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Gravitationally induced interference of gravitational waves by a rotating massive object
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We discuss an interesting effect induced by the rotation of a massive object acting as a lens for coherent
gravitational radiation. We show that the result is a concentric interference pattern which is shifted due to the
effect of the angular momentum on the phase of radiation, an effect analogous to the Aharonov-Bohm effect.
The possibility of detecting lensed gravitational waves is discussed in the context of upcoming gravitational
wave detectors.@S0556-2821~99!03406-2#

PACS number~s!: 95.30.Sf, 04.30.Nk, 42.25.Hz, 98.62.Sb
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I. INTRODUCTION

One of the predictions of Einstein’s general theory
relativity and one of its early tests concerned light deflect
by the Sun. A deflecting mass represents the simplest gr
tational lens configuration@1# in what has given rise to a
whole research field in theoretical and observational as
physics @2#. Another important prediction of Einstein’
theory is the existence of gravitational waves which eman
from massive objects in nonspherical motion@3#.

In this paper we want to discuss gravitational lensing
gravitational waves. The treatment of such a phenome
demands the use of wave optics rather than geometric o
for the following reasons. Gravitational waves interact on
very weakly with matter so that their coherence is preser
over cosmological distances, and in many cases gravitati
waves are nearly monochromatic. These properties of gr
tational waves are relevant in gravitational lensing for
situation when source, lens and observer are nearly collin
Since infinitely many rays with almost equal path length
tersect at the observer, diffraction and interference sho
invalidate geometrical optics. This is not the case for sour
of electromagnetic radiation: rays originating from points n
on but near the optic axis reach the observer at separate t
which can exceed the coherence time. In the case of gra
tional lensing of gravitational waves, however, the use
wave optics is not only justified but necessary. Along t
whole focal line the intensity is amplified by the fact
8p2m/l @4#, m being the deflector’s mass andl the radia-
tion’s wavelength.

In the case of gravitational lensing by a rotating mass
object, thanks to the coherence of gravitational waves,
discover a behavior which has so far been discovered on
the atomic level in two occasions. One is the interference
electron-waves passing either side of a magnetic solen
the Aharonov-Bohm effect@5#; the other is the interferenc
of neutron-waves affected by the Corriolis force in t
earth’s gravitational field, the Colella-Overhauser-Wern
~COW! experiment@6#. The phase shift in the Aharonov
Bohm effect is given by the line integral of the vector pote
tial *d lW•AW . Similarly one expects that the phase shift
gravitational waves is given by the line integral of the gra
0556-2821/99/59~8!/083001~8!/$15.00 59 0830
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tomagnetic potentialAW 52(JW3rW)/r 3, with JW being the angu-
lar momentum of a rotating massive object:

E d lW•AW 54~jW /j2!•~nW 3JW !, ~1!

wherejW is the impact parameter vector, andnW is the normal-
ized vector pointing from the source to the lens. We show
Sec. III that this is really the case for the weak field metr

Gravitational lensing by a Kerr black hole has been d
cussed previously@7–9#, but none of these computation
gave a description of the interference of gravitational wav
Moreover the value used for the Kerr parameter in@9# is
overly extreme. In Sec. II we derive the Fresnel-Kirchho
diffraction formula for the linearized Kerr metric. We use th
Fresnel-Kirchhoff diffraction formula adapted to the linea
ized Kerr metric to compute the interference/diffractio
function. In Sec. IV we discuss the possibility of detecti
lensed gravitational waves in the context of the upcom
Laser Interferometric Gravitational Wave Observato
~LIGO!, and in Sec. V we summarize our results. The tre
ment of the effect of the background curvature on grav
tional wave propagation in the short wave approximation
relegated to the appendix. We use the conventionc5G51.

II. THE FRESNEL-KIRCHHOFF DIFFRACTION
FORMULA

A. Preliminary considerations

Interference corresponds to the sum of two or more wa
yielding a resultant intensity that deviates from the sum
the component intensities. The intensity of gravitation
waves peaks along the focal line which stretches along
source-lens axis behind the gravitational lens. Similarly
Young’s double slit experiment, the interference of coher
waves results from the gravitational deflection by an an
d054m/b, whereb is the impact parameter, of the two sep
rate null geodesics which correspond to the double imag
geometrical optics. According to the lens equation Ref.@2#
Sec. 2.1 the slit width~or distance between two images! is of
order of the Einstein radius defined as
©1999 The American Physical Society01-1
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j0[A4m
d s

d1s
, ~2!

