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Mass density perturbations from inflation with thermal dissipation

Wolung Lee and Li-Zhi Fang
Department of Physics, University of Arizona, Tucson, Arizona 85721

~Received 15 January 1998; published 11 March 1999!

We study the power spectrum of the mass density perturbations in an inflation scenario that includes thermal
dissipation. We show that the condition on which the thermal fluctuations dominate the primordial density
perturbations can easily be realized even for weak dissipation, i.e., the rate of dissipation is less than the
Hubble expansion. We find that our spectrum of primordial density perturbations follows a power law behav-
ior, and exhibits a ‘‘thermodynamical’’ feature—the amplitude and power index of the spectrum depend
mainly on the thermodynamical variableM, the inflation energy scale. Comparing this result with the observed
temperature fluctuations of the cosmic microwave background, we find that both amplitude and index of the
power spectrum can be fairly well fitted ifM;1015–1016 GeV. @S0556-2821~99!03806-0#

PACS number~s!: 98.80.Cq, 98.70.Vc, 98.80.Bp
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I. INTRODUCTION

In the past decade, there have been a number of studie
dissipative processes associated with the inflaton decay
ing its evolution. These studies have shed light on the p
sible effects of the dissipative processes. For instance, it
realized that dissipation effectively slows down the rolling
the inflaton scalar fieldf toward the true vacuum. Thes
processes are capable of supporting the scenario of infla
@1,2#. Recently, inspired by several new developments,
problem of inflation with thermal dissipation has attract
many re-investigations.

The first progress is from the study of the nonequilibriu
statistics of quantum fields, which has found that, under c
tain conditions, it seems reasonable to introduce a dissipa
term ~such as a frictionlike term! into the equation of motion
of the scalar fieldf to describe the effect of heat conta
between thef field and a thermal bath. These studies ha
shown that the thermal dissipation and fluctuation will m
likely appearduring the inflation if the inflaton is coupled to
light fields @3#. However, to realize sufficiente-folds of in-
flation with thermal dissipation, this theory needs to intr
duce tens of thousands of scalar and fermion fields inter
ing with the inflaton in anad hocmanner@4#. Namely, it is
still far from a realistic model. Nevertheless, this study in
cates that the condition necessary for the ‘‘standard’’ reh
ing evolution—a coupling of inflaton with light fields—i
actually also the condition under which the effects of therm
dissipation during inflation should be considered.

Secondly, in the case of a thermal bath with a tempera
higher than the Hawking temperature, the thermal fluct
tions of the scalar field plays an important and even do
nant role in producing the primordial perturbations of t
universe. Based on these results, the warm inflation scen
has been proposed. In this model, the inflation epoch
smoothly evolve to a radiation-dominated epoch, without
need of a reheating stage@5,6#. Dynamical analysis of sys
tems of inflaton with thermal dissipation@7# gives further
support to this model. It is found that the warm inflatio
solution is very common. A rate of dissipation as small
1027 H, H being the Hubble parameter during inflatio
0556-2821/99/59~8!/083503~10!/$15.00 59 0835
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can lead to a smooth exit from inflation to radiation.
Warm inflation also provides explanation to the sup

Hubble suppression. The standard inflationary cosmolo
which is characterized by an isentropic de Sitter expans
predicts that the particle horizon should be much larger t
the present-day Hubble radiusc/H0 . However, a spectra
analysis of the Cosmic Background Explorer~COBE! Dif-
ferential Microwave Radiometer~DMR! 4-year sky maps
seems to show a lack of power in the spectrum of the
mordial density perturbations on scales equal to or lar
than the Hubble radiusc/H0 @8,9#. A possible explanation of
this super-Hubble suppression is given by hybrid mode
where the primordial density perturbations are not pur
adiabatic, but mixed with an isocurvature component. T
warm inflation is one of the mechanisms which can natura
produce both adiabatic and isocurvature initial perturbati
@6#.

In this paper, we study the power spectrum of mass d
sity perturbations caused by inflation with thermal dissip
tion. One purpose of developing the model of warm inflati
is to explain the amplitudes of the initial perturbations. Us
ally, the amplitude of initial perturbations from quantu
fluctuation of the inflaton depends on some unknown para
eters of the inflation potential. However, for the warm infl
tion model, the amplitude of the initial perturbations is fou
to be mainly determined by the energy scale of inflation,M.
If M is taken to be about 1015 GeV, the possible amplitude
of the initial perturbations are found to be in a range cons
tent with the observations of the temperature fluctuations
the cosmic microwave background~CMB! @10#. That is, the
thermally originated initial perturbations apparently do n
directly depend on the details of the inflation potential, b
only on some thermodynamical variables, such as the en
scaleM. This result is not unexpected, because like ma
thermodynamical systems, the thermal properties includ
density fluctuations should be determined by the thermo
namical conditions, regardless of other details.

