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Cosmic microwave background anisotropies: Nonlinear dynamics
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We develop a new approach to local nonlinear effects in cosmic microwave background anisotropies, and
discuss the qualitative features of these effects. New couplings of the baryonic velocity to radiation multipoles
are found, arising from nonlinear Thomson scattering effects. We also find a new nonlinear shear effect on
small angular scales. The full set of evolution and constraint equations is derived, including the nonlinear
generalizations of the radiation multipole hierarchy, and of the dynamics of multi-fluids. These equations
govern radiation anisotropies in any inhomogeneous spacetime, but their main application is to second-order
effects in a universe that is close to the Friedmann models. Qualitative analysis is given here, and quantitative
calculations are taken up in further papers.@S0556-2821~99!02508-4#

PACS number~s!: 98.80.Hw, 04.25.Nx, 95.30.Sf
th

ile
le
c
o
iv
n
a
on
a
fo
an
m
ew
ap
c

ns
ela
es
te
le

e

fo
wi
co
e

on
i-

d
d

du

ed

ion
i

ama

s
ser-
nd-
een
c

ri-
thus
els

eat-
re

o-
mo-

and

ap-
an
ard
st-
il-
er-
us

lity
ch

ro-
the
ive
I. INTRODUCTION

Recent and upcoming advances in observations of
cosmic microwave background~CMB! radiation are fueling
the construction of increasingly sophisticated and deta
models to predict the anisotropy on small angular sca
Such models require highly specific input in order to produ
numerical results, and they involve intricate problems
computation. As a complement to such specific predict
models, it is also useful to pursue a more qualitative a
analytical investigation of CMB anisotropies. A gener
qualitative analysis does not rely on detailed assumpti
about the origin of primordial fluctuations, the density p
rameters of the background, re-ionization and structure
mation history, etc. Instead, the aim is to better underst
the underlying physical and geometric factors in the dyna
ics of radiation anisotropies, and hopefully to uncover n
results and insights. In this paper, we follow such an
proach, and develop a new analysis of local nonlinear effe
in CMB anisotropies. We are able to give a physically tra
parent qualitative analysis of how inhomogeneities and r
tive motions produce nonlinear effects in CMB anisotropi
We derive the nonlinear generalization of Thomson scat
ing, and we find a new nonlinear shear effect on small sca

We use a 113 covariant approach~i.e., a ‘‘covariant La-
grangian’’ approach! to CMB anisotropies, based on th
choice of a physically determined 4-velocity vector fieldua.
This allows us to derive the exact nonlinear equations
physical quantities as measured by observers moving
that 4-velocity. Then the nonlinear equations provide a
variant basis for investigating second-order effects, as w
as for linearizing about a Friedmann-Lemaitre-Roberts
Walker ~FLRW! background. The basic theoretical ingred
ents are~a! the covariant Lagrangian dynamics of Ehlers@1#
and Ellis@2#, and the perturbation theory of Hawking@3# and
Ellis and Bruni @4# which is derived from it;~b! the 113
covariant kinetic theory formalism of Ellis, Treciokas an
Matravers@5,6# ~which builds on work by Ehlers, Geren an
Sachs@7#, Treciokas and Ellis@8# and Thorne@9#!; and ~c!
the 113 covariant analysis of temperature anisotropies
to Maartens, Ellis and Stoeger@10#.
0556-2821/99/59~8!/083506~19!/$15.00 59 0835
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The well-developed study of CMB anisotropies is bas
on the pioneering results in CMB physics~Sachs and Wolfe
@11#, Rees and Sciama@12#, Peebles and Yu@13#, Sunyaev
and Zeldovich@14#, Grishchuk and Zeldovich@15#, and oth-
ers!, and on the development of gauge-invariant perturbat
theory, particularly by Bardeen@16# and Kodama and Sasak
@17# ~building on the work of Lifshitz@18#!. There are com-
prehensive and detailed models—see e.g. Hu and Sugiy
@19–21#, Ma and Bertschinger@22#, Seljak et al. @23–26#
and Durrer and Kahniashvili@27#. These provide the basi
for sophisticated predictions and comparisons with the ob
vations of recent, current and future satellite and grou
based experiments. The hope is that this inter-play betw
theory and observation~including the large-scale galacti
distribution and other observations!, in the context of infla-
tionary cosmology, will produce accurate values for the va
ous parameters that characterize the standard models,
allowing theorists to discriminate between competing mod
~see for example@28,29#!.

While these papers have provided a near-exhaustive tr
ment of many of the issues involved in CMB physics, the
are a number of reasons for pursuing a complementary 113
covariant approach, as developed in@10,30–38#.

First, the covariant approach by its very nature incorp
rates nonlinear effects. This approach starts from an inho
geneous and anisotropic universe, withouta priori restric-
tions on the degree of inhomogeneity and anisotropy,
then applies the linearization limit when required. The 113
covariant equations governing CMB anisotropies are thus
plicable in fully nonlinear generality. These equations c
then be specialized in various ways in addition to a stand
FLRW linearization. Second-order effects in an almo
FLRW universe probably form the most important possib
ity, given the increasing accuracy and refinement of obs
vations. The study of CMB anisotropies in homogeneo
Bianchi universes with large anisotropy is another possibi
that flows directly from general nonlinear equations. Su
applications will be the subject of future papers in the p
gram. The current paper is concerned with setting up
general dynamical equations and identifying the qualitat
nature of nonlinear effects.~The general algebraic
©1999 The American Physical Society06-1
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equations are derived in@37#.!
Second, the 113 covariant approach is based entirely

quantities with a direct and transparent physical and geom
ric interpretation, and the fundamental quantities describ
anisotropy and inhomogeneity are all automatically gau
invariant when a suitable covariant choice of fundamen
4-velocity has been made. As a consequence the appr
leads to results with unambiguous physical meaning~pro-
vided the fundamental 4-velocity field is chosen in a phy
cally unique and appropriate way; we discuss the vari
options below!.

This approach has been developed in the context of d
sity perturbations@4,39–54# and gravitational wave perturba
tions @3,55–59#. ~See also@60# for a recent review.! In rela-
tion to CMB anisotropies, the covariant Lagrangian appro
was initiated1 by Stoeger, Maartens and Ellis@30#, who
proved the following result:if all comoving observers in an
expanding universe region measure the anisotropy of
CMB after last scattering to be small, then the universe
almost FLRW in that region.2 No a priori assumptions are
made on the spacetime geometry or on the source and n
of CMB anisotropies, so that this result provides a gene
theoretical underpinning for CMB analysis in perturb
FLRW universes. It effectively consitutes a proof of the s
bility of the corresponding exact-isotropy result of Ehle
Geren and Sachs@7#. The weak Copernican principle implic
in the assumption that all fundamental observers see s
anisotropy is in principle partially testable via the Sunyae
Zeldovich effect~see@32# and references therein!. The quali-
tative result was extended to a quantitative set of limits
the anisotropy and inhomogeneity of the universe impo
by the observed degree of CMB anisotropy, independentl
any assumptions on cosmic dynamics or perturbations be
recombination@10,31–33#.

More recently, this approach to CMB anisotropies in
almost FLRW universe has been extended by Dunsby@34#,
who derived a 113 covariant version of the Sachs-Wol
formula, and by Challinor and Lasenby@35,36#, who per-
formed a comprehensive 113 covariant analysis of the im
print of scalar perturbations on the CMB, confirming t
results of other approaches from this viewpoint and bring
new insights and clarifications via the covariant approach
@35#, they also discuss qualitatively the imprint of tensor p
turbations on the CMB, in the covariant approach~see@38#
for quantitative results!.

This paper is closely related to, and partly depend
upon, all of these previous 113 covariant analyses. It ex
tends and generalizes aspects of these papers, using an
veloping the covariant nonlinear Einstein-Boltzman
hydrodynamic formalism. We analyze the nonline

1A 113 covariant approach to CMB anisotropy was indepe
dently outlined by Bonanno and Romano@61# in general terms,
using a flux-limited diffusion theory, but the detailed implicatio
of small CMB anisotropy were not pursued.

2Note the importance of expansion: astatic isotropic cosmology
with arbitrarily large inhomogeneity can be constructed in which
observers see an isotropic CMB@62#.
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dynamics of radiation anisotropies, with the main applicat
being second-order effects in an almost FLRW universe.
identify and describe the qualitative features of such effe
This lays the basis for a generalization of results on w
known second-order effects, such as the Rees-Sciama
Vishniac effects~see e.g.@19#!, and on recent second-orde
corrections of the Sachs-Wolfe effect@63,64#. Developing a
quantitative analysis on the basis of the equations and qu
tative analysis given here is the subject of further work. U
timately this involves the solution of partial differentia
equations, which requires in particular a choice of coor
nates, breaking covariance. However, the 113 covariant ap-
proach means that all the equations and variables hav
direct and transparent physical meaning.

In Sec. II, the covariant Lagrangian formalism for relati
istic cosmology is briefly summarized. Section III develo
an exact 113 covariant treatment of multi-fluids and the
relative velocities, building on@52#. In Sec. IV, the covariant
Lagrangian approach to kinetic theory is outlined. Section
develops a nonlinear treatment of Thomson scattering, wh
identifies new couplings of the baryonic relative velocity
the radiation multipoles. We derive the hierarchy of exa
covariant multipole equations which arise from the Bol
mann equation. This section uses and generalizes a co
nation of the results of Elliset al. @5# on the multipoles of the
Boltzmann equation in general, Maartenset al. @10# on a
covariant description of temperature fluctuations, and Ch
linor and Lasenby@36# on Thomson scattering. The equ
tions constitute a covariant and nonlinear generalization
previous linearized treatments. In Sec. VI, we consider qu
tative implications of the nonlinear equations. We ident
the role of the kinematic quantities in the nonlinear term
and comment on the implications for second-order effe
which include a new nonlinear shear correction to CM
anisotropies on small angular scales. We also give the m
tipole equations for the case where the radiation anisotrop
small, but spacetime anisotropy and inhomogeneity
unrestricted.3

Finally, we give the linearized form of the multipol
equations, regaining the equations of Challinor and Lase
@36#. This provides a covariant Lagrangian version of t
more usual metric-based formalism of gauge-invariant p
turbations~see e.g.@65,20,22,23#!. In a further paper@66#,
the linearized equations derived here are expanded in c
riant scalar modes, and this is used to determine ana
properties of CMB linear anisotropy formation.

