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Structure of structure formation theories

Wayne Hu and Daniel J. Eisenstein
Institute for Advanced Study, Princeton, New Jersey 08540

~Received 2 October 1998; published 23 March 1999!

We study the general structure of models for structure formation, with applications to the reverse engineer-
ing of the model from observations. Through a careful accounting of the degrees of freedom in covariant
gravitational instability theory, we show that the evolution of structure is completely specified by the stress
history of the dark sector. The study of smooth, entropic, sonic, scalar anisotropic, vector anisotropic, and
tensor anisotropic stresses reveals the origin, robustness, and uniqueness of specific model phenomenology.
We construct useful and illustrative analytic solutions that cover cases with multiple species of differing
equations of state relevant to the current generation of models, especially those with effectively smooth
components. We present a simple case study of models with phenomenologies similar to that of aLCDM
model to highlight reverse-engineering issues. A critical-density universe dominated by a single type of dark
matter with the appropriate stress history can mimic aLCDM model exactly.@S0556-2821~99!04208-3#

PACS number~s!: 95.35.1d
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I. INTRODUCTION

How does one reverse engineer a model for structure
mation from observed phenomena? How unique is such
inversion? How robust are the phenomenological distincti
between broad classes of models? With the wealth of h
precision cosmological data expected in the near future f
the cosmic microwave background~CMB!, galaxy surveys,
and the high redshift universe, the simpleab initio models
for structure formation currently considered may be ru
out, forcing us to confront these difficult issues. In this pap
we take the first steps toward answering this question
examining from a general standpoint what makes a mode
structure formation behave as it does in linear perturba
theory.

A model for structure formation is completely specifie
by its initial conditions and the full temporal and spat
behavior of the stresses in its dark sector. The dark se
contains the elements in the model that do not interact w
the photons at any observable redshift. It can include, bu
not limited to, cold dark matter~CDM!, neutrinos, and cos
mological defects.

Unfortunately, the stress history of the dark sector is
definition not directly observable. Its effects come filter
through gravity as mediated by metric fluctuations. T
translation of metric fluctuations into observables in t
CMB and evolution of structure is well understood. The
fore, the main hurdle in the task of reconstructing a mo
from observations is to understand how stress histories tr
late into metric fluctuations and vice versa.

Our general philosophy here is to start from elements
the cosmological model that will likely survive the onslaug
of data: general relativity and a universe whose deviati
from homogeneity and isotropy are initially small. We pr
ceed down the theory pipeline to existing models of struct
formation, making explicit the places where assumptions
made and hence could be altered. Where possible, we
vide analytic solutions and approximations that highlight c
tain generic behavior and phenomena. These solutions
useful for describing the behavior of the existing models a
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are in most cases new or substantially more general t
those found in the literature. In particular, we derive mas
solutions for models which contain multiple componen
with arbitrary equations of state and smooth, entropic, an
tropic, and sonic stresses.

We begin in Sec. II with an overview of the basic el
ments of a structure formation theory and their tradition
classification in terms of their initial conditions, perturbatio
type, and clustering properties. We then present a concise
general treatment of linear perturbation theory in Sec. III a
gauge issues in Sec. IV. Although these are well-studied s
jects ~see e.g.@1–3#!, our treatment has several pedagogic
and practical virtues. It keeps careful track of the degree
freedom available to structure formation models and he
provides a unified treatment applicable to all models, inclu
ing those containing exotic matter like scalar fields or c
mological defects. We also explicitly maintain general cov
riance such that the equations apply, and may be ea
specialized, to any choice of coordinates or gauge. In Sec
we define general classes of stress perturbations and pr
an overview of their conversion into observables.

The remainder of the paper deals with stress histories o
case by case basis. The simplest case involves sm
stresses, and we present detailed analytic solutions in Se
that apply to a wide range of models—from simple cosm
logical constant and cold dark matter models (LCDM) to
massive neutrino and scalar field models. Pure anisotro
entropic, and sonic stresses are treated in Sec. VII and m
cases in Sec. VIII. To highlight reverse-engineering issu
we study single-component, critical-density dark mat
models with phenomenologies that mimic theLCDM model
in Sec. IX. We conclude in Sec. X by re-examining the tr
ditional classification scheme of Sec. II in light of the ph
nomenological distinctions uncovered in this work.

II. CLASSIFICATION OF THEORIES

A. Initial conditions

Perhaps the most fundamental difference between mo
for structure formation lies with their initial conditions. Cu
©1999 The American Physical Society09-1
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WAYNE HU AND DANIEL J. EISENSTEIN PHYSICAL REVIEW D59 083509
rently, inflation is the only known means of laying dow
large-scale density or curvature perturbations in the e
universe. Indeed, inflation in the more general sense o
period of superluminal expansion is required for the cau
generation of large-scale power. It provides a means of c
necting parts of the universe that are currently space-
separated, i.e. outside the current particle horizon. Mod
with initial curvature perturbations are usually called ‘‘adi
batic’’ models.

All other causal models begin with no density or curv
ture fluctuations on large scales and are hence ca
‘‘isocurvature’’ models. In these models, stress gradie
causally move matter around inside the horizon to fo
large-scale structure.

The generation mechanism is also responsible for de
mining the spectrum and statistics of the fluctuations. T
simplest inflationary models predict a nearly scale-invari
and Gaussian distribution of fluctuations@4# but higher order
effects can break scale-invariance and generate n
Gaussianity@5,6#. Defect perturbations are intrinsically non
Gaussian but are typically also scale-invariant in the gen
alized sense of ‘‘scaling’’@7#. We are primarily concerned
here with the evolution of fluctuations from their initial sta
through the linear regime and do not consider these iss
further. Note that changes in the spectrum of perturbati
are simple to include in linear theory as evolutionary effe
can be factored out into so-called ‘‘transfer functions.’’

B. Perturbation type

The perturbation type for the metric and matter fluctu
tions is the next most important distinction. A general line
fluctuation can be decomposed into scalar, vector and te
components. These manifest themselves as density, vort
and gravitational wave perturbations respectively and do
interact in linear theory. The scalar modes are the only o
that grow through gravitational instability. Vector modes,
the other hand, always decay with the expansion. They
only be actively generated by shearing~or anisotropic! stress
in the manner. Tensor modes are intermediate. Left to th
selves, they propagate as gravity waves, but they gene
and can be generated by transverse-traceless~quadrupolar!
stresses in the matter.

The simplest inflationary models possess only sca
~‘‘S’’ ! fluctuations, and tensor fluctuations are generally c
mologically negligible in models with energy scales subst
tially below the Planck scale@8#. However, models whose
initial conditions contain both scalar and tensor~‘‘ST’’ ! fluc-
tuations are possible. Models with only S or ST genera
have stresses that may be defined as functions of the me
density and velocity perturbations and hence may be vie
as ‘‘passive’’ responses through equations of state.

‘‘Active’’ models have stresses that are a consequenc
complex internal dynamics in the dark sector that canno
simply specified as responses to gravitational perturbati
Although this definition is not precise for scalar and ten
modes, the very presence of vector modes indicates an a
source because these must be continuously generated to
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an observable effect. Nevertheless, such models gene
have all three types of perturbations~‘‘SVT’’ !.

C. Clustering properties of dark matter

Finally, the nature of the dark components affects the e
lution of perturbations. We define as ‘‘dark’’ any compone
that interacts with the CMB photons only gravitationall
Thus, even massless neutrinos are classified as dark mat
this scheme.

Stresses in the dark components change the evolutio
the mean density with time and the response of the matte
gravitational compression. We will loosely type mode
whose expansion rate is driven by a compressible type
matter ~on scales relevant to cosmological structures! as
‘‘clustered’’ models and those which possess matter tha
incompressible as ‘‘smooth’’ models. We shall see that t
distinction is in fact rather inexact as it is not time invarian
essentially all models pass through phases when they w
be considered smooth or clustered on the relevant scale

D. Phenomenology

The key to understanding the phenomenology of a giv
model for structure formation is the evolution of metric flu
tuations, in particular the Newtonian gravitational potenti
Its qualitative behavior is determined by the initial cond
tions, perturbation type, and dark matter content of
model. We illustrate this taxonomy scheme in Fig. 1.

The behavior of the gravitational potential is directly r
lated to the evolution of density perturbations through
Poisson equation. Once its evolution is determined as a fu
tion of scale, not only is the present large-scale structure
the universe determined but also the whole time history
structure formation. The latter is important for predicting t
properties and abundances of high-redshift objects.

FIG. 1. Taxonomy of structure formation. Models can be cla
sified by their initial conditions~adiabatic or isocurvature!, pertur-
bation type~passive or active!, and clustering properties of the dar
matter~clustered or smooth on large-scale structure scales!. Passive
fluctuations involve stress responses to other perturbations and
support scalar~‘‘S’’ ! or scalar and tensor~‘‘ST’’ ! components. Ac-
tive stresses generate fluctuations and generally possess vector
ponents as well~‘‘SVT’’ !. We will examine the extent to which this
traditional categorization is useful in predicting model phenomen
ogy.
9-2
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STRUCTURE OF STRUCTURE FORMATION THEORIES PHYSICAL REVIEW D59 083509
The gravitational potential also generates CMB aniso
pies through gravitational redshifts@9# and is the ultimate
source of all anisotropies from scalar perturbations. CM
phenomenology can be essentially read off of the time e
lution of the gravitational potential@10#, although this in-
volves understanding the back reaction from density per
bations in the CMB itself@11#.

Similar but simpler considerations apply for vector a
tensor metric perturbations. They also generate anisotro
via gravitational redshifts but do not have unstable mo
and hence do not affect large-scale structure formation
linear theory.

The difference between adiabatic and isocurvature mo
plays a direct role in metric evolution because initial curv
ture ~or gravitational potential! perturbations are present i
one and absent in the other. The perturbation type chan
the ratio of CMB anisotropies to large-scale structure.
nally, the dark matter properties affect the evolution of t
gravitational potentials. Smooth components by definition
not contribute to the gravitational potential but do contribu
to the expansion rate. They slow down the growth of str
ture and cause the gravitational potential to decay. He
they decrease the amount of structure and increase the l
angle anisotropies of the CMB.

In summary, the observable properties of structure form
tion models are encapsulated in the time evolution of
metric fluctuations. This in turn is governed by the stre
properties of the matter through both its initial conditio
and intrinsic properties.

E. Current model zoo

The archetypal model for structure formation is the st
dard cold dark matter model~sCDM!, which is an adiabatic
passive, and clustered model. Here, an initial scale-invar
spectrum of adiabatic scalar~‘‘S’’ ! perturbations collapse
via the gravitational instability of pressureless cold dark m
ter. Although this model is no longer viable from an obs
vational standpoint, it predicts phenomena sufficiently sim
lar to the observations to act as a good starting point
model building. One of its failings is that it predicts to
much small-scale power for the level of CMB anisotrop
demanded by the Cosmic Background Explorer~COBE! de-
tection.

A simple variation of the sCDM model that attempts
address this problem involves tilting the initial spectrum
scalar perturbations~tCDM! to reduce small-scale powe
relative to large. Under certain inflationary scenarios, t
brings about the addition of tensor perturbations that furt
reduce small-scale density perturbations relative to
COBE detection. Such a model would be a ‘‘ST’’ variant
SCDM.

The second class of variations involves changing the m
ter content so as to suppress the clustering of matter, yiel
a ‘‘smooth’’ variant. The prototypical example is theLCDM
model, where an additional component of matter that d
not cluster replaces most of the CDM. Another example
the ‘‘open’’ OCDM model where spatial curvature plays t
role of the smooth component. Those two represent
08350
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amples where the additional component is smooth on
scales and for all time by definition. Variants where the m
ter is only smooth on small scales include the hot and c
dark matter~HCDM! model @e.g. @12# also called C1HDM
and mixed dark matter~MDM !# with a component of hot
dark matter, thefCDM model@13# with a scalar field com-
ponentf that tracks the background behavior of the matt
and QCDM @14,15# with a general scalar field~‘‘quintes-
sence’’!. In a string-dominated universe~strCDM! @16#, the
string network plays the role of a smooth component w
the same equation of state as spatial curvature. Of cou
one can have multiple smooth species as well, e.g. OLCDM.
The generalized DM~GDM! class of models@17# phenom-
enologically parametrizes all such models.

Replacing the CDM with GDM of a different equation o
state but no stress perturbations is a phenomenological
sibility ~GDM! suggested by@17#. This is an adiabatic, pas
sive, and clustered variant of CDM. We will use the des
nation ‘‘CDMv’’ to represent all such variants of the CDM
model.

Isocurvature models have been proposed as alternativ
the ‘‘CDMv’’ class of models. The simplest examples a
those in which the initial stress fluctuations are establis
by balancing the density perturbations of two different typ
of matter. Examples include the axion isocurvature~AXI !
@18# model and the primordial isocurvature baryon~PIB!
model@19#, where radiation density fluctuations are balanc
by axions and baryons, respectively. The simplest versi
involve only scalar fluctuations and hence are passive~‘‘S’’ !
models. Models with and without smooth cosmological co
stant or spatial curvature components have been propo
Versions with Gaussian power-law initial conditions are o
servationally challenged@18,21# but more complicated varia
tions exist @20#. Based on our work, one of us has co
structed an isocurvature decaying dark matter~iDDM ! model
that defies conventional wisdom on isocurvature models
solves these observational problems@22#.

Finally, topological defect models such as strings and t
tures fall into the isocurvature class but have fluctuations
are active~‘‘SVT’’ !. The simplest versions obey scaling an

FIG. 2. Scalar, vector, tensor decomposition. At the top of
tree of possibilities for structure formation models is the assump
that general relativity holds in the cosmological context and
universe is homogeneous and isotropic in the mean with linear
turbations initially. Without further assumptions, the linear fluctu
tions may be expanded in scalar, vector, and tensor modes th
not interact while the fluctuations remain linear.
9-3
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WAYNE HU AND DANIEL J. EISENSTEIN PHYSICAL REVIEW D59 083509
have only clustering matter but fail to generate enough lar
scale structure for the observed CMB anisotropies@23,24#.
Models with a smoothL component have been proposed
alleviate these problems@25#.

