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Order reduction in semiclassical cosmology
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We investigate Robertson-Walker cosmology with the Lagran§an %R+ aiR*'R,,+ L aq Where
L,.q denotes a classical source with a traceless energy-momentum tensor. We weaken the self-consistence
condition[L. Parker and J. Z. Simon, Phys. Rev.403, 1339(1993]. Quantum corrections are expressed as
contributions to the effective equation of state. We show that the empty space-time is stable within the class of
radiation-filled expanding universes with no order reduction of the field equafi®0556-282(199)02906-9

PACS numbg(s): 98.80.Hw

I. INTRODUCTION imposed on the theorfwhich is not even true in classical
gravity').
Controversial fourth order differential equations, which  Not arguing with the very idea of self-consistency, we
govern the semiclassical cosmology, can be reduced to sedraw attention to some circumstances which are important
ond order[1,2] and, in this way, avoid quantum-originated for semiclassical cosmology.

instabilities [3,4]. The reduction is based on thself- (1) Without harm to the reduction procedure, one can re-
consistencecondition, i.e., the assumption that both equa-jease the consistency condition for the scale factor, demand-
tions and solutions are perturbatively expandablé.irn-  jng instead the same property for cosmological observables

der this condition the universe becomes an ordinaryihe Hubble parameter, efc.

mechanical system with a two-dimensional phase-space cor- (o) For 4 radiation filled universe with vanishing cosmo-

responding to the single degree of mechanical freedom—thf%gical constantA =0 the self-consistency condition is su-

scale factora(t,). Self-consistent theory is still renormal- perfluous, since the original equation is of second order.

izable [5]; Minkowski space-time regains stab|l|ty'|n the .Terms with higher derivatives cited by classical pafgé&s
class of homogeneous and isotropic models; quasi-

inflationary phenomena disappe@6]. Similar reduction cqnt_ain an additiqnal hidden factq’r and are eventually
techniques are being applied to gravity with higher thanellmlnated in the first order expansion. .
(3) We show that quantum corrections form the equation

fourth-order derivativeg7] and also in other branches of k X . .
physics[8]. of state of a barotropic fluid, and discuss the stability of the

However, imposing the self-consistency condition on theMinkowski space-time on the ground of dynamic systems
cosmological scale(t) encounters some difficulties. In a theory.
universe with vanishing spatial curvature, there still remains
the freedom to multiply metrics by an arbitrary constant fac-
tor; therefore the scal(t) is not a measurable quantity. The Il. CONDITION OF SELF-CONSISTENCY FOR HUBBLE'S
requirement for(t,%) to beZ expandable is physically un- EXPANSION RATE
clear. In open or closed universes this freedom is reduced by . . . . .
the choicek=+1, and the scale factors are uniquely deter- W€ consider semiclassical gravity theory with the La-

H 2 v
mined by cosmological observables: the Hubble parantéter 9rangianR+ a1fiR"+ a;hR*'R,,+ L ag, WhereL qq repre-
and the energy density. Yet arbitrarily small changes in sents classical radiation or another thermalized field of mass-

any of these observables in the vicinity of critical dengity €SS p?rticles. Typically, cosmologies containing Rfeand
— A=3H?2 may result in indefinite changes af(t). The theR*’R,,, terms lead to four order equatiof8 and violate

perturbative character of the energy-momentum tefmod "€ Stability of empty spacks]. , _
consequently the equationsith respect to an arbitrary cho- W& Writé quantum terms on the right-hand side of the
sen parameter, in general, does not imply the same properf Id equations and treat t_hem as corrections to the energy-
of the metrics. Finally, expanding(t) in the equations, Momentum tensor. We think df as the theory parameter,
which contain fixed curvature indek [2], limits quantum  Which can take arbitrary values, so the limit transitibn
corrections to only those which preserve the same sign of thg’ 0 defines the classical limit of the theor;l/. The field equa-
space curvature. This limitation is particularly severe for allons we write in the Einsteinian form,,—3Rg,,+Ag,,
flat universe, where generic quantum corrections would con= 1 x»» PUt with the modified, effective energy-momentum
tribute to the space curvature unless ke0 condition pre-  €nsor
vents that. This limitation cannot be derived directly from
the Lagrangian and, in fact, it forms an additional constraint
INote that the Lemautre universes, which are of positive space
curvature, are obtained from flat universgmt closed when A
*Email address: woszcz@oa.uj.edu.pl diverges from zero.
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Tu=Ty —hayVH,, —fiag¥H,,, @)

