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Cosmic microwave background anisotropies: Nonlinear dynamics
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We develop a new approach to local nonlinear effects in cosmic microwave background anisotropies, and
discuss the qualitative features of these effects. New couplings of the baryonic velocity to radiation multipoles
are found, arising from nonlinear Thomson scattering effects. We also find a new nonlinear shear effect on
small angular scales. The full set of evolution and constraint equations is derived, including the nonlinear
generalizations of the radiation multipole hierarchy, and of the dynamics of multi-fluids. These equations
govern radiation anisotropies in any inhomogeneous spacetime, but their main application is to second-order
effects in a universe that is close to the Friedmann models. Qualitative analysis is given here, and quantitative
calculations are taken up in further papd&0556-282(99)02508-4

PACS numbsg(s): 98.80.Hw, 04.25.Nx, 95.30.Sf

[. INTRODUCTION The well-developed study of CMB anisotropies is based
on the pioneering results in CMB physi¢Sachs and Wolfe
Recent and upcoming advances in observations of thgll], Rees and Sciamd?2], Peebles and Y{i13], Sunyaev
cosmic microwave backgroun@@MB) radiation are fueling and ZeldovicH 14], Grishchuk and Zeldovicfl5], and oth-
the construction of increasingly sophisticated and detaileérs, and on the development of gauge-invariant perturbation
models to predict the anisotropy on small angular scalesheory, particularly by Bardegri6] and Kodama and Sasaki
Such models require highly specific input in order to producg 17] (building on the work of Lifshit{18]). There are com-
numerical results, and they involve intricate problems ofprehensive and detailed models—see e.g. Hu and Sugiyama
computation. As a complement to such specific predictivd19—-21, Ma and Bertschingef22], Seljak et al. [23—26§
models, it is also useful to pursue a more qualitative ancand Durrer and Kahniashvi[i27]. These provide the basis
analytical investigation of CMB anisotropies. A general for sophisticated predictions and comparisons with the obser-
qualitative analysis does not rely on detailed assumptionsations of recent, current and future satellite and ground-
about the origin of primordial fluctuations, the density pa-based experiments. The hope is that this inter-play between
rameters of the background, re-ionization and structure fortheory and observatiofincluding the large-scale galactic
mation history, etc. Instead, the aim is to better understandistribution and other observationsn the context of infla-
the underlying physical and geometric factors in the dynamiionary cosmology, will produce accurate values for the vari-
ics of radiation anisotropies, and hopefully to uncover newous parameters that characterize the standard models, thus
results and insights. In this paper, we follow such an apallowing theorists to discriminate between competing models
proach, and develop a new analysis of local nonlinear effect&ee for exampl§28,29)).
in CMB anisotropies. We are able to give a physically trans- While these papers have provided a near-exhaustive treat-
parent qualitative analysis of how inhomogeneities and relament of many of the issues involved in CMB physics, there
tive motions produce nonlinear effects in CMB anisotropiesare a number of reasons for pursuing a complementay 1
We derive the nonlinear generalization of Thomson scattereovariant approach, as developed 19,30-38.
ing, and we find a new nonlinear shear effect on small scales. First, the covariant approach by its very nature incorpo-
We use a 3 covariant approacti.e., a “covariant La-  rates nonlinear effects. This approach starts from an inhomo-
grangian” approachto CMB anisotropies, based on the geneous and anisotropic universe, withaupriori restric-
choice of a physically determined 4-velocity vector fiaf tions on the degree of inhomogeneity and anisotropy, and
This allows us to derive the exact nonlinear equations fothen applies the linearization limit when required. The3l
physical quantities as measured by observers moving witbovariant equations governing CMB anisotropies are thus ap-
that 4-velocity. Then the nonlinear equations provide a coplicable in fully nonlinear generality. These equations can
variant basis for investigating second-order effects, as wellhen be specialized in various ways in addition to a standard
as for linearizing about a Friedmann-Lemaitre-RobertsonFLRW linearization. Second-order effects in an almost-
Walker (FLRW) background. The basic theoretical ingredi- FLRW universe probably form the most important possibil-
ents arg@a) the covariant Lagrangian dynamics of Ehlgt$ ity, given the increasing accuracy and refinement of obser-
and Ellis[2], and the perturbation theory of Hawkifig] and  vations. The study of CMB anisotropies in homogeneous
Ellis and Bruni[4] which is derived from it;(b) the 1+3  Bianchi universes with large anisotropy is another possibility
covariant kinetic theory formalism of Ellis, Treciokas and that flows directly from general nonlinear equations. Such
Matravers[5,6] (which builds on work by Ehlers, Geren and applications will be the subject of future papers in the pro-
Sachg[7], Treciokas and Ellig8] and Thorne[9]); and (c) gram. The current paper is concerned with setting up the
the 1+3 covariant analysis of temperature anisotropies dugeneral dynamical equations and identifying the qualitative
to Maartens, Ellis and Stoeggt0Q]. nature of nonlinear effects.(The general algebraic
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equations are derived i187].) dynamics of radiation anisotropies, with the main application
Second, the 3 covariant approach is based entirely onbeing second-order effects in an almost FLRW universe. We
guantities with a direct and transparent physical and geometeentify and describe the qualitative features of such effects.
ric interpretation, and the fundamental quantities describindhis lays the basis for a generalization of results on well-
anisotropy and inhomogeneity are all automatically gaugeknown second-order effects, such as the Rees-Sciama and
invariant when a suitable covariant choice of fundamentaVishniac effects(see e.g[19]), and on recent second-order
4-velocity has been made. As a consequence the approacbrrections of the Sachs-Wolfe effd@3,64. Developing a
leads to results with unambiguous physical meanip@-  quantitative analysis on the basis of the equations and quali-
vided the fundamental 4-velocity field is chosen in a physi-tative analysis given here is the subject of further work. Ul-
cally unique and appropriate way; we discuss the variougimately this involves the solution of partial differential
options below. equations, which requires in particular a choice of coordi-
This approach has been developed in the context of densates, breaking covariance. However, the3lcovariant ap-
sity perturbation$4,39—54 and gravitational wave perturba- r5ach means that all the equations and variables have a
tions[3,55-59. (See alsd60] for a recent review.In rela-  4i-act and transparent physical meaning.
tion to CMB anisotropies, the covariant Lagrangian approach -, ge I, the covariant Lagrangian formalism for relativ-
was initiated by Stoeger, Maartens and EIli80], who istic cosmology is briefly summarized. Section Il develops

proved the following resultf all comoving observers in an an exact ¥3 covariant treatment of multi-fluids and their

expanding universe region measure the anisotropy of th?elative velocities, building of52]. In Sec. IV, the covariant

CMB after last scattering to be small, then the universe Iﬁ_agrangian approach to kinetic theory is outlined. Section V

?AZ(?;%EIEE:VS Igégﬁlrtnfgfme?racﬁrf: tﬁgssuomufég)gi daaeat crievelops a nonlinear treatment of Thomson scattering, which
€ spac 9 Y ! tfentifies new couplings of the baryonic relative velocity to
of CMB anisotropies, so that this result provides a gener

theoretical underpinning for CMB analysis in perturbed he radiation multipoles. We derive the hierarchy of exact

FLRW universes. It effectively consitutes a proof of the Sta_covariant multipole equations which arise from the Boltz-
- ' ) y con P mann equation. This section uses and generalizes a combi-
bility of the corresponding exact-isotropy result of Ehlers,

. Com - T — L~ 2 nation of the results of Ellist al.[5] on the multipoles of the
Geren and SacHg]. The weak Copernican principle implicit Iﬁoltzmann equation in general, Maarteesal. [10] on a

n 'the assu'mptlon' thf"‘t all fundamental ob;ervers €€ SMatsyariant description of temperature fluctuations, and Chal-
anisotropy is in principle partially testable via the Sunyaev-"nor and Lasenby[36] on Thomson scattering. The equa-

Ze_ldowch effect(see[32] and reference_s th_erelnThe ql.Ja!" tions constitute a covariant and nonlinear generalization of
tative result was extended to a quantitative set of limits on

: X . ; . revious linearized treatments. In Sec. VI, we consider quali-
the anisotropy and inhomogeneity of the universe mpose?;

. : tive implications of the nonlinear equations. We identify
gﬁ th;sggriergsgsdgrgfoesgiggﬂisrwiiztgorpyérlﬂj C:Egggggrgz;ge role of the kinematic quantities in the nonlinear terms,
regombinat?or[lo 31-33 y P and comment on the implications for second-order effects,

T . . which include a new nonlinear shear correction to CMB
More recently, this approach to CMB anisotropies in an

. anisotropies on small angular scales. We also give the mul-
almost F.LRW universe hgs been gxtended by Durjsay, tipole equations for the case where the radiation anisotropy is
who derived a *3 covariant version of the Sachs-Wolfe

formula, and by Challinor and Lasenig5.36, who per- small, but spacetime anisotropy and inhomogeneity are

: : ; ; nrestri .
formed a comprehensivet+13 covariant analysis of the im- unrestricted

. . . Finally, we give the linearized form of the multipole
print of scalar perturbations on the CMB, confirming theequations, regaining the equations of Challinor and Lasenby

e Moot a0 oMM, Thi prvides & covarant Lagrangin version f he
9 PP " “more usual metric-based formalism of gauge-invariant per-

[35], they also discuss qualitatively the imprint of tensor per- :
. : . turbations(see e.9[65,20,22,23. In a further papef66],
turbations on the CMB, in the covariant approdsae|38] the linearized equations derived here are expanded in cova-

forﬁhﬂgm';at;ei;eiﬂfel related to. and partly dependen iant scalar modes, and this is used to determine analytic
pap y ’ partly dep Lroperties of CMB linear anisotropy formation.

upon, all of these_ previous+3 covariant analyses._ It ex- We follow the notation and conventions &,5,10, with
tends' and generahzeg aspects Qf these papers, using and ﬂweé improvements and developments introduced @¥;4§.
veloping the covariant nonlinear Einstein-Boltzmann-

) . . In particular, the units are such thgt87G andk_ are equal
hydrodynamic formalism. We analyze the nonlinear ' i -
to 1; the signature is €+ ++); spacetime indices are
a,b,...=0,1,2,3; the curvature tensors arB?%,.q=
—0gl' %t - ,Rap=R%¢ and R=R?;; the Ricci
identity is V[,Vyjuc= IRapcdu®; A, denotes the index string
a;a,---a;; €V denotes the tensor produefie?. . .e?;

A 1+3 covariant approach to CMB anisotropy was indepen-
dently outlined by Bonanno and Romafél] in general terms,
using a flux-limited diffusion theory, but the detailed implications
of small CMB anisotropy were not pursued.