Hybrid models can also be constructed. If defects fo
after the inflationary epoch, one has a model with adiab
initial conditions and active perturbations. A string mod
with inflation and cold dark matter~SIC! is a concrete ex-
ample @26#. One can also add in smooth components, e
spatial curvature~SICO!.

Clearly, the existing models do not even qualitatively e
haust the possibilities open to structure formation models
the rest of the paper, we conduct an examination of th
possibilities beginning with general principles and explici
stating the assumptions that are made in obtaining the m
els described as well as their generalizations. We summa
this analysis in a series of flowcharts~Figs. 2, 3, 4, 5, 6, and
12.!

III. COVARIANT PERTURBATION THEORY

A. General definitions

We assume that the background is described by

Friedmann-Robertson-Walker~FRW! metric ḡmn5a2gmn

with scale factora(t) normalized to unity today and consta
comoving curvature in the spatial metricg i j . Here greek

FIG. 3. Scalar perturbations. It is useful to subdivide the stre
free class of scalar perturbations from the general possibilities
‘‘stress-free’’ perturbation has dimensionless stresses (S,SP) that
are much smaller than the comoving curvature perturbationz. Note
that the stress-free perturbation condition does not preclude b
ground or ‘‘smooth’’ stress.

FIG. 4. Vector perturbations. Vector perturbations simply dec
from their initial value in the stress-free limit. The integral solutio
in the presence of vector stress is given in Sec. VIII F and applie
defect models.
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spatial part of the metric:i , j 51,2,3. The component corre
sponding to conformal time
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is g00521 and g0i5g i050. Unless otherwise specified
overdots represent derivatives with respect to conformal t
and primes derivatives with respect to lna. c51 throughout.
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FIG. 5. Tensor perturbations. Tensor perturbations propagat
free gravity waves in the stress-free limit as is the case of a ma
dominated expansion. The integral solution in the presence
stresses is given in Sec. VIII G and may be applied to propaga
during radiation domination as well as defect sources.

FIG. 6. Stress-free scalar perturbations. If all of the mat
which drives the expansion participates in gravitational instabil
the matter is said to be ‘‘clustered’’; otherwise, there exists
‘‘smooth’’ component. In either case, the perturbations depend o
on the background~‘‘backgnd.’’! equation of statew and can be
tracked with simple techniques~middle row!, which lead to exact
solutions~bottom row! that describe behavior in a wide range
models.
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STRUCTURE OF STRUCTURE FORMATION THEORIES PHYSICAL REVIEW D59 083509
The background curvature is given byK52H0
2(12V tot),

where the Hubble constant isH05100h km s21 Mpc21.
The ten degrees of freedom for the perturbations in

symmetric metric tensorgmn can be parametrized as

g0052a2~122A!,

g0i52a2Bi ,

gi j 5a2~g i j 22HLg i j 22HT
i j !. ~2!

We refer to the lapseA as the potential, the three componen
of Bi as the metric shift,HL as the curvature perturbation
and the five components ofHT

i j as the metric shear following
the conventions of@1,2#.

Likewise, the symmetric stress-energy tensor can be
rametrized by ten components

T0
052r2dr,

Ti
05~r1p!~v i2Bi !,

T0
i 52~r1p!v i ,

Tj
i 5~p1dp!d j

i 1pP j
i , ~3!

i.e. the energy density and its perturbation (r1dr), the iso-
tropic stress~pressure! and its perturbation (p1dp), the
three components of the momentum density (r1p)v i , and
the five components of the anisotropic stress tensorP i j .
Note that the metric shiftBi enters inTi

0 but notT0
i . Corre-

spondingly, we shall see thatBi enters into the momentum
but not the energy conservation equation.

By writing the metric and stress energy tensor in t
form, we have maintained general covariance. As a res
the equations of motion that result below take the sameform
for any coordinate system where linear perturbation the
holds. We reserve the term gauge invariant refers for obj
that have the samevalue in each frame.

B. Perturbation representation

While the perturbations are linear, they may be separa
by their transformation properties under rotation without lo
of generality~see Fig. 2!. For covariant techniques that d
not assume linear perturbations from the outset, see@27,28#
and references therein. The five component metric shearHT

i j

and matter anisotropic stressP i j separate into one scala
two vector, and two tensor components. The scalar st
generates potential flows (¹3v50), whereas the vecto
stress generates vorticity (¹•v50). The tensor stress gene
ates tensor shear in the metric, which represents gra
waves in the transverse-traceless gauge. Therefore, the
tentialA, curvatureHL , densitydr, and pressuredp pertur-
bations are associated with scalar fluctuations alone, the
ric shift Bi and velocity v i with scalar and vector
fluctuations, and the metric shearHT

i j and anisotropic stres
P i j with all three. Scalar, vector and tensor perturbatio
may be treated independently in linear perturbation theo
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Fluctuations can be decomposed into the normal mode
the Laplacian operator@1#

¹2Q~0!52k2Q~0! S,

¹2Qi
~61!52k2Qi

~61! V,

¹2Qi j
~62!52k2Qi j

~62! T, ~4!

where vector and tensor modes satisfy a divergenceless
transverse-traceless condition respectively:

¹ iQi
~61!50, g i j Qi j

~62!5¹ iQi j
~62!50. ~5!

In flat space, these correspond to plane waves times a l
angular basis for the vectors and tensors@29#.

Vector and tensor objects can of course be built out
scalar and vector normal modes through covariant differ
tiation and the metric tensor@2#:

Qi
~0!52k21¹ iQ

~0!,

Qi j
~0!5S k22¹ i¹ j2

1

3
g i j DQ~0!,

Qi j
~61!52

1

2k
@¹ iQj

~61!1¹ jQi
~61!#. ~6!

The perturbations in thekth eigenmode can now be writte
as

A5Â Q~0!, HL5ĤLQ~0!,

dr5dr̂Q~0!, dp5d p̂Q~0!, ~7!

which possess only scalar components

Bi5 (
m521

1

B̂~m!Qi
~m! ,

v i5 (
m521

1

v̂ ~m!Qi
~m! , ~8!

which possess scalar and vector components, and

HTi j5 (
m522

2

ĤT
~m!Qi j

~m! ,

P i j 5 (
m522

2

P̂~m!Qi j
~m! , ~9!

which possess all three types. Here, scalar perturbations
denoted with a superscript(0), which is elsewhere omitted
We will hereafter also omit the caret in the normal mo
amplitudes since real-space objects will no longer app
Thus v̂ (0)[v.
9-5
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WAYNE HU AND DANIEL J. EISENSTEIN PHYSICAL REVIEW D59 083509
C. Gauge covariant equations

The equations of motion for the matter follow from th
Einstein equationsGmn58pGTmn . Furthermore, the Bian
chi identities guaranteeTmn50 which represents covarian
energy and momentum conservation.

For the background, energy conservation implies

ṙ523
ȧ

a
~11w!r, ~10!

wherew5p/r determines the background equation of sta
As a result of the isotropy of the background, moment
conservation yields no additional constraint.

The Einstein equation determine the evolution of the sc
factor through

S ȧ

a
D 2

[
8pG

3
a2rcr5

8pG

3
a2~r1rS!. ~11!

Here we have divided contributions to the expansion r
into the ordinary density and an effective density compon
that does not participate in gravitational collapse and
hence labeled ‘‘S’’ for smooth. The curvature provides t
only component that is smooth by fiat,

rS52
3

8pGa2 K, ~12!

with wS521/3. Even the cosmological constant is ke
smooth simply by dynamics. However, this notation is co
venient for considering components that are approxima
smooth. By keeping a generalrS and r here, we avoid
lengthy rederivation of the equations of motion for su
cases. Note thatr1rS5rcr , the so-called critical density
and we can define a critical equation of statewcr by

ṙcr523
ȧ

a
~11wcr!rcr . ~13!

Scalar matter perturbations obey the continuity and Eu
equations

F d

dh
13

ȧ

a
Gdr13

ȧ

a
dp52~r1p!~kv13ḢL!, ~14!

F d

dh
14

ȧ

a
G F ~r1p!

~v2B!

k G5dp2
2

3S 123
K

k2D pP

1~r1p!A, ~15!

and place 2 constraints on the 4 scalar matter-variables.
The metric and matter are related by the Einstein eq

tions
08350
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~k223K !FHL1
1

3
HT1

ȧ

a

1

k2~kB2ḢT!G
54pGa2Fdr13

ȧ

a
~r1p!~v2B!Y kG , ~16!

k2S A1HL1
1

3
HTD1S d

dh
12

ȧ

a
D ~kB2ḢT!58pGa2pP,

~17!

ȧ

a
A2ḢL2

1

3
ḢT2

K

k2~kB2ḢT!54pGa2~r1p!~v2B!/k,

~18!

F2
ä

a
22S ȧ

a
D 2

1
ȧ

a

d

dh
2

k2

3
GA2F d

dh
1

ȧ

a
G S ḢL1

1

3
kBD

54pGa2S dp1
1

3
dr D . ~19!

Only two of these equations are functionally independe
The combination of these equations that corresponds to
conservation equationGmn

;n50 is automatically satisfied by
any choice of the 4 metric variables due to the Bianchi id
tities. The remaining degrees of freedom are related to ga
freedom as we shall see.

Momentum conservation for vector perturbations giv
the Euler equation

F d

dh
14

ȧ

a
G @~r1p!~v ~61!2B~61!!/k#

52
1

2
~122K/k2!pP~61!, ~20!

and the Einstein equations give

~122K/k2!~kB~61!2ḢT
~61!!

516pGa2~r1p!~v ~61!2B~61!!/k, ~21!

F d

dh
12

ȧ

a
G ~kB~61!2ḢT

~61!!528pGa2pP~61!. ~22!

Again the Bianchi identity reduces the number of indepe
dent equations to 2.

For the tensor modes, the Einstein equations reduce
single relation

F d2

dh2 12
ȧ

a

d

dh
1~k212K !GHT

~62!58pGa2pP~62!.

~23!

Neither the conservation equations nor the Bianchi iden
say anything about tensor perturbations.

Although these relations are exact, they do not provid
closed system. There are in general 10 equations for 20 v
ables in the background and perturbations separately. Fo
9-6
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background, homogeneity and isotropy brings this to 2 eq
tions for the 3 variables (a), (r,p), where the grouping dis
tinguishes metric and matter categories. For the pertu
tions, the general relations are broken up into 4 equations
the 8 variables (A,B,HL ,HT), „dr,dp,(r1p)v,pP…

for the scalar perturbations, 2 equations for 4 variab
(B(61), HT

(61)), (v (61),P (61)) for each set of vector pertur
bations and 1 equation for 2 variables (HT

(62)), (P (62)) for
each set of tensor perturbations. We can express the rem
ing 1110 degrees of freedom as the ability to choose
equation of state for the backgroundw5p/r, the 6 stress
fluctuations (dp,pP,pP (61),pP (62)) for the perturbations,
and the gauge@the 4 quantities (dh, dxi) for an arbitrary
coordinate shift#.

D. Multicomponent generalization

The conservation equations~14!, ~15! and ~20! are valid
for each species whose stress-energy tensor is independ
covariantly conserved. For example, they apply to
photon-baryon system and the dark sector which only in
act through gravity. The Einstein equations~16!–~19!, ~21!
and~23! of course still hold with the appropriate summatio
over components, e.g.r5(JrJ . Note that we do not include
the smooth componentrS in the multicomponent sum.

IV. COORDINATE CHOICE

A. Gauge transformations

The additional four component freedom in the Einste
equations is fixed by a choice of coordinates that relate
perturbations to the underlying smooth background. T
most general coordinate transformation associated with
kth normal mode is@1#

t5 t̃1TQ~0!,

xi5 x̃i1LQi
~0!1L ~1!Qi

~1!1L ~21!Qi
~21! , ~24!

where T corresponds to a choice in time slicing an
(L, L (1), L (21)) a choice of spatial coordinates. Under t
condition that metric distances be invariant, they transfo
the metric as@2#

A5Ã2Ṫ2
ȧ

a
T,

B5B̃1L̇1kT,

HL5H̃L2
k

3
L2

ȧ

a
T,

HT5H̃T1kL ~25!

for the scalar perturbations and

B~61!5B̃~61!1L̇ ~61!,
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HT
~61!5H̃T

~61!1kL~61! ~26!

for the vector perturbations.
Similarly, they transform the components of the stre

energy tensor as@2#

drJ5dr̃J2 ṙJT,

dpJ5d p̃J2 ṗJT,

vJ5 ṽJ1L̇ ~27!

for the scalar perturbations and

vJ
~61!5 ṽJ

~61!1L̇ ~61! ~28!

for the vector perturbations. All other quantities in the met
and matter are gauge invariant. In particular, the ten
modes do not exhibit gauge freedom since the transve
traceless condition onQ(62) is sufficient to remove the
gauge ambiguity. The gauge is thus fixed by conditio
on the metric which fully specify the transformatio
(T, L, L (61)) from an arbitrary frame.

It is important to bear in mind that both the metric flu
tuations (A,B,HL ,HT) and the matter fluctuation
(dr,dp, @r1p#v) take on different numerical values in dif
ferent frames even in this covariant notation. For example
r evolves in time, a density perturbationdr arises simply
from the warping of the time hypersurface on which the p
turbation is defined. Thus, a density perturbation differs n
ligibly only between frames separated by@see Eq.~10!#

T!F ~11w!
ȧ

a
G21

drJ

rJ
. ~29!

The common gauge choices of the next section all agree
the density perturbation in the clustered component well
side the horizon.

B. Gauge choice

Gauge freedom can be used to simplify the equations
motion. Most commonly, it is employed to convert certa
Einstein equations to algebraic relations and/or elimin
relativistic effects from the conservation equations.

1. Vector gauges

Let us first dispose of the vector degrees of freedo
There are two natural choices@1#: HT

(61)50 which fixes the
gauge completely andB(61)50 which leaves an arbitrary
constant offset inHT

(61) . The latter does not produce a dy
namical effect and can always be eliminated by specifying
initial condition for HT

(61) .