whered ands are the distances from the observer to the le
and the source, respectively. We assume thatd,s@m, i.e.
observer and source are located far away from the lens
this situation each component of the gravitational waves
be treated as a scalar wave since the rotation of the pola
tion is in general too small to affect the interference patte
In fact the rotation angle of the polarization plane of a wa
lensed by a Kerr black hole is derived in Ref.@8# as x
5 5

4 pm2acosQ/b3, with Q being the angle between the a
gular momentum vector of the deflector and the line of sig
anda being the Kerr parameter. Given the impact parame
b'A4md and the Kerr parametera<m, this angle is van-
ishingly small. Therefore we can neglect the polarization t
sor eab in our derivation below.

B. The diffraction formula

We write the gravitational wave tensor ashab5Aeabe
iS

5Eeab ~see Appendix A!, and treatE as a scalar wave satis
fying the propagation equation

hE5
1

A2g

]

]xmS gmnA2g
]

]xnD E50. ~3!

We consider a lens object whose size is much smaller t
the Einstein radiusj0 , Eq. ~2!, so we can specialize to
linearized Kerr metric

ds252~122m/r !dt21~112m/r !dr2

2
4am

r
sin2 ũdf̃dt1r 2dũ21r 2sin2ũdf̃2. ~4!

For monochromatic waves of frequencyv, i.e., E}e2 ivt,
Eq. ~3! becomes

DE1 iv
4am

r 3

]E
]f̃

1~112m/r !v2E50, ~5!

where D is the spatial Laplacian. Though we do not ta
account of the cosmological expansion in the metric, Eq.~4!,
the formulas derived below apply also to cosmological s
ations~considered in Sec. IV B! when the distancesd,s and
d1s are replaced by their corresponding ‘‘angular size d
tances’’ @10#, because we assume that the wavelength
much shorter than the horizon scale. We show in Appen
B that the Kirchhoff integral theorem is applicable to Eq.~5!,
so the wave amplitude at the observer is written as

Eobs52
1

4p R
S1

@U2* ¹W E2E~¹W U2!* #•dSW , ~6!

where U2 is a solution of Eq.~5! which behaves like an
incoming spherical waves→e2 ivr 2/r 2 when the distance
from the observerr 2→0, andS1 is a large closed surfac
containing the observer~Fig. 3!.
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The disturbance leaving the sourceS has the form of an
outgoing spherical waveE→A0eivr 1/r 1 as r 1→0, whereA0
is a constant andr 1 is the distance from the source. Th
Huygens-Fresnel principle is directly traceable to this in
gral resulting from the scalar wave equation. The grav
tional wave originating atSpropagates to the surfaceS1 and
from there the superposition of secondary waves sums u
an amplitude at the observer. The surfaceS1 can be chosen
arbitrarily, but to suit our purposes we use a finite pla
perpendicular to the line of sight. To close the surface,
attach a sphere from which the contribution to the integ
will be negligible because we can blow this spherical port
up to infinity, so that at the time when the disturbance at
observer is considered no contributions from this spher
surface could have reached O. We therefore have to take
account only contributions from the~lens! plane S ~see
@11#!.

We shall use the eikonal approximation for the solutionE
andU2 ~Appendix A! assuming that the wavelength is muc
shorter than the curvature radius (m/j0

3)21/2 around the lens
object,

E5A0 eiS1/r 1 on the source side of the planeS, ~7!

andU25e2 iS2/r 2 on the observer side of the planeS,
~8!

whereS1 and S2 are, usingvr @1, regular solutions of the
eikonal equation, Eq.~A9!, in their respective domains
From Eqs.~6!–~8! we obtain the Fresnel-Kirchhoff diffrac
tion formula:

Eobs5
A0

4p i RS

ei ~S11S2!

r 1r 2
~¹W S12¹W S2!•nW dS, ~9!

wheredSW 5nW dS, nW being the unit normal vector ofS point-
ing towards the observer.