We follow the notation and conventions of@2,5,10#, with
the improvements and developments introduced by@67,48#.
In particular, the units are such thatc, 8pG andk

B
are equal

to 1; the signature is (2111); spacetime indices are
a,b, . . . 50,1,2,3; the curvature tensors areRa

bcd5
2]dGa

bc1•••,Rab5Rc
acb and R5Ra

a ; the Ricci
identity is ¹ [a¹b]uc5 1

2 Rabcdu
d;Al denotes the index string

a1a2•••al ; eAl denotes the tensor productea1ea2
•••eal;

-

ll 3This case will apply before decoupling, in order to be consist
with the almost-FLRW result quoted above.
6-2
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COSMIC MICROWAVE BACKGROUND ANISOTROPIES: . . . PHYSICAL REVIEW D59 083506
~square! round brackets enclosing indices denote the~anti-
!symmetric part; and angular brackets denote the proje
symmetric and tracefree~PSTF! part ~defined below!. The
spatially projected part of the covariant derivative is deno
by Da , following @67#.4 The approximate equality symbol, a
in J'0, indicates equality up to first~linear! order in an
almost-FLRW spacetime.

II. COVARIANT LAGRANGIAN FORMALISM
IN RELATIVISTIC COSMOLOGY

The Ehlers-Ellis 113 formalism @1,2,68# is a covariant
Lagrangian approach; i.e., every quantity has a natural in
pretation in terms of observers comoving with the fundam
tal 4-velocityua ~whereuaua521). Provided this is defined
uniquely in an invariant manner, all related quantities hav
direct physical or geometric meaning, and may in princi
be measured in the instantaneous rest space of the como
fundamental observers. Any coordinate system or tetrad
be used when specific calculations are made. These fea
are a crucial part of the strengths of the formalism and of
perturbation theory that is derived from it. We will follow
the streamlining and development of the formalism given
Maartens@67#, the essence of which is to make explicit u
of irreducible quantities and derivatives, and to develop
identities which these quantities and derivatives obey~see
also @48,57,58,51,52#!.

The basic algebraic tensors are~a! the projector hab
5gab1uaub , where gab is the spacetime metric, whic
projects into the instantaneous rest space of comoving
servers and ~b! the projected alternating tensor«abc

5habcdu
d, where habcd52Augud0

[ad1
bd2

cd
3

d] is the
spacetime alternating tensor. Thus

habcd52u[a«b]cd22«ab[cud] , «abc«
de f53!h[a

dhb
ehc]

f .

The PSTF parts of vectors and rank-2 tensors are

V^a&5ha
bVb , S^ab&5H h(a

chb)
d2

1

3
hcdhabJ Scd ,

with higher rank formulas given in@37#. The skew part of a
projected rank-2 tensor is spatially dual to the projected v
tor Sa5 1

2 «abcS
[bc] , and then any projected rank-2 tensor h

the irreducible covariant decomposition

Sab5 1
3 Shab1«abcS

c1S^ab& ,

whereS5Scdh
cd is the spatial trace. In the 113 covariant

formalism, all quantities are either scalars, projected vec
or PSTF tensors. The equations governing these quan
involve a covariant vector product and its generalization
PSTF rank-2 tensors:

@V,W#a5«abcV
bWc, @S,Q#a5«abcS

b
dQcd.

4In @4,43,45,35,36# it is denoted(3)¹a , while in @10,34# it is ¹̂a .
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The covariant derivative¹a defines 113 covariant time
and spatial derivatives

J̇a•••
•••b5uc¹cJ

a•••
•••b ,

DcJ
a•••

•••b5hc
dha

e•••hb
f¹dJe•••

••• f .

Note that Dchab505Dd«abc , while ḣab52u(au̇b) and «̇abc

53u[a«bc]du̇d. The projected derivative Da further splits ir-
reducibly into a 113 covariant spatial divergence and cu
@67#

div V5DaVa , ~div S!a5DbSab ,

curlVa5«abcD
bVc, curlSab5«cd~aDcSb)

d,

and a 113 covariant spatial distortion@57#

D^aVb&5D(aVb)2
1

3
~div V!hab ,

D^aSbc&5D(aSbc)2
2

5
h(ab~div S!c) .

Note that div curl isnot in general zero, for vectors or rank-
tensors~see @67,48,51,58# for the relevant formulas!. The
covariant irreducible decompositions of the derivatives
scalars, vectors and rank-2 tensors are given in exact~non-
linear! form by @57#

¹ac52ċua1Dac, ~1!

¹bVa52ub$V̇^a&1AcV
cua%1uaH 1

3
QVb1sbcV

c

1@v,V#bJ 1
1

3
~div V!hab2

1

2
«abccurlVc

1D^aVb& , ~2!

¹cSab52uc$Ṡ^ab&12u(aSb)dAd%12u(aH 1

3
QSb)c

1Sb)
d~scd2«cdev

e!J 1
3

5
~div S!^ahb&c

2
2

3
«dc(acurlSb)

d1D^aSbc& . ~3!

The algebraic correction terms in Eqs.~2! and ~3! arise
from the relative motion of comoving observers, as encod
in the kinematic quantities: the expansionQ5Daua , the
4-acceleration Aa[u̇a5A^a& , the vorticity5 va5
2 1

2curlua , and the shearsab5D^aub& . Thus, by Eq.~2!,

5The vorticity tensorvab5«abcv
c is often used, but we prefer to

use the irreducible vectorva . The sign conventions, following

@1,2#, are such that in the Newtonian limit,vW 52
1
2 ¹W 3vW . Note that

Dbvab5curl va .
6-3
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¹bua52Aaub1
1

3
Qhab1«abcv

c1sab .

The irreducible parts of the Ricci identities produce co
mutation identities for the irreducible derivative operators.
the simplest case of scalars,

curl Dac[«abcD
[bDc]c522ċva , ~4!

Daċ2ha
b~Dbc!•52ċAa1

1

3
QDac1sa

bDbc

1@v,Dc#a. ~5!

Identity ~4! reflects the crucial relation of vorticity to non
integrability; non-zerova implies that there are no constan
time 3-surfaces everywhere orthogonal toua, since the in-
stantaneous rest spaces cannot be patched tog
smoothly.6 Identity ~5! is the key to deriving evolution equa
tions for spatial gradients, which covariantly characterize
homogeneity @4#. Further identities are given in
@40,67,69,57,48#.

The kinematic quantities govern the relative motion
neighboring fundamental world lines, and describe the u
versal expansion and its local anisotropies. The dyna
quantities describe the sources of the gravitational field,
directly determine the Ricci curvature locally via Einstein
field equations. They are the~total! energy densityr
5Tabu

aub, isotropic pressurep5 1
3 habT

ab, energy fluxqa
52T^a&bub, and anisotropic stresspab5T^ab& , whereTab is
the total energy-momentum tensor. The locally free grav
tional field, i.e. the part of the spacetime curvature not
rectly determined locally by dynamic sources, is given by
Weyl tensorCabcd. This splits irreducibly into the gravito
electric and gravito-magnetic fields

Eab5Cacbdu
cud5E^ab& , Hab5

1

2
«acdC

cd
beu

e5H ^ab& ,

which provide a covariant Lagrangian description of tid
forces and gravitational radiation.

A FLRW ~background! universe, with its unique preferre
4-velocity ua, is covariantly characterized as follows:

Dynamics Dar505Dap, qa50, pab50.
Kinematics DaQ50, Aa505va ,sab50.
Gravito-electric–magnetic fieldEab505Hab .
The Hubble rate isH5 1

3 Q5ȧ/a, wherea(t) is the scale
factor andt is cosmic proper time. In spatially homogeneo
but anisotropic universes~Bianchi and Kantowski-Sach
models!, the quantitiesqa ,pab ,sab ,Eab andHab in the pre-
ceding list may be non-zero.

The Ricci identity for ua and the Bianchi identities
¹dCabcd5¹ [a(2Rb]c1 1

6 Rgb]c) produce the fundamenta
evolution and constraint equations governing the above

6In this case, which has no Newtonian counterpart, the Da opera-
tor is not intrinsic to a 3-surface, but it is still a well-defined spat
projection of¹a in each instantaneous rest space.
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variant quantities @1,2#. Einstein’s equations are
incorporated7 via the algebraic replacement of the Ricci te
sor Rab by Tab2 1

2 Tc
cgab . These equations, in exact~non-

linear! form and for a general source of the gravitation
field, are@57# the following:

Evolution:

ṙ1~r1p!Q1div q

522Aaqa2sabpab , ~6!

Q̇1
1

3
Q21

1

2
~r13p!2div A

52sabs
ab12vava1AaAa,

~7!

q̇^a&1
4

3
Qqa1~r1p!Aa1Dap1~div p!a

52sabq
b1@v,q#a2Abpab ,

~8!

v̇^a&1
2

3
Qva1

1

2
curlAa5sabv

b, ~9!

ṡ^ab&1
2

3
Qsab1Eab2

1

2
pab2D^aAb&

52sc^asb&
c2v^avb&1A^aAb& ,

~10!

Ė^ab&1QEab2curlHab1
1

2
~r1p!sab

1
1

2
ṗ^ab&1

1

2
D^aqb&1

1

6
Qpab

52A^aqb&12Ac«cd(aHb)
d

13sc^aEb&
c2vc«cd(aEb)

d2
1

2
sc

^apb&c

2
1

2
vc«cd(apb)

d, ~11!