2. Comoving (scalar) gauge

It is useful to consider a scalar gauge where the me
and matter fluctuations are simply related@1#. Inspection of
the Euler and Einstein equations shows us that the coordi
9-7
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choiceB5v simplifies the equations of motion greatly. Th
fixes the time slicing throughT5( ṽ2B̃)/k. The additional
conditionHT50 specifies thatL5H̃T /k and fixes the gauge
completely. We call this thecomovinggauge since here th
momentum density vanishes. The remaining metric variab
are labeledA5j andHL5z. This choice reduces the Eule
equation to the algebraic relation for the potential,

~r1p!j52dp1
2

3
~123K/k2!pP, ~30!

which is also simply related to the curvature through
Einstein equation~18!:

ż5
ȧ

a
j14pGa2~rS1pS!v/k. ~31!

Here we have again rewritten the curvature component
smooth density contribution as in Eq.~11! for easy generali-
zation to approximately smooth cases.

The simple relation between the metric and stress per
bation of Eqs.~30! and~31! is what makes this gauge usefu
A smooth component complicates these relations becaus
the difference between a frame that is comoving withv ver-
sus the total-momentum-weighted velocityv ṙ/( ṙ1 ṙS).
With a constant comoving curvature, the continuity equat
~14! reduces to an ordinary conservation equation since m
ric changes to the fiducial volume are absent.

3. Newtonian (scalar) gauge

Finally, the Newtoniangauge is defined byB5HT50
and labelsA5C and HL5F. The gauge is completely
specified throughT52B̃/k1H8 T /k2 and L52H̃T /k. The
Einstein equations are reduced to algebraic relations
generalize the Poisson equation of Newtonian gravity:

~k223K !F54pGa2Fdr13
ȧ

a
~r1p!vY kG ,

k2~F1C!528pGa2pP. ~32!

These algebraic relations and the fact that CMB anisotro
are simply related toF andC make this gauge useful.

4. Gauge-covariant variables

It is often useful to speak of the variables of say the
moving gauge while in a Newtonian representation. Bard
@1# introduced a so-called ‘‘gauge-invariant’’ language th
achieves this. We denote such techniques as gauge cova
since they amount to introducing covariant expressions
objects that take on the desired meaning only in a spe
frame. The only objects that cannot be made gauge cova
are those that are ill defined due to coordinate ambiguiti

To avoid confusion, we only use gauge-covariant va
ables to describe metric fluctuations (z,j,F,C). Matter per-
turbations will always be represented in the comoving ga
unless otherwise specified. Note thatv is the same in comov
ing and Newtonian gauges.
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The comoving curvature and density can be usefully
pressed in Newtonian variables

z5F12~C2F8!
rcr

r8
, ~33!

4pGa2dr5~k223K !F, ~34!

obtained through Eqs.~25! and ~18!. Likewise Eq.~31! can
be rewritten as

z82j5~C2F8!
rS8

r8
. ~35!

Recall that primes represent derivatives with respect to la.
As we shall see, employing both comoving and Newto

ian metric variables in the covariant language allows us
exploit the simple relations to comoving stresses in
former and comoving density perturbations in the latter.

V. STRESS PHENOMENOLOGY

A. Stress representation

We have seen that the stresses of the matter compon
completely determine the evolution of perturbations~see
Figs. 3, 4, and 5!. The background stress is completely d
termined by the equation of statew. The scalar stress fluc
tuations are determined by functional relations between
pressure or isotropic stress perturbationsdp, anisotropic
stress perturbationpP and the density perturbationdr.
These relations may also involve hidden internal degree
freedom. A model may also possess background stress w
out stress perturbations and vice versa. We call the form
smooth stress and the latter a seed stress. Vector and te
perturbations likewise depend on the componentspP (61)

andpP (62) of the anisotropic stress tensor.
Scalar stress perturbations control the basic element

the structure formation history, and so we pay particular
tention to categorizing their properties. As discussed in S
IV B, the isotropic scalar stress poses a special problem
that its value depends on the choice of coordinate or gau
The comoving gauge~where the momentum density van
ishes! provides a useful choice of gauge because of
simple relation between the metric and stress fluctuatio
We will use these coordinates to define thetotal scalar stress

S52j5
dp

r1p
2

2

3
~123K/k2!

p

r1p
P. ~36!

It is useful to isolate gauge invariant aspects of the str
perturbation. Theanisotropicscalar stress

SP528pGa2pP/k2 ~37!

is gauge invariant by definition; this form of the anisotrop
stress also enters into the Einstein equations separately
S.

An adiabatic stress perturbation obeys
9-8
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dpA5~r1p!SA5
p8

r8
dr. ~38!

Although dpA is not gauge invariant, the adiabatic sou
speed is

cs
2[

dpA

dr
5

p8

r8
. ~39!

This gauge invariance implies that there are no coordin
ambiguities when discussing the pressure support of a
batic fluctuations.

The remaining gauge-invariant pressure perturbation

SG5
1

r1pS dp2
p8

r8
dr D . ~40!

Unlike adiabatic stresses, these may be present even w
the comoving density perturbationdr is negligible@see Eq.
~34!#. Entropic stresses are the primary means of struc
formation in most isocurvature models.

The comoving-gauge analogues ofSA and SG are also
useful. As long asdp/dr is less than unity, superhorizo
stresses are negligible compared with curvature fluctuati
We call the part ofdp/dr that is separable in time and spa
the comovingsound speedcC

2 5 f (k)g(h) and the accompa
nying stresssonic:

SS5cC
2 dr

r1p
. ~41!

Separability is not a gauge-invariant property, but this is
in itself a problem because the comoving frame is dyna
cally special.

We call the remaining isotropic stress the entropic stre

SE5
1

r1p
~dp2cC

2 dr!, ~42!

such that the total stress is

S5SS1SE1
2

3

k223K

8pGa2~r1p!
SP . ~43!

Note that if the comoving sound speed equals the adiab
sound speedcC

2 5cs
25p8/r8, thenSS5SA andSE5SG .

B. Seed stress

Seed stresses provide a special case with unique pro
ties. The effects of seed perturbations are in fact simple
understand than those of the fluid type because the prob
decouples completely. If the seeds do not interact dire
with other types of matter, the conservation equations~14!
and ~15! imply that the metric perturbations only affect th
seed perturbations at second order since barers andps terms
may be dropped. They become@30#
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F d

dh
13

ȧ

a
Gdrs52k~rs1ps!vs23

ȧ

a
dps, ~44!

F d

dh
14

ȧ

a
G ~rs1ps!

vs

k
5dps2

2

3
~123K/k2!psPs. ~45!

The basic principles of how stress fluctuations affect
gravitational potential still hold but here there is a stre
contribution that is truly external to the system of met
fluctuations. It is again possible to have large-scale entro
stress perturbation in the absence of initial curvature or d
sity perturbation.

The formal solutions to Eqs.~44! and ~45! are

~rs1ps!vs/k5a24E dha4Fdps2
2

3
~123K/k2!psPsG ,

drs52a23E dha3Fk~rs1ps!vs13
ȧ

a
dpsG .

~46!

The task of understanding a seed model like defects red
to understanding its stresses, but this is a formidable tas
realistic seed models such as cosmological defects~e.g.,
@23#!.

C. From stresses to curvature

These stresses are the fundamental sources and sin
the metric perturbations. We therefore seek to express
comoving and Newtonian curvatures in terms of the stres
Combining Eqs.~33!, ~35!, and~36! with

C52F1SP , ~47!

yields

z852S1@F81F2SP#S rcr8

r8
21D , ~48!

and

Ar

a F a

Ar
FG 852

1

2

r8

r
z1SP . ~49!

In a non-critical ~non-flat, rÞrcr) universe, we combine
these to eliminatez from the evolution equation for the New
tonian curvature, giving

F91S 12
r9

r8
1

1

2

rcr8

rcr
D F81S 1

2

rcr8 1r8

rcr
2

r9

r8
D F

5
1

2

r8

rcr
S1SP81S 1

2

rcr8 1r8

rcr
2

r9

r8
D SP . ~50!

Recall that the Newtonian curvature is simply related to
comoving density perturbation through Eq.~34!.
9-9
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In a critical-density universe (r5rcr), Eqs.~48! and~49!
can be formally solved as integrals over the stress fluc
tions to yield

z~a!5z~0!2E da

a
S ~51!

and

F5z2
Ar

a E da

Ar
@z2S2SP#1C

Ar

a
. ~52!

The last term is the decaying mode ofF whereC5const.
There are three general conclusions that we can d

from Eqs.~51! and~52!. The first is that in the absence of a
initial comoving curvature perturbation@z(0)50#, a stress
fluctuation will generate one of orderz;2S. The same goes
for the Newtonian curvatureF;2S. The reason for this
behavior is that a stress gradientkdp generates a potentia
flow with (r1p)v;(kh)dp which generates a density pe
turbation ofdr;2(kh)2dp and hence a curvature perturb
tion of F;2dp/rcr . Note that this intuitive argument fail
for other gauge choices.

Second, starting with a curvature perturbation and ass
ing sonic stressesdp5cC

2 dr, it is clear that the same mecha
nism of generating flows will generate an opposing curvat
fluctuationDF;2cC

2 dr/r;2(cCkh)2F that will destroy
the initial curvature fluctuation whencCkh;1. In physical
terms this occurs because pressure support prevents p
bations from collapsing and hence causes the curvature
turbation to redshift away.

Finally, the anisotropic stress contributes to the to
stressS and thus can both create and destroy comoving c
vature fluctuations. Furthermore, it enters separately into
Newtonian curvature through Eq.~52!. This is because the
Newtonian frame, unlike the comoving frame, is defined
be globally shear free (B5HT50). The coordinate transfor
mation that maps the comoving frame to the shear free fra
depends on the anisotropic stress and hence aliases
ground evolution into contributions to the Newtonian curv
ture.

Unfortunately, despite their general appearance, Eqs.~51!
and~52! are only formal solutions since the time evolution
the stress sources generally depends on the curvature
tuation itself. We will use the special properties of smoo
anisotropic, entropic, and sonic stresses to address this p
lem in Secs. VI, VII, and VIII.

D. From curvature to observables

As discussed in Sec. II D, the Newtonian curvature is
rectly related to observables in the CMB and large sc
structure. We are now in a position to quantify these re
tions. The Newtonian curvatureF and potentialC encapsu-
late all observable properties of scalar fluctuations. The c
tribution of a given k-mode to the amplitude of thel th
multipole moment of the CMB anisotropy is given by@10#
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2l 11
'E

0

h0
dhe2t$@Ċ2Ḟ1 ṫ~Q01C!#

3 j l@k~h02h!#1 ṫvbj l8 @k~h02h!#%, ~53!

where we have dropped the small correction due to the
larization of the CMB.t is the optical depth to Compton
scattering between the present (h0) and the epoch in ques
tion (h); Q0 is the photon temperature perturbation in Ne
tonian gauge, andvb is the baryon velocity in Newtonian o
comoving gauge. For an open universe, the spherical Be
function j l is replaced by the hyperspherical Bessel functio
Note that the prime here and here only refers to a deriva
with respect to the argument of the Bessel function. With
random phase assumption for thek-modes, the scalar contri
bution to power spectrum of the anisotropies is

Cl5
2

pE dk

k
k3

^Q l* Q l&

~2l 11!2
. ~54!

In Eq. ~53!, the Ċ2Ḟ term leads to the so-called inte
grated Sachs-Wolfe~ISW! effect and contributes once th
optical depth to scattering becomes small, i.e. after last s
tering. The other terms,Q01C andvb , are localized to the
last scattering surface itself and represent the effective t
perature of the distribution and the Doppler effect resp
tively. They are responsible for the so-called acoustic pe
in the CMB spectrum, the morphology of which can be d
rectly read off of the metric driving terms@10#.

The influence of time variability inC andF depends on
how the variation rate 1/Dh compares with the perturbatio
crossing time for sound~before last scattering! and light~af-
ter last scattering!. For variations on a much shorter tim
scale (kDh!1 or kcsDh!1), only the total changeD(C
2F) is observable since all photons suffer a uniform gra
tational redshift. For variations on a much longer time sc
the effects mainly cancel out as the photons either trave
many wavelengths of the fluctuation during the variati
with redshifts and blueshifts cancelling or equivalently u
dergo many acoustic oscillations. Changes whose dura
are synchronized with the oscillation period are the m
effective. These general considerations apply to metric va
tions of the vector and tensor type as well. Two commo
encountered examples are the cancellation cutoff at highl for
a uniform potential decay and the driving of acoustic osc
lations from synchronized potential decay in the radiat
dominated epoch.

A constant potential also leads to observable effe
through the effective temperature termQ01C. SinceQ0 is
the temperature perturbation in Newtonian gauge, it can
obtained by a gauge transformation from the comov
gauge by noting that in that gauge both the density pertu
tion and the potentialj are negligible because stress pertu
bations must be negligible for the potential to remain co
stant. Equations~25! and ~27! then imply

Q05
drg

4rg
2

ȧ

a
vY k,
9-10
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C5 v̇/k1
ȧ

a
vY k. ~55!

For adiabatic fluctuations,drg /rg}dr/r and is hence neg
ligible outside the horizon by virtue of the Poisson equat
~34!. SinceC is a constant by assumption, these equati
can be integrated to give

Q052
2

3~11w!
C, ~56!

and henceQ01C5C(113w)/(3w13). This relation ulti-
mately comes from the fact thatC represents a time shift an
a}t2/3(11w) @31#. For w50, this reduces to the well-know
result that the effective temperature isC/3 in the adiabatic
sCDM model@9#. Compared with this model, those that a
dominated by the ISW termD(C2F)'2C2SP such as
traditional isocurvature and smooth models potentially h
up to 6 times the anisotropy for a given potential fluctuatio

The behavior of the density perturbations that under
the large-scale structure is even more directly related to
Newtonian curvature perturbation. Inside the horizon, all r
sonable choices of gauge agree on the density perturba
In particular, the comoving gauge density perturbation is
gebraically related toF by Eq. ~34! and hence allows a
simple translation of results for one to the other. Con
quently, the relation between temperature and potential fl
tuations discussed in the last paragraph translates dire
into a relation between density perturbations and CM
anisotropies.