In astronomical situations the distancesr 1 and r 2 are
much larger than the effective scale of the plane of integ
tion which is of the order of the Einstein radius because
the stationary phase approximation~Sec. III B!. We can
therefore replace them by constant distances, i.e.r 1 by the
distance from the source to the lens,s, andr 2 by the distance
from the lens to the observer,d, and consequently write them
in front of the integrand. In the lowest order approximatio
S15vr 1 andS25vr 2 , so thatnW •¹W S15(]S1 /]r 1)cos (nW,r1

W)
'v and nW •¹W S25(]S2 /]r 2)cos (nW,r2

W)'2v, because the
angles involved are small. Therefore, from Eq.~9! we obtain

Eobs5
vA0

2p isdES
d2jei ~S11S2!, ~10!

wherej is the two dimensional coordinates in the lens pla
S anddS is approximated byd2j. In the following section
we will evaluate the eikonalsS1 andS2 .
1-2
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III. INTERFERENCE AND DIFFRACTION
OF GRAVITATIONALLY LENSED

GRAVITATIONAL WAVES

A. Evaluation of the eikonalsS1 and S2

With the metric Eq.~4!, the eikonal equation, Eq.~A9!, is
written as

v2~112m/r !2v
4am

r 3

]S

]f̃
2~122m/r !S ]S

]r D 2

2
1

r 2S ]S

]ũ
D 2

2
1

r 2 sin2ũ
S ]S

]f̃
D 2

50, ~11!

(S in Appendix A corresponds toS2vt here!. We solve
Eq. ~11! perturbatively by settingS5S01e, where S0
is the eikonal in the Euclidean space satisfyi
d i j (]S0 /]xi)(]S0 /]xj )5v2, while the correction terme is
linear in the massm and the angular momentum,JW5aW m, of
the lens object.

Let us first consider the case of perfect collinearity amo
source, lens and observer. Assuming regularity ofS1 andS2
in their domain, the solutions of Eq.~11! are approximately,
i.e., up to linear order inm anda, given respectively by

S15vFs1
r 2

2s
2r cosu1mH 2 lnS 1

r
2

cosu

s D
22 ln~11cosu!1cosu2

2rW

r 2
•

nW 3aW

nW • r̂ 21
J G , ~12!

whereuP@0,p/2#, and

S25vFd1
r 2

2d
1r cosu1mH 2 lnS 1

r
1

cosu

d D
22 ln~12cosu!2cosu1

2rW

r 2
•

nW 3aW

nW • r̂ 11
J G , ~13!

where uP@p/2,p#,u being the polar angle measured fro
the z-axis which points from the lens to the source. In t
eikonal approximation,eiS1/r 1 and e2 iS2/r 2 give respec-
tively an outgoing wave from the source, which is valid
the source side, and an incoming wave to the obser
which is valid in the observer side.

In general, we expect a displacementhW of the source par-
allel to the lens plane from the alignment observer-deflec
~see Fig. 1!. We have

S185vFs1
urW2hW u2

2s
2UrW2hW Ucosu

1mH 2 lnS 1

r
2

cosu

s D22 ln~11cosu!

1cosu2
2rW

r 2
•

nW 3aW

nW • r̂ 21
J G . ~14!
08300
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We use the eikonal relative to the unlensed case

S5S181S22vu~d1s!nW 2hW u, ~15!

to evaluate the Fresnel-Kirchhoff diffraction formula, E
~10!, since we are not interested in the constant phase fa
of E. Furthermore, we do not need the full information of t
waves, Eq.~12! and Eq.~13!, but only the value at the len
plane whereu5p/2 andnW • r̂ 50. The value ofS at the lens
plane is

S5vF u~d1s!j2dhu2

2sd~d1s!
14mlnS 1

j D14m
j

j2
•~nW 3aW !G .

~16!

Here we have replacedrW by j defined in the lens plane, an
hereafter 2-dimensional vectors in the plane perpendicula
the line of sight are expressed by boldface symbols. The
term is determined by the~Euclidean! geometry of the lens
configuration, the second term is due to the influence of
Newton potential, while the third term is a result of the Ke
rotation.

Next, we rescale the coordinates to make them dim
sionless according to@2#:

x5
j

j0
, y5

d

d1s

h

j0
, ~17!

wherej0 is the Einstein radius defined in Eq.~2!. The eiko-
nal in terms of the dimensionless variablesx andy is

S54mvF1

2
ux2yu22 ln x1

x

x2
•S nW 3

aW

j0
D G . ~18!

FIG. 1. Geometry in case of nonalignment.
1-3
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BARALDO, HOSOYA, AND NAKAMURA PHYSICAL REVIEW D 59 083001
The eikonalS is sometimes called a Fermat potential, t
stationarity ofS with respect tox yielding classical paths o
geometrical optics.