2Note the importance of expansion:static isotropic cosmology
with arbitrarily large inhomogeneity can be constructed in which all This case will apply before decoupling, in order to be consistent
observers see an isotropic CMB2]. with the almost-FLRW result quoted above.
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(square round brackets enclosing indices denote theti- The covariant derivativé/ , defines 3 covariant time
)symmetric part; and angular brackets denote the projecteand spatial derivatives
symmetric and tracefre€PSTH part (defined below. The

spatially projected part of the covariant derivative is denoted T N R
by D,, following [67]. The approximate equality symbol, as g f
in J~0, indicates equality up to firstinean order in an DeJ® . p=hh% - -hy'Vgd® g

almost-FLRW spacetime. . ) :
Note that Qhab:O:DdSabca while habZZU(an) and Eabe

Il. COVARIANT LAGRANGIAN FORMALISM =3u[asbcldud. The projected derivative Dfurther splits ir-
IN RELATIVISTIC COSMOLOGY reducibly into a B3 covariant spatial divergence and curl
67
The Ehlers-Ellis %3 formalism[1,2,68 is a covariant 167
Lagrangian approach; i.e., every quantity has a natural inter- divV=D%,, (divS),=D"S,,
pretation in terms of observers comoving with the fundamen- b e d
tal 4-velocityu® (whereu®u,= —1). Provided this is defined curlVa=eapcD°V®,  curlSap=gc4aD"S)"

uniquely in an invariant manner, all related quantities have a . L .
dirr—?ct p}éysical or geometric meaning, and ?nay in principleand a 1+3 covariant spatial distortiofb7]
be measured in the instantaneous rest space of the comoving 1

fundamental observers. Any coordinate system or tetrad can D(aVby=D(aVp)—~ §(diVV)hab,

be used when specific calculations are made. These features

are a crucial part of the strengths of the formalism and of the 2

perturbation theory that is derived from it. We will follow D(aSocy=DaSve) — gh(ab(div S)¢) -

the streamlining and development of the formalism given by

Maartens67], the essence of which is to make explicit USe \gte that div curl isotin general zero, for vectors or rank-2

of irreducible quantities and derivatives, and to develop thecensors(see [67,48,51,58 for the relevant formulas The
identities which these quantities and derivatives ob88€  oyariant irreducible decompositions of the derivatives of

also[48,57,58,51,5D. scalars, vectors and rank-2 tensors are given in exant-

The basic algebraic tensors afa) the projectorh,, linean form by [57]
=0aptUaUp, Where g,, is the spacetime metric, which
projects into the instantaneous rest space of comoving ob- y_y= — yu,+D,, (1)

servers and(b) the projected alternating tensos .,

= Dabcdl?, Where mapeq=— \/@50[615%52053(’] is the

. 1
spacetime alternating tensor. Thus VpVa=—Up{V(a) T AV Ua} + Ua) OV + opcV°

=2UiaEpn1cd— 2€abicUq1, € def—31h. dh eh". 1 1
Nabcd [a€b]cd ab[cUd] abc® [a Mp Mg +§(dlvV)hab——aabccurIV°

+[a),V]b 2

The PSTF parts of vectors and rank-2 tensors are
+DaVp) , @

1
V<a>= habe, S(Elb)z h(achb)d_gh(;dhab Scd1 %@Sb)c

VSip=— uc{s(ab)+ 2u(aSb)dAd} + 2u(a

with higher rank formulas given if87]. The skew part of a
projected rank-2 tensor is spatially dual to the projected vec- + Sb)d(crcd— £cqge®®)
tor S,= 2,539, and then any projected rank-2 tensor has
the irreducible covariant decomposition

3 .
+ g(dIV S)(ahb>c

2
- §sdc(acurl Spy+D(aShq - 3
Sap= %Shab+ EabcS’+ S(ab) ,

The algebraic correction terms in Eq®) and (3) arise
where S=S¢4h® is the spatial trace. In the+13 covariant  from the relative motion of comoving observers, as encoded
formalism, all quantities are either scalars, projected vectorf the kinematic quantities: the expansiéh=D?u,, the
or PSTF tensors. The equations governing these quantiti ; — - . _
involve a covariant vectocl productgand its generalizqation toqf_ z_lacceleratlon Aa=Ua=Aa 2 the  vorticity _ w,~

_ scurlu,, and the sheatr,p=D Uy . Thus, by Eq.(2),
PSTF rank-2 tensors:

[V,W]a=€apVPWE,  [S,Q]a=€apcS Q% N _
a~ “abe a~ “abewd 5The vorticity tensorw = € ,,.0° is often used, but we prefer to

use the irreducible vectow,. The sign conventions, following
. [1,2], are such that in the Newtonian limib,= — 2V X v. Note that
“In [4,43,45,35,3pit is denoted®V,, while in[10,34itis V,.  DPwg,=curlw,.
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1 variant quantities [1,2]. Einstein’'s equations are
Vbla=~Aglp+ 3 Ohgp+ Eabcw t Tap- incorporated via the algebraic replacement of the Ricci ten-
sor Ry, by Tap—3T.°0.,. These equations, in exagion-
The irreducible parts of the Ricci identities produce com-linean form and for a general source of the gravitational
mutation identities for the irreducible derivative operators. Infield, are[57] the following:

the simplest case of scalars, Evolution:
curl DawzsabcD[bDC](//:_Ziﬂway (4) b‘f‘(p"‘ p)® +divq
. b . . 1 b =—2A%qy— 0" 7Tabv (6)
Day—ha"(Dp$h)"= — hAa+ 5 ODayp+ 00 Dy
-1 1
] — (- 2 — —di
+[w, D], (5) +3 +2(p+3p) divA
Identity (4) reflects the crucial relation of vorticity to non- 0,04 20,00+ AAR,

integrability; non-zeraw, implies that there are no constant- @)
time 3-surfaces everywhere orthogonaludy since the in-

stantaneous rest spaces cannot be patched together 4

smoothly® Identity (5) is the key to deriving evolution equa- Q<a>+ ~00q,+(p+p)Ay+Dyp+(div ),

tions for spatial gradients, which covariantly characterize in- 3

homogeneity [4]. Further identities are given in b b
[40,67,69,57,4B =—0ap0d +[w,q]a— ATy,

The kinematic quantities govern the relative motion of ®
neighboring fundamental world lines, and describe the uni-
versal expansion and its local anisotropies. The dynamlc
guantities describe the sources of the gravitational field, afid
directly determine the Ricci curvature locally via Einstein’s
field equations. They are thétotal) energy densityp . 1
=T,,u?uP, isotropic pressur@=1h,, T3 energy fluxq, T(ab) T 3O Tapt Eap™ 5 Tap— DiaAp)
= —T<a>bub, and anisotropic stress,p,= T ap) , WhereTyy is
the total energy-momentum tensor. The locally free gravita- _ c
tional field, i.e. the part of the spacetime curvature not di- 7 %ca%)

1
a>+ .wa-i- curIA T ap®”, 9)

- w<awb>+A<aAb> ’

rectly determined locally by dynamic sources, is given by the (10
Weyl tensorC,,cq. This splits irreducibly into the gravito- 1
electric and gravito-magnetic fields E(any T OEzp—curlHg,+ §(p+ P)oan
1
Eab=CacbdU'=E(ap, H Co%eue=H 1. 1 1
ab achdd (ab) ab™ 28acd be (ab) s + (ab)+ D aqb .7Tab
which provide a covariant Lagrangian description of tidal
forces and gravitational radiation. =~ Aalby + 2A% cqaHp)°
A FLRW (backgroungluniverse, with its unique preferred 1
4-velocity u?, is covariantly characterized as follows: +30 . .EnC— e o End— Z o o
Dynamics Dp=0=D,p, 0s=0, map=0. (e cd@=h) — 27 (alibje
Kinematics BO® =0, A;=0=w,,0,,=0. 1
Gravito-electric—magnetic field,,=0=H,y. - Ewcscd(awb)d, (12)

The Hubble rate i$1= 30O =a/a, wherea(t) is the scale
factor andt is cosmic proper time. In spatially homogeneous
but anisotropic universeg¢Bianchi and Kantowski-Sachs
models, the quantities), , 7ap,0ap,Eap andH,p in the pre-
ceding list may be non-zero.

