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Gravitationally induced interference of gravitational waves by a rotating massive object
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We discuss an interesting effect induced by the rotation of a massive object acting as a lens for coherent
gravitational radiation. We show that the result is a concentric interference pattern which is shifted due to the
effect of the angular momentum on the phase of radiation, an effect analogous to the Aharonov-Bohm effect.
The possibility of detecting lensed gravitational waves is discussed in the context of upcoming gravitational
wave detectord.S0556-282(99)03406-4

PACS numbg(s): 95.30.5f, 04.30.Nk, 42.25.Hz, 98.62.Sb

. INTRODUCTION tomagnetic potentiah=2(Jxr)/r3, with J being the angu-
lar momentum of a rotating massive object:
One of the predictions of Einstein’s general theory of
relativity and one of its early tests concerned light deflection .. . L.
by the Sun. A deflecting mass represents the simplest gravi- J dl-A=4(&&?)-(nxJ), (1)
tational lens configuratiofil] in what has given rise to a
whole research field in theoretical and observational astro- . ] -
physics [2]. Another important prediction of Einstein’s Where& is the impact parameter vector, ands the normal-

theory is the existence of gravitational waves which emanat&ed vector pointing from the source to the lens. We show in
from massive objects in nonspherical motid@j. Sec. Il that this is really the case for the weak field metric.

In this paper we want to discuss gravitational lensing of ~Gravitational lensing by a Kerr black hole has been dis-
gravitational waves. The treatment of such a phenomenofUSsed previously7—9], but none of these computations
demands the use of wave optics rather than geometric opti@ave a description of the interference of gravitational waves.
for the following reasons. Gravitational waves interact onlyMoreover the value used for the Kerr parameter{9i is
very weakly with matter so that their coherence is preserve@Verly extreme. In Sec. Il we derive the Fresnel-Kirchhoff
over cosmological distances, and in many cases gravitationlffraction formula for the linearized Kerr metric. We use the
waves are nearly monochromatic. These properties of gra\,Eresnel—Klrchho_ff diffraction formula _adapted to th_e Imegr—
tational waves are relevant in gravitational lensing for theized Kerr metric to compute the interference/diffraction
situation when source, lens and observer are nearly collineafunction. In Sec. IV we discuss the possibility of detecting
Since infinitely many rays with almost equal path length in-'€nsed gravitational waves in the context of the upcoming
tersect at the observer, diffraction and interference shoul§@ser Interferometric Gravitational Wave Observatory
invalidate geometrical optics. This is not the case for sourcef-!GO), and in Sec. V we summarize our results. The treat-
of electromagnetic radiation: rays originating from points notment of the effect of the background curvature on gravita-
on but near the optic axis reach the observer at separate timignal wave propagation in the short wave approximation is
which can exceed the coherence time. In the case of graviti€legated to the appendix. We use the conventisrG=1.
tional lensing of gravitational waves, however, the use of
wave optics is not only justified but necessary. Along the Il. THE FRESNEL-KIRCHHOEF DIFERACTION
whole focal line the intensity is amplified by the factor FORMULA
87?m/\ [4], m being the deflector's mass andthe radia-
tion’s wavelength.

In the case of gravitational lensing by a rotating massive |nterference corresponds to the sum of two or more waves
object, thanks to the coherence of gravitational waves, wgielding a resultant intensity that deviates from the sum of
discover a behavior which has so far been discovered only ahe component intensities. The intensity of gravitational
the atomic level in two occasions. One is the interference ofvaves peaks along the focal line which stretches along the
electron-waves passing either side of a magnetic solenoigource-lens axis behind the gravitational lens. Similarly to
the Aharonov-Bohm effedt5]; the other is the interference Young's double slit experiment, the interference of coherent
of neutron-waves affected by the Corriolis force in thewaves results from the gravitational deflection by an angle
earth’s gravitational f|8|d, the CoIeIIa—Overhauser—WernergO:4m/b' whereb is the impact parameter, of the two sepa-
(COW) experiment[6]. The phase shift in the Aharonov- rate null geodesics which correspond to the double image in
Bohm effect is given by the line integral of the vector poten-geometrical optics. According to the lens equation R2f.
tial [dl-A. Similarly one expects that the phase shift of Sec. 2.1 the slit widttior distance between two imagés of
gravitational waves is given by the line integral of the gravi-order of the Einstein radius defined as