Obviously, it would be interesting to find more ‘‘thermo
dynamical’’ features which contain only observable quan
ties and thermodynamical parameters, as these predic
would be more useful for confronting models with observ
©1999 The American Physical Society03-1
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tions. Guided by these considerations, we will extend
above-mentioned qualitative estimation of the order of
density perturbations to a quantitative calculation of
power spectrum of the density perturbations. We show
the power spectrum of the warm inflation does not depend
unknown parameters of the inflaton potential and the di
pation, but only on the energy scaleM. The spectrum is
found to be of power law, and the index of the power law c
be larger or less than 1. More interestingly, we find that fo
given M, the amplitude and the index of the power law a
not independent from each other. In other words, the am
tude of the power spectrum is completely determined by
power index and the numberM. Comparing this result with
the observed temperature fluctuations of the CMB, we fi
that both amplitude and index of the power spectrum can
fairly well fitted if M;101521016 GeV.

This paper is organized as follows: In Sec. II we discu
the evolution of the radiation component for inflationa
models with dissipation prescribed by a field-dependent f
tion term. In particular, we scrutinize the physical conditio
on which the thermal fluctuations dominate the primord
density perturbations. Section III carries out the calculatio
of the power spectrum of the density perturbations of
warm inflations. And finally, in Sec. IV we give the conclu
sions and discuss further observational tests.

II. INFLATION WITH THERMAL DISSIPATION

A. Basic equations

Let us consider a flat universe consisting of a scalar in
ton field f and a thermal bath. Its dynamics is described
the following equations@5#. The equations of the expandin
universe are

2Ḣ13H252
8p

mPl
2 F1

2
ḟ21

1

3
r r2V~f!G , ~2.1!

H25
8p

3

1

mPl
2 Fr r1

1

2
ḟ21V~f!G , ~2.2!

whereH5Ṙ/R is the Hubble parameter, andmPl5A1/G the
Planck mass.V(f) is the effective potential for fieldf, and
r r is the energy density of the thermal bath. Actually t
scalar fieldf is not uniform due to fluctuations. Therefor
the fieldf in Eqs.~2.1! and~2.2! should be considered as a
average over the fluctuations.

The equation of motion for scalar fieldf in a de Sitter
universe is

f̈13Hḟ1Gḟ2e22Ht¹2f1V8~f!50, ~2.3!

where the friction termGḟ describes the interaction betwee
thef field and a heat bath. Obviously, for a uniformed fie
or averagedf, the term¹2f of Eq. ~2.3! can be ignored.
Statistical mechanics of quantum open systems has sh
that the interaction of quantum fields with thermal or qua
tum bath can be described by a general fluctuati
dissipation relation@11#. It is probably reasonable to describ
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the interaction between the inflaton and the heat bath a
‘‘decay’’ of the inflaton @12,13#. These results support th
idea of introducing a damping or friction term into the fie
equation of motion. In particular, the friction term with th
form in Eq. ~2.3!, Gḟ, is a possible approximation for th
dissipation off field in a heat bath environment in the nea
equilibrium circumstances. In principle,G can be a function
of f. In the cases of polynomial interactions betweenf field
and bath environment, one may take the polynomial off for
G, i.e., G5Gmfm. The friction coefficient must be positive
definite, henceGm.0, and the dissipative index of frictionm
should be zero or even integer ifV(f) is invariant under the
transformationf→2f.

The equation of the radiation component~thermal bath! is
given by the first law of thermodynamics as

ṙ r14Hr r5Gḟ2. ~2.4!

The temperature of the thermal bath can be calculated
r r5(p2/30)geffT

4, geff being the effective number of de
grees of freedom at temperatureT.

The warm inflation scenario is generally defined by
characteristic that the thermal fluctuations of the scalar fi
dominate over the quantum origin of the initial density pe
turbations. Because the thermal and quantum fluctuation
the scalar field are proportional toT and H respectively, a
necessary condition for warm inflation models is the ex
tence of a radiation component with temperature

T.H ~2.5!

during the inflationary expansion. Equation~2.5! is also nec-
essary for maintaining the thermal equilibrium of the rad
tion component. In general, the time scale for the relaxat
of a radiation bath is shorter for higher temperature. Acco
ingly, to have a relaxing time of the bath shorter than t
expansion of the universe, a temperature higher thanH is
generally needed.