The Ricci identity for u® and the Bianchi identities =30¢(aHb) "~ ©°&cqaHp)
VdCabcd=V[a(— Rpjet %Rgb]c) produce the fundamental
evolution and constraint equations governing the above co- —2A% Eb)d_

1
=curl 4,

H(ab)+ (C) Hapt+ curl E.pn— >

1
> w(a%>+§ff°(a8b)cdqd- (12

8In this case, which has no Newtonian counterpart, thefera-
tor is not intrinsic to a 3-surface, but it is still a well-defined spatial ’Note that one constraint Einstein equation is not explicitly con-
projection ofV, in each instantaneous rest space. tained in this set—sef2,70].
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Constraint: invariant linearization about an FLRW modgke[4,35] for
] a further discussion
divo=A%w,, (13 In addition to the issue of linearization, one can also ask
more generally what the impact of a change of fundamental
frame is on the kinematic, dynamic and gravito-electric—
(14 . ” o ik
magnetic quantities. If an initial choiag® is replaced by a

new choiceu?, then

2
(div o) o=l wg— 50,0 +4a= —2[w,AlL,

curl Oap™t D<awb>— Hap=— 2A<awb> ) (15
L n L U= y(ud+0?) where v,ud=0, y=(1-vp? Y3
(divE)a+ 5 (div m)a— zDap+ 500, (18
wherev? is the(covarianj velocity of the new frame relative
=[0o,H]a—3Hap0" to the original frame. The exact transformations of all rel-

1 3 evant quantities are given in the Appendix, and are taken

+ EUabqb_ E[‘an]av from [52]. To linear order, the transformations take the form
(16)

O~0+dive, A;~A +vy+Hug,

1
(divH),+ Ecurlqa—(er p)w,

W~ Wy~ Ecurlva, Tab™ Tapt Davby s
1
=~ [0.Ela Hlo7l, S
p~p, P~P, Ga~0a—(p+Ppva,

1
b b ~ = ~
+3Eap0”— 2 Map® 17) Tab™~Tap, Eap~Eap, Hap~Hap.

If the universe is close to an FLRW model, then quantities Suppose now that a choice of fundamental frame has been
that vanish in the FLRW limit ar@(e), wheree is a dimen-  made.(For the purposes of this paper, we will not need to
sionless smallness parameter, and the quantities are suitaipecify such a choiceThen we need to consider the veloci-
normalized(e.g. Vo ,,02°/H<e, etc). The above equations ties of each species which source the grawtat_u_)nal field, rela-
are covariantly and gauge-invariantly lineariZdd by drop- tive to the fundamenFaI frame. If_ t_hg 4—ve|c_)C|t|es are close,
ping all termsO(€2), and by replacing scalar coefficients of i.e. |§ the frames are in non-relativistic relatlve_ motion, then
O(e) terms by their background values. This linearization©(v?) t€rms may be dropped from the equations, except if

reduces all right hand sides of the evolution and constraint/® include nonlinear kinematic, dynamic and gravito-
equations to zero. electric—magnetic effects, in which case, for consistency, we

must retainO(e%?) terms such agpv?, which are of the
same order of magnitude in general @$e?) terms. (See
[72].) If the universe is close to FLRW, theD(e%v?) terms
may be neglected, together wi®(ev) andO(e?) terms.

The formalism described above applies &y covariant In summary, there are two different linearizations:
choice ofu?. If the physics picks out only one?, then that (a) Linearizing in relative velocitie§i.e. assuming all spe-
becomes the natural and obvious 4-velocity to use. In a consies have nonrelativistic bulk motion relative to the funda-
plex multi-fluid situation, however, there are various possiblemental framg without linearizing in the kinematic, dynamic
choices. The different particle species in cosmology willand gravito-electric-magnetic quantities that covariantly
each have distinct 4-velocities; we could choose any of theseharacterize the spacetime.
as the fundamental frame, and other choices such as the cen-(b) FLRW linearization, which implies the special case of
ter of mass frame are also possible. This allows a variety ofa) obtained by also linearizing in the kinematic, dynamic
covariant choices of 4-velocities, each leading to a slightlyand gravito-electric—magnetic quantities.
different 1+ 3 covariant description. One can regard a choice Clearly (a) is more general, and we can take it to be the
between these different possibilities as a partial gauge-fixinghysically relevant nonlinear regime, i.e. the case where only
(but determined in a covariant and physical wagny dif-  nonrelativistic average velocititsare considered, but no
ferences between such 4-velocities will (e) in the other assumptions are made about the physical or geometric
almost-FLRW case and will disappear in the FLRW lifhit, quantities. In cas€a), no restrictions are imposed on non-
as is required in a consistent+B covariant and gauge- Vvelocity terms, and we neglect only tern® ev?,0%). In
case(b), we neglect term®(e?,ev,v?). Covariant second-

lll. 1 +3 COVARIANT NONLINEAR ANALYSIS
OF MULTI-FLUIDS

8A similar situation occurs in relativistic thermodynamics, where
suitable 4-velocities are close to the equilibrium 4-velocity, and °Of course, this implies no restrictions on the velocities of indi-
hence to each oth¢r1]. vidual particles within any species.
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order effects against a FLRW background are includedvhere v} %u,,=0 andv} %} =vv,,. Using this relation
within (a), when we neglect term®(e%). (Note that gauge together with the general transformation equatigAS)—
invariance is a far more subtle problem at second order tha(A11), or directly from the above equations, we find the fol-
at first order: see Brurgt al. [73].) lowing exact(nonlineaj equations for the dynamic quanti-

The dynamic quantities in the evolution and constraintties of species as measured in the overaif-frame:
equationg6)—(17) are the total quantities, with contributions

from all dynamically significant particle species. Thus P =pi+H{Y2i(p1+P) + 2701+ T 1001},
(25
ab_ ab_  a;,b ab (a;,b) ab
T 2| TH=puiuP+ph™2gFu+ o, (19) pr=pi+ 3{ ¥l (pi+p)+2%afvja+ 7 v av 0},
(26)
ab__ a, a ab (a,,b) ab
TE= pyUrur prhy o 207U+ (20 ar=af+(p+pPoi+{(n—1)af— 7’|Q:OU|bUa

where| labels the species. We include radiation photons ( +y202(p 4 p)vi+ mPup— P b0 cU?),  (27)
=R), baryonic matter (=B) modelled as a perfect fluid,

cold dark matter I(=C) modelled as dust over the era of F ab_ 7T|ab+{_2u(a77f>)cvlc+ wFCv|bv|cuaub}

interest for CMB anisotropies, neutrinos<{N) (assumed to

be massleds and a cosmological constant=(V).° Note +{—577%c0,dh*+ yP(p + ppv o)

that the dynamic quantities,, ... in Eq.(20) are as mea-

sured in trsllel—framg, whosee’sl4—velocity iz given by +27'”§aq'b>}' (28)

These expressions are the nonlinear generalization of well-
known linearized resultésee e.g[45,71]). FLRW lineariza-
tion implies thatv, <1 for eachl, and we neglect all terms
which are O(v,z) or O(ev). This removes all terms in
22 braces, dramatically simplifying the expressions:

ut=y (u?+ovd), viu,=0. (21

Thus we have
pczozqg:ﬂ-gb, q%:O:ﬂ-gb,
* * *a a a *ab ab
Pr =P, PP O At (prtp)oy, mp
PrR=3PR: PN 3PN, (23
) o To linear order, there is no difference in the dynamic quan-
where we have chosen the unique 4-velocity in the cold darlities when measured in theframe or the fundamental
matter and baryonic cases which follows from modellingframe, apart from a simple velocity correction to the energy
these fluids as perfect. The cosmological constant is charagyy. But in the general nonlinear case, this is no longer true.
terized by The total dynamic quantities are simply given by

p=2 pr, p=§|) Py, qa=§|) qr, wab=2 i

pv=—py=—A, Qi"/=0=173b, vy=0.

The conservation equations for the species are best given
in the overallu®-frame, in terms of the velocities;' of spe-  Note that Eqs(25)—(28) have been written to make clear the
ciesl relative to this frame. Furthermore, the evolution andjinear parts, so that the irreducible nature is not explicit. Ir-
constraint equations of Sec. Il are all given in terms of thereducibility (in the u?-frame is revealed on using the rela-
u?-frame. Thus we need the expressions for the partial dytions
namic quantities as measured in the overall frame. The ve-
locity formula inverse to Eq(21) is q{¥=h2,qP=g?— qPv bu?,

W=y (ul+ovf?), oft=—y@i+olud), (29 m{D O =ha hP 7= 7ab_ oy (azbey, o
+7del}|cl)|duaub.