A. Preliminary considerations
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ds The disturbance leaving the sourBénas the form of an
&=\ Mo (20 outgoing spherical wavé— Aye'“'1/r; asr;—0, whereA,
is a constant and, is the distance from the source. The

whered ands are the distances from the observer to the lendiuygens-Fresnel principle is directly traceable to this inte-
and the source, respectively. We assume thatm, i.e. gral resulting _fr_om _the scalar wave equation. The gravita-
observer and source are located far away from the lens. Ifional wave originating a$ propagates to the surfagg and
this situation each component of the gravitational waves caffom there the superposition of secondary waves sums up to
be treated as a scalar wave since the rotation of the polariz&" amplitude at the observer. The surfagecan be chosen
tion is in general too small to affect the interference pattern@rbitrarily, but to suit our purposes we use a finite plane
In fact the rotation angle of the polarization plane of a wavePerpendicular to the line of sight. To close the surface, we
lensed by a Kerr black hole is derived in Ré8] as y at_tach a sphgre from which the contr|bu.t|on to t.he mtegral
— % rm2acos®/b®, with © being the angle between the an- will be_ nggllg|ble because we can blow this §pher|cal portion
gular momentum vector of the deflector and the line of sightUP to infinity, so that at the time when the disturbance at the
anda being the Kerr parameter. Given the impact parametePbserver is considered no contributions from this sphen(_:al
b~ 4md and the Kerr parametex<m, this angle is van- surface could have reaghed O. We therefore have to take into
ishingly small. Therefore we can neglect the polarization ten&ccount only contributions from thdens plane % (see

sor e, in our derivation below. 11). ) L _
We shall use the eikonal approximation for the soluti6ns

andU, (Appendix A assuming that the wavelength is much

, shorter than the curvature radiusi(¢3) ~*2 around the lens
We write the gravitational wave tensor hg,=.Ae,,e'S object,

=¢&e,, (see Appendix A and treatf as a scalar wave satis-
fying the propagation equation

B. The diffraction formula

E=A,€e'S1/r; on the source side of the plan®g, (7)

J J
- N &X,L( 9” V_gﬁxy)g_o' 3 andU,=e"'S2/r, on the observer side of the plar®,
®
We consider a lens object whose size is much smaller than
the Einstein radius,, Eg. (2), so we can specialize to a whereS; andS, are, usingwr>1, regular solutions of the

linearized Kerr metric eikonal equation, Eq(A9), in their respective domains.
From Eqs.(6)—(8) we obtain the Fresnel-Kirchhoff diffrac-
d32= —(l—2m/r)dt2+(1+ 2m/r)dr2 tion formula:
4am ~ ~ _ ~
—Tsinz 6dpdt+r2de?+r2sifodd?.  (4) A, [ €SitS) o
Sobs=r 3(; —(VS;—VS,)-ndS, 9
mi Js rqr,

For monochromatic waves of frequenay, i.e., Exe !,
Eq. (3) becomes . .
wheredS=ndS, n being the unit normal vector & point-
ing towards the observer.
Aftio—- —+(1+2m/r)w’E=0, 5 In astronomical situations the distances and r, are
r* d¢ much larger than the effective scale of the plane of integra-
. . : tion which is of the order of the Einstein radius because of
where A is the spatial Laplacian. Though we do not takethe stationary phase approximatigsec. Ill B). We can

account of the cosmological expansion in the metric, (Bjg. . :
the formulas derived below apply also to cosmological Situ_therefore replace them by constant distancessidyy the

ations(considered in Sec. IV Bwhen the distances, s and distance from the source to the legsandr, by the distance

d+s are replaced by their corresponding “angular size dis_}‘rom the lens to the observat, and consequently write them

tances” [10], because we assume that the wavelength in front of the integrand. In thiz Igwest order approxifngtion,
much shorter than the horizon scale. We show in Appendix1=@r1 @ndS,=wr,, so thatn-VS,=(JS,/dr,)cos fury)

B that the Kirchhoff integral theorem is applicable to E5), ~w and n- §82=(582/&r2)cos 6,6))%—(», because the
so the wave amplitude at the observer is written as angles involved are small. Therefore, from E®). we obtain
6obs=—ifﬁ [UsVE-E(VUp*]-dS  (8) Ao [ 2rnitsi+sy)
am Js, 5obs:mfzd ge'>1m2), (10

where U, is a solution of Eq.(5) which behaves like an

incoming spherical waves-e™'“"2/r, when the distance wheref is the two dimensional coordinates in the lens plane
from the observer,—0, and3, is a large closed surface 3 anddSis approximated byl?¢. In the following section
containing the observefig. 3. we will evaluate the eikonalS; andS,.
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IIl. INTERFERENCE AND DIFFRACTION
OF GRAVITATIONALLY LENSED
GRAVITATIONAL WAVES