Ḣ ^ab&1QHab1curlEab2
1

2
curlpab

53sc^aHb&
c2vc«cd(aHb)

d

22Ac«cd~aEb)
d2

3

2
v^aqb&1

1

2
sc

(a«b)cdq
d. ~12!

l 7Note that one constraint Einstein equation is not explicitly co
tained in this set—see@2,70#.
6-4
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Constraint:

div v5Aava , ~13!

~div s!a2curlva2
2

3
DaQ1qa522@v,A#a , ~14!

curlsab1D^avb&2Hab522A^avb& , ~15!

~div E!a1
1

2
~div p!a2

1

3
Dar1

1

3
Qqa

5@s,H#a23Habv
b

1
1

2
sabq

b2
3

2
@v,q#a ,

~16!

~div H !a1
1

2
curlqa2~r1p!va

52@s,E#a2
1

2
@s,p#a

13Eabv
b2

1

2
pabv

b. ~17!

If the universe is close to an FLRW model, then quantit
that vanish in the FLRW limit areO(e), wheree is a dimen-
sionless smallness parameter, and the quantities are sui
normalized~e.g.Asabs

ab/H,e, etc.!. The above equation
are covariantly and gauge-invariantly linearized@4# by drop-
ping all termsO(e2), and by replacing scalar coefficients
O(e) terms by their background values. This linearizati
reduces all right hand sides of the evolution and constr
equations to zero.

III. 1 13 COVARIANT NONLINEAR ANALYSIS
OF MULTI-FLUIDS

The formalism described above applies forany covariant
choice ofua. If the physics picks out only oneua, then that
becomes the natural and obvious 4-velocity to use. In a c
plex multi-fluid situation, however, there are various possi
choices. The different particle species in cosmology w
each have distinct 4-velocities; we could choose any of th
as the fundamental frame, and other choices such as the
ter of mass frame are also possible. This allows a variet
covariant choices of 4-velocities, each leading to a sligh
different 113 covariant description. One can regard a cho
between these different possibilities as a partial gauge-fix
~but determined in a covariant and physical way!. Any dif-
ferences between such 4-velocities will beO(e) in the
almost-FLRW case and will disappear in the FLRW limi8

as is required in a consistent 113 covariant and gauge

8A similar situation occurs in relativistic thermodynamics, whe
suitable 4-velocities are close to the equilibrium 4-velocity, a
hence to each other@71#.
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invariant linearization about an FLRW model~see@4,35# for
further discussion!.

In addition to the issue of linearization, one can also a
more generally what the impact of a change of fundame
frame is on the kinematic, dynamic and gravito-electri
magnetic quantities. If an initial choiceua is replaced by a
new choiceũa, then

ũa5g~ua1va! where vaua50, g5~12vava!21/2,
~18!

whereva is the~covariant! velocity of the new frame relative
to the original frame. The exact transformations of all r
evant quantities are given in the Appendix, and are ta
from @52#. To linear order, the transformations take the fo

Q̃'Q1div v, Ãa'Aa1 v̇a1Hva ,

ṽa'va2
1

2
curlva , s̃ab'sab1D^avb& ,

r̃'r, p̃'p, q̃a'qa2~r1p!va ,

p̃ab'pab , Ẽab'Eab , H̃ab'Hab .

Suppose now that a choice of fundamental frame has b
made.~For the purposes of this paper, we will not need
specify such a choice.! Then we need to consider the veloc
ties of each species which source the gravitational field, r
tive to the fundamental frame. If the 4-velocities are clo
i.e. if the frames are in non-relativistic relative motion, th
O(v2) terms may be dropped from the equations, excep
we include nonlinear kinematic, dynamic and gravit
electric–magnetic effects, in which case, for consistency,
must retainO(e0v2) terms such asrv2, which are of the
same order of magnitude in general asO(e2) terms. ~See
@72#.! If the universe is close to FLRW, thenO(e0v2) terms
may be neglected, together withO(ev) andO(e2) terms.

In summary, there are two different linearizations:
~a! Linearizing in relative velocities~i.e. assuming all spe

cies have nonrelativistic bulk motion relative to the fund
mental frame!, without linearizing in the kinematic, dynami
and gravito-electric–magnetic quantities that covarian
characterize the spacetime.

~b! FLRW linearization, which implies the special case
~a! obtained by also linearizing in the kinematic, dynam
and gravito-electric–magnetic quantities.

Clearly ~a! is more general, and we can take it to be t
physically relevant nonlinear regime, i.e. the case where o
nonrelativistic average velocities9 are considered, but no
other assumptions are made about the physical or geom
quantities. In case~a!, no restrictions are imposed on non
velocity terms, and we neglect only termsO(ev2,v3). In
case~b!, we neglect termsO(e2,ev,v2). Covariant second-

9Of course, this implies no restrictions on the velocities of in
vidual particles within any species.
6-5
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order effects against a FLRW background are includ
within ~a!, when we neglect termsO(e3). ~Note that gauge
invariance is a far more subtle problem at second order t
at first order: see Bruniet al. @73#.!

The dynamic quantities in the evolution and constra
equations~6!–~17! are the total quantities, with contribution
from all dynamically significant particle species. Thus

Tab5(
I

TI
ab5ruaub1phab12q(aub)1pab, ~19!

TI
ab5r IuI

auI
a1pIhI

ab12qI
(auI

b)1p I
ab , ~20!

whereI labels the species. We include radiation photonsI
5R), baryonic matter (I 5B) modelled as a perfect fluid
cold dark matter (I 5C) modelled as dust over the era
interest for CMB anisotropies, neutrinos (I 5N) ~assumed to
be massless!, and a cosmological constant (I 5V).10 Note
that the dynamic quantitiesr I , . . . in Eq. ~20! are as mea-
sured in theI-frame, whose 4-velocity is given by

uI
a5g I~ua1v I

a!, v I
aua50. ~21!

Thus we have

pC505qC
a 5pC

ab , qB
a505pB

ab , ~22!

pR5 1
3 rR , pN5 1

3 rN , ~23!

where we have chosen the unique 4-velocity in the cold d
matter and baryonic cases which follows from modelli
these fluids as perfect. The cosmological constant is cha
terized by

pV52rV52L, qV
a505pV

ab , vV
a50.

The conservation equations for the species are best g
in the overallua-frame, in terms of the velocitiesv I

a of spe-
cies I relative to this frame. Furthermore, the evolution a
constraint equations of Sec. II are all given in terms of
ua-frame. Thus we need the expressions for the partial
namic quantities as measured in the overall frame. The
locity formula inverse to Eq.~21! is

ua5g I~uI
a1v I*

a!, v I*
a52g I~v I

a1v I
2ua!, ~24!

10A more general treatment, incorporating all the sources wh
are currently believed to be potentially significant, would also
clude a dynamic scalar field that survives after inflation~‘‘quintes-
sence’’! and hot dark matter in the form of massive neutrinos~see
@28# for a survey with further references!. Our main aim is not a
detailed and comprehensive model with numerical predictions,
a qualitative discussion focusing on the underlying dynamic
geometric effects at the nonlinear and linear levels that are bro
out clearly by a 113 covariant approach. In principle our approa
is readily generalized to include other sources of the gravitatio
field.
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where v I*
auIa50 and v I*

av Ia* 5v I
av Ia . Using this relation

together with the general transformation equations~A8!–
~A11!, or directly from the above equations, we find the fo
lowing exact~nonlinear! equations for the dynamic quant
ties of speciesI as measured in the overallua-frame:

r I* 5r I1$g I
2v I

2~r I1pI !12g IqI
av Ia1p I

abv Iav Ib%,
~25!

pI* 5pI1
1
3 $g I

2v I
2~r I1pI !12g IqI

av I a1p I
abv I av I b%,

~26!

qI*
a5qI

a1~r I1pI !v I
a1$~g I21!qI

a2g IqI
bv Ibua

1g I
2v I

2~r I1pI !v I
a1p I

abv I b2p I
bcv I bv I cua%, ~27!

p I*
ab5p I

ab1$22u(ap I
b)cv I c1p I

bcv I bv I cuaub%

1$2 1
3 p I

cdv I cv I dhab1g I
2~r I1pI !v I

^av I
b&

12g Iv I
^aqI

b&%. ~28!

These expressions are the nonlinear generalization of w
known linearized results~see e.g.@45,71#!. FLRW lineariza-
tion implies thatv I!1 for eachI, and we neglect all terms
which are O(v I

2) or O(ev I). This removes all terms in
braces, dramatically simplifying the expressions:

r I* 'r I , pI* 'pI , qI*
a'qI

a1~r I1pI !v I
a , p I*

ab'p I
ab .

To linear order, there is no difference in the dynamic qua
tities when measured in theI-frame or the fundamenta
frame, apart from a simple velocity correction to the ener
flux. But in the general nonlinear case, this is no longer tr

The total dynamic quantities are simply given by

r5(
I

r I* , p5(
I

pI* , qa5(
I

qI*
a , pab5(

I
p I*

ab .

Note that Eqs.~25!–~28! have been written to make clear th
linear parts, so that the irreducible nature is not explicit.
reducibility ~in the ua-frame! is revealed on using the rela
tions

qI
^a&[ha

bqI
b5qI

a2qI
bv I bua,

p I
^a&^b&[ha

ch
b

dp I
cd5p I

ab22u(ap I
b)cv I c

1p I
cdv I cv Iduaub.

The exact equations show in detail the specific couplin
and contributions of all partial dynamic quantities in the to
quantities. For example, it is clear that in spatially homog
neous but anisotropic models, the partial energy fluxesqI

a

contribute to the total energy density, pressure and an
tropic stress at first order in the velocitiesv I , while the par-
tial anisotropic stressesp I

ab contribute to the total energy
flux at first order inv I .

