evo-
effect still exists, but the level of the anisotropy itself makes|ytion of structure is completely defined by the stress history
it too low to be observable for reasonable tensor to scalagf the matter. Since the equations of state of the ordinary
ratios. _ . . . matter are known, the remaining element is the dark sector.
The Green's function solution of Eq137) is more di-  Tg test the uniqueness of tHeCDM model, we should look
rectly applicable to the seed stress case WheEE™>  for alternate means of reproducing its stress history. The

=pslls. As in the vector stress case, the phenomenologicg)ackground stress history of the dark sector it anodel is
result is that defect models tend to have significant tensogiven by

contributions above the angle the horizon subtends at last
scattering. As in the passive models, their contribution is cut
off below this scale due to scattering.

T Sa— 138

Wxrcom™

IX. DESIGNER APPLICATION and its stress perturbations vanish. This suggests that a gen-

With this general study in hand, we are now in a positioneralized dark matter component of the type introduced by
to discuss prospects for reverse engineering the model fd&7] and parameters
structure formation. Obviously, the specific route the inver-
sion takes will depend on the results of ongoing experiments. WeoM=Wacom:  Capm=0 (139
Currently, the data favor a model with phenomenology like
the ACDM model, e.g. the shape of the large-scale structurshould reproduce the phenomenology of th€ DM model.
power spectruni55,56, relative high to low redshift cluster Recall thatcgpy, is the sound speed in the frame comoving
abundance$57,58, supernova luminosity distances to red- with the GDM (see Sec. VIII §. To the extent that the co-
shift of z~0.5[59-61], and degree scale CMB anisotropies moving and GDM-comoving frames coincide, this form of
(e.qg.[62,63). If agreement between theCDM model and  dark matter exactly reproduces any mixtureAoind CDM.
future precision tests is good, can we say purely on phenomA/e show an example in Fig. 18. Note that all classical cos-
enological grounds that we have proved the existence of mological and linear theory tests will return the same answer
cosmological constant? If the model varies from the datafor the two models despite the fact that the GDM model is a
can we use the methods developed here to modify the stresingle dark matter component model in a critical density uni-
history, restore agreement, and in the process learn new iwverse. Non-linear effects are also identical if the same stress
formation about the dark sector? history is maintained throughout.
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There are two lessons here. The first is that on purelyply that the relation between the pressure and density pertur-
phenomenological grounds we can do no more than measubations does not follow that of their spatial averages.
the global properties of the dark sector. A multicomponent The simplicity of the requirements of E(L39) raises the
model and a single component model with the same stregsossibility of a unified description of the dark sector. A con-
history are formally identical. crete but somewhat trivial example is a scalar field that rap-

The second is that reproducing the phenomenology of @jly oscillates around a non-zero potential minimum. The
ACDM model is rather simple: it requires an equation ofrapid oscillations average away all large-scale pressure ef-
state that varies frorw=0 at high redshift tov~—2/3 to-  fects save from the vacuum pressure of the potential mini-
day and a form of matter that is free of large-scale stresgnum [65]. Unfortunately, the relationship between the con-
gradients in its comoving frame. Thus, there exists a wid&stant and quadratic pieces of the scalar potential is left
class of such single component models that fit the curreninexplained and so is no better than an explicit CDM
data as well as tha CDM model. model. Nonetheless, there may be more complicated ex-

On the other hand, variations on the conditions in Eq.amples, perhaps involving multiple fields, in which the
(139 have observable consequences for future measurgnimic conditions(139 are approximately satisfied and do
ments. Relaxing the stress-free perturbation condition byjnify the two behaviors in a true sense.
raising the sound speed reduces the small-scale power in the This discussion shows that a reverse-engineered model
model and delays the formation of high redshift objects. Thefor structure formation will in general not be unique. On the
remaining freedom in the stress history is associated with thgther hand, the observables can be translated into constraints
equation of statav. We can quantify this by recalling that on the stress histories and phenomenological models of the
the gravitational potential depends only on the quaise  dark sector. These in turn can assist in the search for com-
Eq. (59)] pelling physical candidates to compose the dark sector.