where
H,,=3R%g,,~ 2RR,,—20Rg,,+2V,V,R, @)
®H,,=—-RIR,,+3RR,,+1R,,R7"g,,~ 1R%g,, . ()

and the constant; is some combination ao&; and «, [Robertson-Walker symmetry have been partially exploited to derive
formula (1). For a more precise explanation see R&f] The (0,0) equation derived in this way

e nfr U ofda] ed] o, (da)? o (da)t da\?d’a __(d%|® _  dada®

- at a2 dt) |7 at dt dt dt) ge de? dt g¢
ash] o98)° 6 92) 1 ai2 4
24 °lar) T ar) @

contains four fundamental constants, two of them classical — the gravitation corstauther on we put &«=1), the
cosmological constant, and two quantum ones; and a;. There are also two quantities which define a particular solution:
the constant of motiop. = eoag‘, and the index of space curvatlkeTherefore, the transition from classical to quantum theory
with the self-consistencp=ay+fa; imposed on Eq(4) preserves the type of space curvature, including the stkeng
limitation for the flat universe.

One can get rid of the last two constants, and consequently, of the constraints they bring, by introducing the Hubble
expansion parametdid = (1/a)(da/dt). Differentiating Eq.(4) twice, we obtain the fourth order equation fbr, which
contains only fundamental constants

0 3d2H 18HdH 4H(3H2—A)+18 d4H+162ﬁ HdaH
- o — v - A — o -
dt? dt Lt Y

d?H dH )
+ F 6(51ﬁa1+ﬁa3)a+6(90ﬁa1+ﬁa3)H —4A(6ha+hasg)

2

dH
+4H +E[3(48ﬁal—ha3)H2—2A(6hal—l—ha3)]—3ﬁa3H4. (5)

dt

dH
16%@1

This equation describes the dynamics of Robertson-Walker models with arbitrary space curvature, and what is equally
important, it is expressed in terms of observable quantities. A self-consistency condition imposed on measurable quantities has
well defined physical meaning. We adopt Simon’s ansatd,tmamely, we state thadl (t) = Has{t) +7AHguan(t) is pertur-
bative inz. Now, the procedure of the order reduction can be done in two ways.

(1) One can differentiate twice the zeroth-order expanfim (5) with a;= a3=0] to find the third and fourth derivatives
and eliminate them from the full E¢5) — this is equivalent to what is done in R¢2].

(2) Substitute the expansiof (t) =Hgs{t) +7Hquan(t) directly into Eq.(5) and abandon terms second orderfiror
higher.

2The reverse procedure would give the equation with two parameters of continuous values. ConsequeBilofEaally has a broader
class of solutions than E¢4). However, the freedom to chookes different from Qt 1 is a trivial one, and resolves itself to rescaling the
metrics by a constant factor.
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In both cases we obtain the second order equation

0= 3d2H 1842 4H(3H?- A
T g nerTy
d?H dH
Mgy 3(51iay +hag)gr +3(90hay +fiag) H?—2A(6hiay +fiag)

dH\? dH
+4H| 45%ay| | + T [3(37 2 e —hag)H? = 2A (6% e +hiag)]

+4[3(180h a;— fhaz)H*—204A Ay H?+ 8A %y ], (6)

which is nonlinear both irH and its derivatives. So strong is analogous to Eq5). Its order reduces by 2, and finally the
nonlinearity allows one to find exact solutions only in someequation takes a particularly simple form

particular situations. This is not the case in E). However,

this equation becomes much more transparent after one re- dH 2 2azh
writes the quantum corrections as contributions to energy dt §6+ 9
density and pressure. Qualitative analysis is then enabled.

Let e andP denote, respectively, the effective energy den-Now, comparing Eq(11) with the Raychaudhuri equation
sity and effective pressure, i.e., each of these quantities i&) we obtain the equation of state of cosmological substra-
supplemented by quantum corrections. The universe dynanum in the form of the algebraic relation
ics is determined by the system of the RaychaudtWrand
the continuity(8) equations 1 Adazh

P=§E 9

(e2—A?). (11)

(e2—A?). (12)
dH

1
. _H2__ _
g = " H?—5(3P+e24), 7)