With this relation, the so-called transfer function of th
density perturbations below the current horizon can be s
ply read off of the time history in the potential without th
usual gauge ambiguity in defining the initial density pert
bation,

T~k!5
F~h0 ,k!

F~0,k!

F~0,0!

F~h0,0!
. ~57!

The power spectrum of density perturbations today is t
proportional toT(k)2Pinitial . Any process that makes the po
tential decay relative to thek50 mode will produce a down
turn in T(k) and a reduction of small-scale power.

VI. STRESS-FREE PERTURBATIONS

Adiabatic models for structure formation, those who
initial conditions contain true comoving curvature perturb
tions, all go through a period in which the scalar stress p
turbation may be neglected. This is a direct consequenc
causality. Stress gradients affect structure formation sim
by the causal motion of matter. On scales larger than
horizon, the change in the comoving curvature perturbati
due to causal motion can always be neglected.

We begin in Sec. VI A with adiabatic models that have
smooth components. Although the comoving curvature
mains at the value set by the initial condition, the Newton
curvature depends on the equation of state. We consider
in Sec. VI B the effect of a smooth component on the Ne
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tonian curvature~and hence the density perturbation!. For
each case, we begin with a general description of the res
ant phenomenology. We then illustrate the phenomenol
with full solutions of the perturbation equations and discu
applications within the current generation of structure form
tion models of Sec. II E. We will follow this pattern through
out the paper. An overview of the results is given in Fig.

A. Clustered case

We begin with the case in which there is no smooth co
ponent (rS50) and stress that fluctuations are negligib
compared with metric fluctuations (S!z). Here, Eq.~48!
simply implies

z5const. ~58!

Equation~52! then gives

F5zS 12
Ar

a E da

Ar
D 1

Ar

a E da

Ar
SP1C

Ar

a
. ~59!

We will focus only on the behavior of the first term. Th
second term may be neglected ifSP!z. However, unlikeS
!z, SP!z is not a consequence of causality and is mild
violated in the case of free radiation@10# and can be strongly
violated in defect models@32#. We return to consider its
effects in Sec. VII A. The last term is a decaying mode th
carries no comoving curvature (z50). For a constant equa
tion of statew, it scales as

F}a23~11w!/221. ~60!

It is apparent from the form of the first term that sincer
cannot grow with time (w>21), the first integral in Eq.
~59! goes to a constant between 0 and 1 with the two
tremes representingw→` andw521 respectively. The in-
tegral is dominated by the most recent epoch; only the eq
tion of state at the epoch in question matters. It is simple
show that during periods wherew is approximately constan
@33#,

F

z
→

313w

513w
. ~61!

At each epoch wherew decreases fromw1 to w2, the New-
tonian curvature decreases by

F~w1!2F~w2!

F~w1!
52

~w12w2!

~11w1!~513w2!
. ~62!

These results are easy to understand in the non-relativ
limit. In the absence of stresses, the gradients in the grav
tional potential set up flows asv;(kh)F. The divergence of
this flow generates density perturbationsd;(1
1w)(kh)2F for constantw. By the Poisson equationF
;(kh)22d, this is exactly the rate of growth needed to ke
the potential constant. Here we have used the fact
4pGa2r53(ȧ/a)2/2;h22 if there are no smooth compo
nents. Whenw decreases fromw1 to w2, the change affects
9-11
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the proportionality constants but not the scaling betweed
andF. This leads to a decrease in the Newtonian potentia
a new constant.

Full solutions.If the matter is predominantly composed
two components with different but constant equations
statew1 and w2, we can solve Eq.~59! exactly provided
SP!z. The result is

F

z
512

2

513w1
FF1,

1

2
;11n;

y

11yG
512

1

3

1

w12w2
~11y!1/2y2nBy/~11y!S n,

1

2
2nD ,

~63!

wheren[(513w1)/(6w126w2) and

y5r2 /r1}a3~w12w2!. ~64!

Here, Bx(p,q) is the incomplete beta function an
F(a,b;c;x) is Gauss’s hypergeometric function~i.e., 2F1).
The combinationy/(11y) often enters into such solution
as it is justr2 /rcr , the fractional density perturbation sup
plied by component 2 as a function of time.

Any case with 2n equal to an integer can be expressed
elementary form. In particular, ifn5N or N11/2 for an
integerN>0, then

FS 1,
1

2
;n11;xD5

1

x (
k50

N21
G~n11!G~n2k21/2!

G~n2k!G~n11/2! S x21

x D k

1S x21

x D N G~n11!G~n2N11/2!

G~n2N11!G~n11/2!
f n ,

~65!

where

f n5H 1/A12x, n5N,

1

2Ax
log

11Ax

12Ax
, n5N1

1

2
. ~66!

Applications. These solutions apply to any adiaba
model with a matter-dominated epoch and may be use
explore the behavior of perturbations entering and exiting
matter-dominated epoch. For example, the matter-radia
case reduces to@34#

F

z
5

3

5
1

2

15y
2

8

15y2 2
16

15y31
16A11y

15y3 . ~67!

This solution only holds in the absence of anisotropic str
perturbations and does not strictly apply to the usual ra
tion components. The neutrinos carry anisotropic stress@10#
as do the photons after recombination. We consider h
such effects can be taken into account in Sec. VII A.

For adiabatic models where there exists a component
w2,0 @14,15,17#, these solutions describe the exit from t
08350
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f
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matter-dominated epoch. A comparison of the analytic so
tion with full numerical solutions in those cosmologies
given in Fig. 7. A special case isw150 andw2521, the
matter to cosmological constant transition, where@35,36#

F

z
5

3

5F12
1

3
~11y!1/2y25/6By/~11y!~5/6,21/3!G . ~68!

As is evident from Eq.~61!, the cosmological constant is th
only case where the Newtonian curvature decays to z
Note in particular thatw2521/3 does not correspond to th
behavior of spatial curvature in spite of the fact that t
effect on the expansion rate is the same. The presenc
fluctuations in thew2 component prevents the gravitation
potential from decaying to zero. Across thew150 ~matter-
dominated! to w2521/3 transition, the Newtonian curvatur
goes from 3z/5 to z/2. Thus, the string-dominated~strCDM!
model which haswstr521/3 does not behave like an ope
model on the large scales relevant for the CMB~cf. @16#!

B. Smooth components

We next consider how smooth components affect
growth of structure. Although curvature is the only comp
nent that is smooth by definition and a cosmological cons
the only one that is smooth by dynamics, under certain
cumstances other components can be approximately smo

We define a component (S) to be smooth if its density
fluctuations are small in comparison to those of the clus
ing components (C), i.e. drS!drC , regardless of whethe
rS,rC . To be maintained dynamically, the respective e
ergy fluxes must also satisfy (rS1pS)vS!(rC1pC)vC . In
this section, we add the subscript (C) on the remaining mat-
ter to remind the reader that part of the total matter den

FIG. 7. Stress-free clustered case. In the case where all co
butions to the expansion rate also cluster, the comoving curvatu
constant but the Newtonian curvature changes with the equatio
statew. For the case of the transition betweenw150 andw2 be-
tween21 and21/6, we show here the analytic solution of Eq.~63!
compared with a full numerical Boltzmann solution of a QCD
model~including radiation! for a mode that is outside the horizon
the given epoch. Notice that only forw2521 ~cosmological con-
stant! does the potential decay to zero asr2 /rcr5y/(11y)→1.
9-12
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has been designated as effectively smooth in the divisio

Eq. ~11!. Our analysis also applies to cases wheredr̄S
!drC where the time-average is over the dynamical time
the C component~see Sec. VIII C!.

One cannot demand thatdrS be identically zero since the
continuity equation~14! generates a density fluctuation
the metric curvature changes unlesswS[pS /rS521 ~a cos-
mological constant!. The fractional density fluctuation is ge
nerically at least of order the curvature fluctuationF. Since
this term exceeds the energy flux term outside the hori
due to causality, energy conservation forbids smooth com
nents~with wSÞ1) on these scales.

Components that are smooth within the horizon are p
sible. For example, theC component may be driven to co
lapse by potential gradients while theS component is sup-
ported against collapse by stress gradients~see Sec. VIII C!.
HeredrS /rS;F!drC /rC . Since these stress gradients a
set up exactly so as to keep the component smooth, one
replace such stress effects in Eq.~50! with an additional
smooth density component@37#. The remaining perturbation
can then be approximated as stress-free and generate c
ture fluctuations as

F91S 12
rC9

rC8
1

1

2

rcr8

rcr
DF81S 1

2

rcr8 1rC8

rcr
2

rC9

rC8
DF50.

~69!

Now even for constantwC , F850 no longer solves the
equation of motion. Mathematically,rS adds to the expan
sion drag (F8) terms but not the gravitational (F) terms.
Physically, potential flows still create density perturbatio
asrC;(rC1pC)(kh)2F but the Poisson equation leads to
smaller potentialF5(kh)22drC /(rC1rS). As this process
continues,F decays away.

Equation ~69! has simple solutions in the limit thatrcr8
@rC8 , as is usually the case when the smooth compon
dominates the expansion. In this case, the general solutio
the equation is

F5C1a211C2a21E dlna
arC8

rcr
1/2

. ~70!

Both terms represent decaying modes as long aswcr22wC
,1.

Full solutions.The full solution to Eq.~69! can be ob-
tained analytically for a clustering component with a co
stant equation of state and present-day fractional den
contribution pair (w1 ,VC1), a smooth component with
(w1 ,VS1), and/or a second smooth component w
(w2 ,VS2):

F j5y1/3DwS y

11yD a j

3FS a j ,a j1
1

2
;2a j112

3w111

6Dw
;

y

11yD , ~71!

whereDw5w22w1 with
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a j[
113w1

12Dw F17A1124
VC1

VC11VS1

11w1

~113w1!2G ,
y5r2 /r15

VS2

VS11VC1
a23Dw, ~72!

where j 51,2 for the growing and decaying modes corr
sponding to2,1 in the a j equation. Note that negativ
contributions to the critical density, e.g. positive spatial c
vatureK.0, are also covered by these solutions.

The hypergeometric solution allows one to identify e
ementary solutions more easily. In particular, cases wh
a j52uN1/2u, (3w111)/6Dw5N1, or 2a j2(3w1
11)/6Dw11/25N1 can be expressed in terms of eleme
tary functions. Cases of the formF(a,b;b1N1 ;x),
F(a,b;a1N1 ;x), or F(N1/2,N2/2;N3/2;x) can be expressed
in terms of elementary functions, incomplete beta functio
and/or complete elliptic integrals. Here, theNj are integers
anda andb are real numbers. For example, the case ofw1
50 andw2521/6 can be expressed in closed form for a
VC1 /(VC11VS1):

F j}
ya j

a

2a j111A11y

~11A11y!2a j 11
. ~73!

For w150, any case in which 2a j11/6w211/2 is an integer
can be simplified. One can also simplify the growing mo
of cases withw15VS150 andw2

21 equal to an integer.
Finally for completeness, there is a well-known spec

case of Eq.~69! that is not completely covered by Eq.~71!
but that does have an integral solution. This involves a cl
tering componentw50 ~CDM! and a smooth componen
composed of an arbitrary admixture ofw521/3 ~curvature!
andw521 (L) pieces@38#:

F}a21rcr
1/2E dlna

a2rcr
3/2

, F}a21rcr
1/2, ~74!

for the growing and decaying modes respectively. Of cou
if either the curvature orL component is negligible, the so
lutions have an analytic form described by Eq.~71!. Unfor-
tunately, this solution cannot be generalized to arbitr
combinations of smooth components since it relies on
fact thatw521/3 does not accelerate the expansion and
w521 gives a constant density contribution.

Applications. Smooth components are widely found
adiabatic models and their description in terms of Eq.~71!
are given in Table I.

In fact, all CDM variants~CDMv! go through a phase in
the radiation-dominated epoch when the perturbations in
radiation are pressure supported leading to an essent
smooth componentV rad5VS2 with w251/3 and also a
smooth baryonic componentVb5VS1 with w150 that is
held against collapse by Compton coupling to the phot
~see Sec. VIII C and@39#!. In this case, the clustered matt
is the CDM (VCDM5VC1), and the solution~71! describes
the evolution of the CDM density perturbations via the Po
9-13
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son equation. The behavior deep in the radiation domai
given by Eq.~70!, which says that density perturbations a
tually grow logarithmically. The full solution~71! maps this
logarithmic mode into a power-law growth across the mat
radiation transition and is useful for determining the amp
tude of small-scale fluctuations as a function of the bary
content@39#.

Smooth components that dominate at late times are
described by Eq.~71!. Many such models have been pr
posed to reduce the amount of small-scale power in the s
dard CDM model. The prototypical examples are theLCDM
model whereVS25VL512Vm (w2521) and the open
model OCDMVS25VK512Vm (w2521/3). The former
case is special in that it may alternately be considere
clustered component~see Sec. VI A!. The latter case must b
considered as a smooth component, and the growing m
reduces to@40#

F}
1

yS 11
3

y
2

3

y
A11y

y
tanh21A y

11yD , ~75!

wherey}a.
The obvious generalization of such models involves

smooth component with an equation of state that differs fr
the curvature or cosmological constant examples. The pr
typical case is the HCDM model where a massive neutr
~or hot dark matter! component withw1'0 remains smooth
on small scales due to residual relativistic effects. Our g
eral solution in fact allows an additional smooth compon
w2, which could be curvature~OHCDM!, a cosmological
constant (LHCDM), or even quintessence with an equati
of statew25wQ ~QHCDM!. In fact, in the case where ther
is no hot component, the latter solution describes the ‘‘qu
tessence’’ model~QCDM! that has recently received muc
attention@14,15#. Here, a scalar field supplies a density co
ponent that is smooth inside a sound horizon that co
sponds to the particle horizon. A comparison of the analy
solution to numerical results for QCDM andLHCDM is

TABLE I. Correspondence between the analytic solution of E
~71! and models with smooth components.VK is the fractional
effective density supplied by the curvature component.

w1 w2 VC VS1 VS2 Model

0 1/3 Vcdm Vb V rad CDMv
0 – Vcdm1b Vn – HCDM
0 21 Vcdm1b 0 VL LCDM
0 21 Vcdm1b Vn VL LHCDM
0 21/3 Vcdm1b 0 VK OCDM
0 21/3 Vcdm1b Vn VK OHCDM
0 21/3 Vcdm1b 0 Vstr strCDM
0 – Vcdm1b Vf – fCDM
0 wQ Vcdm1b 0 VQ QCDM, GDM
0 wQ Vcdm1b Vn VQ QHCDM, GDM
0 wQ Vcdm1b Vf VQ fQCDM, GDM
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given in Figs. 8 and 9. Likewise, the solution applies to t
GDM generalization@17# where the sound horizon is a
lowed to be arbitrary.