10A more general treatment, incorporating all the sources which
are currently believed to be potentially significant, would also in-
clude a dynamic scalar field that survives after inflatidquintes-
sence’) and hot dark matter in the form of massive neutrifese

The exact equations show in detail the specific couplings
and contributions of all partial dynamic quantities in the total
quantities. For example, it is clear that in spatially homoge-

[28] for a survey with further referencesOur main aim is not a neousb but anliotroplcl models,dthe partlal energy ﬂ;q%S.
detailed and comprehensive model with numerical predictions, bu?Ontrl ute to the total energy density, pressure and aniso-

a qualitative discussion focusing on the underlying dynamic and'OPIC Stress at first order n the velocitie, while the par-
geometric effects at the nonlinear and linear levels that are brougHa! anisotropic stresses}” contribute to the total energy
out clearly by a ¥ 3 covariant approach. In principle our approach flux at first order inv, .

is readily generalized to include other sources of the gravitational The total and partial 4-velocities define corresponding

field. number 4-currents:
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wherewg=pg/pg. In the case of radiation and neutrinos,

Na:”Ua+ja:El NP, NP=nui+jt, (29 we will evaluate the dynamic quantities relative to the
u?-frame directly via kinetic theory, in the next section.

wheren andn, are the number densitieg® and j? are the Tg‘f total energy-momentum tensor is conserved, i.e.
number fluxes, anglu?=0=j,au?. It follows that V,T3=0, which is equivalent to the evolution equatidBs

and(8). The partial energy-momentum tensors obey

n=> nf=> n+> {(y—n+ja}, (30
I ' ' V,TeP=02=Urud+M}2, (37)

j2=> jl*a=2| <j.a+n.vf‘>+2 {(m—1)np?

[ whereU} is the rate of energy density transfer to spetias

— 0] s (31 Mmeasured in theiframe, andM3=M*‘® is the rate of
i ' momentum density transfer to specleas measured in the

where the quantities with an asterisk are as measured in tt€-frame. Cold dark matter and neutrinos are decoupled dur-

ud-frame. Linearization removes the terms in braces, regain"d the period of relevance for CMB anisotropies, while ra-

ing the expressions i5,71. diation and baryons are coupled through Thomson scattering.
Four-velocities may be chosen in a number of covariantl hus

and physical ways. The main choices §rg,71 (a) the en-

ergy (Landau-Lifshitz frame, defined by vanishing energy

flux, and(b) the particle(Eckary frame, defined by vanishing B=0=33, JB=-2B=U;u+M2, (38

particle number flux. For a given single fluid, these frames

coincide in equilibrium, but in general they are different. For

each partial?®, any change in choice?—U? leads to trans- where the Thomson rates are
formations in the partial dynamic quantities, which are given

by Egs.(A8)—(All) in the Appendix. For the fundamental

u®, a change in choice leads in addition to transformations of 4

the kinematic quantities, given by Eq&4)—(A7), and of UT=nE0T<§p§v§—q§avBa
the gravito-electric or magnetic field, given by equations
(A12), (A13).

A convenient choice for each partial four-velocity is
the energy frame, i.eq?=0 for eachl (this is the obvious
choice in the casels=C,B). As measured in the fundamen-
tal frame, the partial energy fluxes do not vanish, gg® (40)
#0, and the total energy flux is given by

+0(evd,v3), (39
a 4 * a *a * ab 2 3
M7=neor| 3prVe—0r + 7R Usb| T O(evg,vp),

as given by Eq(63), derived in Sec. V. Hereg is the free
qa:Z [(pi+P)vi+ 70 +O(ev? v1)]. (32 electron number density, ang is the Thomson cross sec-
tion. Note that to linear order, there is no energy transfer, i.e.
With this choice, using the above equations, we find théJT”Q- ) )
following expressions for the dynamic quantities of matter as  Using Egs.(33)—(36) in Eq. (37), we find that, for cold
measured in the fundamental frame. For cold dark matter, dark matter,

1
* 2 * 2.2
pc=7cPc, Pc=3YclcPc, (33 - . . 4
3 pctOpctpcdivoc=—(pcvd) _§U(2:®PC_U?:DaPc
_.2 b_ . 2 b
Ge"=vepovl,  mE=vepcvcvd. (39 ~2pcAwitO(e vd), (4D

For baryonic matter,
*_ 2 2 * 1, b?;+E@v?;-FAa:Abvtéua—a'abvng[w,uC]a
pe=vg(1+Wgvg)ps, Pg=|Wp+ §vaB(1+WB)}va 3
(35) —v2Dywa+0(ev vd), (42)
xab_

95%= v3(1+Wg)ppvd, 75" = y3(1+wg)ppv vy, _
(36) and for baryonic matter
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. _ 4
ps+ O (1+wg)pg+ (1+Wg)ppdivog=—[(1+wg)pgva] — §UZB®(1+WB)pB_UgDa[(1+WB)PB]_2(1+WB)pBAavg

4
*x_ 2 *a
_nEUT(ngUB_QR UBa

+0(evd,vd), (43

(1+wg)vd+ 3

1 _ _
37 Cé) Ouvi+(1+wg)A%+ pg 'D¥pg + pg 'Near(pkvi— gk

= (1+Wg) A gUP— (14 Wg) 003+ (1+Wg)[ 0,05]*— (1+Wg)vpDyv

+Cé(1+WB)(diVUB)vg—pglnEoTﬂ"F‘eabva+O(evé,vé’), (44
|
where c2=pg/pg (this equals the adiabatic sound speed f(x,p)=f(x,E,e)=F +F e+ F e+ ..
only to linear ordex. These conservation equations general-
ize those given if36] to the nonlinear case. FLRW linear- :2 FaXBeA), (46)
ization reduces the right hand sides of these equations to =0

zero, dramatically simplifying the equations. The conserva-

tion equations for the massless spectesliation and neutri- wheree®=e?e?. . .e%, ande{™ provides a representation
nos are given below. Note from Edq42) that if the cold of the rotation group37]. The covariant multipoles are irre-
dark matter frame is chosen as the fundamental frame, theducible since they are PSTF, i.e.

the 4-acceleration vanishes; i.e3=0 impliesA,=0. This

is the choice of fundamental frame advocated3f]. Fa.b=Fia .0y®Fa . o=F@ ., Fa.pl’=0

IV. COVARIANT LAGRANGIAN KINETIC THEORY

They encode the anisotropy structure of the distribution in

Relativistic kinetic theory(see e.g[74-78) provides a I,t‘pe same way as the usual spherical harmonic expansion

self-consistent microscopically based treatment where the
is a natural unifying framework in which to deal with a gas
of particles in circumstances ranging from hydrodynamic to m m, >
free-streaming behavior. The photon gas undergoes a transi- lezo mzl fl(x,E)Y/"(e),

tion from hydrodynamic tight coupling with matter, through o

the process of decoupling from matter, to non-hydrodynamic

free streaming. This transition is characterized by the evolubut here(a) the F, are covariant, and thus independent of
tion of the photon mean free path from effectively zero toany choice of coordinates in momentum space, unlike the
effectively infinity. The range of behavior can appropriately f, and(b) Fa, is a rank} tensor field on spacetime for each
be described by kinetic theory with Thomson scatteringfixed £, and directly determines tHemultipole of radiation
[79,80, and the baryonic matter with which radiation inter- anisotropy after integration ove. The multipoles can be

acts can reasonably be described hydrodynamically duringscoyered from the distribution function i&,37]
these times(The basic physics of radiation and matter and ’

density perturbations in cosmology was developed in the

+1

25|
works of Sachs and Wolfgl1], Silk [81], Peebles and Yu = :Aflf f(x.E do ith A,=4 (<2
[13], Weinberg[82], and others. AT (XE.8)ep)dd, Wi AT RIF )
In the covariant Lagrangian approach [&] (see also (47)
[7,8]), the photon 4-momentump? (wherep?p,=0) is split
as where d)=d?e is a solid angle in momentum space. A fur-
ther useful identity ig5]
p?=E(u®+e?), e%,=1, €e%u,=0, (45)
0 | odd,
f eAIdQ:4_7T
| +1 | h(a182nas24. . . hai-1a) | eyen.
whereE= —u,p? is the energy ané®=p‘®/E is the direc- (48)

tion, as measured by a comovirfiundamental observer.
Then the photon distribution function is decomposed intoThe first 3 multipoles arise from the radiation energy-
covariant harmonics via the expansidh9| momentum tensor, which is
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ab ah 5 (46) then determines the full photon distributibé(x,E,e) as
Tr (X)ZJ p?p°f(x,p)d°p a scalar field over phase space.