ADox—] —. 140
aJop (149 X. DISCUSSION

Large-scale structure constrains the value of this integral at Without any assumptions other than the validity of gen-
the presentd=1). CMB anisotropies from the ISW effect eral relativity and nearly homogeneous and isotropic initial
are sensitive to variations in this function that occur on thefonditions, the evolution of structure is completely deter-
order of the light-travel time across a wavelengsee Sec. mined by the stress history of matter. We have studied the
V D). Since CMB anisotropies potentially probe nearly threeMeans by which stresses, both in the background and the
orders of magnitude from the current horizon, variations at 4luctuations, can alter the observable properties of the model.
fraction of a percent of the current expansion time are poten- We have examined the effects of smooth, anisotropic,
tially visible in the CMB. sonic, and entropic stresses in structure formation, including
Similarly, distance measures such as the angular diamet&heir interactions and ability to generate effectively smoqth
distance to the last scattering surface<(10~3) and the lu- density components. We have illustrated these behaviors
minosity distance to high redshift objects 2/3) probe the with analytic solutions for systems with multiple components

combination of differing background equations of state, which can them-
selves be time dependent in several important cases. These
1 1 solutions have applications to nearly all of the current mod-
A n(a)ocf da——. (141D  els for structure formation and are substantially more general
a ap than those existing in the literature.

Although this study is not exhaustive, we have made ex-
. ; glicit all of the assumption required to arrive at specific mod-
as they only proble their values at discrete epochs or ar . :

. €ls and their accompanying phenomenology. In the process,
averaged over long time scales. A sharp test of the we have exposed the limitations of traditional categorization
+ CDM hypothesis that should be possible with future mea- P g

. : / . schemes like that in Fig. 1. These distinctions can be blurred
sures involves reconstructing the time evolution of the equa-

tion of statew,, through measures af®(a) and/orA 7(a). in cases where the usual assumptions do not apply. We sum-

o . .. marize several notable cases here.
Any combination of a cosmological constant and CDM will
obey

Current measures &f®(a) andA »(a) are crude at best

W= 3Wg(1+W,). (142) A. Initial conditions
Isocurvature initial conditions imply a growing comoving