Finally, Eq.~74! describes the case of a CDM model wi
both curvature and cosmological constant contributions.

C. Vector perturbations

The behavior of vector modes is far simpler than that
scalar modes. Vector anisotropic stress can be neglecte
HT

(61)@pP (61)/r in a gauge whereB(61)50. In the ab-
sence of stress perturbations, vector modes simply de
with the expansion@see Eq.~20!# is solved by

.

FIG. 8. Single smooth component. The same as Fig. 7 ex
that w2 is taken to be a smooth component. Here Eq.~71! is com-
pared to a QCDM model but for a mode that is well inside t
horizon aty51. Discrepancies at early times are due to radiat
contributions in the QCDM models and are particularly pronounc
for w2→0 since then the epoch when theQ and matter component
are equal is driven into the radiation dominated era for this
Vm50.35 model.

FIG. 9. Two smooth components. Equation~71! is compared
with numerical solutions in aLHCDM which has smoothL and
hot ~H! dark matterVn components. Numerical solutions are fo
modes well below the Jeans scale of the hot dark matter and
crepancies at early times are due to radiation contributions in
model.
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~r1p!~v ~61!2B~61!!}a24,

kB~61!2ḢT
~61!}a22. ~76!

The metric source is related algebraically to this quantity
Eq. ~21!.

D. Tensor perturbations

The tensor anisotropic stress is negligible ifHT
(62)

@pP (62)/rcr . In this limit, tensor metric fluctuations remai
constant outside the horizon regardless of the expansion
and propagate as free gravity waves inside of it. They
described by Eq.~23! with the sources set to zero.

Full solutions.If the expansion is dominated by a comp
nent with constant equation of statewcr.21/3, the funda-
mental modes of gravity waves are

H15
2m11G~m13/2!

Ap
x2mj m~x!,

H25
2m11G~m13/2!

Ap
x2mnm~x!, ~77!

with x5kh, m5(123w)/(113w) and k̃5Ak222K. Note
we have normalized the modes so thatH1(0)51; this mode
drops from unity into damped oscillations when the wav
length reaches some fraction of the horizon that decre
with m and hence increases withw. In Fig. 10, we plot the
derivative of these modes, as that determines its effect on
radiation through gravitational redshifts.

For w,21/3, the universe accelerates and the horiz
stops growing with the scale factor. This implies that grav
waves will also freeze out at some finite value related to th
amplitude when the universe began accelerating. The s
tions for the gravity wave behavior relative to the epoch

FIG. 10. Gravity wave modes. The amplitude of free grav
waves remains constant outside the horizon and oscillates and
cays inside in a manner dependent on the equation of state o
background. Shown here is the derivative of the mode since it
as the source of radiation anisotropies. Note that asw increases the
oscillatory phase begins sooner relative to horizon crossing.
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freeze-out follow the form of Eq.~77! with x5k*h
`dh. The

H1 mode then has damped oscillations asx increases from
negative values but freezes in to a finite value asx→0 in the
infinite future.

Applications.The solutions above help us understand
phenomenology of tensor anisotropies in the CMB. The t
sor analogue to Eq.~53! is

Q l

2l 11
'A3

8

~ l 12!!

~ l 22!! E0

h0
dhe2tḢT

~62!
j l~kDh!

~kDh!2 ,

~78!

whereDh5h02h. The power spectrum is again given b
Eq. ~54!. The appearance of thee2t damping reflects the fac
that anisotropic stress cannot be supported in the optic
thick limit; we take t→0 in the examples here to consi
tently neglect all anisotropic stress effects. This in fact i
good approximation for tensor anisotropies in the neutr
background radiation.

For a flat universe with constantw.21/3, the results are
shown in Fig. 11 for the same scale-invariant initial spectr
of gravity waves, k3uHT

(62)u25const. Notice that the
anisotropies decrease asw is decreased. Like the scalar ISW
effect discussed in Sec. V D, the contribution of a decay
tensor mode to the anisotropy depends on how long the g
ity wave takes to decay relative to the light travel time acro
the perturbation. In the limit that it decays before horiz
crossing, the photons experience the full gravitational effe
If it decays well after horizon crossing, then the effect suffe
cancellation as the photons traverse many wavelengths o
perturbation. Thus, the relative contribution to the anisotro
can be read off the behavior of the normal mode in Fig.
As w increases, changes inHT occur at smaller times relative
to horizon crossing. The anisotropy contribution accordin
goes up. The effect is most dramatic for the quadrupole si
all k-modes above the horizon contribute to the quadrup
This effect explains why the tensor spectrum in the us

de-
he
ts

FIG. 11. Gravity wave anisotropies generated in free radiati
Numerical solutions are from a Boltzmann code with scatter
sources removed. Notice that asw increases so do the anisotropie
This is directly related to the behavior of the gravity wave modes
Fig. 10.
9-15
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FIG. 12. Scalar stress perturbations. Scalar stress perturbations are divided into three pure classes: anisotropic, entropic, and s
of these is dominant, then general techniques~third row! can be applied to analyze the resultant behavior of fluctuations. Many mo
~fourth row! do go through phases where the stresses are dominated by one of the pure stresses. The designations ‘‘all models
adiabatic models’’ assume a neutrino background and fluctuations that were present before last scattering. Several cases wi
solutions illustrate the range of behaviors.
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matter-radiation universe shows an upturn in the spectrum
one goes from modes that crossed the horizon in the m
dominated epoch to those that crossed in the radiation do
nated epoch~see Fig. 17!.

For w,21/3 the gravity waves freeze out. Since CM
anisotropies are driven by changes in the gravity-wave
plitude, the addition of aw,21/3 component should sup
press anisotropies; this prediction is in agreement with
effect found inLCDM and QCDM models@41,42#.

VII. PURE STRESSES

We have shown in the previous section that in cert
regimes stress perturbations can be ignored. Howeve
provide a complete history of structure formation, one m
track the perturbations across all scales and time. We
first consider the pure stress cases in which the domin
stress contribution is anisotropic, entropic, or sonic, as
fined in Sec. V A. These prototypical cases have anal
solutions and are the starting point for the general cases
cussed in Sec. VIII. They also have direct application
many models. The anisotropic and sonic solutions are ap
cable to all adiabatic variants of the CDM model~CDMv!.
The entropic solutions show how prototypical isocurvatu
models such as the baryon~PIB! or axion~AXI ! isocurvature
models form structure. We outline these results in Fig. 1

A. Anisotropic stress

Anisotropic stresses play a special role because they e
directly into the Newtonian metric throughSP , as opposed
08350
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to other stresses which only contribute through the cau
motion of the matter. This is despite the fact that the com
ing curvaturez depends only onS. In an isocurvature model
only the comoving curvature need vanish initially, not t
Newtonian curvature.

Similarly, even thoughz remains constant above the h
rizon in adiabatic models, the Newtonian curvatureF
evolves under anisotropic stresses@see Eq.~52!#. Recall that

SP528pGa2pP/k2523S ȧ

a
D 2

p

rcr
P/k2, ~79!

such that its effect is enhanced by (r8/rcr)(kh)22 relative to
S. Note, however, that once the universe enters a pe
when (p/rcr)P!(kh)2z, all traces of the anisotropic stres
from any previous period vanish in the relation betweenF
and z. Its effect does not vanish from the CMB, howeve
since anisotropies record a time-integrated history of
gravitational potentials.

Full solutions.To close this system of equations, we ne
a relation betweenSP andz. We will consider two limiting
cases: whenSP,z as in the case of stresses from radiati
backgrounds and whenSP@z as is possible with models
involving active sources such as defects.

In the former case, anisotropic stress is generally crea
as a by-product of gravitational instability. Its anisotrop
nature suggests that it can be created from shear in the
locity and metric, and its coordinate transformation prop
9-16
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ties demand that its source be gauge invariant. The lin
combination of these sources that satisfies these requirem
is (kv2HT). The anisotropic stress can also have a diss
tion time scalehP . Together these considerations imply
evolution of the form

Ṗ1hP
21P54~kv2HT!a. ~80!

In this section, we are interested in large-scale effects
hence want the longest time scale for the dissipation; thi
set by the expansion time. We will consider cases where
time scale is much smaller than the expansion time in S
VIII D.

If we takehP
2153ȧ/a, we recover the phenomenologic

parametrization of1 @17#

Ṗ13
ȧ

a
P54~kv2HT!a, ~81!

which has the formal solution

P54a23E dha3~kv2HT!a. ~82!

From Eq.~18!, we find

P52
8

3
a23E dha3a

k2

11w

rcr

r
S ȧ

a
D 22S Ḟ2

ȧ

a
C D ,

~83!

for modes well under the curvature scale. Employing E
~61! for the zeroth-order potentials and assuming constana
andr5rcr yields

P

z
522a~kh!2

~113w!2

~413w!~513w!
, ~84!

for constantw. With this source in Eq.~52!, the Newtonian
potential becomes

F

z
5

313w

513w
~11b!, ~85!

with

b516
w

11w

1

~413w!~513w!
a, ~86!

if the curvature contributes negligibly to the expansion ra
If b,1, this process may be repeated to obtain the des
accuracy. For example, employing the second order form
the Newtonian potential

C

z
52

313w

513wH 12
3

2
bF12

3

2
~11w!bG~11w!J , ~87!

one can build the third order relation for the curvature

1a5cvis
2 /wg in the notation of@17#.
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F

z
5

313w

513wS 11bH 12
3

2
bF12

3

2
~11w!b G~11w!J D .

~88!

In the opposite limit that the anisotropic stress contrib
tion is large compared with the other perturbations (SP@z,
SP@S), the integral solutions for the Newtonian metric r
duce to

F5
Ar

a E da

Ar
SP ,

C52F1SP . ~89!

Notice that the integrals remain finite as long asSP diverges
at zero no faster thana25/223w/2 and the prefactorAr/a is
simply the decaying mode of the Newtonian curvature@see
Eq. ~59!#.

Applications.Collisionless radiation provides an applic
tion for these results. The anisotropic stress of radiation
related to the quadrupole moment as defined in Eq.~53! by

Pg5
12

5
Q2 ~90!

on scales much smaller than the curvature radius. Equa
~53! also implicitly gives the equation of motion of thel th
multipole as

Q̇ l5kF l

2l 21
Q l 212

l 11

2l 13
Q l 11G . ~91!

This is an infinite set of coupled differential equations re
resenting the fact that radiative stress depends on inte
degrees of freedom of the distribution. However,@43# intro-
duced an approximation based on a solution of these e
tions in the absence of sources

Q l

2l 11
5C jl~kh!, ~92!

which allows us to express

Q l 115~2l 13!~kh!21Q l2
2l 13

2l 21
Q l . ~93!

Applying this closure relation to the quadrupole, noting th
(ȧ/a)51/h in the radiation-dominated era, and rewriting th
dipole in covariant formQ15vg2HT shows that the aniso
tropic stress of free radiation in the radiation-dominated
obeys Eq.~81! with a5pg /p5rg /r rad.

The photons actually do not behave in this manner bef
last scattering since their coupling to the baryons destr
any quadrupole moment in the distribution~see Sec. VIII D!.
However, the same analysis applies to the massless ne
nos, whose anisotropic stress can be approximately par
etrized bya5rn /r rad. Equation~88! shows that the chang
in F is enhanced by a factor 11(2/15)(rn /r rad). With Eq.
~56!, we find the effective temperature of the CMB to be
9-17
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Q01C52
1

2
C52

1

3
z~0!S 12

4

15

rn

r rad
D ~94!

and the ISW combination to be

C2F52
4

3
z~0!S 12

1

15

rn

r rad
D ~95!

to first order. These results are equivalent to but more ph
cally transparent than those of@10#. In addition, Eq.~88!
introduces second and third order corrections that are im
tant for models with additional neutrino species or high
neutrino temperaturesTn ,

rn

rg
50.681

Nn

3 S 1.401Tn

Tg
D , ~96!

as shown in Fig. 13.
Equations~94! and ~95! imply that the neutrinos have

significant but opposite effects on the effective temperat
and ISW terms in the CMB anisotropy equation~53!. The
degeneracy is broken as the fluctuation enters the horizo
we shall see in Sec. VIII D, leading to detectable effects
the acoustic peaks@44#.

Finally, seed defect sources generally have large an
tropic stress contributions outside the horizon. Causality d
tates thatpsPs behaves as white noise above the horiz
which together with the so-called scaling ansatz leads to
h21/2 temporal behavior. This implies thatSP}h25/2

}a25(113w)/4. Since this diverges slower thana25/223w/2, it
does not imply a divergence of any observable@32# and con-
tributes mainly to the decaying mode of the curvature@1#.
Note that these considerations assume vanishing spatial
vature.

FIG. 13. Anisotropic stress at large scales. The presence o
isotropic stress affects the Newtonian (F) but not comoving (z)
curvature. IfSP,z, solutions forF can be constructed by iteration
Here we show an example where the anisotropic stress is prod
by massless neutrinos and compare numerical results fro
Boltzmann code with the iterative solution. To first order,SP /z
54Nn/15(4.41Nn), whereNn is the number of massless neutrin
species.
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B. Entropic stress

We next consider the case in which entropic stress do
nates the other stress componentsSE@SS ,SP . In this limit
SE does not depend onz and Eqs.~51! and ~52! are more
than simply a formal solution: they are the integral solutio
for an arbitrary source in the absence of smooth compone
For instance, if the entropic stress has a power-law beha
SE}an, then the comoving curvature will have the same b
havior z52*dlnaSE}an assumingz(0)50.