As a consequence of Eq.~2.5!, warm inflation scenario
requires that the solutions of Eqs.~2.1!–~2.4! should contain
an inflation era, followed by smooth transition to a radiatio
dominated era. Dynamical system analysis also confirm
that for a massive scalar fieldV(f)5 1

2 M2f2, the warm in-
flation solution of Eqs.~2.1!–~2.4! is very common. A
smooth exit from inflation to radiation era can be establish
even for a dissipation withG as small as 1027H @7#. A
typical solution of warm inflation will be given in the nex
section.

B. Evolution of radiation component during inflation

Since warm inflation solution does not rely on a spec
potential, we will employ the popularf4 potential com-
monly used for the ‘‘new’’ inflation models. It is

V~f!5l~f22s2!2. ~2.6!

To have slow-roll solutions, the potential should be fl
enough, i.e.,l<(M /mPl)

4, whereV(0)[M45ls4.
3-2
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For models based on the potential of Eq.~2.6!, the exis-
tence of a thermal component during inflation seems to
inevitable. In order to maintain thef field close to its mini-
mum at the onset of the inflation phase transition, a ther
force is generically necessary. In other words, there is
least, a weak coupling betweenf field and other fields con
tributing to the thermal bath. During the slow roll period
inflation, the potential energy of thef field is fairly constant,
and their kinetic energy is small, so that the interaction
tween thef field with the fields of the thermal bath remain
about the same as at the beginning. As such, there is
compelling reason to ignore these interactions.

Strictly speaking, we should use a finite temperature
fective potentialV(f,T). However, the correction due t
finite temperature is negligible. The leading temperature c
rection of the potential~2.6! is lT2f2. On the other hand, a
mentioned above, we havel<(M /mPl)

4 for the flatness of
the potential. Therefore,lT2<M6/mPl

4 ;(M /mPl)
2H2!H2,

i.e., the influence of the finite temperature effective poten
can be ignored whenf,mPl .

Now, we try to find warm inflation solutions of Eqs
~2.1!–~2.4! for weak frictionG,H. In this case, Eqs.~2.1!–
~2.3! are actually the same as the ‘‘standard’’ new inflati
model when

r r!V~0!. ~2.7!

Namely, we have the slow-roll solution as

ḟ.2
V8~f!

3H1G~f!
.

V8~f!

3H
, ~2.8!

1

2
ḟ2!V~0!, ~2.9!

and

H2.Hi
2[

8p

3

V~0!

mPl
2

.S M

mPl
D 2

M2, ~2.10!

where the subscripti denotes the starting time of the inflatio
epoch.

During the stage off!s, it is reasonable to neglect th
f3 term in Eq.~2.3!. We have then

f̈1~3H1G!ḟ24ls2f50. ~2.11!

ConsideringG,H, an approximate solution off can imme-
diately be found as

f5f ie
aHt, ~2.12!

wherea.l1/2(mPl /M )2/2p andf i is the initial value of the
scalar field.

Substituting solution~2.12! into Eq. ~2.4!, we have the
general solution of Eq.~2.4! as

r r~ t !5Ae~m12!aHt1Be24Ht, ~2.13!
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where A5a2HGmf i
m12/@(m12)a14#, B5r r(0)2A,

andr r(0) is the initial radiation density. Obviously, the ter
B in Eq. ~2.12! describes the blowing away of the initia
radiation by the inflationary exponential expansion, and
term A is due to the generation of radiation by thef field
decay.

According to Eq.~2.13!, the evolution of the radiation ha
two phases. Phase 1 covers the period during which thB
term is dominant, and radiation density drops drastically d
to the inflationary expansion. The component of radiat
evolves into phase 2 when theA term becomes dominant
where the radiation density increases due to the friction
the f field. Namely, both heating and inflation are simult
neously underway in phase 2. Therefore, this phase is a
ally the era of inflation plus reheating.

The transition from phase 1 to phase 2 occurs at timetb
determined by (dr/dt) tb

50. We have

Htb.
1

~m12!a14
lnH 4@~m12!a14#

~m12!a3H

aM4

Gmf i
m12J ,

~2.14!

wherea[(p2/30)geff . Then the radiation density at the re
bound time becomes

r r~ tb!5
1

4
@~m12!a14#A exp@~m12!aHtb#.

~2.15!

From Eqs. ~2.12! and ~2.13!, the radiation density in
phase 2 is given by

r r~ t !5
1

4
a2GHf2~ t !.

1

16p2
lS mPl

M D 4

GHf2~ t !.

~2.16!

SinceH.(M /mPl)M , Eq. ~2.16! can be rewritten as

r r~ t !;l1/2S mPl

M D 2 G

HS f~ t !

s D 2

V~0!. ~2.17!

On the other hand, from Eq.~2.12!, we have

1

2
ḟ~ t !2.l1/2S mPl

M D 2S f~ t !

s D 2

V~0!. ~2.18!