The total and partial 4-velocities define correspond
number 4-currents:
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Na5nua1 j a5(
I

NI
a , NI

a5nIuI
a1 j I

a , ~29!

wheren and nI are the number densities,j a and j I
a are the

number fluxes, andj aua505 j I auI
a . It follows that

n5(
I

nI* 5(
I

nI1(
I

$~g I21!nI1 j I
av I a%, ~30!

j a5(
I

j I*
a5(

I
~ j I

a1nIv I
a!1(

I
$~g I21!nIv I

a

2v I
bj I bua%, ~31!

where the quantities with an asterisk are as measured in
ua-frame. Linearization removes the terms in braces, reg
ing the expressions in@45,71#.

Four-velocities may be chosen in a number of covari
and physical ways. The main choices are@75,71# ~a! the en-
ergy ~Landau-Lifshitz! frame, defined by vanishing energ
flux, and~b! the particle~Eckart! frame, defined by vanishing
particle number flux. For a given single fluid, these fram
coincide in equilibrium, but in general they are different. F
each partialuI

a , any change in choiceuI
a→ũI

a leads to trans-
formations in the partial dynamic quantities, which are giv
by Eqs.~A8!–~A11! in the Appendix. For the fundamenta
ua, a change in choice leads in addition to transformation
the kinematic quantities, given by Eqs.~A4!–~A7!, and of
the gravito-electric or magnetic field, given by equatio
~A12!, ~A13!.

A convenient choice for each partial four-velocityuI
a is

the energy frame, i.e.qI
a50 for eachI ~this is the obvious

choice in the casesI 5C,B). As measured in the fundamen
tal frame, the partial energy fluxes do not vanish, i.e.qI*

a

Þ0, and the total energy flux is given by

qa5(
I

@~r I1pI !v I
a1p I

abv Ib1O~ev I
2 ,v I

3!#. ~32!

With this choice, using the above equations, we find
following expressions for the dynamic quantities of matter
measured in the fundamental frame. For cold dark matte

rC* 5gC
2 rC , pC* 5

1

3
gC

2 vC
2 rC , ~33!

qC*
a5gC

2 rCvC
a , pC*

ab5gC
2 rCvC

^avC
b& . ~34!

For baryonic matter,

rB* 5gB
2~11wBvB

2 !rB , pB* 5FwB1
1

3
gB

2vB
2~11wB!GrB ,

~35!

qB*
a5gB

2~11wB!rBvB
a , pB*

ab5gB
2~11wB!rBvB

^avB
b& ,

~36!
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wherewB[pB /rB . In the case of radiation and neutrino
we will evaluate the dynamic quantities relative to t
ua-frame directly via kinetic theory, in the next section.

The total energy-momentum tensor is conserved,
¹bTab50, which is equivalent to the evolution equations~6!
and ~8!. The partial energy-momentum tensors obey

¹bTI
ab5JI

a5UI* ua1MI*
a , ~37!

whereUI* is the rate of energy density transfer to speciesI as
measured in theua-frame, andMI*

a5MI*
^a& is the rate of

momentum density transfer to speciesI, as measured in the
ua-frame. Cold dark matter and neutrinos are decoupled d
ing the period of relevance for CMB anisotropies, while r
diation and baryons are coupled through Thomson scatter
Thus

JC
a 505JN

a , JR
a52JB

a5UTua1MT
a , ~38!

where the Thomson rates are

UT5nEsTS 4

3
rR* vB

22qR*
avBaD1O~evB

2 ,vB
3 !, ~39!

MT
a5nEsTS 4

3
rR* vB

a2qR*
a1pR*

abvBbD1O~evB
2 ,vB

3 !,

~40!

as given by Eq.~63!, derived in Sec. V. HerenE is the free
electron number density, andsT is the Thomson cross sec
tion. Note that to linear order, there is no energy transfer,
UT'0.

Using Eqs.~33!–~36! in Eq. ~37!, we find that, for cold
dark matter,

ṙC1QrC1rCdiv vC52~rCvC
2 !•2

4

3
vC

2 QrC2vC
a DarC

22rCAavC
a 1O~evC

2 ,vC
3 !, ~41!

v̇C
a 1

1

3
QvC

a 1Aa5AbvC
b ua2sa

bvC
b 1@v,vC#a

2vC
b DbvC

a 1O~evC
2 ,vC

3 !, ~42!

and for baryonic matter
6-7
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ṙB1Q~11wB!rB1~11wB!rBdiv vB52@~11wB!rBvB
2 #•2

4

3
vB

2Q~11wB!rB2vB
aDa@~11wB!rB#22~11wB!rBAavB

a

2nEsTS 4

3
rR* vB

22qR*
avBaD1O~evB

2 ,vB
3 !, ~43!

~11wB!v̇B
a1S 1

3
2cB

2 DQvB
a1~11wB!Aa1rB

21DapB1rB
21nEsT~rR* vB

a2qR*
a!

5~11wB!AbvB
bua2~11wB!sa

bvB
b1~11wB!@v,vB#a2~11wB!vB

bDbvB
a

1cB
2~11wB!~div vB!vB

a2rB
21nEsTpR*

abvBb1O~evB
2 ,vB

3 !, ~44!
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where cB
2[ ṗB / ṙB ~this equals the adiabatic sound spe

only to linear order!. These conservation equations gener
ize those given in@36# to the nonlinear case. FLRW linea
ization reduces the right hand sides of these equation
zero, dramatically simplifying the equations. The conser
tion equations for the massless species~radiation and neutri-
nos! are given below. Note from Eq.~42! that if the cold
dark matter frame is chosen as the fundamental frame,
the 4-acceleration vanishes; i.e.,vC

a 50 impliesAa50. This
is the choice of fundamental frame advocated in@36#.

IV. COVARIANT LAGRANGIAN KINETIC THEORY

Relativistic kinetic theory~see e.g.@74–78#! provides a
self-consistent microscopically based treatment where th
is a natural unifying framework in which to deal with a g
of particles in circumstances ranging from hydrodynamic
free-streaming behavior. The photon gas undergoes a tra
tion from hydrodynamic tight coupling with matter, throug
the process of decoupling from matter, to non-hydrodyna
free streaming. This transition is characterized by the evo
tion of the photon mean free path from effectively zero
effectively infinity. The range of behavior can appropriate
be described by kinetic theory with Thomson scatter
@79,80#, and the baryonic matter with which radiation inte
acts can reasonably be described hydrodynamically du
these times.~The basic physics of radiation and matter a
density perturbations in cosmology was developed in
works of Sachs and Wolfe@11#, Silk @81#, Peebles and Yu
@13#, Weinberg@82#, and others.!

In the covariant Lagrangian approach of@5# ~see also
@7,8#!, the photon 4-momentumpa ~wherepapa50) is split
as

pa5E~ua1ea!, eaea51, eaua50, ~45!

whereE52uapa is the energy andea5p^a&/E is the direc-
tion, as measured by a comoving~fundamental! observer.
Then the photon distribution function is decomposed i
covariant harmonics via the expansion@5,9#
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f ~x,p!5 f ~x,E,e!5F1Faea1Fabe
aeb1•••

5(
l>0

FAl

~x,E!e^Al &, ~46!

whereeAl[ea1ea2
•••eal, ande^Al & provides a representatio

of the rotation group@37#. The covariant multipoles are irre
ducible since they are PSTF, i.e.

Fa•••b5F ^a•••b&⇔Fa•••b5F ~a•••b! , Fa•••bub50

5Fa•••bch
bc.

They encode the anisotropy structure of the distribution
the same way as the usual spherical harmonic expansio

f 5(
l>0

(
m52 l

1 l

f l
m~x,E!Yl

m~eW !,

but here~a! the FAl
are covariant, and thus independent

any choice of coordinates in momentum space, unlike
f l

m , and~b! FAl
is a rank-l tensor field on spacetime for eac

fixed E, and directly determines thel-multipole of radiation
anisotropy after integration overE. The multipoles can be
recovered from the distribution function via@5,37#

FAl
5D l

21E f ~x,E,e!e^Al &
dV, with D l54p

~ l ! !22l

~2l 11!!
,

~47!

where dV5d2e is a solid angle in momentum space. A fu
ther useful identity is@5#

E eAldV5
4p

l 11 H 0 l odd,

h(a1a2ha3a4
•••hal 21al ) l even.

~48!

The first 3 multipoles arise from the radiation energ
momentum tensor, which is
6-8
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TR
ab~x!5E papbf ~x,p!d3p

5rR* uaub1
1

3
rR* hab12qR*

(aub)1pR*
ab ,

where d3p5EdEdV is the covariant volume element on th
future null cone at eventx. It follows that the dynamic quan
tities of the radiation~in the ua-frame! are

rR* 54pE
0

`

E3FdE, qR*
a5

4p

3 E
0

`

E3FadE,

pR*
ab5

8p

15E0

`

E3FabdE. ~49!

From now on, wedrop the asterisks from the radiation dy
namic quantities relative to the fundamental frame, since
do not need to relate them to their values in the radiat
frame.

We extend these dynamic quantities to all multipole
ders by defining11 @5#

Pa1•••al
5E E3Fa1•••al

dE, ~50!

so thatP5rR/4p,Pa53qR
a /4p andPab515pR

ab/8p.
The Boltzmann equation is

df

dv
[pa

] f

]xa 2Ga
bcpbpc

] f

]pa 5C@ f #, ~51!

wherepa5dxa/dv andC@ f # is the collision term, which de-
termines the rate of change off due to emission, absorptio
and scattering processes. This term is also decomposed
covariant harmonics:

C@ f #5(
l>0

bAl
~x,E!eAl5b1baea1babe

aeb1•••,

~52!

where the multipolesbAl
5b^Al &

encode covariant irreducibl
properties of the particle interactions. Then the Boltzma
equation is equivalent to an infinite hierarchy of covaria
multipole equations

LAl
~x,E!5bAl

@FAm
#~x,E!,

whereLAl
are the multipoles of df /dv, and will be given in

the next section. These multipole equations are tensor
equations on spacetime for each value of the photon en
E ~but note that energy changes along each photon pa!.
Given the solutionsFAl

(x,E) of the equations, the relatio

11Because photons are massless, we do not need the complex
the moment definitions used in@5#. In @36#, JAl

( l ) is used, where

JAl

( l )5D lPAl
. From now on, all energy integrals will be understo

to be over the range 0<E<`.
08350
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~46! then determines the full photon distributionf (x,E,e) as
a scalar field over phase space.