The physical implication of this relation is that the back- cyrvature outside the horizon on scales relevant to large-
ground pressure is constant in timg’ & 0) so that the adia-  scale structure and degree-scale anisotropiése comoving
batic sound speed vanishe¢ p’/p’=0). If this condition  curvature grows outside the horizon only by the action of
is violated, we will have proved the existence of a new formstress perturbations. Once stress perturbations are turned off,
of matter. Ifw/>3w.(1+w), then it can be supported by the curvature remains constant until horizon crossing or cur-
adiabatic stresse$4]; if not, then a form of matter with vature domination. These considerations provide a means for
non-adiabatic stresses is required. Non-adiabatic stresses imimicking the phenomenology of adiabatic modgl&] and
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are important for interpreting the implications of CMB  Smooth component behavior implies small density pertur-
acoustic peak phenomenology; however, they do not invalibations Sps<dpc. A component can be effectively smooth
date the conclusions ¢f.1]. even while possessing large density fluctuations. The crucial
The Newtonian curvatur® is simply proportional to the assumption is that their time-average density over the dy-
comoving curvature if the background equation of state isnamical time of the clustered species is smooth. Density per-
constant.The Newtonian curvature admits a decaying modeturbations in a component that vary rapidly with the expan-
whereas the comoving curvature does not. The decayingion time generally lead to no effect on the growth of
mode can be stimulated by anisotropic stress perturbatiorstructure. The radiation backgrounds mentioned above pro-
outside the horizon but has observable consequences onlyde a familiar example.
through the contribution remaining at horizon crosdithgy The missing mass (clustered dark matter) and missing en-
If the Newtonian potential is constant from last scat- ergy (smooth w< —1/3 dark matter) are separate problems.
tering to the present, the observed temperature perturbatioifhe stress history of the dark sector completely defines its
depends only on the equation of state ahdThe assump- properties for classical cosmology and structure formation.
tion here is that the comoving temperature perturbation igA\ny combination of components that produces the same
negligible and is only true if stress perturbations are alsastress history will produce the same phenomenology. As an
negligible compared with the comoving curvature for all example, we have constructed a toy model that that exactly
time. The axion isocurvature model provides a simple couneproduces th&e CDM phenomenology but employs a single
terexample. On the other hand, no assumptions about tre@mponent of dark matter in a critical density universe.
anisotropic stress are necessary even wien —¥ no Variations in the stress hiStOfy produce models that satisfy
longer holds. the current constraints equally well but are potentially distin-
Isocurvature initial conditions predict an observed tem- guishable fromA CDM.
perature perturbation oPW on scales larger than the hori-
zon at last scatteringThe assumption here is that the initial C. Perturbation type
temperature perturbation in Newtonian gauge vanishes. This Scale-invariant gravity waves preferentially enhance the
is not the case for models where the isocurvature conditionpw-order multipoles of CMB anisotropie€nhancement
are established by balancing the photon density perturbatiorgnly occurs if the gravity wave amplitude decays close to
off another species of radiation. Furthermore, changes in thkorizon crossing and is eliminated as the equation of state of
potential that are slowly varying compared with the light the background drops.
travel time across a perturbation do not affect the observed There is a sharp distinction between active and passive
temperature. models for structure formatiorModels that have been la-
beled “passive” in the literature are those in which the stress
perturbations are simply related to density, velocity, and
) metric fluctuations by equations of state, sound speeds, vis-
The smoothness of a component is gauge-dependent aggsity parameters, etc. Models in which there is a component
hence has no physical meaninthe gauge dependence of a whose stresses have no fixed relation to density and metric
smooth component is not a problgyer seas certain frames, perturbations have been labeled “active.” The issue is the
e.g. the frame where the momentum of the component vamumber of internal degrees of freedom that act to specify the
ishs, are dynamically special. A smooth contribution to thestresses. For example, scaling defect stress histories are typi-
density withwg# — 1 does violate covariant energy conser- cally approximated by tens of parameters and those of par-
vation in any coordinate system where the spatial curvaturéicle dark matter by three or fewer. In principle, there is a
changes. Since the very presence of a smooth density corapectrum of possibilities between the two and a correspond-
ponent requires that the comoving curvature perturbation déng spectrum of phenomenological consequences.
cay, there can be no identically smooth contributions in those Our study is useful even if the current evidence support-
coordinates except in the trivial zero curvature perturbatioring ACDM-type phenomenology holds up. Even th€ DM
case. A component can be smooth relative to another specigsodel itself does not have an entirely trivial stress history as
inside the horizon where the relativistic effects of curvatureits dark sector includes the neutrino background radiation.
variation are negligibl¢15]. The observability of the neutrino stress history has been ad-
The behavior of a smooth component depends only on itgressed numerically if44]; we have examined its physical
equation of state w. Since all components except and  origin here. Furthermore, the dark sector could contain ex-
curvature are clustered outside the horizon, the manner iatic features that produce more or less ordinary phenomenol-
which a component becomes smooth is observable. The preggy, and one needs to construct sharp tests against alterna-
ence of sonic(supportivgé and anisotropic(dissipative  tives. For example, a combination of cold dark matter and a
stresses are two possibilities, but others exist in principle. cosmological constant must obey/,=3w.(1+w,). This
A “clustered” model like standard CDM has no dynami- relation also acts as the dividing line between models with
cally important smooth stresses or density contributidie  exotic and ordinary matter. For exotic matter, the stress and
radiation backgrounds and baryons are effectively smootllensity perturbations obey a relation that opposes that be-
well inside the horizon prior to recombination. Smooth con-tween the background stress and density; scalar fields are one
tributions are generic to structure formation models. example of exotic matter.