B. Wave amplitude and image positions as stationary
points of the eikonal

We evaluate the Fresnel-Kirchhoff formula Eq.~10! using
the eikonal obtained in the previous subsection. We defi

f 54mv, a5nW 3
aW

j0
5nW 3

JW

mj0
, ~19!

T~x,y!5
1

2
ux2yu22 ln x1

x

x2
•a. ~20!

Note thatf represents the ratio of the gravitational radius
the lens to the wavelength. The vectora points in the direc-
tion perpendicular to the projection of the angular mom
tum vector onto the lens plane, and its magnitudeuau is of
order;Am/d which is much smaller than unity. From Eq
~10! and~18! we see that the wave amplitude at the obser
is

Eobs~y!5
E 0f

2p i E d2x exp@ i f T~x,y!#, ~21!

whereE05A0 /(d1s) is the wave amplitude for the case
no lensing. We note that Eq.~20! can be rewritten as

T~x,y!5
1

2
ux2yu22 lnux2au, ~22!

to first order ina. Equation~22! suggests that we introduc
new coordinates

x̃ªx2a, ỹ:5y2a. ~23!

This coordinate transformations are just parallel translati
by the constant vectora, and we can change the integr
variable of Eq.~21! from x to x̃:

Eobs~ ỹ!5
E 0f

2p i E d2x̃ exp@ i f T~ x̃,ỹ!#, ~24!

where

T~ x̃,ỹ!5
1

2
ux̃2 ỹu22 ln x̃. ~25!

Therefore it is clear that the whole pattern is just shifted
the amounta.

As we show in Sec. IV.A, we consider the case wherf
@1, i.e., when the wavelength is much shorter than
gravitational radius of the lens. In this case we can evalu
Eq. ~24! using the stationary phase approximation. The ph
function T( x̃) in Eq. ~25! has two stationary pointsx̃6 as
solutions of¹̃T( x̃)50,(¹̃ª]/] x̃). x̃1 is a minimum, and
x̃2 is a saddle point. Actually these stationary points cor
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spond to the images in the geometric optics approximat
and the condition¹̃T( x̃)50 describes Fermat’s principle o
least time@2#. ExpandingT( x̃) around the stationary point
and performing the Gauss integrals, the resulting wave
plitude is given as the superposition of contributions fro
the two stationary points:

Eobs5E0 (
j 56

um~ x̃j !u1/2 exp@ i f T~ x̃j !2 ipnj /2#, ~26!

where n150 and n251 correspond respectively to th
minimum and to the saddle point, and

m~ x̃!ªdet@¹̃ ^ ¹̃T~ x̃!#21. ~27!

Whenỹ&1/f the stationary phase approximation is not va
anymore. This case is treated separately below by evalua
the diffraction integral Eq.~24! exactly.

Since the phase functionT( x̃) in Eq. ~25! has exactly the
same form as that for the non-rotating lens, we can use
familiar formulas for the Schwarzschild lens@2# with x andy
replaced byx̃ and ỹ. The two stationary pointsx̃6 are

x̃65
ỹ

2ỹ
~ ỹ6Aỹ214!. ~28!

The curvatures Eq.~27! at these stationary points are

m6~ ỹ!5
1

2
6

ỹ212

2ỹAỹ214
. ~29!

The phase difference between them is

DT~ ỹ!5T~ x̃2!2T~ x̃1! ~30!

5
ỹ

2
Aỹ2141 ln

Aỹ2141 ỹ

Aỹ2142 ỹ
. ~31!

Thus, the total wave intensity is magnified by the factor

uEobs/E 0u25um1u1um2u12um1m2u1/2 sin~ f DT! ~32!

5
ỹ21212 sin~ f DT!

ỹAỹ214
. ~33!

The third term of this equation expresses the interferenc
waves reaching from the two images. By exchanging
roles of source and observer, i.e.,d and s, we expect by
reciprocity an interference pattern to appear on the obse
plane. This interference pattern is circular and has the s
shape as for the case of a non-rotating lens. The effect of
lens spin is just to shift the whole pattern translationally
the small vectora. In physical units, this shift on the ob
server plane is
1-4
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d1s

s
asinQ, ~34!

whereQ is the angle between the angular momentum vec
of the lens and the line of sight.