Therefore, in the case of weak dissipationG,H, we have

r r~ t !,ḟ~ t !2/2. ~2.19!

This is consistent with the condition of inflation Eq.~2.7!
when Eq.~2.9! holds.

Equations~2.7! and ~2.9! indicate that the inflation will
come to an end at timet f when the energy density of th
radiation components, or the kinetic energy off field, ḟ2/2,
become large enough, and comparable toV(0). From Eqs.
~2.17! and ~2.18!, t f is given by
3-3
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l1/2S mPl

M D 2S f~ t f !

s D 2

.1. ~2.20!

In general, at the time when the phase 2 ends, o
radiation-dominated era starts, the potential energy may
be fully exhausted yet. In this case, a nonzero potentiaV
will remain in the radiation-dominated era, and the proc
of f decaying into light particles is still continuing.

However, consideringl1/2(mPl /M )2(G/H),1, the right
hand side of Eq.~2.17! will always be less than 1 whenf(t)
is less thans. This means that, for weak dissipation, phas
cannot terminate atf(t),s, or V„f(t f)…Þ0. Therefore, un-
der weak dissipation, phase 2 will end at the timet f when the
potential energyV(f) is completely exhausted, i.e.,

f~ t f !;s. ~2.21!

This means that no nonzeroV remains once the inflation
exits to a radiation-dominated era, and the heating off de-
cay also ends att f .

C. Temperature of radiation

From Eq. ~2.13!, one can find the temperatureT of the
radiation in phases 1 (t,tb) and 2 (t.tb) as

T~ t !5H Tbe2H~ t2tb! if t,tb ,

Tbe~m12!aH~ t2tb!/4 if t f.t.tb ,
~2.22!

where

Tb5~4a!21/4@~m12!a14#1/4A1/4expF S m12

4 DaHtbG .
~2.23!

The temperatureTf at the end of phase 2 is

Tf5T~ t f !5Tbe~m12!aH~ t f2tb!/4, ~2.24!

wheret f is given by Eq.~2.21!.
SinceT(t) is increasing witht in phase 2, the condition

~2.5! for warm inflation can be satisfied ifT(t f).H, or

r r~ t f !.aHi
4 . ~2.25!

Using Eqs.~2.17! and ~2.21!, condition~2.25! is realized if

G

H
.S s

mPl
D 2S M

mPl
D 4

. ~2.26!

Namely, G can be as small as 10212H for M;1016 GeV,
and s;1019 GeV. Therefore, the radiation solution~2.13!,
or warm inflation, should be taken into account in a ve
wide range of dissipation

10212H,G,H. ~2.27!

This result is about the same as that given by dynam
system analysis@7#: a tiny friction G may lead the inflaton to
a smooth exit directly at the end of the inflation era.
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A typical solution of the evolution of radiation tempera
tureT(t) is demonstrated in Fig. 1, for which parameters a
taken to be M51015 GeV, s52.2431019 GeV, G2
51025Hi andgeff5100. Actually,geff factor is a function of
T in general. However, as can be seen below, the unkno
function geff(T) has only a slight effect on the problem
under investigation. Figure 1 shows that the rebound te
peratureTb can be less thanH. In this case, the evolution o
T(t) in phase 2 can be divided into two sectors:T,H for
t,te , and T.H for t.te , where te is defined byT(te)
5H. We should not consider the solution of radiation to
physical if T,H since it is impossible to maintain a the
malized heat bath with the radiation temperature less than
Hawking temperatureH of an expanding universe. Neverthe
less, the solution~2.13! should be available ift.te . There-
fore, one can only consider the period ofte,t,t f as the
epoch of the warm inflation.

Figure 1 also plots the Hubble parameterH(t). The evo-
lution of H(t) is about the same as in the standard n
inflation model, i.e.,H(t);Hi in both phases 1 and 2. In Fig
1, it is evident that the inflation smoothly exits to a radiati
era att f . The Hubble parameterH(t) also evolves from the
inflation H(t); constant to a radiation regimeH(t)}t21.

The duration of the warm inflation is represented byt f
2te) then. The number ofe-folding growth of the comoving
scale factorR during the warm inflation is given by

N[E
te

t f
Hdt.

4

~m12!a
ln

Tf

H
. ~2.28!