Over the period of importance for CMB anisotropies, i.e.
considerably after electron-positron annihilation, the average
photon energy is much less than the electron rest mass and
the electron thermal energy may be neglected, so that the
where dp=EdEd() is the covariant volume element on the Compton interaction between photons and electréthe
future null cone at everk It follows that the dynamic quan- dominant interaction between radiation and matteay rea-
tities of the radiatiorn(in the u-frame are sonably be described in the Thomson limi&ee[72] for
refinementg.We will also neglect the effects of polarization
(see e.g[24]). For Thomson scattering

1
=pruduP+ §p§hab+ 2q§(aub) + ﬂ'Eab,

o0 4 o
p§=47Tf E°FdE, q;"‘:?wf E°FdE,
0 0 —
Clf]=orneEglf(x,p) = f(x,p)], (53)

8w [
Wﬁabzﬁfo E3F2PdE. (490  whereEg= —p,uj is the photon energy relative to the bary-
onic (i.e. baryon-electronframe ug, andf(x,p) determines
From now on, wedrop the asterisks from the radiation dy- the number of photons scattered into the phase space volume

namic quantities relative to the fundamental frame, since welement at X,p). The differential Thomson cross section is
do not need to relate them to their values in the radiatioproportional to X cose, wherea is the angle between ini-

frame. tial and final photon directions in the baryonic frame. Thus

We extend these dynamic quantities to all multipole or-cos,a=egeéa whereeéa1 is the initial ande is the final direc-
ders by defining [5] tion, so that

ra_—_ a ’ra a_ a a
Hal...a|=f E%F,, o dE, (50 P =EBe(Ugteg’), P =Es(Ugtes),
. a . ab where we have uselly=Eg, which follows since the scat-

so thatll = pg/47,I1%=3qg/4m and [1*°= 1575 /8. tering is elastic. Here? is given by Eq.(21), wherev3 is

The Boltzmann equation is the velocity of the baryonic frame relative to the fundamental

df of of frameu?, with v§u,=0. Thenf is given by[36,72

—=pd— -T2, b,C

@ P xR P g =Clfl (51 B 2 2
f(x,p)=-—] f(x,p")[1+(e3e..)?]dQs. (54

wherep?=dx? dv andC[ f] is the collision term, which de- 167 BB .

termines the rate of change bflue to emission, absorption B‘e exact forms of the photon energy and direction in the
and scattering processes. This term is also decomposed mbaryonic frame follow on using Eqé21) and (A2):

covariant harmonics:

Eg=Evys(1—vge,), (55)
CLf1=2] ba(xE)eN=b+bye*+bye’e’+ -,

1
A et LR Ul
-0
where the muItipoIebAl=b<Al> encode covariant irreducible e Bre
properties of the particle interactions. Then the Boltzmann +75(vBes—1)val. (56)

equation is equivalent to an infinite hierarchy of covariant ) _ ) _ o
multipole equations Anisotropic scattering will source polarization, and small

errors are introduced by assuming that the radiation remains
LAl(x,E):bAl[FAm](x,E), unpolarized[83]. A fully consistent and general treatment
requires the incorporation of polarization. However, for sim-
whereLAI are the multipoles of ddv, and will be given in  plicity, and in line with many previous treatments, we will

the next section. These multipole equations are tensor fielg€glect polarization effects.
equations on spacetime for each value of the photon energy
E (but note that energy changes along each photon).path V. NONLINEAR MULTIPOLE HIERARCHY

Given the solutiond=4 (X,E) of the equations, the relation L
A'( ) q The full Boltzmann equation in photon phase space con-

tains more information than necessary to analyze radiation

" _ anisotropies in an inhomogeneous universe. For that purpose,
Because photons are massless, we do not need the complexity @ihen the radiation is close to blackbody we do not require
the moment definitions used i5]. In [36], J%) is used, where the full spectral behavior of the distribution multipoles, but
J3)=AI1, . From now on, all energy integrals will be understood only the energy-integrated multipoles. The monopole leads

to be over the range9E=<«. to the average temperature, while the higher order multipoles
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determine the temperature fluctuations. The3lcovariant include nonlinear effects. We use Ed&8) and (All) to
and gauge-invariant definition of the average temperafure transform back to the fundamental frarfe:
is given by[10]

(Pr)B= PR 1‘*‘%”% —2qgugat O[3],
pR(X)=47Tf E3F(x,E)dE=rT(x)%, (57)
(mat)a= i+ 2vger )~ 20808 + Eprofol
wherer is the radiation constant. Ifis close to a Planck +0O[3].

distribution, thenT is the thermal blackbody average tem-
perature. But note that no notion béckgroundemperature  Now
is involved in this definition. There is an all-sky average
implied in Eq.(57). Fluctuations across the sky are measured
by integrating the higher multipole@ precise definition is f E*C[f]dE=ngo[1+3vge.+ (vge)?
given below; i.e., the fluctuations are determined by the
Iy, 5(1=1) defined in Eq(50).

The form of C[ f] shows that covariant equations for the
temperature fluctuations arise from decomposing the energy-

—%sz]f EgﬂjEB_nEUT[l_v%eC

integrated Boltzmann equation T %vé]f fE3dE+ O[3]. (60)
, df _f 5 In addition, we need the following identity, valid for any

f B g dE= | E°CLT]dE (58) projected vectop?:

into 1+3 covariant multipoles. We begin with the right hand o 2

side, which requires the covariant form of the Thomson scat- vieal =3F a0+ [Fuat §Faple™+| Fiavy

tering term(54). Since the baryonic frame will move non-

relativistically relative to the fundamental frame in all cases + 3R w° efagh) 4 . ..

of physical interest, it is sufficient to linearize only irg,

and not in the other quantities. Thus we drop terms in 141

O(ev3,v3) but do not neglect terms that a@(e’v 3, evp) = [Fa vayt|5r0s|Faav®le®). (6D

or O(€?) relative to the FLRW limiting background. In other 1=0 meA A 2l+3)

words, we make no restrictions on the geometric and physi- .
cal quantities that covariantly characterize the spacetimd! €€ and subsequently, we use the convention fiagat-0
apart from assuming a nonrelativistic relative average velocfor | <0.) This identity may be proved using E@8) and the
ity for matter. The resulting expression will in particular be identity (see[5], p. 470

applicable for covariant second-order effects in FLRW back-

grounds(recognizing that polarization effects should be in-
cluded for a complete treatmérur for first-order effects in VoSay=VeSa) ~| 3777/ V Sea_,hap) Where
Bianchi backgrounds.

For brevity, we will use the notation S, =S(a,) - (62

) 3 Using the above equations, we find tHat
O[S]EO(EUB ,UB),

noting that this doesiot imply any second-order restriction 47Tf E2C[f]dE=ngo+[$pro— GRvEa]
on the dynamic, kinematic and gravito-electric—magnetic

quantities. It follows from Eqs(48) and(54) that —ngo1 393 — 4prvd— 372 vgsles
27 3 12
3 —Ngoy Iwﬁb— Eq%av EQ— - wI130% ge
4 f fERdEs=(pR)s+ 7 (7R )eeasean,  (59)
—3prvvd €(a€py— NeoT 47I13b¢

where the dynamic radiation quantities are evaluated in the

baryonicframe. This approach relies on the frame transfor-

mations given in the Appendix, and allows us to evaluate the 12As noted in Sec. IIl, we retain th®(v3) term in (pg)g Sincepg
Thomson scattering integral more directly and clearly tharis zero order.

other approaches. In the process, we are also generalizing td*Challinor has independently derived the same rdQt.
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45 . an alternative, 3 covariant derivatioiithe derivation irff5]
- eré? vy uses tetrads We require the identity7,8]
dE 1
16 _  _ _E2| a asb
— 37Tl—[abcdvm €aCpEe T - - @ E 3®+Aae +o,pe®e”|, (69
+o[3l. 63 which follows directly from E=—p?u,,p°V,p?=0 and

Vpua=—A,up+Dpu,. Then

Now it is clear from Eqgs(59) and (60) that the first four d a a
multipoles are affected by Thomson scattering differentlyg, [Fa,..-.a/(X.E)€™- - €]
than the higher multipoles. This is confirmed by the form of

Eq. (63). Defining the energy-integrated scattering multi- d
poles s 'Fa,...q (XE)p2L - pA]
Ka= | E?bpdE ! b bgc '
AT A 0E, =E §®+Abe + o€’ (IFa1~-~a|_EFal~~a|)

we find from Eq.(63) that X el ..et4 (ud1+e?1). .. (ut4e?)

- b
K=ngor +0[3], (64) X[Fa,...qt€ VbFal---aJ]’

4 2 1 a
§HUB_§H UBa

] where a prime denote&/JE. The first term is readily put
2 into irreducible PSTF form using the identi{g2) with V
a_ _ a__ a__ “rtrab a
K?=—ngoq 11" -4llvg— 11 va} +03], =A,, and its extension to the case whépis replaced by a
) (65  rank-2 PSTF tensoW,;, (see[5], p. 470, with Wy,=0,p.
In the second term, when the round brackets are expanded,

[ 9 1 3 only those terms with at most ong&r survive, and
Kab: - nEO'T 1_OHab_ §H<avg>_ 7Habcv BC .
I uiF,.. . =—A%,. ..,
— 3o & |+ 0[3], (66) 1
VAR, = —| 30h*+ 00— e | Fy.
3 4 . .
K2be= — g | [12P°— E1-[<abch>_ §Hab°dv3d} Thus the covariant muItlpoIebr,AI of df/dv are
. 1 (I1+1)
71 _ ’
ToL3l, 67 E by =Fa)~ 3OEFA+DeFa )+ 232 Faa
and, forl>3,
_ (|+1) E*(|+l)[E|+2F ]/Aa
o (141 (21+3) A
KA= —ngo| A =TT 18! — | S — | I ga| + O[3]. o , X .
(68) _E[E F<AI71] Aal>_|w sbc(alFAlfl)
I+1)(1+2
Equations(64)—(68) are a nonlinear generalization of the — #Ei(l+2>[El+3Fabﬁ]'(rab
results given by Challinor and Lasenf$36]. They show the (21+3)(21+5)
new coupling of baryonic bulk velocity to the radiation mul- 2]

tipoles, arising from local nonlinear effects in Thomson scat- -
tering. If we linearize fully, i.e. neglect all terms containing (21+3)
vg except thepgvg term in the dipoleK?, which is first _E|—1[52—|F<A 1'0a_a)- (70)
order, then our equations reduce to thosg36]. The gener- IR
alized nonlinear equations apply to the analysis of second- This regains the result 46] [Eq. (4.12] in the massless
order effects on a FLRW background, to first-order effectscase, with minor corrections. The form given here benefits
on a spatially homogeneous but anisotropic background, anfdlom the streamlined version of thet+B covariant formal-
more generally, to any situation where the baryonic frame issm. We reiterate that this result is exact and holds for any
non-relativistic relative to the fundamenta-frame. photon or(masslessneutrino distribution in any spacetime.
Next we require the multipoles offétv. These can be We now multiply Eq.(70) by E® and integrate over all en-
read directly from the general expressions first derivg®bjn  ergies, using integration by parts and the fact B3, ...
which are exact, 3 covariant and also include the case of =0 asE—c for any positiven. We obtain the multipole
massive particles. For clarity and completeness, we outlinequations that determine the brightness multipcﬂa\ls

