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We study the power spectrum of the mass density perturbations in an inflation scenario that includes thermal
dissipation. We show that the condition on which the thermal fluctuations dominate the primordial density
perturbations can easily be realized even for weak dissipation, i.e., the rate of dissipation is less than the
Hubble expansion. We find that our spectrum of primordial density perturbations follows a power law behav-
ior, and exhibits a “thermodynamical” feature—the amplitude and power index of the spectrum depend
mainly on the thermodynamical varialig the inflation energy scale. Comparing this result with the observed
temperature fluctuations of the cosmic microwave background, we find that both amplitude and index of the
power spectrum can be fairly well fitted M ~10'°-10'6 GeV. [S0556-282(99)03806-(

PACS numbds): 98.80.Cq, 98.70.Vc, 98.80.Bp

[. INTRODUCTION can lead to a smooth exit from inflation to radiation.
Warm inflation also provides explanation to the super-

In the past decade, there have been a number of studies étubble suppression. The standard inflationary cosmology,
dissipative processes associated with the inflaton decay duwhich is characterized by an isentropic de Sitter expansion,
ing its evolution. These studies have shed light on the pospredicts that the particle horizon should be much larger than
sible effects of the dissipative processes. For instance, it wathe present-day Hubble radiwgH,. However, a spectral
realized that dissipation effectively slows down the rolling of analysis of the Cosmic Background Explo&@OBE) Dif-
the inflaton scalar fieldp toward the true vacuum. These ferential Microwave Radiomete(DMR) 4-year sky maps
processes are capable of supporting the scenario of inflatioseems to show a lack of power in the spectrum of the pri-
[1,2]. Recently, inspired by several new developments, thenordial density perturbations on scales equal to or larger
problem of inflation with thermal dissipation has attractedthan the Hubble radius/Hg [8,9]. A possible explanation of
many re-investigations. this super-Hubble suppression is given by hybrid models,

The first progress is from the study of the nonequilibriumwhere the primordial density perturbations are not purely
statistics of quantum fields, which has found that, under ceradiabatic, but mixed with an isocurvature component. The
tain conditions, it seems reasonable to introduce a dissipatiu@arm inflation is one of the mechanisms which can naturally
term(such as a frictionlike terjrinto the equation of motion produce both adiabatic and isocurvature initial perturbations
of the scalar fieldy to describe the effect of heat contact [6].
between thep field and a thermal bath. These studies have In this paper, we study the power spectrum of mass den-
shown that the thermal dissipation and fluctuation will mostsity perturbations caused by inflation with thermal dissipa-
likely appearduring the inflation if the inflaton is coupled to tion. One purpose of developing the model of warm inflation
light fields [3]. However, to realize sufficiere-folds of in-  is to explain the amplitudes of the initial perturbations. Usu-
flation with thermal dissipation, this theory needs to intro-ally, the amplitude of initial perturbations from quantum
duce tens of thousands of scalar and fermion fields interacfluctuation of the inflaton depends on some unknown param-
ing with the inflaton in amad hocmanner{4]. Namely, itis  eters of the inflation potential. However, for the warm infla-
still far from a realistic model. Nevertheless, this study indi-tion model, the amplitude of the initial perturbations is found
cates that the condition necessary for the “standard” reheatto be mainly determined by the energy scale of inflatidn,
ing evolution—a coupling of inflaton with light fields—is If M is taken to be about & GeV, the possible amplitudes
actually also the condition under which the effects of thermabf the initial perturbations are found to be in a range consis-
dissipation during inflation should be considered. tent with the observations of the temperature fluctuations of