One can also formally calculate the number ofe-folds of the
growth in phase 2 as

FIG. 1. A typical solution of the evolutions off field and
radiations in warm inflation in whichG5G2f2, V(f)5l(f2

2s2)2 andls45M4, M being the inflaton energy scale. The p
rameters are taken to beM51015 GeV, s52.2431019

GeV, G251025Hi and geff5100. The dot-dashed and solid line
are forH(t) and the radiation temperatureT, respectively.tb is the
time at which the temperature rebound (Tb) and te the time ofT
5H. The inflation ends att f when the temperature isTf .T andH
are in units ofHi[@8pV(0)/3mPl

2 #1/2, andt is in units ofHi
21 .
3-4
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MASS DENSITY PERTURBATIONS FROM INFLATION . . . PHYSICAL REVIEW D59 083503
N2[E
tb

t f
Hdt.

4

~m12!a
ln

Tf

Tb
, ~2.29!

and the number ofe-folds of the total growth as

Nt[E
0

t f
Hdt.

4

~m12!a
lnS Tf

Tb
D1Htb . ~2.30!

It can be found from Eqs.~2.28!–~2.30! that bothN2 and
Nt depend on the initial value of the fieldf i via Tb , but N
does not. The behavior ofT at the periodt.te is completely
determined by the competition between the diluting and p
ducing radiation att.tb . Initial information about the radia
tion has been washed out by the inflationary expans
Hence, the initialf i will not lead to uncertainty in our analy
sis if we are only concerned the problems of warm evolut
at the periodte,t,t f .

III. THE PRIMORDIAL DENSITY PERTURBATIONS

A. Density fluctuations of thef field

The fluctuations off field can be calculated by the sim
lar way as stochastic inflations@14#. Recall that the coarse
grained scalar fieldf is actually determined from the decom
position between background and high frequency modes,

F~x,t !5f~x,t !1q~x,t !, ~3.1!

whereF(x,t) is the scalar field satisfying

F̈13HḞ2e22Ht¹2F1V8~F!50. ~3.2!

q(x,t) in Eq. ~3.1! contains all high frequency modes an
gives rise to the thermal fluctuations. Since the mass of
field can be ignored for the high frequency modes, we h

q~x,t !5E d3kW~ uku!@aksk~ t !e2 ik•x1ak
†sk* ~ t !eik•x#,

~3.3!

wherek is comoving wave vector, and modessk(t) is given
by

sk~ t !5
1

~2p!3/2

1

A2k
FHt2 i

H

k Ge2 ikt, ~3.4!

and t52H21 exp(2Ht) is the conformal time. Equation
~3.3! is appropriate in the sense that the self-coupling of
f field is negligible. Considering the high frequency mod
are mainly determined by the heat bath, this approximatio
reasonable. The window functionW(uku) is properly chosen
to filter out the modes at scales larger than the horizon
H21, i.e., W(k)5u„k2kh(t)…, where kh(t)
.(1/p)H exp(Ht)1 is the lower limit to the wave number o
thermal fluctuations.

1The coefficient 1/p actually depends on the details of the cut-o
function, which may not be step-function-like. For instance, cons
ering causality, the cut-off function can be soft, and the long
wavelength of fluctuations can be a few times of the size of hori
@9#.
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From Eqs.~3.1! and ~3.3!, with the slow-roll condition,
Eq. ~3.2! renders

3Hḟ2e22Ht¹2f1V8~F!uF5f53Hh~x,t !, ~3.5!

and

h~x,t !5S 2
]

]t
1

1

3H
e22Ht¹2Dq~x,t !. ~3.6!

Equation~3.5! can be rewritten as

df~x,t !

dt
52

1

3H

dF@f~x,t !#

df
1h~x,t ! ~3.7!

where

F@f̄#5E d3xF1

2
~e2Ht¹f̄!21V~f̄ !G . ~3.8!

Equation~3.7! is, in fact, the rate equation of the order p
rameterf of a system with free energyF@f#. It describes
the approach to equilibrium for the system during phase tr
sition.

Using the expression of free energy~3.8!, the slow-roll
solution ~2.8! can be rewritten as

df

dt
52

1

3H1G

dF@f#

df
. ~3.9!

Hence, in the case of weak dissipation (G,H), Eq. ~3.7! is
essentially the same as the slow-roll solution~2.8! or Eq.
~3.9! but with fluctuationsh. The existence of the noise fiel
ensures that the dynamical system properly approaches
global minimum of the inflaton potentialV(f). Strictly
speaking, both the dissipationG and fluctuationsh are con-
sequences derived fromq(x,t). They should be considere
together. However, it seems to be reasonable to calculate
fluctuations alone if the dissipation is weak.

Unlike Eq. ~3.2!, the Langevin equation~3.7! is of first
order (ḟ) due to the slow-roll condition. Generally, therm
fluctuations will cause both growing and decaying mod
@3#. Therefore, the slow-roll condition simplifies the proble
from two types of fluctuation modes to one, i.e., we c
directly calculate the total fluctuation as the superposition
various fluctuations. It has been shown@15# that during the
eras of dissipations, the growth of the structures in the u
verse is substantially the same as surface roughening du
stochastic noise. The evolution of the noise-induced surf
roughening is described by the so-called Kardar-Par
Zhang~KPZ! equation@16#. Equations~3.5! or ~3.7!, which
includes terms of nonlinear drift plus stochastic fluctuatio
is a typical KPZ-like equation.