B. Clustering properties
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In summary, a purely phenomenological reverse-correct and assist in the search for the correct phenomeno-
engineering of the model for structure formation will require logical model for structure formation.
the reconstruction of the time-averaged stress history of the
dark sector. This inversion is generally not unique. Nonethe-
less, if the observed phenomenology remains close to that of
our simplest models, our study of stress phenomenology We would like to thank D.N. Spergel and P.J. Steinhardt
should provide the means for constructing viable models. Ifor useful conversations. W.H. is supported by the Keck
the observations require more radical departures, our studyoundation and Sloan Foundation, D.J.E. by Frank and

ACKNOWLEDGMENTS

should be useful in identifying the assumptions that are inPeggy Taplin, D.J.E. and W.H. by NSF-9513835.

[1] J. M. Bardeen, Phys. Rev. P2, 1882(1980.

[2] H. Kodama and M. Sasaki, Prog. Theor. Phys. Su@g).1
(1984).

[3] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger,
Phys. Rep215 203(1992.

[27] T. Gebbie and G. F. R. Ellis, astro-ph/9804316.

[28] A. Challinor and A. Lasenby, Phys. Rev.48, 023001(1998.

[29] W. Hu and M. White, Phys. Rev. B6, 596 (1997).

[30] S. Veeraraghavan and A. Stebbins, Astrophys365 37
(1990.

[4] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev. D31] M. White and W. Hu, Astron. Astrophy821, 8 (1997.

28, 679(1983.
[5] T. J. Allen, B. Grinstein, and M. B. Wise, Phys. Lett.187,
66 (1987.

[6] L. Moscardini, S. Mataresse, F. Lucchin, and A. Messina,

Mon. Not. R. Astron. Soc248 425 (1991).
[7] T. W. B. Kibble, Nucl. PhysB262, 227 (1985.
[8] D. Lyth, Phys. Rev. Lett78, 1861(1997.
[9] R. K. Sachs and A. M. Wolfe, Astrophys. 347, 73 (1967).
[10] W. Hu and N. Sugiyama, Astrophys.444, 489(1995; Phys.
Rev. D51, 2509(1995.
[11] W. Hu and M. White, Astrophys. 371, 30(1996; W. Hu, D.
N. Spergel, and M. White, Phys. Rev. 35, 3288(1997.
[12] J. A. Holtzman and J. R. Primack, Astrophys.4D5 428
(1993.
[13] P. G. Ferreira and M. Joyce, Phys. Rev. L&, 4740(1997).
[14] J. A. Frieman, C. T. Hill, A. Stebbins, and I. Waga, Phys. Rev.
Lett. 75, 2077(1995; K. Coble, S. Dodelson, and J. Frieman,
Phys. Rev. b5, 1851(1997; J. A. Frieman and |. Wagéhid.
57, 4642(1998.

[32] R. Durrer and M. Kunz, Phys. Rev. b7, 3199(1998.

[33] D. Lyth, Phys. Rev. 81, 1792(1985.

[34] H. Kodama and M. Sasaki, Int. J. Mod. Phys1A265(1986.

[35] S. Bildhauer, T. Buchert, and M. Kasai, Astron. Astrophys.
263 23(1992.

[36] T. Matsubara, Prog. Theor. Phyg4, 1151(1995.

[37] M. S. Turner and M. White, Phys. Rev. &5, 4439(1997.

[38] D. Heath, Mon. Not. R. Astron. Sod.79, 351 (1977.

[39] W. Hu and N. Sugiyama, Astrophys. 471, 542 (1996.

[40] E. J. Groth and P. J. E. Peebles, Astron. AstropHys.143
(1975.