Let us estimate the width of these interference fring
near the caustic where 1/f &y!1. From Eq.~33! the condi-
tion for constructive interference isf DT( ỹ)5p(2n1 1

2 )
with the integern. SinceDT( ỹ).2ỹ for ỹ!1, the distance
between adjacent fringes near the centerỹ50 of the inter-
ference pattern is given byD ỹ5p/ f , or by

p

v
Ad~d1s!

4ms
, ~35!

in physical units on the observer plane.
Since the stationary phase approximation breaks down

ỹ&1/f , diffraction effects become important at the center
the interference pattern, where the wave amplitude has
maximum. Performing the diffraction integral Eq.~24! with
ỹ50 yields

Eobs52 iE0f E
0

`

dx̃x̃12 i f ei f x̃2/2 ~36!

5E0~ f /2! i f /2ep f /4G~12 1
2 i f !, ~37!

and the wave intensity at the center of the interference
tern is

uEobs/E 0u25
p f

12e2p f
.4pmv, ~38!

since f @1. This is exactly the same as the maximum ma
nification for the case of a Schwarzschild lens@4#.

We conclude that~1! the whole interference pattern
shifted bya, which can be understood as a dragging of
gravitational wave by the rotation of the massive object, a
~2! all the other features of the circular diffraction
interference pattern are the same as in the case of a no
tating lens. The analogy to the Aharonov-Bohm effect sho
now be apparent, the quantitya proportional to the angula
momentum of the lens object having a similar effect on
interference of gravitational waves as the magnetic flux
on the interference of electron waves.

IV. NUMERICS

A. Orders of magnitude — the case of our galactic center

In the case of large distances of the source from the le
we can sets→`. In this case the shift will be almost exact
asinQ, and the distance between fringes near the focal
~caustic! will depend only on the wavelength of the gravit
tional radiationl and the distance to the lensd. Let us take
as a typical wavelength of gravitational radiationl53
3108 cm, which corresponds to a frequency of 1 Hz, a
for d58 kpc52.431023 cm, i.e., the distance to our cent
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of galaxy, takingm5108M ( , which corresponds to a geo
metrical mass of 331013 cm, i.e., the mass of the black ho
located at the center of our galaxy. For these values the
stein radius ~impact parameter! is j05A4md'5
31018 cm; we can easily check thata5(a/j0)sin Q is less
than 631026, i.e., a very small number, the fact we used
the approximation which has lead us to Eq.~22!. In this case
we have the following distance between fringes located n
the caustic:

l

4
Ad

m
'0.4 AU. ~39!

The interference pattern we expect is therefore huge. If
assumea50.1m andQ5p/2, the pattern will be shifted by

a5331012 cm'0.2 AU. ~40!

The maximum magnification is given by

m58p2
m

l
'83106. ~41!

This gigantic magnification motivates a brief discussio
given in the next section, on the possibility to detect gra
tational waves lensed not only by the center of our o
galaxy but by the centers of other galaxies as well.

B. Detection rate estimate — lenses dispersed in the universe

In this section we estimate quantitatively the detect
rate of lensed gravitational waves following the method
Ref. @13#. We consider a situation in which waves from co
lescing neutron star binaries are lensed by intervening m
sive objects~e.g., galaxies! whose gravitational radius is
larger than wavelength so that the geometric optic appro
mation is valid@12#. Lensing would increase the detectio
rate since faint signals from some distant sources bec
detectable because of the amplification of the wave intens
Figure 2 plots the number of detection events per year for
LIGO-type detector versus the minimum detector noisehmin

~defined to beAf 0 S0 in the notation of Ref.@14#!. Solid,
dashed and dotted curves show respectively the event
without gravitational lensing, the increase of event rate d
to the lensing amplification and the rate of those lens
events in which the two images are both detectable. T
three curves correspond to cases in which the cosmolog
parameters are (V0 ,l0)5(1,0),(0.2,0) and~0.2,0.8! from
bottom to top. In the figure the threshold of detection is se
be S/N.5, the density parameter contributed from lens o
jects is 0.004~this is the observed value of the density p
rameter of galaxies@10#!, the coalescence rate density
present epoch is 7.431029 Mpc23yr21 @15#, the maximum
redshift of sources is 5, andH0570 km s21Mpc21. Since
the value ofhmin is 4.2310224 for the advanced LIGO su
perinterferometer@16#, we conclude from the figure that th
detection of gravitationally lensed gravitational waves~more
than once per year! may be possible by lowering the noise b
1-5
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FIG. 2. The number of detection events per year for the LIGO-type detector versus the minimum detector noisehmin . Solid: event rate
without lensing magnification; dashed: increase of event rate due to lensing magnification; dotted: lensed event rate with both tw
detectable. Three curves correspond to different cosmological models (V0 ,l0)5(1,0),(0.2,0) and (0.2,0.8) from bottom to top. See text
the assumed values of parameters.
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a factor of several beyond the level of advanced interfero
eters if our universe is dominated by the cosmological c
stant.