From Eq. ~3.6!, the two-point correlation function o
h(x,t) can be found as

-
t
n

3-5



on
-
-

th

um
-
l
m-

les
-

n-
n
n
t

.
-

n
that
av-

al
f

be
uc-
c-
pon
this
re-
tic
r-

the

WOLUNG LEE AND LI-ZHI FANG PHYSICAL REVIEW D 59 083503
^h~x,t !h~x8,t8!&5
H3

4p2F11
2

exp~H/pT!21G
3

sin~khux2x8u!

khux2x8u
d~ t2t8!, ~3.10!

where 1/@exp(H/pT)21# is the Bose factor at temperatureT.
Therefore, whenT.H, we have

^h~x,t !h~x,t8!&5
H2T

2p
d~ t2t8!. ~3.11!

This result can also be directly obtained via the fluctuati
dissipation theorem@17,18#. In order to accord with the dis
sipation terms of Eq.~3.7!, the fluctuation-dissipation theo
rem requires the ensemble average ofh to be given by

^h&50 ~3.12!

and

^h~x,t !h~x,t8!&5Dd~ t2t8!. ~3.13!

The varianceD is determined by

D52
1

U

T

3H1G
, ~3.14!

where U5(4p/3)H23 is the volume with Hubble radius
H21. In the case of weak dissipation, we then recover
same result as in Eq.~3.11!,

D5H2T/2p. ~3.15!

WhenT5H, we obtain

D5
H3

2p
, ~3.16!

FIG. 2. The allowed area of power law indexn as a function of
the mass scaleM for variousm. For givenM andm, the possiblen
should lie between the linen51 and the corresponding curve ofm.
For m56, the only solution isn51.
08350
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e

which agrees exactly with the result derived from quant
fluctuations off-field @14#. Therefore, the quantum fluctua
tions of inflationaryf field are equivalent to the therma
noises stimulated by a thermal bath with the Hawking te
peratureH. Equations~3.15! and~3.16! show that the condi-
tion ~2.5! is necessary and sufficient for a warm inflation.

For long-wavelength modes, theV8(f) term is not negli-
gible. It may lead to a suppression of correlations on sca
larger thanuV9(f)u21/2. However, before the inflaton actu
ally rolls down to the global minimum, we haveuV9(f
!s)u21/2>H21. The so-called abnormal dissipation of de
sity perturbations@19# may produce more longer correlatio
time thanH. Therefore in phase 2, i.e., the warm inflatio
phaseH,T,M , the long-wavelength suppression will no
substantially change the scenario presented above.

The fluctuationsdf of the f field can be found from
linearizing Eq.~3.7!. If we only consider the fluctuationsdf
crossing outside the horizon, i.e., with wavelength;H21,
the equation ofdf is

ddf

dt
52

H21V9~f!

3H1G
df1h. ~3.17!

For the slow-roll evolution, we haveuV9(f)u!9H2 @2#. One
can ignore theV9(f) term on the right hand side of Eq
~3.17!. Accordingly, the correlation function of the fluctua
tions is

^df~ t !df~ t8!&.D
3H1G

2H2
e2~ t2t8!H2/~3H1G!, t.t8,

~3.18!

hence

^~df!2&;
3

4p
HT. ~3.19!

Thus, in the periodte,t,t f the density perturbations o
large scales are produced by the thermal fluctuations
leave the horizon with a Gaussian-distributed amplitude h
ing a root-mean-square dispersion given by Eq.~3.19!.

Principally, the problem of horizon crossing of therm
fluctuations given by Eq.~3.7! is different from the case o
quantum fluctuations, because the equations ofH and Ḣ,
Eqs. ~2.1! and ~2.2!, contain terms inr r . However, these
terms are insignificant for weak dissipation@Eq. ~2.19!# in
phase 2. Thus Eqs.~2.1! and~2.2! depend only nominally on
the evolution ofr r . Accordingly, for weak dissipation, the
behavior of thermal fluctuations at horizon crossing can
treated by the same way as the evolutions of quantum fl
tuations in stochastic inflation. In that theory, quantum flu
tuations of inflaton are assumed to become classical u
horizon crossing and act as stochastic forces. Obviously,
assumption is not necessary for thermal fluctuations. Mo
over, we will show that in phase 2 the thermal stochas
force HT is contingent upon the comoving scale of pertu
bations by a power law@Eqs. ~2.21! and ~3.21!#, and there-
fore the power spectrum of the thermal fluctuations obeys
3-6



