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Order reduction in semiclassical cosmology
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We investigate Robertson-Walker cosmology with the LagrangianR1a1\R21a2\RmnRmn1Lrad where
Lrad denotes a classical source with a traceless energy-momentum tensor. We weaken the self-consistence
condition @L. Parker and J. Z. Simon, Phys. Rev. D47, 1339~1993!#. Quantum corrections are expressed as
contributions to the effective equation of state. We show that the empty space-time is stable within the class of
radiation-filled expanding universes with no order reduction of the field equations.@S0556-2821~99!02906-9#

PACS number~s!: 98.80.Hw
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I. INTRODUCTION

Controversial fourth order differential equations, whi
govern the semiclassical cosmology, can be reduced to
ond order@1,2# and, in this way, avoid quantum-originate
instabilities @3,4#. The reduction is based on theself-
consistencecondition, i.e., the assumption that both equ
tions and solutions are perturbatively expandable in\. Un-
der this condition the universe becomes an ordin
mechanical system with a two-dimensional phase-space
responding to the single degree of mechanical freedom—
scale factora(t,\). Self-consistent theory is still renorma
izable @5#; Minkowski space-time regains stability in th
class of homogeneous and isotropic models; qu
inflationary phenomena disappear@6#. Similar reduction
techniques are being applied to gravity with higher th
fourth-order derivatives@7# and also in other branches o
physics@8#.

However, imposing the self-consistency condition on
cosmological scalea(t) encounters some difficulties. In
universe with vanishing spatial curvature, there still rema
the freedom to multiply metrics by an arbitrary constant fa
tor; therefore the scalea(t) is not a measurable quantity. Th
requirement fora(t,\) to be\ expandable is physically un
clear. In open or closed universes this freedom is reduce
the choicek561, and the scale factors are uniquely det
mined by cosmological observables: the Hubble parameteH
and the energy densitye. Yet arbitrarily small changes in
any of these observables in the vicinity of critical densitye
2L53H2 may result in indefinite changes ofa(t). The
perturbative character of the energy-momentum tensor~and
consequently the equations! with respect to an arbitrary cho
sen parameter, in general, does not imply the same prop
of the metrics. Finally, expandinga(t) in the equations,
which contain fixed curvature indexk @2#, limits quantum
corrections to only those which preserve the same sign of
space curvature. This limitation is particularly severe fo
flat universe, where generic quantum corrections would c
tribute to the space curvature unless thek50 condition pre-
vents that. This limitation cannot be derived directly fro
the Lagrangian and, in fact, it forms an additional constra
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imposed on the theory~which is not even true in classica
gravity1!.

Not arguing with the very idea of self-consistency, w
draw attention to some circumstances which are impor
for semiclassical cosmology.

~1! Without harm to the reduction procedure, one can
lease the consistency condition for the scale factor, dema
ing instead the same property for cosmological observa
~the Hubble parameter, etc.!

~2! For a radiation filled universe with vanishing cosm
logical constantL50 the self-consistency condition is su
perfluous, since the original equation is of second ord
Terms with higher derivatives cited by classical papers@9#
contain an additional hidden factor\ and are eventually
eliminated in the first order expansion.

~3! We show that quantum corrections form the equat
of state of a barotropic fluid, and discuss the stability of t
Minkowski space-time on the ground of dynamic syste
theory.

II. CONDITION OF SELF-CONSISTENCY FOR HUBBLE’S
EXPANSION RATE

We consider semiclassical gravity theory with the L
grangianR1a1\R21a2\RmnRmn1L rad, whereL rad repre-
sents classical radiation or another thermalized field of ma
less particles. Typically, cosmologies containing theR2 and
theRmnRmn terms lead to four order equations@9# and violate
the stability of empty space@3#.

We write quantum terms on the right-hand side of t
field equations and treat them as corrections to the ene
momentum tensor. We think of\ as the theory paramete
which can take arbitrary values, so the limit transition\
→0 defines the classical limit of the theory. The field equ
tions we write in the Einsteinian formRmn2 1

2 Rgmn1Lgmn

5Tmn , but with the modified, effective energy-momentu
tensor

1Note that the Lemaıtre universes, which are of positive sp
curvature, are obtained from flat universes~not closed! when L
diverges from zero.
©1999 The American Physical Society04-1
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Tmn5Tmn
~rad!2\a1

~1!Hmn2\a3
~3!Hmn , ~1!

where

~1!Hmn5 1
2 R2gmn22RRmn22hRgmn12¹m¹nR, ~2!