V. SUMMARY AND DISCUSSION

We pointed out that in astrophysical situation there ex
a parallel phenomenon with the Aharonov-Bohm effect
the COW experiment in quantum mechanics, namely, gr
tational lensing of gravitational waves by a spinning mass
object. The main result of our paper is summarized as
lows. Due to the high coherence of gravitational waves,
interference pattern is formed near the caustic on the
server plane. This pattern is circular whether the lens is s
ning or not, and the effect of lens spin is to shift the patte
translationally by the amountasinQ in the observer plane
wherea is the Kerr parameter andQ is the angle between th
lens angular momentum vector and the line of sight. T
shift occurs in the direction perpendicular to the angular m
mentum vector projected onto the lens plane, i.e. the di
tion of dragging, leaving all the other properties of t
diffraction-interference pattern unchanged. We conclude
the gravitomagnetic field around a Kerr black hole affe
not only the path of the gravitational wave@7,9# but causes
also a phase shift in parallel with the magnetic field or
Corriolis force field in the above mentioned quantum m
chanical effects, resulting in a shift of the interference patt
formed near the caustic.

It should be pointed out, however, that in the Aharono
Bohm effect no force acts upon the electron waves and
08300
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have a pure shift of the interference pattern based on
phase shift resulting from a change in magnetic flux ins
the solenoid. On the other hand, the COW experimen
essentially the same as the effect we described, the Corr
force acting upon the neutron-waves, causing the inter
ence pattern to shift, just as the gravitational dragging a
upon the gravitational waves.

In real astrophysical situations it is unlikely that we c
measure the Kerr parameter of a lensing object from
above shift of the interference pattern for the following re
sons.~1! As we found above, except for this shift the overa
interference pattern does not depend on the Kerr param
Unlike for the case in atomic physics, we cannot prepar
large screen on the observer plane. In other words the
observable effect would be the misalignment of the lens
the two images, i.e., the stationary points. These are on
line with the lens when the lens is not spinning. But the an
of this misalignment; ~Kerr parameter!/~distance to lens! is
tiny and currently irresolvable.~2! This tiny misalignment
may well be due to other reasons such as the external s
from nearby objects surrounding the lens.~3! As shown in
Sec. IVB detection of lensed waves would also be rare
the laser interferometer detectors under construction suc
the advanced LIGO@17#.

Einstein wrote in his seminal paper on the gravitation
lensing effect of electromagnetic radiation@1# that ‘‘there is
no hope of observing this phenomenon directly.’’ Gravit
tional lensing of electromagnetic radiation, however, h
been observed on several occasions in the meantime. Du
1-6
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the weak interaction and therefore high coherence of gr
tational waves, interference of gravitational waves by lens
certainly occurs in our universe even if difficult to detect.
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APPENDIX A: GRAVITATIONAL WAVE PROPAGATION
IN THE EIKONAL APPROXIMATION

Let us recall the effect of the background on gravitatio
wave propagation@3#. As long as the amplitude of the wave
uhabu!1, wherehab obeys the linearized field equations a
represents a weak gravitational wave, the vacuum prop
tion equation is

hab;c
;c12Rcadb

B hcd50, ~A1!

subject to the transverse traceless Lorentz gauge

hc
c505hab

;b, ~A2!

where the covariant derivative is taken using the backgro
metric form, andRcadb

B is the background Riemann tensor
If the wavelengthl is much smaller than the typical ra

dius of curvature of the background than one expects w
behavior to go over to particle motion. Such waves app
relative to the observers of interest, as nearly plane
monochromatic on a scale large compared with a typ
wavelength, but very small compared with the typical rad
of curvature of spacetime. Following the usual eikonal e
pansion of the phase, we have

hab5ReH eiS/eSAab1
e

i
BabD10~e2!J , ~A3!

where e is a dummy expansion parameter with event
value unity which serves to identify orders of magnitude.