It is important to note that onceSE turns off,z will remain
constant. Thus entropic stresses that act for only a fi
amount of time generate curvature fluctuations out of isoc
vature initial conditions that then behave in the same man
as initial curvature fluctuations.

A natural way of establishing an entropic stress is to ha
two components whose sound speeds differ at some poin
the evolution. It is useful to introduce the ‘‘entropy’’

s5
dr2

r21p2
2

dr1

r11p1
, ~97!

since its equation of motion is simply

ṡ52k~v22v1! ~98!

by virtue of Eq.~14!, assuming no direct energy exchan
between species. The equivalence principle guarantees
under purely gravitational evolution the velocity differenc
vanish so that a constants is a good approximation outsid
the horizon. Tight coupling between the components a
implies ṡ50.

Let us assume that the density perturbations are accom
nied by sonic stresses in the rest frame of each compon

DrJ5drJ2 ṙJ~vJ2v !/k,

DpJ5dpJ2 ṗJ~vJ2v !/k, ~99!

with cJ
25DpJ /DrJ . Under the constant entropy assumpti

vJ5v and with the definition of the combined sonic stres

cC
2 5

r18c1
21r28c2

2

r8
, ~100!

the entropic stress becomes

SE

s
5S r18r28

r9
D ~c2

22c1
2!. ~101!

Consequently, entropic stresses are generated when
sound speeds of the two components differ. Furtherm
they can be much larger than the sonic stresses ifdr/r!s
as is the case for isocurvature models.

Full solutions.If the sonic stresses are also adiabatic (cJ
2

5pJ8/rJ8), then SE5SG and SG /s5(r18/r8)8/3. Equation
~51! then yields

n-

ed
a
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z~a!5
s

3

r28

r8
U

0

a

1z~0!. ~102!

The Newtonian potential follows from Eq.~52!.
For example, in the constantw1 andw2 case

SG

s
5

~11w1!~11w2!Dw

@11w11~11w2!y#2 y, ~103!

z

s
5

1

3

~11w2!y

11w11~11w2!y
, ~104!

where recall thatDw5w22w1 and y5r2 /r1 and we have
assumed isocurvature initial conditions@z(0)50#. Oncer2
dominates the energy density, the entropic stress has
converted into a constant comoving curvaturez5s/3. This
solution may then be substituted into Eq.~52! to obtain the
integral solution

F

s
5

1

3

y

r 1y
1

1

9Dw

A11y

yn E
0

y

dy
yn21

A11y

3F12
r 21ry~3Dw11!

~r 1y!2 G , ~105!

wherer 5(11w1)/(11w2) andn52(513w1)/6Dw.
The Newtonian curvature has the limits

F

s
5H 11w2

519w126w2
y ~y!1!,

11w2

513w2
~y@1!.

~106!

The relation between the Newtonian and comoving curva
in the y@1 limit is exactly the same as the stress-free cl
tered case of Sec. VI A.

Another interesting case is when the two components
initially both radiationw1(0)5w2(0)51/3 but the second
componentw2 becomes non-relativistic. Equation~102! im-
plies that by the timer2@r1, a curvature fluctuation

z5
s

3

r1

r U
0

~107!

is generated from isocurvature conditions.
The more general solution~101! covers multicomponen

models with non-adiabatic sonic stresses in one or both
the components and for example may be applied to sc
field models.

Applications.Entropy perturbations between the mat
and the radiation are the basis of the prototypical isocur
ture models, i.e. the baryon isocurvature model~PIB! and the
axion isocurvature model. In this case, the integral in E
~105! can be explicitly solved to obtain@34#

F

s
5

1618y22y21y3216A11y

5y3 , ~108!
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wherey}a. Thus, the curvature grows asa in the radiation-
dominated era only to freeze out at the amplitude reache
matter-radiation equality.

Motivated by our study, one of us constructed an iDD
model that utilizes the mechanism described above where
density fluctuations in two radiation species are initially b
anced @22#. The resulting constant superhorizon curvatu
fluctuationz is a property generally associated with adiaba
models. Another interesting consequence is that the rati
large-scale CMB temperature anisotropies to the Newton
potential is neither 1/3 nor 2. This is because the phot
possess initial perturbations. These can be chosen to m
the ratio greater than or less than 2; in particular it can
arranged to be close to the adiabatic 1/3 relation.

C. Sonic stress

Sonic stresses provide the final pure case. Here

S5SS5cC
2 dr

r1p
; ~109!

recall that adiabatic stresses are a special case of a s
stress wherecC

2 5cs
2[p8/r8. Because the stress fluctuation

related to the comoving density fluctuation by Eq.~109! and
in turn to the Newtonian curvature via the hybrid Poiss
equation~34!, the evolution equation~50! for the Newtonian
curvature becomes a homogeneous second order differe
equation

r8

arcr
1/2S arcr

1/2

r8
F8D 8

1S 1

2

rcr8 1r8

rcr
2

r9

r8
1k2s8 2D F50,

~110!

where the sound horizon is defined as

s5E dhcC . ~111!

Here, we have assumed that the wavelength is much sm
than the curvature scale, but all results are applicable to
general case with the replacementk→Ak223K.

For ks8@1, we can approximate this as an oscillat
equation with an effective mass:

~meffF8!81k2s8 2meffF50, ~112!

with

meff5
arcr

1/2

2r8
. ~113!

Under the WKB assumption that the effective mass is slow
varying compared with the frequency of oscillation, the fu
damental solutions to this equation are

F15S 2r8

cC
D 1/2

cos~ks!,
9-19



e
de
rb

of

l

i
n
n

izo

a

yi

s

n-
his
ons
en-

free
-

the

ous-

tic
the

va-
dia-
n-

M

-
y

he
tua-
ple

d
ns.

ss
phe-
and

dy a
pic
an-

ss is

WAYNE HU AND DANIEL J. EISENSTEIN PHYSICAL REVIEW D59 083509
F25S 2r8

cC
D 1/2

sin~ks!. ~114!

This equation says that once the fluctuation passes insid
sound horizon, the Newtonian potential oscillates and
cays, reflecting analogous behavior in the density pertu
tion through the Poisson equation.

Full solutions.Equation~114! suggests that a change
variables to

Q5S cC

2r8
D 1/2

F ~115!

should simplify the equations of motion. Indeed, Eq.~110!
becomes

d2Q

d~ks!2 1S 12
F

k2s2DQ50, ~116!

where

F52
s2

2s82H rcr8 1r8

rcr
2

r9

r8
1

r-

r8
2

3r92

2r82

1
rcr8

2rcr
S r9

r8
2

cC8

cC
D 2

cC8

cC
2

cC9

cC
1

3cC8
2

4cC
2 J . ~117!

If F is constant, then Eq.~116! is a variant of the Besse
equation, and the solutionsQ will approach sin(ks) ~up to a
phase! at largeks. Furthermore, whenks@uFu1/2, the term
with F may simply be neglected, and again the solutions w
be sin(ks) with arbitrary phase. Because the latter solutio
will match trivially onto the former, we reach the conclusio
that if, for a given mode,F is constant untils@uFu1/2/k, then
the appropriate Bessel function solution will hold forall
times, regardless of howF varies onceks@uFu1/2. If cC and
r vary on the Hubble time scale, thenF is order unity, and
the solution describes modes that are well inside the hor
beforeF begins to vary.

The simplest way to arrangeF to be constant is to have
constant equation of statew1 and constant sound speedcC .
For constantw1 , s is only defined forw1.21/3, and we
therefore setr5rcr . Then

F56
11w1

~113w1!2 , ~118!

independent of the sound speed. The growing and deca
solutions forF are then

F1}S 2r8ks

cC
D 1/2

Jn~ks!,

F2}S 2r8ks

cC
D 1/2

Nn~ks!, ~119!
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wheren5(513w1)/(216w1). Again, once a given mode i
well inside the sound horizon, the condition thatw1 andcC
be constant can be relaxed.

Applications.Adiabatic stress perturbations in a baryo
photon universe provide the prototypical example. In t
case, the tight coupling between the photons and bary
through Compton scattering prevents the generation of
tropy through the motion of matter~see Sec. VIII C!. The
growing mode of Eq.~119! becomes@34#

F

z~0!
5

3

y2S ky

k D 2S 11
3

4
yD 3/4Fsin~ks!

ks
2cos~ks!G ,

~120!

with ky5(ȧ/a)y51 and

s5
4A2

3

1

ky

ln
A413y1A3y13

21A3
. ~121!

We have chosen the normalization to match the stress-
solutionF52z/3 initially. In this case, the acoustic oscilla
tions of the photons are directly related to behavior of
potential via the Poisson equation

Q05
1

3S k

ky
D 2 y2

113y/4
F

5~113y/4!21/4z~0!cos~ks! ~ks@1!. ~122!

Since the acoustic oscillations are responsible for the ac
tic peaks in the CMB from Eq.~53!, this determines the
morphology of the acoustic peaks in this simple adiaba
photon-baryon universe. The important result is that
acoustic oscillations follow a cos(ks) pattern in phase with an
amplitude that is enhanced by the decay of the initial cur
ture perturbation. These results are in fact generic to a
batic models due to similar evolution in the driving pote
tials @11#.

A second example is provided by the QCDM and GD
models where the equation of state can go negative (w,0)
while the comoving sound speed remains real (cC

2 .0). In
the QCDM model,cC

2 [1 by virtue of the scalar-field equa
tions of motion. In the GDM model, it is allowed to have an
positive value. The solutions are strictly valid only after t
exotic component dominates the expansion rate and fluc
tions. To test this solution, we show an extreme exam
where the dark matter is all in a ‘‘Q’’ component~no CDM!
with wQ50 ~see Fig. 14!. The small departures at early an
late times are due to the radiation and baryonic contributio

VIII. MIXED STRESSES

Although the purely anisotropic, entropic and sonic stre
cases of the last section illustrate many aspects of stress
nomenology, when all three are present they can interact
create a diverse range of behavior. In this section, we stu
few typical cases: sonic stress generation from entro
stress, entropic stress generation from sonic stress, and
isotropic stress dissipation of sonic stress. The first proce
9-20
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responsible for generating acoustic phenomena in all iso
vature models. The second process is responsible for the
conduction in fluids and the generation of smooth com
nents. The last process is responsible for viscous dissipa
of acoustic phenomena and also provides an alternate m
of generating a smooth component. We briefly discuss s
~defect! stresses, which carry not only all three types of s
lar stress but also vector and tensor stresses as well. Fin
we consider the effect of tensor anisotropic stress on gr
tational waves and CMB anisotropies in passive models.

A. Formal solution

If the equations of motion for a sonic stress perturbat
are known to be solved byF1 andF2, the full solution can
be written in integral form as

F5AF1~a!1BF2~a!

1E
0

adã

ã

F1~ ã!F2~a!2F1~a!F2~ ã!

F1~ ã!F28~ ã!2F18~ ã!F2~ ã!

3F1

2

r8

rcr
SE1SP81S 1

2

rcr8 1r8

rcr
2

r9

r8
D SPG , ~123!

where A and B are arbitrary constants. This solution
merely formal unless the remaining stress sources can
specified independently ofF. We now consider some speci
cases.

B. Entropic and sonic stress

A model that begins with isocurvature initial condition
will generate adiabatic density fluctuations through the
tion of entropic stresses, as discussed in Sec. VII B. Th
density perturbations carry with them sonic perturbatio

FIG. 14. Sonic stresses in a scalar-field dominated unive
Sonic stresses cause scalar-field perturbations to stop growing
hence lead to a decay in the Newtonian curvature in a scalar-
dominated universe. Here we compare a QCDM model withwQ

50 and no CDM with the analytic prediction of Eq.~119!. The
discrepancy at early times is due to radiation contributions in
QCDM model and those at late times from the baryons.
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through Eq.~39! that stop the further growth of density pe
turbations through the same pressure support mechanism
cussed in Sec. VII C. Therefore, entropic growth of curvatu
fluctuations generally ceases once the fluctuations cross
sound horizon of the dominant species.

Full solutions. The solutions forF in Eq. ~119! along
with the entropic stress from Eq.~101! in Eq. ~123! allow us
to construct the full solution in the presence of a const
entropy andr5rcr :

F

s
52

2

3
p2GS 2r8s

cC
D 1/2E dh̃Y~ h̃ !

3@Jn~ks̃!Nn~ks!2Jn~ks!Nn~ks̃!#, ~124!

where

Y~h!5a2S 2r8s

cC
D 1/2S r18r28

r9
D ~c2

22c1
2!. ~125!

Recall that the combined and component sound speeds
defined in Eqs.~100! and ~99! respectively. This solution is
valid for k/ky@1 andk@uKu1/2 ~see Sec. VII C!.

Applications.The case ofw151/3 andw250 is of special
interest because it corresponds to baryon-photon entropy
turbations, as in the PIB model before last scattering. T
result is that on small scales whereks@1 andk/ky@1, the
curvature behaves as@34#

F

s
5

3

4yS ky

k D 2F12
A3

2

ky

k

~413y!3/4

y
sin~ks!G , ~126!

which is again directly related to the temperature oscillatio
by Eq. ~122!. The first term in brackets is due to densi
perturbations in the baryons remaining from the constant

tropy conditions5db2 3
4 dg'db . The second term repre

sents decaying acoustic oscillations from the adiabatic p
sure. The extra factor ofky /k reflects the fact that the
curvature grows asa until sound horizon crossing ataH
}(ky /k) @45#.