Secondly, in the case of a thermal bath with a temperaturéhe cosmic microwave backgroui@MB) [10]. That is, the
higher than the Hawking temperature, the thermal fluctuathermally originated initial perturbations apparently do not
tions of the scalar field plays an important and even domidirectly depend on the details of the inflation potential, but
nant role in producing the primordial perturbations of theonly on some thermodynamical variables, such as the energy
universe. Based on these results, the warm inflation scenarstale M. This result is not unexpected, because like many
has been proposed. In this model, the inflation epoch cathermodynamical systems, the thermal properties including
smoothly evolve to a radiation-dominated epoch, without thedensity fluctuations should be determined by the thermody-
need of a reheating stadd,6]. Dynamical analysis of sys- namical conditions, regardless of other details.
tems of inflaton with thermal dissipatidfY] gives further Obviously, it would be interesting to find more “thermo-
support to this model. It is found that the warm inflation dynamical” features which contain only observable quanti-
solution is very common. A rate of dissipation as small agies and thermodynamical parameters, as these predictions
10°7 H, H being the Hubble parameter during inflation, would be more useful for confronting models with observa-
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tions. Guided by these considerations, we will extend thehe interaction between the inflaton and the heat bath as a
above-mentioned qualitative estimation of the order of the‘decay” of the inflaton[12,13. These results support the
density perturbations to a quantitative calculation of theidea of introducing a damping or friction term into the field
power spectrum of the density perturbations. We show thagquation of motion. In particular, the friction term with the
the power Spectrum of the warm inflation does not depend Ofbrm in Eq (23), Fd), is a possib|e approximation for the
unknown parameters of the inflaton potential and the dissigissipation of¢ field in a heat bath environment in the near-
pation, but only on the energy scalé. The spectrum is  equilibrium circumstances. In principl€, can be a function
found to be of power law, and the index of the power law canof ¢, In the cases of polynomial interactions betwefield
be larger or less than 1. More interestingly, we find that for a3nq path environment, one may take the polynomiap 6ér
given M, the amplitude and the index of the power law arer je =T, 4™ The friction coefficient must be positive
not independent from each other. In other words, the amp“definite, hencd’,,>0, and the dissipative index of frictian
tude of the power spectrum is completely determined by theoyid be zero or even integeni{ ¢) is invariant under the
power index and the numb&i. Comparing this result with transformationg— — .
the observed temperature fluctuations of the CMB, we find ¢ equation of the radiation componétitermal bathis
that both amplitude and index of the power spectrum can b@iven by the first law of thermodynamics as
fairly well fitted if M~10—10'® GeV.
This paper is organized as follows: In Sec. Il we discuss
the evolution of the radiation component for inflationary
models with dissipation prescribed by a field-dependent fric-
tion term. In particular, we scrutinize the physical conditionsThe tegnperaturf of the t_hermal bath can be calculated by
on which the thermal fluctuations dominate the primordialpf:(w 130)geT", Qe being the effective number of de-
density perturbations. Section Il carries out the calculationd €S of freedom at temperature

of the power spectrum of the density perturbations of the The warm inflation scenario is generally defined by. a
warm inflations. And finally, in Sec. IV we give the conclu- characteristic that the thermal fluctuations of the scalar field

sions and discuss further observational tests. domin_ate over the quantum origin of the initial density_ per-
turbations. Because the thermal and quantum fluctuations of
the scalar field are proportional fb and H respectively, a
necessary condition for warm inflation models is the exis-
A. Basic equations tence of a radiation component with temperature

pr+4Hp, =T ¢>. (2.9

II. INFLATION WITH THERMAL DISSIPATION

Let us consider a flat universe consisting of a scalar infla-
ton field ¢ and a thermal bath. Its dynamics is described by
the following equation$5]. The equations of the expanding
universe are

T>H (2.9

during the inflationary expansion. Equati¢5) is also nec-
essary for maintaining the thermal equilibrium of the radia-
_ 81, 1 tion component. In general, the time scale for the relaxation
2H+3H?=— —2[—¢2+ —pr—V(¢):|' (2.1  of aradiation bath is shorter for higher temperature. Accord-
mg 2 3 ingly, to have a relaxing time of the bath shorter than the

expansion of the universe, a temperature higher tHais

, 8m 1 1., generally needed.
H™=3 m2 Pr+§¢ V(9. (2.2 As a consequence of E¢2.5, warm inflation scenario
Pl

requires that the solutions of Eq2.1)—(2.4) should contain

an inflation era, followed by smooth transition to a radiation-
dominated era. Dynamical system analysis also confirmed
: . that for a massive scalar fieMi(¢)=31M?¢?, the warm in-

p, is the energy density of the thermal bath. Actually theflation solution of Egs.(2.1)—(2.4) is very common. A

scalar field¢ is not uniform due to fluctuations. Therefore - . - S .
; . . ’ smooth exit from inflation to radiation era can be established
the field¢ in Egs.(2.1) and(2.2) should be considered as an even for a dissipation with" as small as 10°H [7]. A

average over the quctuatlons. i . . typical solution of warm inflation will be given in the next
The equation of motion for scalar fieldl in a de Sitter section

universe is

whereH =R/R is the Hubble parameter, amoh= \1/G the
Planck massV(¢) is the effective potential for field, and

a,+ 3H ¢+F¢—e’2HtV2¢+V’(¢)=O, (2.3 B. Evolution of radiation component during inflation