Over the period of importance for CMB anisotropies, i
considerably after electron-positron annihilation, the aver
photon energy is much less than the electron rest mass
the electron thermal energy may be neglected, so that
Compton interaction between photons and electrons~the
dominant interaction between radiation and matter! may rea-
sonably be described in the Thomson limit.~See @72# for
refinements.! We will also neglect the effects of polarizatio
~see e.g.@24#!. For Thomson scattering

C@ f #5sTnEEB@ f̄ ~x,p!2 f ~x,p!#, ~53!

whereEB52pauB
a is the photon energy relative to the bar

onic ~i.e. baryon-electron! frameuB
a , and f̄ (x,p) determines

the number of photons scattered into the phase space vo
element at (x,p). The differential Thomson cross section
proportional to 11cos2a, wherea is the angle between ini
tial and final photon directions in the baryonic frame. Th
cosa5eB

aeBa8 whereeBa8 is the initial andeB
a is the final direc-

tion, so that

p8a5EB~uB
a1eB8

a!, pa5EB~uB
a1eB

a !,

where we have usedEB85EB , which follows since the scat
tering is elastic. HereuB

a is given by Eq.~21!, wherevB
a is

the velocity of the baryonic frame relative to the fundamen
frameua, with vB

aua50. Then f̄ is given by@36,72#

f̄ ~x,p!5
3

16pE f ~x,p8!@11~eB
aeBa8 !2#dVB8 . ~54!

The exact forms of the photon energy and direction in
baryonic frame follow on using Eqs.~21! and ~A2!:

EB5EgB~12vB
aea!, ~55!

eB
a5

1

gB~12vB
c ec!

@ea1gB
2~vB

beb2vB
2 !ua

1gB
2~vB

beb21!vB
a #. ~56!

Anisotropic scattering will source polarization, and sm
errors are introduced by assuming that the radiation rem
unpolarized@83#. A fully consistent and general treatme
requires the incorporation of polarization. However, for si
plicity, and in line with many previous treatments, we w
neglect polarization effects.

V. NONLINEAR MULTIPOLE HIERARCHY

The full Boltzmann equation in photon phase space c
tains more information than necessary to analyze radia
anisotropies in an inhomogeneous universe. For that purp
when the radiation is close to blackbody we do not requ
the full spectral behavior of the distribution multipoles, b
only the energy-integrated multipoles. The monopole le
to the average temperature, while the higher order multipo

of
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determine the temperature fluctuations. The 113 covariant
and gauge-invariant definition of the average temperaturT
is given by@10#

rR~x!54pE E3F~x,E!dE5rT~x!4, ~57!

where r is the radiation constant. Iff is close to a Planck
distribution, thenT is the thermal blackbody average tem
perature. But note that no notion ofbackgroundtemperature
is involved in this definition. There is an all-sky avera
implied in Eq.~57!. Fluctuations across the sky are measu
by integrating the higher multipoles~a precise definition is
given below!; i.e., the fluctuations are determined by t
Pa1•••al

( l>1) defined in Eq.~50!.

The form ofC@ f # shows that covariant equations for th
temperature fluctuations arise from decomposing the ene
integrated Boltzmann equation

E E2
df

dv
dE5E E2C@ f #dE ~58!

into 113 covariant multipoles. We begin with the right han
side, which requires the covariant form of the Thomson sc
tering term~54!. Since the baryonic frame will move non
relativistically relative to the fundamental frame in all cas
of physical interest, it is sufficient to linearize only invB ,
and not in the other quantities. Thus we drop terms
O(evB

2 ,vB
3) but do not neglect terms that areO(e0vB

2 ,evB)
or O(e2) relative to the FLRW limiting background. In othe
words, we make no restrictions on the geometric and ph
cal quantities that covariantly characterize the spaceti
apart from assuming a nonrelativistic relative average ve
ity for matter. The resulting expression will in particular b
applicable for covariant second-order effects in FLRW ba
grounds~recognizing that polarization effects should be
cluded for a complete treatment! or for first-order effects in
Bianchi backgrounds.

For brevity, we will use the notation

O@3#[O~evB
2 ,vB

3 !,

noting that this doesnot imply any second-order restrictio
on the dynamic, kinematic and gravito-electric–magne
quantities. It follows from Eqs.~48! and ~54! that

4pE f̄ EB
3dEB5~rR!B1

3

4
~pR

ab!BeBaeBb , ~59!

where the dynamic radiation quantities are evaluated in
baryonic frame. This approach relies on the frame transf
mations given in the Appendix, and allows us to evaluate
Thomson scattering integral more directly and clearly th
other approaches. In the process, we are also generalizin
08350
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include nonlinear effects. We use Eqs.~A8! and ~A11! to
transform back to the fundamental frame:12

~rR!B5rRF11
4

3
vB

2 G22qR
avBa1O@3#,

~pR
ab!B5pR

ab12vBcpR
c(aub)22qR

^avB
b&1 4

3 rRvB
^avB

b&

1O@3#.

Now

E E2C@ f #dE5nEsT@113vB
c ec1~vB

c ec!
2

2 3
2 vB

2 #E EB
3 f̄ dEB2nEsT@12vB

c ec

1 1
2 vB

2 #E f E3dE1O@3#. ~60!

In addition, we need the following identity, valid for an
projected vectorva:

vaeaf 5 1
3 Fava1@Fva1 2

5 Fabv
b#ea1F F ^avb&

1 3
7 Fabcv

cGe^aeb&1•••

5(
l>0

FF ^Al 21
val &

1S l 11

2l 13DFAla
vaGe^Al &. ~61!

~Here and subsequently, we use the convention thatFAl
50

for l ,0.) This identity may be proved using Eq.~48! and the
identity ~see@5#, p. 470!

V^bSAl &
5V(bSAl )

2S l

2l 11DVcSc(Al 21
halb) where

SAl
5S^Al &

. ~62!

Using the above equations, we find that13

4pE E2C@ f #dE5nEsT@ 4
3 rRvB

22qR
avBa#

2nEsT@3qR
a24rRvB

a23pR
abvBb#ea

2nEsTF27

4
pR

ab2
3

2
qR

^avB
b&2

12

7
pPabcvBc

23rRvB
^avB

b&Ge^aeb&2nEsTF4pPabc

12As noted in Sec. III, we retain theO(vB
2) term in (rR)B sincerR

is zero order.
13Challinor has independently derived the same result@38#.
6-10
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2
45

4
pR

^abvB
c&

2
16

9
pPabcdvBdGe^aebec&1•••

1O@3#. ~63!

Now it is clear from Eqs.~59! and ~60! that the first four
multipoles are affected by Thomson scattering differen
than the higher multipoles. This is confirmed by the form
Eq. ~63!. Defining the energy-integrated scattering mu
poles

KAl
5E E2bAl

dE,

we find from Eq.~63! that

K5nEsTF4

3
PvB

22
1

3
PavBaG1O@3#, ~64!

Ka52nEsTFPa24PvB
a2

2

5
PabvBbG1O@3#,

~65!

Kab52nEsTF 9

10
Pab2

1

2
P^avB

b&2
3

7
PabcvBc

23PvB
^avB

b&G1O@3#, ~66!

Kabc52nEsTFPabc2
3

2
P^abvB

c&2
4

9
PabcdvBdG

1O@3#, ~67!

and, for l .3,

KAl52nEsTFPAl2P^Al 21vB
al &2S l 11

2l 13DPAlavBaG1O@3#.

~68!

Equations~64!–~68! are a nonlinear generalization of th
results given by Challinor and Lasenby@36#. They show the
newcoupling of baryonic bulk velocity to the radiation mu
tipoles, arising from local nonlinear effects in Thomson sc
tering. If we linearize fully, i.e. neglect all terms containin
vB except therRvB

a term in the dipoleKa, which is first
order, then our equations reduce to those in@36#. The gener-
alized nonlinear equations apply to the analysis of seco
order effects on a FLRW background, to first-order effe
on a spatially homogeneous but anisotropic background,
more generally, to any situation where the baryonic fram
non-relativistic relative to the fundamentalua-frame.

Next we require the multipoles of df /dv. These can be
read directly from the general expressions first derived in@5#,
which are exact, 113 covariant and also include the case
massive particles. For clarity and completeness, we out
08350
y
f

-

d-
s
nd
is

f
e

an alternative, 113 covariant derivation~the derivation in@5#
uses tetrads!. We require the identity@7,8#

dE

dv
52E2F1

3
Q1Aaea1sabe

aebG , ~69!

which follows directly from E52paua ,pb¹bpa50 and
¹bua52Aaub1Dbua . Then

d

dv
@Fa1•••al

~x,E!ea1
•••eal#

5
d

dv
@E2 lFa1•••al

~x,E!pa1
•••pal#

5EH F1

3
Q1Abeb1sbce

becG~ lF a1•••al
2EFa1•••al

8 !

3ea1
•••eal1~ua11ea1!•••~ual1eal !

3@ Ḟa1•••al
1eb¹bFa1•••al

#J ,

where a prime denotes]/]E. The first term is readily put
into irreducible PSTF form using the identity~62! with Va
5Aa , and its extension to the case whenVa is replaced by a
rank-2 PSTF tensorWab ~see@5#, p. 470!, with Wab5sab .
In the second term, when the round brackets are expan
only those terms with at most oneuar survive, and

uaḞa•••52AaFa••• ,

ub¹aFb•••52S 1

3
Qhab1sab2«abcvcDFb••• .

Thus the covariant multipolesbAl
of df /dv are

E21bAl
5Ḟ ^Al &

2
1

3
QEFAl

8 1D^al
FAl 21&1

~ l 11!