An interesting result is that the acoustic oscillation fo
lows a sin(ks) relation, implying the opposite phase in th
acoustic peaks compared with the cos(ks) adiabatic case@10#.
This result is rather generic to isocurvature models again
to the similar behavior of the driving potentials. For e
ample, axionic isocurvature models where the entropy is
tween the radiation and the CDM also follows this patter

For this reason, isocurvature seed pressure also tend
generate this type of acoustic pattern@11#. These stresses ar
found in topological defect models; indeed the dominant s
lar modes of strings, monopoles, textures, and n
topological textures do behave in this manner@23#. However,
only in the latter two are the other modes sufficiently smal
the first few peaks to yield clean acoustic peaks even for
scalar perturbations alone. Defect models generically h
vector and tensor stresses that generate comparable leve
anisotropy and further obscure acoustic phenomena.

It is possible to construct isocurvature models with
‘‘adiabatic’’ pattern of acoustic peaks. The simplest way

e.
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ld

e

9-21



rtu
re
e

-
or
fla

r-
o
at
re
e
is
d

n
ua

E
h

w

at
nd

ve

n

Eq

d

s

o
a

se,
ems
pa-
i-
ith

en
h in
tem
tion

a-
tic

on
he

is-

and
an
g is
e
iso-

he

la-
on-
tur-
del
ing
tial

, as
n

-
is

oth
ffi-

WAYNE HU AND DANIEL J. EISENSTEIN PHYSICAL REVIEW D59 083509
arrange this is to create constant comoving curvature pe
bationsz through entropic stresses that turn off well befo
the perturbation crosses the horizon. A concrete exampl
this kind of mechanism is given in@22#. As is clear from Sec.
VII B and originally pointed out by@11#, for an isocurvature
model to generatescale-invariantcurvature perturbations re
quires that the entropic stress have superhorizon scale c
lations which cannot be generated causally without an in
tionary epoch.

C. Sonic and entropic stress

Likewise, an adiabatic or sonic fluctuation will not gene
ally remain so as it crosses the horizon. Inside the horiz
the fact that components with different equations of st
have different pressure responses to gravitational comp
sion will cause the species to move independently. The g
eration of entropic stresses is in fact a primary mechan
for creating the smooth components of matter discusse
Sec. VI B.

Full solutions.The case of two components with consta
w1 andw2 again provides an instructive example. The eq
tion of motion for the entropy, Eq.~98!, is constructed out of
combining the continuity equations~14! of the two species
and has the formal solution

s5s~0!2kE dh~v22v1!. ~127!

Recall that the entropy is related to the entropic stress by
~101!. Note that entropy leads to entropic stress only if t
two components differ in their equation of states (DwÞ0).

Since we are interested in the generation of entropy,
will assume that the initial entropy perturbations(0) van-
ishes. Two interesting cases are when the entropy gener
time scalehG is small compared to the expansion time a
when it is comparable to the expansion time scale.

In the former case, the entropy will lead to dissipati
behavior if

s'2khGv, ~128!

wherehG is some characteristic time scale for entropy ge
eration. While this form is not gauge invariant even thoughs
is, the ambiguity vanishes inside the horizon. Hence,
~128! is a good approximation in the desired casehG!h.
Substituting Eq.~128! into Eq. ~101! and then Eq.~15! in
Newtonian gauge and assuming a solution of the formv
}exp(i*vdh), we obtain the dispersion relation

v56kcC2 i
1

2

r18r28

r82
~c2

22c1
2!k2hG , ~129!

where recallcC was defined in Eq.~100!. Note that we have
assumedhG /h!1 in order to replace rest-frame soun
speeds with comoving sound speeds.

This describes an exponential damping of sound wave
the wavelength passes the ‘‘diffusion’’ scalek5(hGh)21.

In the opposite regime, where the entropy is generated
the horizon scale, the sonic nature of the total system bre
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down before acoustic oscillations even start. In this ca
components can decouple completely and form subsyst
where sonic, anisotropic, or smooth effects can occur se
rately. Here it is simpler to describe the behavior of ind
vidual subsystems through variables that are comoving w
respect to the individual speciesJ. The sound speedcJ and
the contribution to the Newtonian potential are useful@see
Eq. ~99!#:

FJ54pGDrJ /~k223K !, ~130!

which impliesF5(JFJ . If the density fluctuations in the
other species are still below their own sound horizon, th
the oscillating components can become effectively smoot
comparison. From that time forward, we can treat the sys
as having a smooth component, and the curvature fluctua
contributed by the other species is governed by Eq.~69!.

Applications.The case of a short entropic timescalehG

!h is realized in the photon-baryon fluid before recombin
tion and is relevant for considering the damping of acous
phenomena in the CMB for all models of structure formati
@46,47#. Here the entropic time scale is derived from t
baryon Euler equation

vb2vg'ṫ21Rv̇, ~131!

whereR53rb/4rg . Inserting this into Eq.~127!, we obtain
hG5 ṫ21R under the rapid oscillation assumption. The d
persion relation then becomes@47#

v56kcs1 i
1

6
k2ṫ21

R2

~11R!2. ~132!

These entropic pressure techniques provide a simpler
more transparent derivation of this well-known result th
exists in the literature. Note that heat-conduction dampin
suppressed byR in the photon-dominated epoch, and w
shall see that in that case viscous damping from the an
tropic stress is more important.

The opposite limit of an entropic timescale on order t
expansion timehG;h is applicable to all models with
CDM. The CDM never participates in the acoustic oscil
tions of the baryon-photon system even during the radiati
dominated era. In Fig. 15, we show an example of a per
bation deep in the radiation-dominated era in a CDM mo
with the usual neutrino content. Before horizon cross
kh!1, the perturbations are adiabatic and the total poten
F is constant with contributions from the photonsFg and
the neutrinosFn . The sound horizon for the radiation iss
5h/A3, and oncekh@A3, the potential contribution of the
photons starts to decay as in Eq.~120!. The neutrino contri-
butions decay even faster due to their anisotropic stress
we will discuss in the next section. The CDM contributio
FCDM then turns over and behaves asFCDM} ln(Ca)/a where
C is some constant@39#. This is exactly the behavior pre
dicted by Eq.~69! assuming that the radiation component
smooth. In actuality, the photon component is not smo
compared with the CDM component but oscillates su
ciently rapidly that its time-average is negligible.
9-22
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STRUCTURE OF STRUCTURE FORMATION THEORIES PHYSICAL REVIEW D59 083509
These considerations also apply to models in which
additional component withwGDM,0 comes to dominate a
late times. Quintessence and GDM models~see Fig. 16! are
examples thereof. In Sec. VII C, we considered the c
where the GDM completely dominated the expansion. H
we consider the effect of adding a component of CDM.

The critical parameter here is the comoving sound sp
of the GDM cGDM . Slowly rolling scalar fields found in the

FIG. 15. Creation of a smooth radiation background. Numer
results in aLCDM model are shown here. Notice that upon cro
ing the sound horizon, the photon contributionFg to the total cur-
vature F damps and oscillates, while the neutrino contributio
damp much more rapidly due to collisionless damping from
anisotropic stress. The oscillating photon perturbations yield li
time-averaged effect, and the CDM evolves under Eq.~71!, leading
to the well-known logarithmic tail in the CDM transfer functio
@48#.

FIG. 16. Creation of a smooth quintessence or GDM compon
with wGDM521/3. As shown in Fig. 14, sonic stresses in the GD
component prevent perturbation growth inside the sound hor
cGDMkh;1. If this occurs well before GDM domination aty51,
then the total Newtonian curvature will evolve as if the compon
were always smooth@i.e. under Eq.~71!#. If this occurs well after,
the Newtonian curvature will behave as if all components w
fully clustered@i.e. under Eq.~63!#. For a given scale, this depend
on the comoving sound speedcGDM ; for quintessencecGDM51.
08350
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QCDM subcategory havecGDM51, but components with
lower sound speeds are possible in principle. The so
speed tells us how long after horizon crossing the GD
component stabilizes due to pressure support. If the per
bation is already within the sound horizon by the time t
GDM comes to dominate the expansion rate (y51), then the
total potential will behave under Eq.~69! as if the potential is
smooth regardless of the exact value of the sound speed
the sound speed is lowered such that crossing occurs
(y51), we see effects from the finite sound speed. In
limit where the perturbation remains above the sound h
zon until the present, the solution returns to the cluste
case of Eq.~59!.

D. Sonic and anisotropic

We have seen in Sec. VII A how anisotropic stress c
generate Newtonian curvature perturbations but, like ad
batic stress, it can also destroy them. In this context, an
tropic stress represents the ‘‘frictional force’’ set up in r
sponse to the non-uniform bulk flow of matter and shear
the metric. As we shall see, this sort of behavior is not c
fined to fluids. It represents another mechanism for gene
ing a smooth component.

Full solutions.The phenomenological parametrization
anisotropic stress in Eq.~80! yields two interesting limits.
The short time scale limit (khP!1,hP /h!1) leads to vis-
cous or collisional damping. Here, the anisotropic stress
algebraically related to the velocity in shear-free frames

P54ahP~kv2HT!. ~133!

Under the same assumptions used to derive the disper
relation for heat conduction, Eq.~129!, we find the viscous
dispersion relation

v56kcC1 i
4

3
k2ahP

p

p1r
a, ~134!

implying dissipation at a characteristic scalek;1/AhhP.
If the dissipation time scale is comparable to the exp

sion time scale, the damping occurs at horizon crossing b
more gradual. The formal solution in this limit is given i
Eq. ~82! and approximates the effects of collisionless dam
ing.

Applications.Collisional damping occurs in the photon
baryon fluid before last scattering and is the primary dissi
tion mechanism for acoustic oscillations in the CMB@46#.
Equation~133! then describes the anisotropic stress of
photonsPg with a52/5 andhP5 4

3 ṫ21. Repeating the cal-
culation leading to Eq.~132!, the dispersion relation for the
oscillations becomes@46,49#

v56kcC1 i
8

45
k2ṫ21

1

11R
. ~135!

In comparison to the heat conduction dissipation of E
~132!, viscous dissipation is more effective ifR,1, which is
the case for the baryon content implied by big bang nucl
synthesis~e.g. @50#!.
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WAYNE HU AND DANIEL J. EISENSTEIN PHYSICAL REVIEW D59 083509
Collisionless damping occurs in free radiation. Free rad
tion behaves in this ‘‘frictional’’ manner because gradien
in the potential flow are dissipated as radiation streams f
one part of the flow to the next. In terms of the multipo
moments, power in the dipole gets transferred to the qua
pole and so on through the hierarchy equations~91!. As
such, the anisotropic stress acts as the gateway for aniso
generation in the CMB. It also leads to a damping of dens
and velocity perturbations inside the horizon for all spec
of free radiation and is the reason that in Fig. 15 the neutr
contributions damp more rapidly than the photon contrib
tions. More generally, it is responsible for smoothing o
components when entropic stresses cannot be generated
whenc2

22c1
250.

These dissipational terms may also be important in st
lizing other forms of matter. One way to generate a smo
density component is to introduce an effective viscous ra
than sonic stress@17#; a mechanism of this type is thought
be involved in stabilizing the strCDM model@16#. Turok
@51# suggested an extreme example of this sort, in which
comoving sound speed of the seeds is imaginary but
anisotropic stress is perfectly balanced to counter the ot
wise exponential growth of density fluctuations.

E. Sonic, entropic, and anisotropic seed stress

The seed stresses of topological defect models provid
example where all types of stresses coexist. While the c
sequences of a given seed stress for structure formation
straightforward to work out, the behavior of the seed str
itself is more difficult and requires simulations to work out
detail.

Full solutions.The two-point statistics of complicated de
fect models can be accurately modeled as the incohe
~quadrature! sum of a relatively small number (;10–20) of
simple seed stress histories@51,23#. Each individual source
may then be determined by the techniques above@see Eqs.
~44! and ~45!#.

Applications.The simplest defect models typically hav
two other properties that have important phenomenolog
consequences. Defect models are causal in the clas
sense. The stress perturbationsdps andpsPs must fall off at
least as white noise (k0) outside the horizon and the initia
curvature must vanish@z(0)50#. The traditional string and
texture models also obey a scaling relation that states tha
stress histories depend on wavelength only through the c
bination kh. This ensures self-similarity of the structure
horizon crossing and leads to nearly scale-invariant C
anisotropies. Because the simplest versions of these mo
run into difficulties when CMB anisotropies are compar
with large-scale structure, phenomenological models tha
not obey the scaling relation have recently received so
attention@25#.

F. Vector stress

We next consider the effect of vector anisotropic stress
Recall that in the absence of vector stress, the vector pe
bation decays. In order to generate an observable effect,
tor perturbations must be continuously generated by ve
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anisotropic stresses. This implies that vector modes
unique to the active stress models, of which defects are
example.

Full solutions. The solutions in the presence of stre
sources can be constructed via Green’s function techniq
from the stress-free solutions of Eq.~76!. For the vector
modes, the solution becomes

v ~61!2B~61!5a24~r1p!21FC2
1

2
~122K/k2!

3kE
0

h
dh̃a4pP~61!G , ~136!

whereC5const represents the decaying mode. The rem
ing metric perturbationkB(61)2ḢT

(61) is related algebra-
ically to Eq. ~136! through Eq.~21!.

Applications.The discussion of scalar seed stress in
fect models in Sec. VIII E also applies to vector stresses w
a few additional considerations. Defect models genera
have comparable scalar, vector, and tensor anisotropic s
sources above the horizon@52#. Since CMB anisotropies are
primarily generated at horizon crossing, these sources ten
yield comparable anisotropy contributions for modes t
cross after last scattering. Vector modes that cross before
scattering do not contribute due to suppression of ten
anisotropies in the CMB from scattering. Thus, vector mod
can obscure the first few scalar acoustic features in de
models. On the other hand, vector modes have a special
nature in the CMB polarization that may assist in their is
lation @29,53#.

G. Tensor stresses

Tensor anisotropic stresses provide sources and sink
gravity waves. It is well known that quadrupolar stress
generate gravity waves. Furthermore, a passing gravity w
will also impart some energy to the radiation backgroun
via differential gravitational redshifts and thereby decay.

Full solutions.An integral solution may be constructe
out of the homogeneous solutions of Sec. VI D as

HT
~62!~h!5C1H1~h!1C2H2~h!