. Since warm inflation solution does not rely on a specific
where the friction ternt’ ¢ describes the interaction between potential, we will employ the populag* potential com-
the ¢ field and a heat bath. Obviously, for a uniformed field, monly used for the “new” inflation models. It is
or averagedp, the termV?¢ of Eq. (2.3 can be ignored.
Statistical mechanics of quantum open systems has shown V(¢)=N(p*— 0?2 (2.6
that the interaction of quantum fields with thermal or quan-
tum bath can be described by a general fluctuationTo have slow-roll solutions, the potential should be flat
dissipation relatiofil1]. It is probably reasonable to describe enough, i.e.A<(M/mp)*, whereV(0)=M*=xc*.
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For models based on the potential of EB.6), the exis- where A= a?HT " 4/[(M+2)a+4], B=p,(0)—A,
tence of a thermal component during inflation seems to bandp, (0) is the initial radiation density. Obviously, the term
inevitable. In order to maintain the field close to its mini- B in Eq. (2.12 describes the blowing away of the initial
mum at the onset of the inflation phase transition, a thermaladiation by the inflationary exponential expansion, and the
force is generically necessary. In other words, there is, aferm A is due to the generation of radiation by thefield
least, a weak coupling betweeifield and other fields con- decay.
tributing to the thermal bath. During the slow roll period of  According to Eq(2.13, the evolution of the radiation has
inflation, the potential energy of thg field is fairly constant, two phases. Phase 1 covers the period during whichBthe
and their kinetic energy is small, so that the interaction beterm is dominant, and radiation density drops drastically due
tween the¢ field with the fields of the thermal bath remains to the inflationary expansion. The component of radiation
about the same as at the beginning. As such, there is nevolves into phase 2 when the term becomes dominant,
compelling reason to ignore these interactions. where the radiation density increases due to the friction of

Strictly speaking, we should use a finite temperature efthe ¢ field. Namely, both heating and inflation are simulta-
fective potentialV(¢,T). However, the correction due to neously underway in phase 2. Therefore, this phase is actu-
finite temperature is negligible. The leading temperature corally the era of inflation plus reheating.
rection of the potential2.6) is AT?¢2. On the other hand, as The transition from phase 1 to phase 2 occurs at figne
mentioned above, we have<(M/mp)* for the flatness of  determined by dp/dt), =0. We have
the potential. Therefore\ T2<M 8/ mg~(M/mp)2H2<H?, °

i.e., the influence of the finite temperature effective potential 1 A[(m+2)a+4] aM?*

can be ignored wheg<<mp,. Htp= ezl 3 2
Now, we try to find warm inflation solutions of Egs. (M+2)a (Mm+2)a”H  I'nd;

(2.1)—(2.4) for weak frictionI'<H. In this case, Eq42.1)— (2.14

(2.3 are actually the same as the “standard” new inflation

wherea=(7?/30)ge;. Then the radiation density at the re-

model when ;
bound time becomes
pr<V(0). (2.7) 1
Namely, we have the slow-roll solution as pi(ty) = LM+ 2)at4]Aexd(M+2) aHt,].
(2.1
V' () V'(¢) . T
¢=_3H+F(¢)= 30 (2.9 From Egs.(2.12 and (2.13, the radiation density in
phase 2 is given by
~#<v(0) (2.9 1 M)
2 ’ ) __ 2 204 — P 2
pr(t)= 7@’ THS(D) 16#( Y ) THE(D).
and (2.16
87 V(0) [M)? SinceH=(M/mp)M, Eq.(2.16 can be rewritten as
H2= ?=?—2~ —) M2, (2.10
T IO,
pr(t)~\ ™M A o (0). (2.1

where the subscriptdenotes the starting time of the inflation
epoch.

During the stage oth<<o, it is reasonable to neglect the
¢° term in Eq.(2.3). We have then

On the other hand, from E@2.12), we have

1. mer\ %[ B(1))?
o= ) [ 2]

) _ V(0). (2.18
¢+ (BH+T)p—4Nc?p=0. (2.12
ConsideringT <H, an approximate solution af can imme- Therefore, in the case of weak dissipatibrcH, we have
diately be found as

pr()< ()2, (2.19
o= e, (2.12 . _ _ L o

This is consistent with the condition of inflation E(R.7)

wherea=\Y4mp,/M)2/27r and ¢, is the initial value of the When Eq.(2.9 holds. o S
scalar field. Equations(2.7) and (2.9) indicate that the inflation will