For an observer with proper timet, world line xa(t) and
4-velocity ua5dxa/dt, the circular frequencyv and the
wave vectorka of the wave are defined as

v52
dS

dt
52S,aua5kaua. ~A4!

Furthermore the scalar amplitude is defined as

A[S 1

2
Aab* A abD 1/2

, ~A5!

and the polarization tensor as

eab[
1

AAab . ~A6!
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Then the equation of motion is

052
1

e2
AabS;cS

;c

1
i

e
~2Aab;cS

;c1AabS;c
;c1BabS;cS

;c!

12Bab;cS
;c1Aab;c

;c1BabS;c
;c12Rcadb

B A cd

1
e

i
~Bab;c

;c12Rcadb
B B cd!. ~A7!

If Aab is assumed to vanish at most on hypersurfaces,
leading term says

kaka50, ~A8!

i.e., the wave vectorka52gabS,b is a null vector, and the
phase must obey the eikonal equation

gabS,aS,b50. ~A9!

This equation which determines the characteristic wavefro
is a generalization of the time-dependent eikonal equatio
classical optics@11#. Moreover, sinceka is a gradient, i.e.,
ka;b5kb;a , it is straightforward to show that

ka;bkb50, ~A10!

which means thatka is tangent to an affinely parametrize
geodesic.

The gauge condition reads

i

e
A abS

;b1A ab
;b1BabS

;b1
e

i
B ab

;b50. ~A11!

The leading term of the gauge condition says

eabk
b50, ~A12!

which means that the polarization is orthogonal to the ra
The e21 term of the equation of motion implies

2Aab;ck
c1Aabkc

;c50, ~A13!

which by contraction withA * ab and using the definitions o
the scalar amplitude and polarization tensor gives

2A;ck
c1Akc

;c50, ~A14!

or equivalently

~A 2ka! ;a50, ~A15!

which means that the scalar amplitude decreases as the
diverge from each other expressing the conservation
gravitons. Moreover, by definition of the polarization tens
Eq. ~A13! together with Eq.~A14! implies

eab;ck
c50, ~A16!
1-7



te

d

rm

ed

xt-
,

rd
is

in

.

O.

BARALDO, HOSOYA, AND NAKAMURA PHYSICAL REVIEW D 59 083001
meaning the polarization tensor is parallelly transpor
along these null geodesics.

APPENDIX B: THE KIRCHHOFF INTEGRAL THEOREM

We rewrite the propagation equation, Eq.~5!, for mono-
chromatic scalar wavesU of frequencyv, in the case of a
linearized Kerr metric as

D̃U52~112m/r !v2U, ~B1!

whereD̃5D1 iv(4am/r 3)(]/]f̃) and D is the spatial La-
placian. For two wavesU1 and U2 which both satisfy Eq.
~B1!, the following volume integral vanishes:

05E
V
@U2* D̃U12U1~D̃U2!* #dV ~B2!

5E
V
@U2* DU12U1~DU2!* #dV

14iamvE
V

dV

r 3

]

]f̃
~U1U2* !. ~B3!

We take the integral volumeV to be the one sandwiche
between the two closed surfacesS1 andS2 , both containing
the observer~Fig. 3!. For thisV, the second term of Eq.~B3!
becomes a two-dimensional integral onS1 after performing
thedf̃ integral. Then, this term is smaller than the first te
by an order;am/r 0

2 , wherer 0 is the typical distance from
the lens to the stationary points of the phase ofU1U2* on S1 .
For our choice ofS1 in Eq. ~9!, r 0 is of order of the Einstein
radiusj0 @Eq. ~2!#. Therefore the second term of Eq.~B3!, of
the order ofam/j0

2!1, can be safely neglected compar
with the first term.
ev
.

08300
d

The rest of the derivation can be found in standard te
books discussing wave optics@11#. Using Green’s theorem
Eq. ~B3! is rewritten as

S R
S1

1 R
S2

D ~U2* ¹W U12U1¹W U2* !•dSW 50, ~B4!

wheredSW is surface-element normal vector pointing inwa
to the volumeV. We takeS2 to be a sphere whose center
at the observer, and let its radius shrink to zero. SettingU2
5e2 ivr 2/r 2 to be incoming spherical waves in flat space
the vicinity of the observer, the second integral of Eq.~B4!
yields 4p times the value ofU1 at the observer. Thus Eq
~6!, where we replacedU1 with E, has been justified.

FIG. 3. A doubly connected region surrounding the observer
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