~2l 13!
DaFaAl

2
~ l 11!

~2l 13!
E2~ l 11!@El 12FaAl

#8Aa

2El@E12 lF ^Al 21
#8Aal &

2 lvb«bc(al
FAl 21)

c

2
~ l 11!~ l 12!

~2l 13!~2l 15!
E2~ l 12!@El 13FabAl

#8sab

2
2l

~2l 13!
E21/2@E3/2Fb^Al 21

#8sal &
b

2El 21@E22 lF ^Al 22
#8sal 21al &

. ~70!

This regains the result of@5# @Eq. ~4.12!# in the massless
case, with minor corrections. The form given here bene
from the streamlined version of the 113 covariant formal-
ism. We reiterate that this result is exact and holds for a
photon or~massless! neutrino distribution in any spacetime
We now multiply Eq.~70! by E3 and integrate over all en
ergies, using integration by parts and the fact thatEnFa•••
→0 asE→` for any positiven. We obtain the multipole
equations that determine the brightness multipolesPAl

:

6-11
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KAl
5Ṗ^Al &

1
4

3
QPAl

1D^al
PAl 21&1

~ l 11!

~2l 13!
DbPbAl

2
~ l 11!~ l 22!

~2l 13!
AbPbAl

1~ l 13!A^al
PAl 21&

2 lvb«bc(al
PAl 21)

c2
~ l 21!~ l 11!~ l 12!

~2l 13!~2l 15!
sbcPbcAl

1
5l

~2l 13!
sb

^al
PAl 21&b

2~ l 12!s^alal 21
PAl 22& .

~71!

Once again, this is an exact result, and it holds also
any collision term, i.e. anyKAl

. For decoupled neutrinos, w

haveKN
Al50 in this equation. For photons undergoing T

omson scattering, the left hand side of Eq.~71! is given by
Eq. ~68!, which is exact in the kinematic and dynamic qua
tities, but first order in the relative baryonic velocity. Eq
~68! and~71! thus constitute a nonlinear generalization of t
FLRW-linearized case given by Challinor and Lasenby@36#.

These equations describe evolution along the time
world lines of fundamental observers, not along the lightl
geodesics of photon motion. The timelike integration is
lated to light cone integrations by making homogeneity
sumptions about the distribution of matter in~spacelike! sur-
faces of constant time, as is discussed in@84#.

The monopole and dipole of Eq.~71! give the evolution
equations of energy and momentum density:

K5Ṗ1
4

3
QP1

1

3
DaPa1

2

3
AaPa1

2

15
sabPab , ~72!

Ka5Ṗ^a&1
4

3
QPa1DaP1

2

5
DbPab1

2

5
AbPab

14PAa2@v,P#a1sabPb . ~73!

In the case of neutrinos,KN505KN
a , these express the con

servation of energy and momentum:14

ṙN1
4

3
QrN1DaqN

a 522AaqN
a 2sabpN

ab, ~74!

q̇N
^a&1

4

3
QqN

a 1
4

3
rNAa1

1

3
DarN1DbpN

ab

52@v,qN#a2sa
bqN

b 2AbpN
ab . ~75!

FLRW linearization reduces the right hand sides to zero.
photons,K and Ka are given by Eqs.~64! and ~65!, and
determine the Thomson rates of transfer in Eqs.~39! and
~40!:

14As in the photon case, we omit the asterisks on the neut
dynamic quantities, since we do not require their values in the n
trino frame.
08350
r

-
.

e

-
-

r

UT54pK, MT
a5

4p

3
Ka. ~76!

Finally, we return to the definition of temperature anisotr
pies. As noted above, these are determined by thePAl

. Gen-
eralizing the linearized 113 covariant approach in@10#, we
define the temperature fluctuationt(x,e) via the directional
bolometric brightness:

T~x!@11t~x,e!#5F4p

r E E3f ~x,E,e!dEG1/4

. ~77!

This is a 113 covariant and gauge-invariant definition whic
is also exact. We can rewrite it explicitly in terms of thePAl

:

t~x,e!5F11S 4p

rR
D(

l>1
PAl

eAlG1/4

21

5taea1tabe
aeb1•••. ~78!

In principle, we can extract the irreducible PSTF temperat
fluctuation multipoles by using the inversion in Eq.~47!:

tAl
~x!5D l

21E t~x,e!e^Al &
dV. ~79!

In the almost-FLRW case, whent is O(e), we regain from
Eq. ~78! the linearized definition given in@10#:

tAl
'S p

rR
DPAl

, ~80!

wherel>1. In particular, the dipole and quadrupole are

ta'
3qR

a

4rR
and tab'

15pR
ab

2rR
. ~81!

VI. QUALITATIVE IMPLICATIONS OF THE NONLINEAR
DYNAMICAL EFFECTS

In Sec. II, we gave the nonlinear evolution and constra
equations governing the kinematic, total dynamic a
gravito-electric–magnetic quantities—see Eqs.~6!–~17!. In
these equations, the total dynamic quantities are, using
results of Sec. III:

r5rR1rN1~11vC
2 !rC1@11~11wB!vB

2 #rB1L

1O@3#, ~82!

p5
1

3
rR1

1

3
rN1

1

3
vC

2 rC1FwB1
1

3
~11wB!vB

2 GrB

2L1O@3#, ~83!

qa5qR
a1qN

a 1rC
a vC

a 1~11wB!rBvB
a1O@3#,

~84!

pab5pR
ab1pN

ab1rCvC
^avC

b&1~11wB!rBvB
^avB

b&1O@3#.
~85!

o
u-
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The conservation equations for matter were given in Sec. III—see Eqs.~41!–~44!. For neutrinos, the equations were given
Sec. V—see Eqs.~74! and ~75!. For photons, the equations follow from the results of Sec. V as

ṙR1
4

3
QrR1DaqR

a12AaqR
a1sabpR

ab5nEsTS 4

3
rRvB

22qR
avBaD1O@3#, ~86!

q̇R
^a&1

4

3
QqR

a1
4

3
rRAa1

1

3
DarR1DbpR

ab1sa
bqR

b2@v,qR#a1AbpR
ab5nEsTS 4

3
rRvB

a2qR
a1pR

abvBbD1O@3#. ~87!

The nonlinear dynamical equations are completed by the integrated Boltzmann multipole equations given in Sec. V—
~71!. For neutrinos (l>2):

05ṖN
^Al &1

4

3
QPN

Al1D^alPN
Al 21&

1
~ l 11!

~2l 13!
DbPN

bAl2
~ l 11!~ l 22!

~2l 13!
AbPN

bAl1~ l 13!A^alPN
Al 21&

2 lvb«bc(alPN
Al 21)c

2
~ l 21!~ l 11!~ l 12!

~2l 13!~2l 15!
sbcPN

bcAl1
5l

~2l 13!
sb

^alPN
Al 21&b2~ l 12!s^alal 21PN

Al 22& . ~88!

For photons, the quadrupole evolution equation is

ṗR
^ab&1

4

3
QpR

ab1
8

15
rRsab1

2

5
D^aqR

b&1
8p

35
DcP

abc12A^aqR
b&22vc«cd

(apR
b)d1

2

7
sc

^apR
b&c2

32p

315
scdP

abcd

52nEsTF 9

10
pR

ab2
1

5
qR

^avB
b&2

8p

35
PabcvBc2

2

5
rRvB

^avB
b&G1O@3#. ~89!

In the free-streaming casenE50, Eq.~89! reduces to the result first given in@30#. This quadrupole evolution equation is centr
to the proof that almost-isotropy of the CMB after last scattering implies almost-homogeneity of the universe@30#.

The higher multipoles (l .3) evolve according to

Ṗ^Al &1
4

3
QPAl1D^alPAl 21&1

~ l 11!

~2l 13!
DbPbAl2

~ l 11!~ l 22!

~2l 13!
AbPbAl1~ l 13!A^alPAl 21&2 lvb«bc

(alPAl 21)c

2
~ l 21!~ l 11!~ l 12!

~2l 13!~2l 15!
sbcP

bcAl1
5l

~2l 13!
sb

^alPAl 21&b2~ l 12!s^alal 21PAl 22&

52nEsTFPAl2P^Al 21vB
al &2S l 11

2l 13DPAlavBaG1O@3#. ~90!
t o
-
-

a
B

ie
te
rin

s

e

own

ion

n
rm

it

nby
s

,

For l 53, the second term in square brackets on the righ
Eq. ~90! must be multiplied by3

2 . The temperature fluctua
tion multipolestAl

are determined in principle from the ra

diation dynamic multipolesPAl
via Eqs.~78! and ~79!.

These equations show in a transparent and explicitly 113
covariant and gauge-invariant form precisely which physic
effects are directly responsible for the evolution of CM
anisotropies in an inhomogeneous universe.They show how
the matter content of the universe generates anisotrop
This happens directly through direct interaction of mat
with the radiation, as encoded in the Thomson scatte
terms on the right of Eqs.~86!, ~87!, ~89! and ~90!. And it
happens indirectly, as matter generates inhomogeneitie
the gravitational field via the field equations~6!–~17! and the
evolution equation~44! for the baryonic velocityvB

a . This in
turn feeds back into the multipole equations via the kin
matic quantities, the baryonic velocityvB

a , and the spatial
08350
f

l

s.
r
g

in

-

gradient DarR in the dipole equation~87!. The coupling of
the multipole equations themselves provides an up and d
cascade of effects, shown in general by Eq.~90!. Power is
transmitted to thel-multipole by lower multipoles through
the dominant~linear! distortion term D̂alPAl 21&, as well as
through nonlinear terms coupled to the 4-accelerat
(A^alPAl 21&), baryonic velocity (vB

^alPAl 21&), and shear
(s^alal 21PAl 22&). Simultaneously, power cascades dow
from higher multipoles through the linear divergence te
(div P)Al, and the nonlinear terms coupled toAa,vB

a and
sab. ~Note that the vorticity coupling does not transm
across multipole levels.!