E~ l/a: E3/2F b<A| B 1] ' O_al>b
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.4 (I1+1) a 47 a
KA|:H(A|)+ §®HA|+D(a|HAl_l)+ mD HbA| UT=4’77K, MTZ?K . (76)
_(+Dd _Z)Abl'[ F(+3)ALTT Finally, we return to the definition of temperature anisotro-
(21+3) bA ( I Y pies. As noted above, these are determined b)Hthle Gen-

eralizing the linearized 3 covariant approach iflL0], we
define the temperature fluctuatiefix,e) via the directional
bolometric brightness:

(I-1)(1+1)(1+2)
g
(21+3)(21+5)

o

—l0’epealla ) beA,

5|
T 2+3)

b % 1/4
o @ Ma_ o= (1+2)0(a s ). T(X)[1+7(x,e)]= TJ E3f(x,E,e)dE (77

71
(7 This is a 3 covariant and gauge-invariant definition which

Once again, this is an exact result, and it holds also fois also exact. We can rewrite it explicitly in terms of tﬂql:
any collision term, i.e. any(Al. For decoupled neutrinos, we
477)

PR

have KQ'=O in this equation. For photons undergoing Th- 1/4_1
omson scattering, the left hand side of Egl) is given by
Eq. (68), which is exact in the kiqematic anq dynam_ic guan- (78)
tities, but first order in the relative baryonic velocity. Egs.

(68) and(71) thus constitute a nonlinear generalization of they, principle, we can extract the irreducible PSTF temperature

FLRW-linearized case given by Challinor and Lasef®§l.  fiyctuation multipoles by using the inversion in Eé?):
These equations describe evolution along the timelike

world lines of fundamental observers, not along the lightlike
geodesics of photon motion. The timelike integration is re-
lated to light cone integrations by making homogeneity as-

1+ > et

I=1

7(X,e)=

= 7,624 1,,e%eP+ - - -.

TAI(x)zAflf 7(X,€)€(n,d2. (79

sumptions about the distribution of matter(spacelikg sur-
faces of constant time, as is discusseddd].

The monopole and dipole of E¢71) give the evolution
equations of energy and momentum density:

K=T1+ 20T+ 2D+ 2ASTT + 201 .. (72
=1+ 300+ D%+ A%+ 720, (72)

i 4 2
Ka=TI1(® + 3112+ DI+ — ApITP

2l
b 5

5
+4TIA%—[ w,IT]3+ 21, . (73

In the case of neutrino& y=0=K%, these express the con-
servation of energy and momenttfh:

. 4
pNT §®PN+Daq§: _ZAaqa_‘Tabﬂ'ﬁb1 (74
. 4 4 1
agy + §QE+ §PNAa+ §DaPN+ Dy’
= —[,an]"— o?a) — AR’ (75

FLRW linearization reduces the right hand sides to zero. For

photons,K and K2 are given by Egs(64) and (65), and
determine the Thomson rates of transfer in E@2 and
(40):

In the almost-FLRW case, whenis O(e€), we regain from
Eq. (78) the linearized definition given ifl0]:

w

PR

TA|~( ) Ha, (80)

wherel=1. In particular, the dipole and quadrupole are

30% R
a._ _ '~ ab__
T Zpm and 7 T (81

VI. QUALITATIVE IMPLICATIONS OF THE NONLINEAR
DYNAMICAL EFFECTS

In Sec. Il, we gave the nonlinear evolution and constraint
equations governing the kinematic, total dynamic and
gravito-electric—magnetic quantities—see E@®—(17). In
these equations, the total dynamic quantities are, using the
results of Sec. IlI:

p=prtpnt(1+v8)pc+[1+(1+wg)vglps+A

+0[3], (82

11 1, 1 ,
P=3PrT 3PNTZVCPCT | Wt §(1+WB)UB PB

-A+0O[3], (83
q*=qrtan+pcvet(1+wg)pgug+O[3], @4

1As in the photon case, we omit the asterisks on the neutrino

dynamic quantities, since we do not require their values in the neu-

trino frame.

720= 78+ 720+ pev v+ (1+wg) ppo Fu ) + O[3].

(89
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The conservation equations for matter were given in Sec. lll—see(Efjs-(44). For neutrinos, the equations were given in
Sec. V—see Eqgq74) and (75). For photons, the equations follow from the results of Sec. V as
. 4 a a ab 4 2 a
PrRT §®PR+ Dadrt 2A40rt+ 0apTR =NgoT 3PRVB™ ORVBa +0[3], (86)
~(a) 4 a 4 a 1a ab a ~b a ab 4 a a ab
Or'+ §®QR+ §PRA + §D prtDpmR + 0%0r—[0,0r]*+ApmR =NgoT §PRUB_QR+ mrupp| +O[3].  (87)

The nonlinear dynamical equations are completed by the integrated Boltzmann multipole equations given in Sec. V—see Eq.
(71). For neutrinos I(=2):

(I+1)  pp (1+D(1-2)
(21+3) PN (21+3)

oy b
0=TIY+ 3 OIIY+ DAY ¥+ AT+ (1 +3) AT -2 — | s P @I - 2°

0D+ D(+2) e

(21+3)(21+5) apclly (ZI+3)0-b<alﬂﬁlfl>b_(|+2)0.<a|a|711‘[ﬁ|72>' 89)

For photons, the quadrupole evolution equation is

) 4 8 2 8w 2 327
W&ab>+ §®7Tgb+ 1—5pRUab+ §D<aqg>+ gDCHabc-f- 2A<aq%>— 2w°scd(aﬂ'g)d+ 70'C<a7rg>c— —3150'Cdl_[ab°d
9 1 8 2
=—NgoT Ewsb— gqfﬁ‘vg)— ﬁnabcv Bc ™ ngvgan +0[3]. (89

In the free-streaming casg = 0, Eq.(89) reduces to the result first given[i80]. This quadrupole evolution equation is central
to the proof that almost-isotropy of the CMB after last scattering implies almost-homogeneity of the ufid@rse
The higher multipoles|(3) evolve according to

(1+1) on (1HD(1-2)
(21+3)°° (21+3)

A+ g@HAH— D@IA-2 + AITPA + (14 3) ATTA-0 — | 9P LATTAI-1C

I-D+1)+2) 5|
_ A {(aTTA - 1)b _ (qjaj_1TTA - 2)
21+3)2i+5) el gy M (14 2) ot

A% g, |+ O[3]. (90

I+1
- A A1) _ [ T
neor| A= TTA-1)2 (2| 3

For I =3, the second term in square brackets on the right ofradient Qpg in the dipole equatiori87). The coupling of
Eq. (90) must be multiplied by;. The temperature fluctua- the multipole equations themselves provides an up and down
tion mU|tip0|ESTA| are determined in principle from the ra- cascade of effects, shown in general by Ef). Power is
diation dynamic multipoleﬂAI via Egs.(78) and (79). transmitted to thd-multipole by lower multipoles through
These equations show in a transparent and explicityg1  the dominant(ineay distortion term D*TI* -2, as well as
covariant and gauge-invariant form precisely which physicalthrough nonlinear terms coupled to the 4-acceleration
effects are directly responsible for the evolution of CMB(A®ITA-2), baryonic velocity ¢TTA-v), and shear
anisotropies in an inhomogeneous univefBleey show how  (of@2-1ITA-2)). Simultaneously, power cascades down
the matter content of the universe generates anisotropieBom higher multipoles through the linear divergence term
This happens directly through direct interaction of matter(divII)”, and the nonlinear terms coupled &%,v3 and
with the radiation, as encoded in the Thomson scattering2®, (Note that the vorticity coupling does not transmit
terms on the right of Eqg86), (87), (89) and(90). And it  across multipole levels.
happens indirectly, as matter generates inhomogeneities in The equations for the radiatidand neutring multipoles
the gravitational field via the field equatiof®—(17) and the  generalize the equations given by Challinor and Lasenby
evolution equatiori44) for the baryonic velocityg. Thisin ~ [36], to which they reduce when we remove all terms
turn feeds back into the multipole equations via the kine-O(evg) and O(€?). In this case, i.e. FLRW linearization,
matic quantities, the baryonic velocityg, and the spatial there is major simplification of the equations:
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) 4 A. Nonlinear effects on kinematic, gravitational and dynamic
PR+ §@pR+ divgr~0, (91 guantities