m

d,

n

ed

MASS DENSITY PERTURBATIONS FROM INFLATION . . . PHYSICAL REVIEW D59 083503
FIG. 3. The amplitudes of the power spectru
as a function ofn in the area ofn,1. The mass
scalesM are labeled at the curves. The dotte
dashed, and solid lines are form50, 2, and 4,
respectively. All curves end at the points whe
the corresponding warm inflation durationsN are
less than 55. The region within the dot-dash
box is the allowed area of (n,A) given by the
4-year COBE-DMR data.
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power law. This make it more easier to estimate the c
straint quantity in the super-horizon regime.

Accordingly, the density perturbations at the horizon
entry epoch are characterized by@2#

S dr

r D
h

5
2dfV8~f!

ḟ21~4/3!r r

. ~3.20!

All quantities in the right-hand side of Eq.~3.20! are calcu-
lated at the time when the relevant perturbations cut ac
the horizon at the inflationary epoch.

Using the solutions off andr r of warm inflation~2.12!
and ~2.13!, Eq. ~3.20! gives

S dr

r D
h

.S 5333m/~214!

2m13pm/~213!D 1/~m12!S gm

geffa
mD 1/~m12!

3S T

H D 1/2[~m26!/~m12!]

, ~3.21!
08350
-

-

ss

where the dimensionless parametergm[GmHm21, andT is
the temperature at the time when the considered pertu
tions dr r crossing out of the horizonH21;Hi

21 . Equation
~3.21! shows that the density perturbations are insensitive
the geff factor.

B. Power law index

Since inflation is immediately followed by the radiatio
dominated epoch, the comoving scale of a perturbation w
crossing over~the Hubble radius! at time t is given by

k

H0
52p

H

H0

T0

Tf
eH~ t2t f !, ~3.22!

where T0 and H0 are the present CMB temperature a
Hubble constant respectively. Equation~3.22! shows that the
smallert is, the smallerk will be. This is the so-called ‘‘first
out–last in’’ of the evolution of density perturbations pr
duced by the inflation.
FIG. 4. The same as Fig. 3, but forn.1. The
dotted, dashed, and solid lines are form
58, 10, and 12, respectively.
3-7
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From Eqs.~3.21!, and~3.23!, we have
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Using Eqs.~2.22! and~3.22!, the perturbations~3.21! can
be rewritten as

K S dr

r D 2L
h

}k~m26!a/4, if k.ke , ~3.23!

whereke is the wave number of perturbations crossing out
horizon atte . It is

ke52pH
T0

Tf
eH~ te2t f !.2pH

T0

Tf
e2N. ~3.24!

Therefore, the primordial density perturbations produc
during warm inflation are of power law with an index (m
26)a/4. We may also express the power spectrum of
density perturbations at a given timet. It is

K S dr

r D 2L
t

}k31n, if k.ke , ~3.25!

where the spectral indexn is

n511S m26

4 Da. ~3.26!

Clearly, for m56, the warm inflation model generates
flat power spectrumn51, yet the power spectrums will b
tilted for mÞ6. The dissipation modelsG5Gmfm may not
be realistic for higherm, but we will treat m like a free
parameter in order to show that the results we concer
actually are not very sensitive to these parameters.

The warm inflation scenario requires that all perturbatio
on comoving scales equal to or less than the present Hu
radius originate in the period of warm inflation. Hence, t
longest wavelength of the perturbations~3.24!, i.e., 2p/ke ,
should be larger than the present Hubble radiusH0

21 . We
have then
08350
f

d

e

d

s
le

N. lnS HT0

H0Tf
D5 lnS T0

H0
D2 lnS Tf

H D;55, ~3.27!

where we have used (T0 /H0)@(Tf /H), as Tf<M . Using
Eq. ~2.28!, the condition~3.27! gives an upper bound toa
for a givenm as

amax5S 4

m12D ln~Tf /H !

ln~T0 /H0!
. ~3.28!

Thus, the possible area of the indexn can be found from Eq.
~3.27! as

n5H 12~62m!amax/4 to 1 if m,6,

1 to 11~m26!amax/4 if m.6.
~3.29!

Therefore, the power spectrum is positive-titled~i.e., n.1)
if m.6, and negative-titled (n,1) if m,6. Figure 2 plots
the allowed area ofn as a function of the inflation mass sca
M. Apparently, forM>1016 GeV, the tilt un21u should not
be larger than about 0.15 regardless of the values ofm from
2 to 12.