[41] L. Knox, Phys. Rev. 62, 4307(1995.

[42] R. R. Caldwell and P. J. Steinhardt, Phys. Rev5D) 6057
(1998.

[43] W. Hu, D. Scott, N. Sugiyama, and M. White, Phys. Rev. D
52, 5498(1995.

[44] W. Hu, D. J. Eisenstein, M. Tegmark, and M. White, Phys.
Rev. D59, 023512(1998.

[45] W. H. Press and E. T. Vishniac, Astrophys239 1 (1980.

[15] R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett[46] J. Silk, Astrophys. J151, 459 (1968.

80, 1582(1998.

[16] D. N. Spergel and U.-L. Pen, Astrophys. J. Let®1, L67
(1999.

[17] W. Hu, Astrophys. J506, 485(1998.

[18] G. Efstathiou and J. R. Bond, Mon. Not. R. Astron. SBt8
103 (1986.

[19] P. J. E. Peebles, Natufeondon 327, 210(1987).

[20] P. J. E. Peebles, Astrophys. J. Let83 L1 (1997.

[21] W. Hu, E. Bunn, and N. Sugiyama, Astrophys. J. Ld#7,
L59 (1995.

[22] W. Hu, Phys. Rev. 59, 021301(1998.

[23] U.-L. Pen, U. Seljak, and N. Turok, Phys. Rev. L&$, 1611
(1997.

[24] A. Albrecht, R. A. Battye, and J. Robinson, Phys. Rev. Lett.
79, 4736(1997).

[25] A. Albrecht, R. A. Battye, and J. Robinson, Phys. Revc®
023508(1999.

[26] C. Contaldi, M.
astro-ph/9809053.

Hindmarsh, and J. Magueijo,

[47] P. J. E. Peebles and J. T. Yu, Astrophys162, 815(1970.

[48] J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, Astro-
phys. J.304, 15 (1986.

[49] N. Kaiser, Mon. Not. R. Astron. So02, 1169(1983.

[50] D. N. Schramm and M. S. Turner, Rev. Mod. Ph¥§, 303
(1998.

[51] N. G. Turok, Phys. Rev. 34, 3686(1996; Phys. Rev. Lett.
77, 4138(1997).

[52] N. Turok, U.-L. Pen, and U. Seljak, Phys. Rev5B, 023506
(1998.

[53] U. Seljak, U.-L. Pen, and N. Turok, Phys. Rev. L&, 1615
(1997).

[54] U. Seljak and M. Zaldarriaga, Astrophys.4B9, 437 (1996.

[55] J. P. Ostriker and P. J. Steinhardt, Natdrendon 377, 600
(1995.

[56] A. R. Liddle, D. H. Lyth, P. T. P. Viana, and M. White, Mon.
Not. R. Astron. Soc282 281 (1996.

[57] R. G. Carlberg, S. L. Morris, H. K. C. Yee, and E. Ellingson,
Astrophys. J. Lett479 L19 (1997).

083509-28



STRUCTURE OF STRUCTURE FORMATION THEORIES

[58] N. A. Bahcall, X. Fan, and R. Cen, Astrophys. J. Léi85
L53 (1997.

[59] A. G. Riesset al, Astron. J.116, 1009(1998.

[60] S. Perlmutteret al, Nature(London 391, 51 (1998.

[61] P. Garnavictet al, Astrophys. J509 74 (1998.

[62] C. H. Lineweaver, Astrophys. 505, 69 (1998.

PHYSICAL REVIEW &9 083509

[63] M. Tegmark, astro-ph/9809201.

[64] T. Chiba, N. Sugiyama, and T. Nakamura, Mon. Not. R. As-
tron. Soc.289 5 (1997; 301, 72 (1998.

[65] M. Yu. Khlopov, B. A. Malomed, and Ya. B. Zel'dovich,
Mon. Not. R. Astron. Soc215, 575(1985.

083509-29