Evolution of the expansion of the univeré®, given by
Eq. (7), is retarded by the nonlinear shear termr,,o2",
and accelerated by the nonlinear vector terma,A? and
+2w,0? (see alsq2]). The vorticity evolution equatior®)
has a nonlinear coupling,,w® of vorticity to shear, whose
a .a effect will depend on the alignment of vorticity relative to
§pRUB_qR)' (92) the shear eigendirections. The shear evolution equation
has tensor-tensor and vector-vector type couplings, which
g ) g are the tensor counterpart of similar terms in the expansion
. T evolution. But in addition, relative velocity effects enter via
mR+AH TR+ 1_5F’R"ab+§D<ath)2>+ E(d'vn)ab the total anisotropic stress term. From E%]S), we see that
baryonic and cold dark matter contributions of the form
9 ab pv{@® to the shear evolution arise at the nonlinear level.
=~ 1_0nE‘TT77R ' (93) The constraint equatiorid3) and(14) show that acceleration
and vorticity provide scalarA%w,) and vector [w,A],)
nonlinear source terms for respectively the vorticity and
and forl=3 Shear.
The free gravitational fields, which+13 covariantly de-
_ (1+1) scribe tidal forces and gravitational radiati¢see[2,3,55—
ITA+ 4HTTA + DA -2 + ————(div IT)A 57]), and therefore in particular control the tensor contribu-
(21+3) tion to CMB anisotropies, are governed by the Maxwell-like
~ —ngoIA. (94) equationg11), (12),. (16) and(17). This is the foqndation for.
the electromagnetic analogy. The role of nonlinear coupling
) ) ) ) ) _terms in these equations is more complicated—{58kfor a
These linearized equations, together with the linearizedy discussion. Here we note that nonlinear couplings of the
equations governing the kinematic and free gravitationakhear and vorticity to the energy flux and gravito-magnetic
quantities, given by Eqs6)—(17) with zero right hand sides, field act as source terms for the gravito-electric field—see
may be covariantly split into scalar, vector and tensor modeszq. (16)—while nonlinear couplings of the shear and vortic-
as described ip43,35,36. The modes can then be expandedity 1o the anisotropic stress and gravito-electric field act as
in covariant eigentensors of the comoving Laplacian, and thggrce terms for the gravito-magnetic field—see @4q).
Fourier coefficients obey ordinary differential equations, fa- gFrom Egs.(41)—(44), we see that for baryonic and cold
cilitating numerical integration. Such integrations are perjark matter, nonlinear relative velocity terms act as a source
formed for scalar modes by Challinor and Lasef®§], with  for the linear parts of the evolution equations for energy
further analytical results given if85,36,66,38 _ density and relative velocity. While the 4-acceleratiopis
However, in the nonlinear case, it is no longer possible tqnyglved in correction terms in all these equations, the vor-
split into scalar, vector and tensor modg&3,64,73. A icity w, and sheaw,, only enter nonlinear corrections of
simple illustration of this arises in dust spacetimes, whiClyhe velocity equations, and not the energy density equations.
may be considered as a simplified model after last scatteringps reflects the fact that vorticity and shear are volume-
if we neglect the dynamical effects of baryons, radiation angyreserving. The kinematic corrections to the evolution of
neutrinos. If one attempts to carry over the linearized scalaryaiter relative velocity are of the forlA,v?[w,v], and

1

3DapR+ (d|V 7TR)a

. 4
qrt+4HgR+ §PRAa+

~NgoT

mode condition$43,36 o4pv°. For the massless species, as shown by &d, (75)
and (86), (87), the same form of corrections arises in the
w,=0=H,, energy flux evolution, since energy flux is of the fofmpv?

when the photon and neutrino frames are chosen as the en-

. . . ) .. ergy frame. Vorticity also does not affect energy density, but
into the nonlinear regime, it turns out that a non-terminatinggpqar does, owing to the intrinsic anisotropic stress of pho-

chain of integrability conditions must be satisfied, so that the, < and neutrinos. which couples with the shear.

models are in general inconsistent unless they have high garyonic and radiation conservation equations are both
symmetry[85,8@. Thus, even in this simple case, it is not ?ffected by nonlinear Thomson correction terms, which in-
possible to isolate scalar modes. In particular, gravitationa) )\ .« 4 coupling of the baryonic relative velocid to the
radiation, with curH,,# 0 (see[55-57), must in general be radiation energy density, momentum density and anisotropic

present. stress. In particular, we note that there im@nzero energy

The ggnergllzed e.quayon.s given aboye can form t'he bas@ensity transfeddue to Thomson scattering at second order.
for investigating the implications of nonlinear dynamical ef-

fects in general and second-order effects against an FLRW
background in particular. More quantitative and detailed in-
vestigations along these lines are taken up in further papers. Nonlinear Thomson scattering corrections also affect the
Here we will confine ourselves to a qualitative analysis.  evolution of the radiation quadrupobeﬁb, as shown by Eq.

B. Nonlinear effects on radiation multipoles
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(89). In this case, the baryonic relative velocity couples tothat the same effect applies to the neutrino backgrgurttke
the radiation dipoley and octopold12°C. Note also thef; relevant nonlinear terms in E¢QO) are (for 1>1)
correction to the linear Thomson terntoTwﬁb, in agree-
mgnt with[19,36. This correction arlises from incorporgting —1 EUbCHbcAHLU(a.a,,lnA,,2>_A(aIHA|,1>+EAbeA|
anisotropic effects in the scattering integfahile neglecting 4 2
polarization effects, as noted ear)ier

The general evolution equatid@0) for the radiation dy-
namic multipoleslI” shows thafive successive multipoles,
i.e. forl—2,...]+2, are linked together in the nonlinear
case. Furthermore, the 4-acceleratidg couples to thel The observable imprint of this effect will be made after last
+1 multipoles, the vorticityw, couples to thd multipole, ~ scattering. In the free-streaming era, it is reasonable to ne-
and the sheas,;, couples to thé=+ 2 andl multipoles. All of ~ glect the vorticity relative to the shear. We can remove the
these couplings are nonlinear, exceptlferl in the case of ~acceleration term by choosing' as the dynamically domi-
A, and|=2 in the case ofr,,. These latter couplings that nant cold dark matter framie. choosing &=0), as in[36].
survive linearization are shown in the dipole equatig@ It follows from Eqgs.(80) and(90) that the nonlinear correc-
(i.e. prA?) and the quadrupole equati@B9) (i.e. pgro®®).  tion to the rate of change of the linearized temperature fluc-
The latter term drives Silk damping during the decouplingtuation multipoles is
procesg50]. Nonlinear corrections introduce additional ac- !
celeration and shear term€gorticity corrections are purel : be aa 1 A
nonlinear,i.e. vorticity has no diregt effect at the Iinegr Ievyel, 8(7%)~| 4 7bcT ArolttmaA2 | for 11,
and a linear approach could produce the false impression that (95
vorticity has no direct effect at all on the evolution of CMB
anisotropies. However, for very high i.e. on very small The linear solutions for, ando,y, can be used on the right
angular scales, the nonlinear vorticity term could in principlehand side to estimate the correction to second order. Its ef-
be non-negligible. fect on observed anisotropies will be estimated by integrat-

The disappearance of most of the kinematic terms upoihg s(7) from last scattering to now(See[37] for the
1

'?’?#saitlsotr:llse ;Hk:enelﬁﬂ?;eéégz)c essive moments, i.&.1+1. case of scalar perturbations, these solutions are given by
In addii yt A q fh . furth ‘ Challinor and Lasenb§36] (see alsd66)).
N addition oA, and w,, there IS a further vector cou- Finally, we note that the well-known Vishniac and Rees-

pling _at tr;e nonlinear Ieve_l, I-€. the coupling of the baryFm'CSciama second-order effects also become significant at high
velocity v to thel = 1 multipoles in the Thomson scattering | anq can eventually dominate the linear contributions to

source term_ of the evplution equati(ﬁ(_)). In fact these non- _ CMB anisotropies on small enough angular scéfgsically
linear velocity corrections are of precisely the same tensorigls 13 of more [19].

form as the acceleration corrections on the left hand side,
only with different weighting factors. Linearization, by re-
moving these terms, also has the effect of removing the non-
linear contribution of the radiation multipoldd”i=1 to the We can normalize the radiation dynamic multipold$'
collision multipoleK”. to define the dimensionless multipolds=(1)

One notable feature of the nonlinear terms is that some of
them scale likd for largel, as already noted in the case of A — (L)HAI~TAI
vorticity. There are no purely linear terms with this property, 4 '
which has an important consequence, i.e. thavery high |
multipoles (corresponding to very small angular scales inThus theZ” are equal to the temperature fluctuation multi-
CMB observations), certain nonlinear terms can reach thepoles plus nonlinear corrections. In terms of these quantities,
same order of magnitude as the linear contributiofidote  the hierarchy of radiation multipoles becomes