C. Amplitudes of perturbations

To calculate the amplitude of the perturbations we rew
spectrum~3.25! into

K S dr

r D 2L
h

5AS k

k0
D n21

, if k.ke , ~3.30!

where k052pH0 .A is the spectrum amplitude normalize
on scalek5k0 , corresponding to the scale on which th
perturbations reenter the Hubble radius 1/H0 at present time.
he

FIG. 5. The relationA anda for m56. In this

case,n51. The dot-dashed line represents t
COBE-DMR data at n51 and Qrms2PS

515.3 mK, i.e., A.3.531026.
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FIG. 6. The amplitudes of the power spectru
as a function of the thermal durationN at three
inflaton mass scalesM and in the range ofn
,1. The dotted, dashed, and solid lines are
m50, 2, and 4, respectively.
n

A5S 5333m/~214!

2m13pm/~213!D 2/~m12!S gm

geffa
mD 2/~m12!

3S H0Tf

HT0
D n21S T

H D ~m26!/~m12!

e~n21!H~ t f2t !. ~3.31!

Applying Eq.~2.21!, the radiation temperature at the mome
of horizon-crossing,t, can be expressed asT(t)5Tf exp@(m
12)aH(t2tf)/4#. With the help of Eq.~2.28!, we obtain

S T

H D ~m26!/~m12!S Tf

H D n21

e~n21!H~ t f2t !

5expH ~n21!F11S m12

4
a D GNJ .

~3.32!
08350
t

On the other hand, using Eqs.~2.20!, ~2.23! and ~2.28!, one
has

gm5S 3

4D 12m/2 geff

30S M

mPl
D 2m

a232m/2. ~3.33!

Substituting Eqs.~3.32! and ~3.33! into Eq. ~3.31!, we have
finally

A5S 342m

64p31m/2D 2/~m12!S M

mPl
D 4m/~m12!S H0

T0
D n21

3a23 expH ~n21!F11S m12

4 Da GNJ . ~3.34!

Equation~3.34! shows that the amplitudeA does not con-
tain the unknowngeff factor. Moreover,a can be expressed
FIG. 7. The same as Fig. 6, but forn>1. The
dotted, dashed, and solid lines are form
58, 10, and 12, respectively.
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by n andm through Eq.~3.26!, andN can be expressed bya
andM via Eq. ~2.28!. Therefore, the amplitude of the initia
density perturbations,A, is only a function ofM, n, andm.

Figures 3 and 4 plot the relations between the amplitudA
and indexn for various parametersM andm. In the case of
m56,n51, the relation ofA anda is plotted in Fig. 5. It can
be seen from Figs. 3, 4 and 5 that for eitherm>6 or m
,6, the amplitudeA is significantly dependent onM, but not
so sensitive tom. Namely, the testableA-n relationship is
mainly determined by a thermodynamical variable, the
ergy scaleM. This is a ‘‘thermodynamical’’ feature. The
relationship betweenA and N plotted in Figs. 6 and 7 also
show this kind of ‘‘thermodynamical’’ feature: theA-N re-
lation depends mainly onM.

For comparison, the observed results ofA andn derived
from the 4-year COBE-DMR data~quadrupole momen
Qrms2PS;15.322.8

13.7mK and n;1.260.3 @10#! are plotted in
Figs. 3, 4 and 5. The observationally allowedA-n range is
generally in a good agreement with the predictedA-n curve
if M;101521016 GeV, regardless the parameterm. Figures
3 and 4 also indicate that if the tilt of spectrumun21u is
larger than 0.1, the parameter area ofM<1014 GeV will be
ruled out. Therefore, the warm inflation seems to fairly w
reconcile the initial perturbations with the energy scale of
inflation.
k
,

se

9,

08350
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IV. CONCLUSIONS AND DISCUSSION

Assuming that the inflatonf-field undergoes a dissipativ
process withGḟ2, we have studied the power spectrum
the mass density perturbations. In this analysis, we have
ployed the popularf4 potential. However, only one param
eter, the mass scale of the inflationM, is found to be impor-
tant in predicting the observable features of power spectr
i.e., the amplitudeA and indexn. Actually, the warm infla-
tion scenario is based on two thermodynamical requireme
~a! the existence of a thermalized heat bath during inflati
and ~b! that the initial fluctuations are given by th
fluctuation-dissipation theorem. Therefore, we believe t
the ‘‘thermodynamical’’ features—A and n depend only on
M—would be generic for the warm inflation. This feature
useful for model testing. Hence, the warm inflation can
employed as an effective working model when more prec
data about the observable quantitiesA, n, etc., become avail-
able. The current observed data ofA and n from CMB are
consistent with the warm inflation scenario if the mass sc
M of the inflation is in the range of 101521016 GeV.
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