The equations for the radiation~and neutrino! multipoles
generalize the equations given by Challinor and Lase
@36#, to which they reduce when we remove all term
O(evB) and O(e2). In this case, i.e. FLRW linearization
there is major simplification of the equations:
6-13
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ṙR1
4

3
QrR1div qR'0, ~91!

q̇R
a14HqR

a1
4

3
rRAa1

1

3
DarR1~div pR!a

'nEsTS 4

3
rRvB

a2qR
a D , ~92!

ṗR
ab14HpR

ab1
8

15
rRsab1

2

5
D^aqR

b&1
8p

35
~div P!ab

'2
9

10
nEsTpR

ab , ~93!

and for l>3

ṖAl14HPAl1D^alPAl 21&1
~ l 11!

~2l 13!
~div P!Al

'2nEsTPAl. ~94!

These linearized equations, together with the lineari
equations governing the kinematic and free gravitatio
quantities, given by Eqs.~6!–~17! with zero right hand sides
may be covariantly split into scalar, vector and tensor mod
as described in@43,35,36#. The modes can then be expand
in covariant eigentensors of the comoving Laplacian, and
Fourier coefficients obey ordinary differential equations,
cilitating numerical integration. Such integrations are p
formed for scalar modes by Challinor and Lasenby@36#, with
further analytical results given in@35,36,66,38#.

However, in the nonlinear case, it is no longer possible
split into scalar, vector and tensor modes@63,64,73#. A
simple illustration of this arises in dust spacetimes, wh
may be considered as a simplified model after last scatte
if we neglect the dynamical effects of baryons, radiation a
neutrinos. If one attempts to carry over the linearized sca
mode conditions@43,36#

va505Hab

into the nonlinear regime, it turns out that a non-terminat
chain of integrability conditions must be satisfied, so that
models are in general inconsistent unless they have
symmetry@85,86#. Thus, even in this simple case, it is n
possible to isolate scalar modes. In particular, gravitatio
radiation, with curlHabÞ0 ~see@55–57#!, must in general be
present.

The generalized equations given above can form the b
for investigating the implications of nonlinear dynamical e
fects in general and second-order effects against an FL
background in particular. More quantitative and detailed
vestigations along these lines are taken up in further pap
Here we will confine ourselves to a qualitative analysis.
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A. Nonlinear effects on kinematic, gravitational and dynamic
quantities

Evolution of the expansion of the universeQ, given by
Eq. ~7!, is retarded by the nonlinear shear term2sabs

ab,
and accelerated by the nonlinear vector terms1AaAa and
12vava ~see also@2#!. The vorticity evolution equation~9!
has a nonlinear couplingsabv

b of vorticity to shear, whose
effect will depend on the alignment of vorticity relative t
the shear eigendirections. The shear evolution equation~10!
has tensor-tensor and vector-vector type couplings, wh
are the tensor counterpart of similar terms in the expans
evolution. But in addition, relative velocity effects enter v
the total anisotropic stress term. From Eq.~85!, we see that
baryonic and cold dark matter contributions of the for
rv ^avb& to the shear evolution arise at the nonlinear lev
The constraint equations~13! and~14! show that acceleration
and vorticity provide scalar (Aava) and vector (@v,A#a)
nonlinear source terms for respectively the vorticity a
shear.

The free gravitational fields, which 113 covariantly de-
scribe tidal forces and gravitational radiation~see@2,3,55–
57#!, and therefore in particular control the tensor contrib
tion to CMB anisotropies, are governed by the Maxwell-li
equations~11!, ~12!, ~16! and~17!. This is the foundation for
the electromagnetic analogy. The role of nonlinear coupl
terms in these equations is more complicated—see@58# for a
full discussion. Here we note that nonlinear couplings of
shear and vorticity to the energy flux and gravito-magne
field act as source terms for the gravito-electric field—s
Eq. ~16!—while nonlinear couplings of the shear and vorti
ity to the anisotropic stress and gravito-electric field act
source terms for the gravito-magnetic field—see Eq.~17!.

From Eqs.~41!–~44!, we see that for baryonic and col
dark matter, nonlinear relative velocity terms act as a sou
for the linear parts of the evolution equations for ener
density and relative velocity. While the 4-accelerationAa is
involved in correction terms in all these equations, the v
ticity va and shearsab only enter nonlinear corrections o
the velocity equations, and not the energy density equati
This reflects the fact that vorticity and shear are volum
preserving. The kinematic corrections to the evolution
matter relative velocity are of the formAava,@v,v#a and
sabv

b. For the massless species, as shown by Eqs.~74!, ~75!
and ~86!, ~87!, the same form of corrections arises in th
energy flux evolution, since energy flux is of the form43 rva

when the photon and neutrino frames are chosen as the
ergy frame. Vorticity also does not affect energy density,
shear does, owing to the intrinsic anisotropic stress of p
tons and neutrinos, which couples with the shear.

Baryonic and radiation conservation equations are b
affected by nonlinear Thomson correction terms, which
volve a coupling of the baryonic relative velocityvB

a to the
radiation energy density, momentum density and anisotro
stress. In particular, we note that there is anonzero energy
density transferdue to Thomson scattering at second ord

B. Nonlinear effects on radiation multipoles

Nonlinear Thomson scattering corrections also affect
evolution of the radiation quadrupolepR

ab , as shown by Eq.
6-14
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~89!. In this case, the baryonic relative velocity couples
the radiation dipoleqR

a and octopolePabc. Note also the1
10

correction to the linear Thomson termnEsTpR
ab , in agree-

ment with@19,36#. This correction arises from incorporatin
anisotropic effects in the scattering integral~while neglecting
polarization effects, as noted earlier!.

The general evolution equation~90! for the radiation dy-
namic multipolesPAl shows thatfive successive multipoles
i.e. for l 22, . . . ,l 12, are linked together in the nonlinea
case. Furthermore, the 4-accelerationAa couples to thel
61 multipoles, the vorticityva couples to thel multipole,
and the shearsab couples to thel 62 andl multipoles. All of
these couplings are nonlinear, except forl 51 in the case of
Aa and l 52 in the case ofsab . These latter couplings tha
survive linearization are shown in the dipole equation~87!
~i.e. rRAa) and the quadrupole equation~89! ~i.e. rRsab).
The latter term drives Silk damping during the decoupli
process@50#. Nonlinear corrections introduce additional a
celeration and shear terms.Vorticity corrections are purely
nonlinear,i.e. vorticity has no direct effect at the linear leve
and a linear approach could produce the false impression
vorticity has no direct effect at all on the evolution of CM
anisotropies. However, for very highl, i.e. on very small
angular scales, the nonlinear vorticity term could in princip
be non-negligible.

The disappearance of most of the kinematic terms u
linearization is further reflected in the fact that the lineariz
equations link onlythree successive moments, i.e.l, l 61.
This is clearly seen in Eq.~94!.

In addition toAa and va , there is a further vector cou
pling at the nonlinear level, i.e. the coupling of the baryon
velocity vB

a to thel 61 multipoles in the Thomson scatterin
source term of the evolution equation~90!. In fact these non-
linear velocity corrections are of precisely the same tenso
form as the acceleration corrections on the left hand s
only with different weighting factors. Linearization, by re
moving these terms, also has the effect of removing the n
linear contribution of the radiation multipolesPAl 61 to the
collision multipoleKAl.

One notable feature of the nonlinear terms is that som
them scale likel for large l, as already noted in the case
vorticity. There are no purely linear terms with this proper
which has an important consequence, i.e. thatfor very high l
multipoles (corresponding to very small angular scales
CMB observations), certain nonlinear terms can reach
same order of magnitude as the linear contributions.~Note
08350
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that the same effect applies to the neutrino background.! The
relevant nonlinear terms in Eq.~90! are ~for l @1)

2 l S 1

4
sbcP

bcAl1s^alal 21PAl 22&2A^alPAl 21&1
1

2
AbPbAl

1vb«bc
^alPAl 21&cD .

The observable imprint of this effect will be made after la
scattering. In the free-streaming era, it is reasonable to
glect the vorticity relative to the shear. We can remove
acceleration term by choosingua as the dynamically domi-
nant cold dark matter frame~i.e. choosingvC

a 50), as in@36#.
It follows from Eqs.~80! and~90! that the nonlinear correc
tion to the rate of change of the linearized temperature fl
tuation multipoles is

d~ ṫAl !; l S 1

4
sbct

bcAl1s^alal 21tAl 22&D for l @1.

~95!

The linear solutions fortAl
andsab can be used on the righ

hand side to estimate the correction to second order. Its
fect on observed anisotropies will be estimated by integ
ing d( ṫAl) from last scattering to now.~See @37# for the
relation between thetAl

and the angular correlations.! In the
case of scalar perturbations, these solutions are given
Challinor and Lasenby@36# ~see also@66#!.

Finally, we note that the well-known Vishniac and Ree
Sciama second-order effects also become significant at
l, and can eventually dominate the linear contributions
CMB anisotropies on small enough angular scales~typically
l .103 or more! @19#.

C. Temperature fluctuation multipoles

We can normalize the radiation dynamic multipolesPAl

to define the dimensionless multipoles (l>1)

T Al5S p

rT4DPAl'tAl.

Thus theT Al are equal to the temperature fluctuation mu
poles plus nonlinear corrections. In terms of these quantit
the hierarchy of radiation multipoles becomes
Ṫ

T
52

1

3
Q2

1

3
DaT a2

4

3
T a

DaT

T
2

2

3
AaT a2

2

15
sabT ab1

1

3
nEsTvBa~vB

a2T a!1O@3#, ~96!