FunctionP(e,A), defined by Eq(12), fulfills the differential
equation(9) with an accuracy to terms(#). By simple cal-
€ culation[10], one can confirm that the exact solutions found
g1~ SH(P+e). (8) by Parker and Simon also obey H42).
As we have already mentioned, the equation of sth#
We differentiate Eq(7), substitute into Eq(6), and apply IS barotropic, i.e., effective pressure is solely the function of
the continuity equatiori8) to get the relation between pres- the effective energy densitincluding the energy of vacuum

sure, energy, and the cosmological constant in differentiaf\)- While reducing the equations order we eliminate contri-
form butions to the energy-momentum tensor coming from the

expansion ratg9]; therefore the universe evolution becomes
dP P+e/9 2 (3P+€)?  agh 8A? a reversible proceg&qgs.(7),(8) are invariant under the time

de- Pre 9% i " 27 pre (9 reflectiont——t].

Quantum corrections contained in Ed.2), and conse-
As a matter of fact, one can solve E§) analytically, how- duently the dynamical systefd),(8) are free of thex, con-
ever, the solution takes an unclear implicit form. This isStant. The only term muitiplied byr; which survives the
much simpler to follow the other way. The solution of Eq. 'eduction procedur¢2], has been assimilated here by the
(9) must be a function of the energy density and cosmologi€ffective energy density.
cal constant solely, hende(e, A) is independent of the ex-
pansion rateH. Therefore the limit transitionH?—3(e . THE A=0 CASE
+ A) does not affect its values, and the general solution is
identical with the integral found for the flat universe. In the
last case the equation

Its worth noticing that in some physically interesting situ-

ations the reduction procedure eliminating higher order de-
rivatives is redundant. In the radiation filled universe with

null cosmological constant the correctidny;H("), which

1[ dH d*H d?H \ . A
— —3——+2(3H%=A) |+ g —— + ThaH— formally appears as linear ifi, actually is quadratic, and
18 " dt dt® t2 consequently should be abandoned as df&) term. To

% 2

dH
+ 3112 +(36a1—a3)H2H—a3H4 =0

dt
3In this approach the quantum corrections modify effective energy
(10 density and pressure, not the fundamental constants as ifZRef.
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show this let us express the traceless tefiSt* in terms of
the Ricci scalar and the effective energy density

1 0 0 0
0 -1/3 © 0
0O 0 -13 0O
0 O 0 -1/3

R
WH= 5(4e=R)

The field equations with the energy-momentum ten&gr
show that the scalarR involves the trace of the
tensor (H% , namely,R= a3h()H% , so it is a quantity lin-
early dependent oh.

Writing H* in terms of the effective energy densiéy
with the accuracy to terms(%) we getR= 3 asfi€2. Tensors
(WHA and ®H# can be rewritten as

1 0 0 0 FIG. 1. Dynamics of semiclassical radiation filled universes.
(g 8 Bl 0 -13 0 0
=5 a3nhe y
¥ 3 0 -1 0 . L .
0 13 well as the metrics’ evolution in tim&The stability of the
L0 0 0 -1 Minkowski space-time is defined by the stability of the
(H,e)=(0,0) point in the{H,e}-phase space under the
-1 0 0 O condition A=0. For the equation of statél?) discussed
1 0 53 0 0 in the preceding section the autonomous syst@n(8)
Br=_¢2 reads
V3 0O O 53 0
0O O 0 573
i dH_ ) 1 2 52 13
0 0 0 O gt HiTglem gashe), (13
8 5 0 1 00
“27%" g 0 1 0 |
€ 1
0 0 0 1 = - 2
T 4H| e 3a3he , (14

Now it is clear that only the second of the expressions
1 3 i ; i i
ah )_H’vb andagh OHY is essentially linear ik and forms 54 its trajectories form levels of the integral
the first-order quantum contribution to the energy-
momentum tensor. The first omg# VH# , which carries all

higher derivatives is actually square #fn This is closely 5 3
related to the absence of particle creation in the radiation- szf_K A/ LV _ (15)
filled Robertson-Walker univers@see Ref[11], and papers 3 Gegag 6 Geoay

cited there. The theory with the energy-momentum tensor

T,,=T(29—%a3HT) leads to the effective equation of state

P=1e—(4a3h/9)e?, which is perfectly consistent with Eq. The phase portrait of the systet8),(14) is shown in Fig. 1.