+ wPep SATTA-VE

C. Temperature fluctuation multipoles

T 1 1 4 DT 2 2 b 1 a
?:—§—§Da7a— §Ta?—§Aa7_a— 1—50'ab7_a +§nE0'TUBa(UB_Ta)+O[3], (96)
: T 1 DT 2 . 2 A i 2
T=—-4 f+§® 72— T —A _ng7—a +nEO'T(UB_Ta)+ gnEO'TTa Ugb— O bTb_ gAbTa
2 8 _pDpT
+[w,7] —gTa ?+O[3], 97
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. T 1 3 9 1 3
TP=—4{ £+ 30 |T0— - D70 — Z DT oneo T+ nEaT( zﬂaug’u??’db%m
3 4 10 12 . DT
+_v§3avg) —5A<a7b>——Uchade+2wcscd<aTb>d——Uc<a7b>c——TabC c +0[3], (99)
4 21 7 7 T
and, forl >3,
: T 1 (1+1) I+1
TA=—4 T+§® T“'—D<a'TA'*1>—(2|+3)Db’]J"A'—nEchTA'nLnEaT ﬂAlflvg'M T3 T,
(I+1)(1-2) A (I-1)(1+1)(1+2)
D | (a7AI-1) b, (ag7A-1)c (- 1—2) CA
21+3) A TP — (1 +3) ARTA-D + | @Pe, ITA-DC+ (] +2) {31 7TA-2) + (21+3)(215) opT?
5| (1+1) DT
_ {(aj7A _1)b_ b—P "
@ T e T T okl (99

(see e.g[19] and the references thergirEquations(100)—
The nonlinear multipole equations given in this form (102 were given in[10] in the free-streaming casg-=0.
show more clearly the evolution of temperature anisotropies AS noted before, there is still a gauge freedom here asso-
(including the monopole, i.e. the average temperafliye ~Ciated with the choice of 4-velocity®. Given any physical
Althought the 7% only determine the actual temperature choice for this 4-velocity which tends to the preferred
fluctuations7™ to linear order, they are a useful dimension- 4-velocity in the FLRW limit, thel=1 equations are gauge
less measure of anisotropy. Furthermore, Eg6)—(99) ap-  'nvariant.
ply as the evolution equations for temperature fluctuation
multipoles when the radiation anisotropy is sm@le. 7%
=), but the spacetime inhomogeneity and anisotropy are
not restricted. This includes the particular case of small \We have used a covariant Lagrangian approach, in which
CMB anisotropies in general Bianchi universes or in per-all the relevant physical and geometric quantities occur di-
turbed Bianchi universes. rectly and transparently, as PSTF tensors measured in the
FLRW linearization, i.e. the case when only first order comoving rest space. There is no restriction on the deviation
effects relative to the FLRW limit are considered, reducesof geometric and physical quantities from FLRW limiting
the above equations to values, so that arbitrary nonlinear behavior may in principle
) be treated. We have derived the corresponding equations
T 1 1 governing the generation and evolution of inhomogeneities
7~ 739730 (100 and cmB anisotropies in nonlinear generality, withaypri-
ori restrictions on spacetime geometry or specific assump-
DaT A 2 tions about early-universe particle physics, structure forma-
T —A%- ngT tion history, etc. Thus we have developed a useful approach
to the analysis of local nonlinear effects in CMB anisotro-
+ngor(vi—7%), (101)  pies, with the clarity and transparency arising from3Lco-
variance. The equations are readily linearized in a gauge-
invariant way, and then the methods[8f7] may be used to

Forl =3, the Thomson terr‘mAl—lvaB') must be multiplied by ~grated Boltzmann equations used in the standard literature
3
2

VII. CONCLUSIONS

1~ — g - DY — —D 2 expand in scalar modes and regain well-known first-order
results[66] (see alsd35,36,39).
9 ab This approach allowed us to identify and qualitatively de-
~10"ETTT (102 scribe some of the key local nonlinear effects, and more
quantitative results will be considered in further papers. We
and, forl=3 calculated the nonlinear form of Thomson scattering multi-
poles(given the initial simplifying assumption of no polar-
Ae Dl A D (I+1) D, A —neorrA. (103 ization), revealing the new effect of coupling between the

baryonic bulk velocity and radiation brightness multipoles of
orderl=1. We also found the nonlinear effects of relative
These are the 43 covariant and gauge-invariant multipole velocities of particle species on the dynamic quantities that
generalizations of the Fourier mode formulation of the inte-source the gravitational field. These effects also operate on

(21+3)
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the conservation equations, including evolution equations foStoeger, Bruce Bassett, Henk van Elst, Malcolm MacCallum,
the relative velocities of baryonic and cold dark matter. Arthur Kosowsky and David Matravers for useful comments

Nonlinear effects come together in the hierarchy of evo-and discussions. This work was supported by the South Af-
lution equations for the radiation dynamierightnesg mul-  rican Foundation for Research and Development.
tipoles, which determine the CMB temperature anisotropies.
In addition to the nonlinear Thomson contribution, we iden- )
tified nonlinear couplings of the kinematic quantities to theAPPENDIX' EXACT NOE'\g‘lIJ'\LET'IA‘gNF;ELATNE VELOCITY
multipoles of ordett =2,1£1, andl. These quantities them-
selves are governed by nonlinear evolution equations, which Change in 4-velocity:
provides part of the link between CMB anisotropies and in-
homogeneities in the gravitational field and sources. The link ~ _ _ _
is also carried by the spatial gradient of radiation energy UYa~ Y(Ua®va) where y=(1-v%) "% vaut=0.

: . e (A1)

density(equivalently, average radiation all-sky temperature
and the baryonic relative velocity. Furthermore, there is in- _ )
ternal up- and down-transmission of power within the mul-Change in fundamental algebraic tensors:
tipole hierarchy, supported by the kinematic couplings as

;/_vellI as by distortion and divergence derivatives of the mul- hap=hap+ Y2 [v2Uaup+ 2U(aUp) VU], (A2)
ipoles.

We used our analysis of the radiation multipoles to iden- ~ q
tify new effects that operate at high In particular, we €abc= Y€anct Y{2U[a8bjcat UcEandiv -

showed that there is a nonlinear shear correction effect on (A3)

small angular scales, whose impact on the angular power

spectrum was qualitatively described. The quantitative analy- Transformed kinematic quantities are defined by

sis of this and other nonlinear effects is a subject of further

research. I
Vbua:§® hab+ Uab+ SabcwC_Aan,
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0 =y0+ y(divo +A%,)+ y3W, (A4)

v L0, P—[w,v]at vt Ay + b°u+£(div ) +3[ curly]
(a) Uat Oap¥ W,V |4 3 v UptT Opcl U at 3 UV)Ug 2 v, Ula

’Aa = 72Aa + 72 3

+UbD<bUa) + 74W(ua+va)a (A5)

~ 2 1, 1 1 b b 1 b 1 1. 1 b _c,.d
Wa=7y 1—§v wa— Ecurlva+ Evb(Zw —curlv®)u,+ SVbw vt E[A:U]a"‘ E[U,v]a-i- 5€abcd U V[,

(AB)

Teg v

- 1 .
Tab= YT ap Y(1+ ¥*)U(a0)cv + Y2 Al Vb + 07Uy ]+ YDalpy — §hab[Acvc+ Y2(W=00% ]+ y3u,up

w

1 . 1
Y- vty 1wt 73u(avb)[AcUC+ Tl —v e +27| Y- §>W

2 2 c c,.d
+§v Av"—v v Dicvgyt

+33 divo — Aot v23v2— 1YW %30t 027Ut s - 73 c_ .3 42
37 vaupldivo —A+ ¥ (3y = 1)W]+ ¥ v qp) T 0 ¥ U@l by T YV (a0 “— ¥ [ @,0]alvp) T v Uy}
+2 ’ysUCD<CU (a>{v b) + Ub)}, (A7)

where
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_ ' ..C 1 24;i c,d
W=vw +§v divo+v°0°Dcv gy -

Transformed dynamic quantities gre2]

;:p+72[vz(p+p)_2qava+ 77'abvavb]! (A8)
A 1 2r. 2 a a . b
P=p+ 3 ¥ v (p+P) = 2020+ map v°], (A9)

aa: Yla— 'yWabUb_ ')’3[(P+ p)— quvb+ Wbcvbvc]va_ 73[U2(P+ p)
—(1+03)qpv "+ moe0 v, (A10)

- 2.C 2.2 2 1 2r. 2
Tab= Tap+ 2YV Tea{Up) + Uy} =207y Qalpy— 27y Qavmy~ 3 ¥ (v (p+p)
c,.d 1 4 4 2 c 2 c,.d
+meqv v Napt 5 ¥ (20 (p+P) 40 Q0"+ (30T meqv 0" Juallp

2 4 2 2 d 1 4 2
+ 37 120%(p+p)— (1430 )Qev S+ 2 g v U@y + 37 1(3=v)(p+p)

—4qv°+ 2 viv vy - (A11)
Gravito-electric—magnetic field: usif@7]
Cab®®=4{upaul+ hial B T+ 26 4, U CH U+ 20 H o8 6 88= 4{ U, + Ryl VB T+ 22 o Ul CH A8+ 2U o H o2 5%,
we find the transformatiof62]
Eap= v (1+0?) Eapt v 2 cqaH) *+ 2E g(ally + (Ualp+ Nap) Ecqo = 2E(aU by + 2U(ae bycdH e}, (A12)

Hab= v (1+0?)Hap+ v — 2 c4(aE)? + 2H (alpy + (Ualp+ Nap) He v = 2H (a0 by — 2U(a by cdE el }- ALY

This may be compared with the electromagnetic transformation
Ea={Eat[v.Hla+ v Epla),
Ha={Ha=[v.Ela* v Hpla},
where
Fab=2U[aEp) + € apcH = 2UEp; + £ancHC.

Note that all the transformations above are given explicitly in terms of irreducible quafitiéiesreducible in the original
ud-frame.
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