Substituting solution(2.12 into Eq. (2.4), we have the COme to an end at timg when the energy density of the
general solution of Eq2.4) as radiation components, or the kinetic energydofield, ¢2/2,
become large enough, and comparablé/{0). From Egs.
pr(1)=AeM+2)aHt ga=aHt (2.13  (2.17) and(2.18), t; is given by
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)\1/2(@)7%&))2:1_ (2.20 * I I I

M

In general, at the time when the phase 2 ends, or & .
radiation-dominated era starts, the potential energy may no
be fully exhausted yet. In this case, a honzero potenfial

will remain in the radiation-dominated era, and the process

of ¢ decaying into light particles is still continuing.
However, considering.*4(mp/M)2(I'/H)<1, the right
hand side of Eq(2.17) will always be less than 1 whefi(t)

is less tharr. This means that, for weak dissipation, phase 2

cannot terminate ab(t) <o, or V(¢(ts))# 0. Therefore, un-
der weak dissipation, phase 2 will end at the titnevhen the
potential energy/(¢) is completely exhausted, i.e.,

P(t))~o. (2.22)

This means that no nonzeN remains once the inflation

exits to a radiation-dominated era, and the heating afe-
cay also ends & .

C. Temperature of radiation

From Eg.(2.13, one can find the temperatufieof the
radiation in phases 1t{t,) and 2 {>t,) as

T, Ht-to) it t<ty,
T(t): Tbe(m+2)aH(tftb)/4 if t>t>t,, (223

where
m+2
Tb:(4a)1/4[(m+2)a+4]1/4A1/4eX[{( 2 )ath}.
(2.23
The temperaturd; at the end of phase 2 is
Tf:T(tf):Tbe(m+2)aH(tf7Ib)/4, (224)

wheret; is given by Eq.(2.21).

SinceT(t) is increasing witht in phase 2, the condition

(2.5 for warm inflation can be satisfied T(t;)>H, or

pr(t)>aHy. (2.29
Using Egs.(2.17 and(2.21), condition(2.29 is realized if
1“>(‘7)2 M)4 (2.26

H™ \mp/ {mp) ~ '

Namely,I' can be as small as I&’H for M~10'° GevV,
and o~10'° GeV. Therefore, the radiation solutig@.13,

or warm inflation, should be taken into account in a very

wide range of dissipation

10 PH<TI'<H. (2.27

|
T q9°

0 3 100 ¢t 200 300 A

t
FIG. 1. A typical solution of the evolutions op field and
radiations in warm inflation in whichl'=T,¢?, V(¢)=\(¢?
—0?)? and\o?*=M*, M being the inflaton energy scale. The pa-
rameters are taken to beM=10" GeV, ¢=2.24x 10"
GeV, I',=10 %H; and g.+=100. The dot-dashed and solid lines
are forH(t) and the radiation temperatufe respectivelyt, is the
time at which the temperature rebount,) andt, the time of T
=H. The inflation ends at; when the temperature i .T andH
are in units ofH;=[87V(0)/3m2]*2, andt is in units ofH; *.

A typical solution of the evolution of radiation tempera-
tureT(t) is demonstrated in Fig. 1, for which parameters are
taken to be M=10" GeV, 0=2.24x10" GeV, I,
=10 °H; andg.s=100. Actually,ge factor is a function of
T in general. However, as can be seen below, the unknown
function ge¢(T) has only a slight effect on the problems
under investigation. Figure 1 shows that the rebound tem-
peratureT, can be less thaHl. In this case, the evolution of
T(t) in phase 2 can be divided into two sectofs<H for
t<te, and T>H for t>t., wheret, is defined byT(t.)
=H. We should not consider the solution of radiation to be
physical if T<H since it is impossible to maintain a ther-
malized heat bath with the radiation temperature less than the
Hawking temperaturél of an expanding universe. Neverthe-
less, the solutiori2.13 should be available if>t,. There-
fore, one can only consider the period RKt<t; as the
epoch of the warm inflation.

Figure 1 also plots the Hubble parameltéft). The evo-
lution of H(t) is about the same as in the standard new
inflation model, i.e.H(t) ~H; in both phases 1 and 2. In Fig.

1, it is evident that the inflation smoothly exits to a radiation
era att; . The Hubble parametdi(t) also evolves from the
inflation H(t) ~ constant to a radiation reginté(t)oct 1.