~3!Hmn52Rm
sRsn1 2

3 RRmn1 1
2 RsrRsrgmn2 1

4 R2gmn , ~3!

and the constanta3 is some combination ofa1 anda2 @Robertson-Walker symmetry have been partially exploited to de
formula ~1!. For a more precise explanation see Ref@2#.# The ~0,0! equation derived in this way

052L2
km

a4
1

1

a2F3k13S da

dt D
2G1

a1\

a4 F218k2136kS da

dt D
2

154S da

dt D
4

236aS da

dt D
2 d2a

dt2
118a2S d2a

dt2
D 2

236a2
da

dt

da3

dt3
G

1
a3\

a4 F3S da

dt D
4

16kS da

dt D
2

13k2G ~4!

contains four fundamental constants, two of them classical — the gravitation constantk ~further on we put 8pk51), the
cosmological constantL, and two quantum onesa1 anda3 . There are also two quantities which define a particular solut
the constant of motionm5e0a0

4 , and the index of space curvaturek. Therefore, the transition from classical to quantum the
with the self-consistencya5a01\a1 imposed on Eq.~4! preserves the type of space curvature, including the strongk50
limitation for the flat universe.

One can get rid of the last two constants, and consequently, of the constraints they bring, by introducing the
expansion parameterH5(1/a)(da/dt). Differentiating Eq.~4! twice, we obtain the fourth order equation forH, which
contains only fundamental constants2

0523
d2H

dt2
218H

dH

dt
24H~3H22L!118\a1

d4H

dt4
1162\a1H

d3H

dt3

1
d2H

dt2
F6~51\a11\a3!

dH

dt
16~90\a11\a3!H224L~6\a11\a3!G

14HF162\a1S dH

dt D 2

1
dH

dt
@3~48\a12\a3!H222L~6\a11\a3!#23\a3H4G . ~5!

This equation describes the dynamics of Robertson-Walker models with arbitrary space curvature, and what is
important, it is expressed in terms of observable quantities. A self-consistency condition imposed on measurable quan
well defined physical meaning. We adopt Simon’s ansatz toH, namely, we state thatH(t)5Hclass(t)1\Hquant(t) is pertur-
bative in\. Now, the procedure of the order reduction can be done in two ways.

~1! One can differentiate twice the zeroth-order expansion@Eq. ~5! with a15a350] to find the third and fourth derivative
and eliminate them from the full Eq.~5! — this is equivalent to what is done in Ref.@2#.

~2! Substitute the expansionH(t)5Hclass(t)1\Hquant(t) directly into Eq. ~5! and abandon terms second order in\ or
higher.

2The reverse procedure would give the equation with two parameters of continuous values. Consequently, Eq.~5! formally has a broader
class of solutions than Eq.~4!. However, the freedom to choosek as different from 0,61 is a trivial one, and resolves itself to rescaling t
metrics by a constant factor.
083504-2
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In both cases we obtain the second order equation

0523
d2H

dt2
218H

dH

dt
24H~3H22L!

12
d2H

dt2
F3~51\a11\a3!

dH

dt
13~90\a11\a3!H222L~6\a11\a3!G

14HF459\a1S dH

dt D 2

1
dH

dt
@3~372\a12\a3!H222L~69\a11\a3!#G

14@3~180\a12\a3!H42204L\a1H218L2\a1#, ~6!
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which is nonlinear both inH and its derivatives. So stron
nonlinearity allows one to find exact solutions only in som
particular situations. This is not the case in Eq.~6!. However,
this equation becomes much more transparent after one
writes the quantum corrections as contributions to ene
density and pressure. Qualitative analysis is then enable

Let e andP denote, respectively, the effective energy de
sity and effective pressure, i.e., each of these quantitie
supplemented by quantum corrections. The universe dyn
ics is determined by the system of the Raychaudhuri~7! and
the continuity~8! equations

dH

dt
52H22

1

6
~3P1e22L!, ~7!

de

dt
523H~P1e!. ~8!

We differentiate Eq.~7!, substitute into Eq.~6!, and apply
the continuity equation~8! to get the relation between pre
sure, energy, and the cosmological constant in differen
form

dP

de
5

P1e/9

P1e
2

2

9
a3\

~3P1e!2

P1e
2

a3\

27

8L2

P1e
. ~9!