(12). For completeness and also for readers convenience, we at-
tach Fig. 2 showing classical Friedmanian dynamics in the
same representation. The phase structure of classical

IV. STABILITY OF THE EMPTY SPACE — DYNAMICAL radiation-filled universes and the phase structure defined by

SYSTEMS APPROACH Egs.(13),(14) are topologically equivalent in the low-energy
The equation of state of the forfA=P(e,A) [or more limit. This is so becausg one cz_innqt enrich the structure of
generallyP=P(e,A,H), see Ref[12]] uniquely determines the{H.e}-phase plane without violating the standard energy
cosmological evolution. The syste(i),(8), which defines
the universe dynamics in thfH,e}-phase space is auto-

nomous. Choosing a point in thigH,e}-phase space, one “we abandon here a trivial freedom to multiply the flat universe
determines uniquely the metrics in the initial moment asmetrics by a factor constant in time.
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nontrivial property does not follow from the solutions analy-
city in 7, but from the form of the energy density tengby.

V. SUMMARY AND CONCLUSIONS

In the reduced Simon-Parker theory the energy-
momentum tensor is renormalized to take the hydrodynamic
form with a simple, barotropic equation of state. The self-
consistency conditions for semiclassical cosmology can be
imposed on observable quantities and weakened. By de-
manding the Hubble expansion rate to be perturbativé in
we allow the space curvature to alter from 0 while quantum
corrections to the flat universes occur.

In the particular case of the radiation-filled universe and
vanishing cosmological constant, the dynamics of the
Robertson-Walker universe in th@riginal) semiclassical
theory is described by a second order equation, therefore it
does not need either the reduction or additional conditions of
self-consistence. The reason lies in the absence of particle
creation in the radiation filled universe, which manifests it-
self as an additional factori “hidden” in the
tensor (MH . This eventually eliminates all the higher de-
rivative terms.

- . Minkowski spacetime has the same stability character as
conditions. On the other hand, according to Etp) these i, qiainian gravity, which is consistent with results based on
conditions are well fulfilled for low and positive energy den- ine functional integral formalisn{13]. The stability of
sities. The equation of stat¢2) formally admits violation of  Minkowski spacetime is independent of the numerical value
the energy conditions but these states appears already in tbéthe Planck constant. In the language of dynamical systems
Planckian regime and hence, far beyond the region whertheory, this property is called the structural stability of the
semiclassical approximation is validThe dotted region in {H,e’}—phase space against changes: of -

the upper part of Fig. 1, which contains three additional criti- . 'S worth r_ur)]tlcmg that thi Liapunov St‘_"‘ﬁ"'ty of the en-
cal points must be recognized as nonphysical, vironment with equation of statd12) with respect to

. ; position-dependent perturbations is also the same as for the
An essential property of the syste@3),(14) is the ab-  |assjcal radiation-filled universgL6], in contrast to the

sence of solutions that change the energy density from posgriginal semiclassical theory, where quantum corrections let
tive to negative or the reversgsuch a behavior was possible inhomogeneities grow. This suggests an insignificant role for
in the original semiclassical theory and disqualified thesemiclassical corrections in the processes of structure forma-
empty space as a ground statmdeed, on the strength of tion in the early universe.

Eq. (12), the initial conditione=0 results ine+P=0, and

consequently the right-hand side of E@4) vanishes. Both _ o
conditionse=0 andde/dt=0 ensure that the state of the  We would like to acknowledge Professor Marek Dermian
zero energy density is “persistent.” This is consistent with ski and Professor Lech Sokotowski for helpful discussions.

the results based on the functional integral formal[did], This work was partially supported by Polish research Project

. _— . ) ... No. KBN Nr 2 PO3D 02210.
where all higher derivative terms responsible for instability
are eliminated by regularization of the energy-momentum————
tensor.
The stability of Minkowski spacetime is the same as in

FIG. 2. Dynamics of Friedmanigclassical radiation filled uni-
verses.
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%In general, a threefold point may bifurcate into simple critical

lassical th In both lassical or th t t oints under smooth changes of the equation coefficients. This is
classical theory. In both cases, classical or the quantum, hat occurs when cosmological constant appears. Solutions are

(H,€)=(0,0) point is a threefold point with elliptical sector gnaiytical in A, though the critical point corresponding to empty
[14] and its type does not depend on the valueiofThis  space bifurcates into three simple points. Two of them represent de
means that the phase space is structurally stable againsitter space time, the third one, the Einstein static univgtsg
guantum corrections in the low-energy density limit. This However, no bifurcation, results from quantum corrections.
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