The duration of the warm inflation is represented by (
—te) then. The number od-folding growth of the comoving
scale factoR during the warm inflation is given by

T

t 4
szteHdtz(er—Z)alnﬁ' (2.28

This result is about the same as that given by dynamical
system analysig7]: a tiny frictionI" may lead the inflaton to One can also formally calculate the numberedblds of the

a smooth exit directly at the end of the inflation era.

growth in phase 2 as
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tf 4 T From Egs.(3.1) and (3.3), with the slow-roll condition,
No= J:[b Hdt= m'n-r—b. (229  Eq. (3.2 renders
and the number oé-folds of the total growth as 3H ¢_esztV2¢+V,(¢)|¢:¢:3Hn(x t), (3.5
N—thHd LA LA PP 2.3
= o t—mn_r—b +Hty. (2.30 and
It can be found from Eqg2.28—(2.30 that bothN, and 9 1
N, depend on the initial value of the fielg; via T, butN p(x,t)=| — =+ =—e ?"v2|q(xt). (3.6)

does not. The behavior df at the period>t. is completely gt 3H

determined by the competition between the diluting and pro- . )
ducing radiation at>t,. Initial information about the radia- E9uation(3.5 can be rewritten as
tion has been washed out by the inflationary expansion.

Hence, the initiaky; will not lead to uncertainty in our analy- dé(xt) 1 SF[o(x1)] o(xt) 37
sis if we are only concerned the problems of warm evolution dt  3H o¢ s '
at the period <t<t;.
lll. THE PRIMORDIAL DENSITY PERTURBATIONS where
A. Density fluctuations of the ¢ field 1
T 3 —Hty £3\2 1
The fluctuations ofp field can be calculated by the simi- FM]‘J d*x E(e V@) +V(e)|. (3.8

lar way as stochastic inflatiorjd4]. Recall that the coarse-
grained scalar fielg is actually determined from the decom-

. ; . _Equation(3.7) is, in fact, the rate equation of the order pa-
k high f €. ; .
position between background and high frequency modes, i erélmeter¢> of a system with free energy[ ¢]. It describes

d(x,t)=p(x,t) +q(x,t), (3.1) the approach to equilibrium for the system during phase tran-
sition.

Using the expression of free ener¢g.8), the slow-roll
solution (2.8) can be rewritten as

where®d(x,t) is the scalar field satisfying

D+ 3HDP—e 2HV2Pp + V' (d)=0. (3.2
g(x,t) in Eq. (3.1 contains all high frequency modes and do 1 dF[¢]
gives rise to the thermal fluctuations. Since the mass of the dt - 3A+<T 4o (3.9

field can be ignored for the high frequency modes, we have

_ | 43 kXt 4y aikex Hence, in the case of weak dissipatidin<{H), Eq.(3.7) is
q(x,t)—f d*W(k][ao(t)e™ ™+ agoi (H)e™ ], essentially the same as the slow-roll solutigh8) or Eq.
3.3 (3.9 but with fluctuationsy. The existence of the noise field
ensures that the dynamical system properly approaches the

wherek is comoving wave vector, and modeg(t) is given global minimum of the inflaton potentiaV/(¢). Strictly

by speaking, both the dissipatidh and fluctuationsy are con-
1 1 H] . 3.4 sequences derived froax,t). They should be considered
oy(t)=———Hr—i—|e ', 3.4 i i
k(t) (2m)%2 2k K together. However, it seems to be reasonable to calculate the

fluctuations alone if the dissipation is weak.
and 7=—H lexp(—Ht) is the conformal time. Equation Unlike Eq. (3.2), the Langevin equatiof3.7) is of first

(3.3) is appropriate in the sense that the self-coupling of theyrder (4) due to the slow-roll condition. Generally, thermal
¢ field is negligible. Considering the high frequency modesfiyctuations will cause both growing and decaying modes
are mainly determined by the heat bath, this approximation is3]. Therefore, the slow-roll condition simplifies the problem
reasonable. The window functiaN(|k|) is properly chosen from two types of fluctuation modes to one, i.e., we can
to filter out the modes at scales larger than the horizon sizgjrectly calculate the total fluctuation as the superposition of

H™Y e, (k)= otk—kn(1),  where kn(t) various fluctuations. It has been shofis] that during the
=(1/m)H expHt)” is the lower limit to the wave number of eras of dissipations, the growth of the structures in the uni-
thermal fluctuations. verse is substantially the same as surface roughening due to

stochastic noise. The evolution of the noise-induced surface
roughening is described by the so-called Kardar-Parisi-
The coefficient 1 actually depends on the details of the cut-off Zhang(KPZ) equation[16]. Equations(3.5) or (3.7), which
function, which may not be step-function-like. For instance, considdncludes terms of nonlinear drift plus stochastic fluctuations,
ering causality, the cut-off function can be soft, and the longesiS @ typical KPZ-like equation.
wavelength of fluctuations can be a few times of the size of horizon From Eqg. (3.6), the two-point correlation function of
[9]. 7n(x,t) can be found as
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FIG. 2. The allowed area of power law indeas a function of
the mass scal® for variousm. For givenM andm, the possiblen
should lie between the line=1 and the corresponding curve rof
For m=6, the only solution is1=1.