As a matter of fact, one can solve Eq.~9! analytically, how-
ever, the solution takes an unclear implicit form. This
much simpler to follow the other way. The solution of E
~9! must be a function of the energy density and cosmolo
cal constant solely, henceP(e,L) is independent of the ex
pansion rateH. Therefore the limit transitionH2→3(e
1L) does not affect its values, and the general solution
identical with the integral found for the flat universe. In th
last case the equation

2
1

18F3
dH

dt
12~3H22L!G1\a1

d3H

dt3
17\a1H

d2H

dt2

1
\

3F12a1FdH

dt G2

1~36a12a3!H2
dH

dt
2a3H4G50

~10!
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is analogous to Eq.~5!. Its order reduces by 2, and finally th
equation takes a particularly simple form

dH

dt
52

2

3
e1

2a3\

9
~e22L2!. ~11!

Now, comparing Eq.~11! with the Raychaudhuri equatio
~7! we obtain the equation of state of cosmological subs
tum in the form of the algebraic relation

P5
1

3
e2

4a3\

9
~e22L2!. ~12!

FunctionP(e,L), defined by Eq.~12!, fulfills the differential
equation~9! with an accuracy to termso(\). By simple cal-
culation@10#, one can confirm that the exact solutions fou
by Parker and Simon also obey Eq.~12!.

As we have already mentioned, the equation of state~12!
is barotropic, i.e., effective pressure is solely the function
the effective energy density~including the energy of vacuum
L). While reducing the equations order we eliminate con
butions to the energy-momentum tensor coming from
expansion rate@9#; therefore the universe evolution becom
a reversible process@Eqs.~7!,~8! are invariant under the time
reflectiont→2t].

Quantum corrections contained in Eq.~12!, and conse-
quently the dynamical system~7!,~8! are free of thea1 con-
stant. The only term multiplied bya1 which survives the
reduction procedure@2#, has been assimilated here by th
effective energy density.3

III. THE L50 CASE

Its worth noticing that in some physically interesting sit
ations the reduction procedure eliminating higher order
rivatives is redundant. In the radiation filled universe w
null cosmological constant the correction\a1Hmn

(1) , which
formally appears as linear in\, actually is quadratic, and
consequently should be abandoned as theo(\) term. To

3In this approach the quantum corrections modify effective ene
density and pressure, not the fundamental constants as in Ref@2#.
4-3
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show this let us express the traceless tensor(1)Hn
m in terms of

the Ricci scalar and the effective energy density

~1!H5
R

2
~4e2R!F 1 0 0 0

0 21/3 0 0

0 0 21/3 0

0 0 0 21/3

G .

The field equations with the energy-momentum tensor~1!
show that the scalarR involves the trace of the
tensor (3)Hn

m , namely,R5a3\ (3)Hm
m , so it is a quantity lin-

early dependent on\.
Writing (3)Hm

m in terms of the effective energy densitye
with the accuracy to termso(\) we getR5 4

3 a3\e2. Tensors
(1)Hn

m and (3)Hn
m can be rewritten as

~1!Hn
m5

8

3
a3\e3F 1 0 0 0

0 21/3 0 0

0 0 21/3 0

0 0 0 21/3

G ,

~3!Hn
m5

1

3
e2F21 0 0 0

0 5/3 0 0

0 0 5/3 0

0 0 0 5/3

G
2

8

27
a3\e3F 0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

G .

Now it is clear that only the second of the expressio
a1\ (1)Hn

m anda3\ (3)Hn
m is essentially linear in\ and forms

the first-order quantum contribution to the energ
momentum tensor. The first onea1\ (1)Hn

m , which carries all
higher derivatives is actually square in\. This is closely
related to the absence of particle creation in the radiat
filled Robertson-Walker universe~see Ref.@11#, and papers
cited there.! The theory with the energy-momentum tens
Tmn5Tmn

(rad)2\a3Hmn
(3) leads to the effective equation of sta

P5 1
3 e2(4a3\/9)e2, which is perfectly consistent with Eq

~12!.