Ṫa524S Ṫ

T
1

1

3
Q D T a2

DaT

T
2Aa2

2

5
DbT ab1nEsT~vB

a2T a!1
2

5
nEsTT abvBb2sa

bT b2
2

5
AbT ab

1@v,T#a2
8

5
T ab

DbT

T
1O@3#, ~97!
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Ṫab524S Ṫ

T
1

1

3
Q D T ab2sab2D ^aT b&2

3

7
DcT abc2

9

10
nEsTT ab1nEsTS 1

2
T ^avB

b&1
3

7
T abcvBc

1
3

4
vB

^avB
b&D25A^aT b&2

4

21
scdT abcd12vc«cd

^aT b&d2
10

7
sc

^aT b&c2
12

7
T abc

DcT

T
1O@3#, ~98!

and, for l .3,

Ṫ Al524S Ṫ

T
1

1

3
Q D T Al2D ^alT Al 21&2

~ l 11!

~2l 13!
DbT bAl2nEsTT Al1nEsTFT ^Al 21vB

al &1S l 11

2l 13DT AlbvBbG
1

~ l 11!~ l 22!

~2l 13!
AbT bAl2~ l 13!A^alT Al 21&1 lvb«bc

(alT Al 21)c1~ l 12!s^alal 21T Al 22&1
~ l 21!~ l 11!~ l 12!

~2l 13!~2l 15!
sbcT bcAl

2
5l

~2l 13!
sb

^alT Al 21&b24
~ l 11!

~2l 13!
T Alb

DbT

T
1O@3#. ~99!
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For l 53, the Thomson termT ^Al 21vB
al & must be multiplied by

3
2 .

The nonlinear multipole equations given in this for
show more clearly the evolution of temperature anisotrop
~including the monopole, i.e. the average temperatureT).
Althought the T Al only determine the actual temperatu
fluctuationstAl to linear order, they are a useful dimensio
less measure of anisotropy. Furthermore, Eqs.~96!–~99! ap-
ply as the evolution equations for temperature fluctuat
multipoles when the radiation anisotropy is small~i.e. T Al

5tAl), but the spacetime inhomogeneity and anisotropy
not restricted. This includes the particular case of sm
CMB anisotropies in general Bianchi universes or in p
turbed Bianchi universes.

FLRW linearization, i.e. the case when only first ord
effects relative to the FLRW limit are considered, reduc
the above equations to

Ṫ

T
'2

1

3
Q2

1

3
Data, ~100!

ṫa'2
DaT

T
2Aa2

2

5
Dbtab

1nEsT~vB
a2ta!, ~101!

ṫab'2sab2D ^atb&2
3

7
Dct

abc

2
9

10
nEsTtab, ~102!

and, for l>3

ṫAl'2D ^altAl 21&2
~ l 11!

~2l 13!
DbtbAl2nEsTtAl. ~103!

These are the 113 covariant and gauge-invariant multipo
generalizations of the Fourier mode formulation of the in
08350
s

n

re
ll
-

r
s

-

grated Boltzmann equations used in the standard litera
~see e.g.@19# and the references therein!. Equations~100!–
~102! were given in@10# in the free-streaming casenE50.

As noted before, there is still a gauge freedom here as
ciated with the choice of 4-velocityua. Given any physical
choice for this 4-velocity which tends to the preferre
4-velocity in the FLRW limit, thel>1 equations are gaug
invariant.

VII. CONCLUSIONS

We have used a covariant Lagrangian approach, in wh
all the relevant physical and geometric quantities occur
rectly and transparently, as PSTF tensors measured in
comoving rest space. There is no restriction on the devia
of geometric and physical quantities from FLRW limitin
values, so that arbitrary nonlinear behavior may in princi
be treated. We have derived the corresponding equat
governing the generation and evolution of inhomogenei
and CMB anisotropies in nonlinear generality, withouta pri-
ori restrictions on spacetime geometry or specific assu
tions about early-universe particle physics, structure form
tion history, etc. Thus we have developed a useful appro
to the analysis of local nonlinear effects in CMB anisotr
pies, with the clarity and transparency arising from 113 co-
variance. The equations are readily linearized in a gau
invariant way, and then the methods of@37# may be used to
expand in scalar modes and regain well-known first-or
results@66# ~see also@35,36,38#!.

This approach allowed us to identify and qualitatively d
scribe some of the key local nonlinear effects, and m
quantitative results will be considered in further papers. W
calculated the nonlinear form of Thomson scattering mu
poles~given the initial simplifying assumption of no polar
ization!, revealing the new effect of coupling between t
baryonic bulk velocity and radiation brightness multipoles
order l 61. We also found the nonlinear effects of relativ
velocities of particle species on the dynamic quantities t
source the gravitational field. These effects also operate
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the conservation equations, including evolution equations
the relative velocities of baryonic and cold dark matter.

Nonlinear effects come together in the hierarchy of e
lution equations for the radiation dynamic~brightness! mul-
tipoles, which determine the CMB temperature anisotrop
In addition to the nonlinear Thomson contribution, we ide
tified nonlinear couplings of the kinematic quantities to t
multipoles of orderl 62, l 61, andl. These quantities them
selves are governed by nonlinear evolution equations, wh
provides part of the link between CMB anisotropies and
homogeneities in the gravitational field and sources. The
is also carried by the spatial gradient of radiation ene
density~equivalently, average radiation all-sky temperatur!,
and the baryonic relative velocity. Furthermore, there is
ternal up- and down-transmission of power within the m
tipole hierarchy, supported by the kinematic couplings
well as by distortion and divergence derivatives of the m
tipoles.

We used our analysis of the radiation multipoles to ide
tify new effects that operate at highl. In particular, we
showed that there is a nonlinear shear correction effec
small angular scales, whose impact on the angular po
spectrum was qualitatively described. The quantitative an
sis of this and other nonlinear effects is a subject of furt
research.
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APPENDIX: EXACT NONLINEAR RELATIVE VELOCITY
EQUATIONS

Change in 4-velocity:

ũa5g~ua1va! where g5~12v2!21/2, vaua50.
~A1!

Change in fundamental algebraic tensors:

h̃ab5hab1g2@v2uaub12u~avb)1vavb#, ~A2!

«̃abc5g«abc1g$2u[a«b]cd1uc«abd%vd.
~A3!

Transformed kinematic quantities are defined by

¹bũa5
1

3
Q̃h̃ab1s̃ab1 «̃abcṽ

c2Ãaũb ,

which implies, using¹ag5g3vb¹avb , and Eq.~2!, the fol-
lowing kinematic transformations@52#:
Q̃5gQ1g~div v1Aava!1g3W, ~A4!

Ãa5g2Aa1g2H v̇ ^a&1
1

3
Qva1sabv

b2@v,v#a1S 1

3
Qv21Abvb1sbcv

bvcDua1
1

3
~div v !va1

1

2
@v,curlv#a

1vbD^bva&J 1g4W~ua1va!, ~A5!

ṽa5g2H S 12
1

2
v2Dva2

1

2
curlva1

1

2
vb~2vb2curlvb!ua1

1

2
vbvbva1

1

2
@A,v#a1

1

2
@ v̇,v#a1

1

2
«abcs

b
dvcvdJ ,

~A6!

s̃ab5gsab1g~11g2!u(asb)cv
c1g2A(a@vb)1v2ub)#1gD^avb&2

1

3
hab@Acv

c1g2~W2 v̇cv
c!#1g3uaubFscdv

cvd

1
2

3
v2Acv

c2vcvdD^cvd&1S g42
1

3
v2g221DWG1g3u(avb)FAcv

c1scdv
cvd2 v̇cv

c12g2S g22
1

3DWG
1

1

3
g3vavb@div v2Acv

c1g2~3g221!W#1g3v ^av̇b&1v2g3u(av̇ ^b&)1g3v (asb)cv
c2g3@v,v# (a$vb)1v2ub)%

12g3vcD^cv (a&$vb)1ub)%, ~A7!

where
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W[ v̇cv
c1

1

3
v2div v1vcvdD^cvd& .

Transformed dynamic quantities are@52#

r̃5r1g2@v2~r1p!22qava1pabv
avb#, ~A8!

p̃5p1
1

3
g2@v2~r1p!22qava1pabv

avb#, ~A9!

q̃a5gqa2gpabv
b2g3@~r1p!22qbvb1pbcv

bvc#va2g3@v2~r1p!

2~11v2!qbvb1pbcv
bvc#ua, ~A10!

p̃ab5pab12g2vcpc(a$ub)1vb)%22v2g2q(aub)22g2q^avb&2
1

3
g2@v2~r1p!

1pcdv
cvd#hab1

1

3
g4@2v4~r1p!24v2qcv

c1~32v2!pcdv
cvd#uaub

1
2

3
g4@2v2~r1p!2~113v2!qcv

c12pcdv
cvd#u(avb)1

1

3
g4@~32v2!~r1p!

24qcv
c12pcdv

cvd#vavb . ~A11!

Gravito-electric–magnetic field: using@67#

Cab
cd54$u[au[c1h[a

[c%Eb]
d]12«abeu

[cHd]e12u[aHb]e«
cde54$ũ[aũ[c1h̃[a

[c%Ẽb]
d]12«̃abeũ

[cH̃d]e12ũ[aH̃b]e«̃
cde,

we find the transformation@52#

Ẽab5g2$~11v2!Eab1vc@2«cd(aHb)
d12Ec(aub)1~uaub1hab!Ecdv

d22Ec(avb)12u(a«b)cdH
deve#%, ~A12!

H̃ab5g2$~11v2!Hab1vc@22«cd(aEb)
d12Hc(aub)1~uaub1hab!Hcdv

d22Hc(avb)22u(a«b)cdE
deve#%.

~A13!

This may be compared with the electromagnetic transformation

Ẽa5g$Ea1@v,H#a1vbEbua%,

H̃a5g$Ha2@v,E#a1vbHbua%,

where

Fab52u[aEb]1«abcH
c52ũ[aẼb]1 «̃abcH̃

c.

Note that all the transformations above are given explicitly in terms of irreducible quantities~i.e. irreducible in the original
ua-frame!.
ys

ys
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