!t — H3 2
(OO = 3 1t AT —1

sin(kp|x—x’
« n(Kp| b

o ) 610

where 1JexpH/#T)—1] is the Bose factor at temperatufe
Therefore, whermT>H, we have

2

H2T
(mx)n(xt')=5—o(t-t'). (3.11

This result can also be directly obtained via the fluctuation-
dissipation theoreril7,1§. In order to accord with the dis-
sipation terms of Eq(3.7), the fluctuation-dissipation theo-

rem requires the ensemble averagepaio be given by

(m=0 (3.12
and
(p(x,t)p(x,t"))y=Ds(t—t"). (3.13
The varianceD is determined by
D=2t - (3.14
U3H+T

PHYSICAL REVIEW D 59 083503

which agrees exactly with the result derived from quantum
fluctuations of¢-field [14]. Therefore, the quantum fluctua-
tions of inflationary ¢ field are equivalent to the thermal
noises stimulated by a thermal bath with the Hawking tem-
peratureH. Equationg3.15 and(3.16) show that the condi-
tion (2.5 is necessary and sufficient for a warm inflation.

For long-wavelength modes, th& () term is not negli-
gible. It may lead to a suppression of correlations on scales
larger than|V"(¢)| Y2 However, before the inflaton actu-
ally rolls down to the global minimum, we hav/”(¢
<0)|"Y?=H"1. The so-called abnormal dissipation of den-
sity perturbation$19] may produce more longer correlation
time thanH. Therefore in phase 2, i.e., the warm inflation
phaseH<T<M, the long-wavelength suppression will not
substantially change the scenario presented above.

The fluctuationsé¢ of the ¢ field can be found from
linearizing Eq.(3.7). If we only consider the fluctuatione
crossing outside the horizon, i.e., with wavelengtfid 2,
the equation ob¢ is

dép  HZ+V'(¢)
at ~ sH+r 0%F7

(3.19

For the slow-roll evolution, we hav®/”(¢$)|<9H? [2]. One
can ignore theV”(¢) term on the right hand side of Eq.
(3.17. Accordingly, the correlation function of the fluctua-
tions is

F r
(8h(t)5¢(t'))=D 3;:2 e (THAEHAD) s
(3.18
hence
3
<(5¢’)2>~EHT. (3.19

Thus, in the period.<t<t; the density perturbations on
large scales are produced by the thermal fluctuations that
leave the horizon with a Gaussian-distributed amplitude hav-
ing a root-mean-square dispersion given by 919.
Principally, the problem of horizon crossing of thermal
fluctuations given by Eq3.7) is different from the case of

quantum fluctuations, because the equationgdioind H,
Egs. (2.1) and (2.2), contain terms inp, . However, these
terms are insignificant for weak dissipatipgq. (2.19] in
phase 2. Thus Eq$2.1) and(2.2) depend only nominally on
the evolution ofp, . Accordingly, for weak dissipation, the

where U= (47/3)H 3 is the volume with Hubble radius Pehavior of thermal fluctuations at horizon crossing can be
H-. In the case of weak dissipation, we then recover thdreated by the same way as the evolutions of quantum fluc-

same result as in Eq3.11),

D=H?T/27. (3.15
WhenT=H, we obtain
H3
D=—, (3.19
2

tuations in stochastic inflation. In that theory, quantum fluc-
tuations of inflaton are assumed to become classical upon
horizon crossing and act as stochastic forces. Obviously, this
assumption is not necessary for thermal fluctuations. More-
over, we will show that in phase 2 the thermal stochastic
force HT is contingent upon the comoving scale of pertur-
bations by a power layEgs. (2.21) and(3.21)], and there-
fore the power spectrum of the thermal fluctuations obeys the

083503-6



MASS DENSITY PERTURBATIONS FROM INFLATION ... PHYSICAL REVIEW [39 083503
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10° FIG. 3. The amplitudes of the power spectrum

as a function oh in the area oh<1. The mass
scalesM are labeled at the curves. The dotted,
dashed, and solid lines are far=0, 2, and 4,
respectively. All curves end at the points when
the corresponding warm inflation duratioNsare
less than 55. The region within the dot-dashed
box is the allowed area ofn(A) given by the
4-year COBE-DMR data.