IV. STABILITY OF THE EMPTY SPACE — DYNAMICAL
SYSTEMS APPROACH

The equation of state of the formP5P(e,L) @or more
generallyP5P(e,L,H), see Ref.@12## uniquely determines
cosmological evolution. The system~7!,~8!, which defines
the universe dynamics in the$H,e%-phase space is auto
nomous. Choosing a point in the$H,e%-phase space, on
determines uniquely the metrics in the initial moment
08350
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well as the metrics’ evolution in time.4 The stability of the
Minkowski space-time is defined by the stability of th
(H,e)5(0,0) point in the $H,e%-phase space under th
condition L50. For the equation of state~12! discussed
in the preceding section the autonomous system~7!,~8!
reads

dH

dt
52H22

1

3Fe2
2

3
a3\e2G , ~13!

de

dt
524HFe2

1

3
a3\e2G , ~14!

and its trajectories form levels of the integral

H25
e

3
2KA e

Ge0a0
4
2

a3\

6
KA e3

Ge0a0
4
. ~15!

The phase portrait of the system~13!,~14! is shown in Fig. 1.
For completeness and also for readers convenience, w
tach Fig. 2 showing classical Friedmanian dynamics in
same representation. The phase structure of class
radiation-filled universes and the phase structure defined
Eqs.~13!,~14! are topologically equivalent in the low-energ
limit. This is so because one cannot enrich the structure
the $H,e%-phase plane without violating the standard ene

4We abandon here a trivial freedom to multiply the flat univer
metrics by a factor constant in time.

FIG. 1. Dynamics of semiclassical radiation filled universes.
4-4
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ORDER REDUCTION IN SEMICLASSICAL COSMOLOGY PHYSICAL REVIEW D59 083504
conditions. On the other hand, according to Eq.~12! these
conditions are well fulfilled for low and positive energy de
sities. The equation of state~12! formally admits violation of
the energy conditions but these states appears already i
Planckian regime and hence, far beyond the region wh
semiclassical approximation is valid.~The dotted region in
the upper part of Fig. 1, which contains three additional cr
cal points must be recognized as nonphysical.!

An essential property of the system~13!,~14! is the ab-
sence of solutions that change the energy density from p
tive to negative or the reverse.~Such a behavior was possib
in the original semiclassical theory and disqualified t
empty space as a ground state.! Indeed, on the strength o
Eq. ~12!, the initial conditione50 results ine1P50, and
consequently the right-hand side of Eq.~14! vanishes. Both
conditionse50 and de/dt50 ensure that the state of th
zero energy density is ‘‘persistent.’’ This is consistent w
the results based on the functional integral formalism@13#,
where all higher derivative terms responsible for instabi
are eliminated by regularization of the energy-moment
tensor.

The stability of Minkowski spacetime is the same as
classical theory. In both cases, classical or the quantum
(H,e)5(0,0) point is a threefold point with elliptical secto
@14# and its type does not depend on the value of\. This
means that the phase space is structurally stable ag
quantum corrections in the low-energy density limit. Th

FIG. 2. Dynamics of Friedmanian~classical! radiation filled uni-
verses.
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nontrivial property does not follow from the solutions anal
city in \, but from the form of the energy density tensor~1!.5

V. SUMMARY AND CONCLUSIONS

In the reduced Simon-Parker theory the energ
momentum tensor is renormalized to take the hydrodyna
form with a simple, barotropic equation of state. The se
consistency conditions for semiclassical cosmology can
imposed on observable quantities and weakened. By
manding the Hubble expansion rate to be perturbative i\
we allow the space curvature to alter from 0 while quant
corrections to the flat universes occur.

In the particular case of the radiation-filled universe a
vanishing cosmological constant, the dynamics of
Robertson-Walker universe in the~original! semiclassical
theory is described by a second order equation, therefo
does not need either the reduction or additional condition
self-consistence. The reason lies in the absence of par
creation in the radiation filled universe, which manifests
self as an additional factor\ ‘‘hidden’’ in the
tensor (1)Hmn . This eventually eliminates all the higher de
rivative terms.

Minkowski spacetime has the same stability character
Einsteinian gravity, which is consistent with results based
the functional integral formalism@13#. The stability of
Minkowski spacetime is independent of the numerical va
of the Planck constant. In the language of dynamical syste
theory, this property is called the structural stability of t
$H,e%-phase space against changes of\.

It’s worth noticing that the Liapunov stability of the en
vironment with equation of state~12! with respect to
position-dependent perturbations is also the same as for
classical radiation-filled universe@16#, in contrast to the
original semiclassical theory, where quantum corrections
inhomogeneities grow. This suggests an insignificant role
semiclassical corrections in the processes of structure for
tion in the early universe.
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5In general, a threefold point may bifurcate into simple critic
points under smooth changes of the equation coefficients. Th
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Sitter space time, the third one, the Einstein static universe@15#.
However, no bifurcation, results from quantum corrections.
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