1E
0

h
dh̃

H1~ h̃ !H2~h!2H1~h!H2~ h̃ !

H1~ h̃ !H28~ h̃ !2H18~ h̃ !H2~ h̃ !

38pGa2pP~62!, ~137!

where C1 and C2 are constants associated with the init
conditions.

Applications.We show the damping effect of anisotrop
stress in the radiation backgrounds in Fig. 17. It is gener
not included in standard Boltzmann codes that solve CM
anisotropies@54#. The reason is that it is negligible at larg
angles since the corresponding modes entered the hor
well into matter domination when the anisotropic stresses
negligible. Since this feedback effect is typically small, E
~137! may in principle be used to iterate to a solution fro
9-24
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the free-gravity wave case of Eq.~78!. However, the evolu-
tion of the anisotropic stress has a more important effect.
as scalar anisotropic stresses in the photons are destroy
scattering before last scattering~see Sec. VIII D!, tensor an-
isotropic stresses are destroyed ase2t. This cuts off the ten-
sor contributions to the anisotropies before last scatterin
indicated in Eq.~78! and shown in Fig. 17. The feedbac
effect still exists, but the level of the anisotropy itself mak
it too low to be observable for reasonable tensor to sc
ratios.

The Green’s function solution of Eq.~137! is more di-
rectly applicable to the seed stress case wherepP62

5psPs. As in the vector stress case, the phenomenolog
result is that defect models tend to have significant ten
contributions above the angle the horizon subtends at
scattering. As in the passive models, their contribution is
off below this scale due to scattering.

IX. DESIGNER APPLICATION

With this general study in hand, we are now in a positi
to discuss prospects for reverse engineering the mode
structure formation. Obviously, the specific route the inv
sion takes will depend on the results of ongoing experime
Currently, the data favor a model with phenomenology l
theLCDM model, e.g. the shape of the large-scale struct
power spectrum@55,56#, relative high to low redshift cluste
abundances@57,58#, supernova luminosity distances to re
shift of z;0.5 @59–61#, and degree scale CMB anisotropi
~e.g. @62,63#!. If agreement between theLCDM model and
future precision tests is good, can we say purely on phen
enological grounds that we have proved the existence
cosmological constant? If the model varies from the da
can we use the methods developed here to modify the s
history, restore agreement, and in the process learn new
formation about the dark sector?

FIG. 17. The effect of tensor anisotropic stress on ten
anisotropies. Gravity waves generate tensor anisotropic stres
radiation that absorbs energy and damps the gravity wave. For
radiation like the neutrino background radiation, this reduces
anisotropies generated on small scales. For the CMB, the elim
tion of tensor anisotropic stresses by scattering cuts off small-s
contributions as well.
08350
st
by

as

s
ar

al
or
st
t

or
-
s.

re

-
a
,
ss

in-

Let us address the first question. We know that the e
lution of structure is completely defined by the stress hist
of the matter. Since the equations of state of the ordin
matter are known, the remaining element is the dark sec
To test the uniqueness of theLCDM model, we should look
for alternate means of reproducing its stress history. T
background stress history of the dark sector in aL model is
given by

wLCDM5
2a3

a31VCDM /VL

, ~138!

and its stress perturbations vanish. This suggests that a
eralized dark matter component of the type introduced
@17# and parameters

wGDM5wLCDM , cGDM
2 50 ~139!

should reproduce the phenomenology of theLCDM model.
Recall thatcGDM is the sound speed in the frame comovi
with the GDM ~see Sec. VIII C!. To the extent that the co
moving and GDM-comoving frames coincide, this form
dark matter exactly reproduces any mixture ofL and CDM.
We show an example in Fig. 18. Note that all classical c
mological and linear theory tests will return the same ans
for the two models despite the fact that the GDM model i
single dark matter component model in a critical density u
verse. Non-linear effects are also identical if the same st
history is maintained throughout.

r
in

ee
e
a-
le

FIG. 18. MimickingLCDM. Models with the same stress his
tories in the dark sector have the same observable conseque
regardless of differences in how that sector is composed. Here
merical solutions for the CMB anisotropy and large-scale struct
power spectra in aLCDM universe and a single-component critic
GDM dominated universe of Eq.~139! are shown to be identical
However, variations incC , DF, and Dh away from this tuned
stress history do have observable consequences.
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There are two lessons here. The first is that on pur
phenomenological grounds we can do no more than mea
the global properties of the dark sector. A multicompon
model and a single component model with the same st
history are formally identical.

The second is that reproducing the phenomenology o
LCDM model is rather simple: it requires an equation
state that varies fromw50 at high redshift tow'22/3 to-
day and a form of matter that is free of large-scale str
gradients in its comoving frame. Thus, there exists a w
class of such single component models that fit the cur
data as well as theLCDM model.

On the other hand, variations on the conditions in E
~139! have observable consequences for future meas
ments. Relaxing the stress-free perturbation condition
raising the sound speed reduces the small-scale power in
model and delays the formation of high redshift objects. T
remaining freedom in the stress history is associated with
equation of statew. We can quantify this by recalling tha
the gravitational potential depends only on the quantity@see
Eq. ~59!#

DF}
Ar

a E
0

ada

Ar
. ~140!

Large-scale structure constrains the value of this integra
the present (a51). CMB anisotropies from the ISW effec
are sensitive to variations in this function that occur on
order of the light-travel time across a wavelength~see Sec.
V D!. Since CMB anisotropies potentially probe nearly thr
orders of magnitude from the current horizon, variations a
fraction of a percent of the current expansion time are po
tially visible in the CMB.

Similarly, distance measures such as the angular diam
distance to the last scattering surface (a;1023) and the lu-
minosity distance to high redshift objects (a;2/3) probe the
combination

Dh~a!}E
a

1

da
1

a2r1/2
. ~141!

Current measures ofDF(a) andDh(a) are crude at bes
as they only proble their values at discrete epochs or
averaged over long time scales. A sharp test of theL
1CDM hypothesis that should be possible with future m
sures involves reconstructing the time evolution of the eq
tion of statewcr through measures ofDF(a) and/orDh(a).
Any combination of a cosmological constant and CDM w
obey

wcr8 53wcr~11wcr!. ~142!

The physical implication of this relation is that the bac
ground pressure is constant in time (p850) so that the adia-
batic sound speed vanishes (cs

25p8/r850). If this condition
is violated, we will have proved the existence of a new fo
of matter. Ifwcr8 .3wcr(11wcr), then it can be supported b
adiabatic stresses@64#; if not, then a form of matter with
non-adiabatic stresses is required. Non-adiabatic stresse
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ply that the relation between the pressure and density pe
bations does not follow that of their spatial averages.

The simplicity of the requirements of Eq.~139! raises the
possibility of a unified description of the dark sector. A co
crete but somewhat trivial example is a scalar field that r
idly oscillates around a non-zero potential minimum. T
rapid oscillations average away all large-scale pressure
fects save from the vacuum pressure of the potential m
mum @65#. Unfortunately, the relationship between the co
stant and quadratic pieces of the scalar potential is
unexplained and so is no better than an explicitL1CDM
model. Nonetheless, there may be more complicated
amples, perhaps involving multiple fields, in which th
mimic conditions~139! are approximately satisfied and d
unify the two behaviors in a true sense.

This discussion shows that a reverse-engineered m
for structure formation will in general not be unique. On t
other hand, the observables can be translated into constr
on the stress histories and phenomenological models of
dark sector. These in turn can assist in the search for c
pelling physical candidates to compose the dark sector.

X. DISCUSSION

Without any assumptions other than the validity of ge
eral relativity and nearly homogeneous and isotropic ini
conditions, the evolution of structure is completely det
mined by the stress history of matter. We have studied
means by which stresses, both in the background and
fluctuations, can alter the observable properties of the mo

We have examined the effects of smooth, anisotrop
sonic, and entropic stresses in structure formation, includ
their interactions and ability to generate effectively smoo
density components. We have illustrated these behav
with analytic solutions for systems with multiple componen
of differing background equations of state, which can the
selves be time dependent in several important cases. T
solutions have applications to nearly all of the current mo
els for structure formation and are substantially more gen
than those existing in the literature.

Although this study is not exhaustive, we have made
plicit all of the assumption required to arrive at specific mo
els and their accompanying phenomenology. In the proc
we have exposed the limitations of traditional categorizat
schemes like that in Fig. 1. These distinctions can be blur
in cases where the usual assumptions do not apply. We s
marize several notable cases here.

A. Initial conditions

Isocurvature initial conditions imply a growing comovin
curvature outside the horizon on scales relevant to larg
scale structure and degree-scale anisotropies.The comoving
curvature grows outside the horizon only by the action
stress perturbations. Once stress perturbations are turne
the curvature remains constant until horizon crossing or c
vature domination. These considerations provide a means
mimicking the phenomenology of adiabatic models@22# and
9-26
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are important for interpreting the implications of CM
acoustic peak phenomenology; however, they do not inv
date the conclusions of@11#.

The Newtonian curvatureF is simply proportional to the
comoving curvature if the background equation of state
constant.The Newtonian curvature admits a decaying mo
whereas the comoving curvature does not. The deca
mode can be stimulated by anisotropic stress perturbat
outside the horizon but has observable consequences
through the contribution remaining at horizon crossing@1#.

If the Newtonian potentialC is constant from last scat
tering to the present, the observed temperature perturba
depends only on the equation of state andC. The assump-
tion here is that the comoving temperature perturbation
negligible and is only true if stress perturbations are a
negligible compared with the comoving curvature for
time. The axion isocurvature model provides a simple co
terexample. On the other hand, no assumptions about
anisotropic stress are necessary even whenF52C no
longer holds.

Isocurvature initial conditions predict an observed tem
perature perturbation of2C on scales larger than the hori
zon at last scattering.The assumption here is that the initi
temperature perturbation in Newtonian gauge vanishes.
is not the case for models where the isocurvature condit
are established by balancing the photon density perturbat
off another species of radiation. Furthermore, changes in
potential that are slowly varying compared with the lig
travel time across a perturbation do not affect the obser
temperature.

B. Clustering properties

The smoothness of a component is gauge-dependen
hence has no physical meaning.The gauge dependence of
smooth component is not a problemper seas certain frames
e.g. the frame where the momentum of the component v
ishs, are dynamically special. A smooth contribution to
density withwSÞ21 does violate covariant energy conse
vation in any coordinate system where the spatial curva
changes. Since the very presence of a smooth density c
ponent requires that the comoving curvature perturbation
cay, there can be no identically smooth contributions in th
coordinates except in the trivial zero curvature perturbat
case. A component can be smooth relative to another spe
inside the horizon where the relativistic effects of curvatu
variation are negligible@15#.

The behavior of a smooth component depends only o
equation of state wS . Since all components exceptL and
curvature are clustered outside the horizon, the manne
which a component becomes smooth is observable. The p
ence of sonic ~supportive! and anisotropic~dissipative!
stresses are two possibilities, but others exist in principle

A ‘‘clustered’’ model like standard CDM has no dynam
cally important smooth stresses or density contributions.The
radiation backgrounds and baryons are effectively smo
well inside the horizon prior to recombination. Smooth co
tributions are generic to structure formation models.
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Smooth component behavior implies small density per
bationsdrS,drC . A component can be effectively smoot
even while possessing large density fluctuations. The cru
assumption is that their time-average density over the
namical time of the clustered species is smooth. Density p
turbations in a component that vary rapidly with the expa
sion time generally lead to no effect on the growth
structure. The radiation backgrounds mentioned above
vide a familiar example.

The missing mass (clustered dark matter) and missing
ergy (smooth wS,21/3 dark matter) are separate problems
The stress history of the dark sector completely defines
properties for classical cosmology and structure formati
Any combination of components that produces the sa
stress history will produce the same phenomenology. As
example, we have constructed a toy model that that exa
reproduces theLCDM phenomenology but employs a sing
component of dark matter in a critical density univers
Variations in the stress history produce models that sat
the current constraints equally well but are potentially dist
guishable fromLCDM.

C. Perturbation type

Scale-invariant gravity waves preferentially enhance t
low-order multipoles of CMB anisotropies.Enhancement
only occurs if the gravity wave amplitude decays close
horizon crossing and is eliminated as the equation of stat
the background drops.

There is a sharp distinction between active and pass
models for structure formation.Models that have been la
beled ‘‘passive’’ in the literature are those in which the stre
perturbations are simply related to density, velocity, a
metric fluctuations by equations of state, sound speeds,
cosity parameters, etc. Models in which there is a compon
whose stresses have no fixed relation to density and m
perturbations have been labeled ‘‘active.’’ The issue is
number of internal degrees of freedom that act to specify
stresses. For example, scaling defect stress histories are
cally approximated by tens of parameters and those of
ticle dark matter by three or fewer. In principle, there is
spectrum of possibilities between the two and a correspo
ing spectrum of phenomenological consequences.

Our study is useful even if the current evidence suppo
ing LCDM-type phenomenology holds up. Even theLCDM
model itself does not have an entirely trivial stress history
its dark sector includes the neutrino background radiati
The observability of the neutrino stress history has been
dressed numerically in@44#; we have examined its physica
origin here. Furthermore, the dark sector could contain
otic features that produce more or less ordinary phenome
ogy, and one needs to construct sharp tests against alte
tives. For example, a combination of cold dark matter an
cosmological constant must obeywcr8 53wcr(11wcr). This
relation also acts as the dividing line between models w
exotic and ordinary matter. For exotic matter, the stress
density perturbations obey a relation that opposes that
tween the background stress and density; scalar fields are
example of exotic matter.
9-27
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In summary, a purely phenomenological revers
engineering of the model for structure formation will requ
the reconstruction of the time-averaged stress history of
dark sector. This inversion is generally not unique. Nonet
less, if the observed phenomenology remains close to tha
our simplest models, our study of stress phenomenol
should provide the means for constructing viable models
the observations require more radical departures, our s
should be useful in identifying the assumptions that are
er
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et

tt
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correct and assist in the search for the correct phenom
logical model for structure formation.
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