0.80 0.90 1.00

power law. This make it more easier to estimate the conwhere the dimensionless parametgr=I",,H™ !, andT is

straint quantity in the super-horizon regime. the temperature at the time when the considered perturba-
Accordingly, the density perturbations at the horizon re-tions &p, crossing out of the horizohl ~*~H; *. Equation
entry epoch are characterized [8} (3.21) shows that the density perturbations are insensitive to
the g factor.
(@ _ =3¢V (¢) 320
Pl 2+ (413)p, ' B. Power law index

Since inflation is immediately followed by the radiation
S(gominated epoch, the comoving scale of a perturbation with
crossing overthe Hubble radiusat timet is given by

All quantities in the right-hand side of E¢3.20 are calcu-
lated at the time when the relevant perturbations cut acro
the horizon at the inflationary epoch.

Using the solutions ofp andp, of warm inflation(2.12 K H T,
and(2.13, Eq.(3.20 gives — =27 — —eHt"t (3.22

(m+2 1(m+2
@ B 5x 33m/(2+4) |\ Hm+2) v (m+2)
p h_ om+3,m/(2+3)

where T, and Hy are the present CMB temperature and
Hubble constant respectively. Equati22 shows that the
smallert is, the smallek will be. This is the so-called “first

(3.21) out—last in” of the evolution of density perturbations pro-
' ' duced by the inflation.

m
Jeff

1/2[(m—6)/(m+2)]

A 107 FIG. 4. The same as Fig. 3, but for-1. The
dotted, dashed, and solid lines are fon
107 =8, 10, and 12, respectively.
10°°
107"
107"
-12 N ! ! I I
1.000 1.010 1.020 1.030 1.040 1.050 1.060

n

083503-7



WOLUNG LEE AND LI-ZHI FANG PHYSICAL REVIEW D 59 083503

Using Egs.(2.22) and(3.22), the perturbation$3.21) can HT, To T
be rewritten as N>In( HOTf) :In(H—O) —In(ﬁ ~55, (3.27
dp\? —6)ald .
— ack(M=0al - if >k, (3.23  where we have usedl{/Hg)>(T;/H), asT;<M. Using
p h Eqg. (2.28), the condition(3.27) gives an upper bound ta

) ) ) for a givenm as
wherek, is the wave number of perturbations crossing out of

horizon att,. It is 4

m+2

In(T{/H)

(3.28

Amax—

T T
ke=27H =Mt t=27H e N (3.24
Ts Ts

Thus, the possible area of the indexan be found from Eq.
Therefore, the primordial density perturbations produced3.27) as
during warm inflation are of power law with an indern(

—6)a/4. We may also express the power spectrum of the 1-(6—M)am/d to 1 if m<6,
density perturbations at a given timelt is =[1 0 1+(M—6)apy/d if m>6 (3.29
—0)an .
5P ? 3+n ;
7 k0, i k>ke, (3.25 Therefore, the power spectrum is positive-titie@., n>1)
t

if m>6, and negative-titledn<1) if m<6. Figure 2 plots
the allowed area af as a function of the inflation mass scale
M. Apparently, forM=10'® GeV, the tilt|n— 1| should not
m— 6) be larger than about 0.15 regardless of the values stbm
o

where the spectral indexis

n=1+ (3.26 21to 12.

4

Clearly, form=6, the warm inflation model generates a C. Amplitudes of perturbations

flat power spectrunm=1, yet the power spectrums will be To calculate the amplitude of the perturbations we rewrite

tilted for m#6. The dissipation modelE=T",,¢™ may not  spectrum(3.25 into

be realistic for highem, but we will treatm like a free

parameter in order to show that the results we concerned < op\?

actually are not very sensitive to these parameters. (—) >
The warm inflation scenario requires that all perturbations P h

q p
on comoving scales equal to or less than the present Hubble
radius originate in the period of warm inflation. Hence, thewhere k,=27H,.A is the spectrum amplitude normalized

k n—-1
=A(k—) L if k>k, (3.30
0

longest wavelength of the perturbatiot®&24), i.e., 27/k.,  on scalek=k,, corresponding to the scale on which the
should be larger than the present Hubble radiigs'. We  perturbations reenter the Hubble radiulsi {At present time.
have then From Egs.(3.21), and(3.23, we have
10° . : . :
m=6
107 1
2 J
FIG. 5. The relatiorA anda for m=6. In this
A case,n=1. The dot-dashed line represents the
i COBE-DMR data at n=1 and Q;ns_ps
10 1 =15.3 uK, i.e., A=3.5x10°
10°
10 F T .
............................................ 10"
1045 ! ! L L
0.00 0.02 0.04 0.06 0.08 0.10
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0

10
10° .
FIG. 6. The amplitudes of the power spectrum
a4 100 | | as a function of the thermal duratidw at three
inflaton mass scaleM and in the range oh
<1. The dotted, dashed, and solid lines are for
m=0, 2, and 4, respectively.
10° .
107"

5y 33m/(2+4) | 2(M+2) y 2/(m+2) On the other hand, using Eg&.20, (2.23 and(2.28, one
m
Y i — has
2m+3ﬂ_m/(2+3)) ( geﬁam) ) . ,
_ - 3) M gen( M|
HA T, \ =1/ T\ (m=6)/(m+2) :(_) eff( ) -3-m/2 3.3
x( H(’Tof> (ﬁ> e~ DHA-D (3.3 Ym=g 30\mp) ¢ - 339

] o Substituting Egs(3.32 and(3.33 into Eq. (3.31), we have
Applying Eqg.(2.21), the radiation temperature at the momentﬁna"y

of horizon-crossingt, can be expressed agt) =T; exf(m

+2)aH(t—t;)/4]. With the help of Eq(2.28), we obtain ( g4-m | 2M2) ) ami(me2) Ho\" 2
(m—6)/(m+2) -1 B 3*m’2> (m_) (T_)
(I) m—6)/(m (E n S0 DH( -1 64 PI 0
H H +2
Xa dexp (n—1)| 1+ 7N (3.39
+2
=exp (n—1) 1+ af N/ Equation(3.34) shows that the amplitud& does not con-

(3.32 tain the unknowrg factor. Moreovera can be expressed

10° .
10° .
A , FIG. 7. The same as Fig. 6, but foe=1. The
107 7 dotted, dashed, and solid lines are fon
=8, 10, and 12, respectively.
10" .
107° ' '
100 1000
N
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by n andm through Eq.(3.26), andN can be expressed hy IV. CONCLUSIONS AND DISCUSSION

andM via Eq.(2.28. Therefore, the amplitude of the initial . . ) o
density perturbations, is only a function oM, n, andm. Assuming that the inflatog-field undergoes a dissipative

. . . 5 42 :

Figures 3 and 4 plot the relations between the amplitude Process withl’¢“, we have studied the power spectrum of
and indexn for various parameters! andm. In the case of the mass density perturbations. In this analysis, we have em-
m=6,n=1, the relation ofA and« is plotted in Fig. 5. It can  Ployed the populagy® potential. However, only one param-
be seen from Figs. 3, 4 and 5 that for eitmeE6 or m eter, the mass scale of the inflatibh is found to be impor-
<6, the amplitudeA is significantly dependent o, but not tantin predlct_mg the obs_ervable features of power spectrum,
so sensitive tan. Namely, the testablé-n relationship is -6~ the amplitudeA and indexn. Actually, the warm infla-
mainly determined by a thermodynamical variable, the enlion scenario is based on two thermodynamical requirements:
ergy scaleM. This is a “thermodynamical” feature. The (& the existence of a thermalized heat bath during inflation,

relationship betweed and N plotted in Figs. 6 and 7 also and (b) that the initial fluctuations are given by the
show this kind of “thermodynamical” feature: th&-N re- fluctuation-dissipation theorem. Therefore, we believe that

lation depends mainly oM. the “thermodynamical” features-A andn depend only on

For comparison, the observed resultsfoaindn derived ~M—would be generic for the warm inflation. This feature is
from the 4-year COBE-DMR datdquadrupole moment USeful for model testing. Hence, the warm inflation can be
Qe ps~ 15_33.;/“( andn~1.2+0.3[10]) are plotted in employed as an effective Worklng model when more precise
Figs. 3, 4 and 5 The observationally allowdeh range is data about the observable quantitles, etc., become avail-
generally in a good agreement with the predicted curve able._ The current observgd da_\ta/bfand n_fr(_)m CMB are
if M~105—10' GeV, regardless the parameter Figures consistent with the warm inflation scenario if the mass scale

. . . . 6
3 and 4 also indicate that if the tilt of spectrym—1| is M of the inflation is in the range of -10°° GeVv.

larger than 0.1, the parameter areaw& 104 GeV will be
ruled out. Therefore, the warm inflation seems to fairly well
reconcile the initial perturbations with the energy scale of the Wolung Lee would like to thank Hung Jung Lu for help-
inflation. ful discussions.
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