A. Evaluation of the eikonalsS; and S,
With the metric Eq(4), the eikonal equation, E@GA9), is

written as
) 4am JS 9S\ 2
0} (1+2m/r)—w—3 ——(1-2m/r)| —
r3 9¢ ar
1(es\®> 1 [as 2_0 an
r2\ g6)  r?sirfe\ d¢ ’
. . d
(S in Appendix A corresponds t&— wt herg. We solve
Eq. (11) perturbatively by settingS=S;+¢€, where S,
is the eikonal in the Euclidean space satisfying
5ij(asolaxi)(asolaxj)=w2, while the correction terng is
linear in the massn and the angular momenturdi=am, of 4
the lens object.
Let us first consider the case of perfect collinearity among FIG. 1. Geometry in case of nonalignment.
source, lens and observer. Assuming regularitgofnd S,
in their domain, the solutions of E¢L1) are approximately, We use the eikonal relative to the unlensed case
i.e., up to linear order it anda, given respectively by
2 1 cosd S=S,+S,— w|(d+s)n— 17|, (15
S =w|st g—r cosf+m;{ 2 In T s
to evaluate the Fresnel-Kirchhoff diffraction formula, Eq.
of  nxa (10), since we are not interested in the constant phase factor
r nxa . ;
-2 In(1+cos¢9)+cos:9——2~ S ] . (12 of £. Furthermore, we do not need the full information of the
r<- nr—1 waves, Eq(12) and Eq.(13), but only the value at the lens
where§e[0,7/2], and plane yvhereﬁz /2 andn-r=0. The value ofS at the lens
plane is
= d+r2+ 0+mj 2| 1+cosa
e 2d e " [ = —|(d+s)§_dn|2+4mln = +4m£-(ﬁ><5)
2sd(d+s) 3 2 '

(16)

. (13

2r nxa
-2 In(1—cos¢9)—cos¢9+—2- —

r< nr+1
Here we have replacaaby & defined in the lens plane, and
hereafter 2-dimensional vectors in the plane perpendicular to
the line of sight are expressed by boldface symbols. The first

where § e[ m/2,7],60 being the polar angle measured from
the z-axis which points from the lens to the source. In the

; P S —is ;
?kolnal apptrox'|mat|on,e fllrl ;\nd UL %'.V?] 'resp?'c(:j—_ term is determined by théEuclidean geometry of the lens
tlf\lley an ou g_odlng w?jve rom the source, Wt ICth IS VS' In configuration, the second term is due to the influence of the

€ source side, and an incoming wave 1o the ODSENVe{e o potential, while the third term is a result of the Kerr
which is valid in the observer side. rotation

In general, we expect a displacemenof the source par-  Next, we rescale the coordinates to make them dimen-
allel to the lens plane from the alignment observer-deflectosjonless according tf2]:

(see Fig. 1L We have

> > d 1]
, =l | - =2, y=9 7 i
S =w|s+ 55 r — »|cosé &’ y d+s &’
o whereé, is the Einstein radius defined in E@). The eiko-
+mj 2 |n(7— T) —2In(1+cos6) nal in terms of the dimensionless variableandy is
2r nxa 1 5 X (. a
+cosf—— - == . (14 S=4mo| 5 |x—y|*—Inx+ —-| nX— (18
r2 nr—1 2 X o
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The eikonalS is sometimes called a Fermat potential, thespond to the images in the geometric optics approximation,
stationarity ofSwith respect tax yielding classical paths of and the conditioV T(X) =0 describes Fermat's principle of

geometrical optics. least time[2]. ExpandingT(X) around the stationary points
and performing the Gauss integrals, the resulting wave am-

B. Wave amplitude and image positions as stationary plitude is given as the superposition of contributions from
points of the eikonal the two stationary points:
We evaluate the Fresnel-Kirchhoff formula Ef0) using
the eikonal obtained in the previous subsection. We define Eop= 50-2 |M(;<j)|1/2 exr{ifT(ij)—iwndZ], (26)
. . ==
- a - Jd
f=4mo, aznxg—oznxmgo, (19 wheren,=0 andn_=1 correspond respectively to the

minimum and to the saddle point, and
1 X ~ ~ —_ ~
T(x,y)= §|x—y|2— In x+; -a. (20) w(x):=defVeVT(x)] L. (27)

fWhenY/s 1/f the stationary phase approximation is not valid
the lens to the wavelength. The vecwpoints in the direc- anymore. 'I_'his_case is treated separately below by evaluating
tion perpendicular to the projection of the angular momen-he diffraction integral Eq(24) exactly.

tum vector onto the lens plane, and its magnitldgis of Since the phase functioR(x) in Eg. (25) has exactly the
order ~ym/d which is much smaller than unity. From Egs. Same form as that for the non-rotating lens, we can use the
(10) and(18) we see that the wave amplitude at the observefamiliar formulas for the Schwarzschild lef&] with x andy

Note thatf represents the ratio of the gravitational radius o

is replaced byx andy. The two stationary pointg. are
Eof [, _ ~
fody)= 5% [ O exifToeyl, (@1 %=L = GEra). 28
=%

where&y=A,/(d+s) is the wave amplitude for the case of

no lensing. We note that EG0) can be rewritten as The curvatures Eq27) at these stationary points are

T(xy) =5 x—yi2—Inlx— @ 22 el V12
XY) =5 IX=y"—InjX—aj, (Y)=—Ft———. (29
2 M ~
2 2y\Vy?+4
to first order ine. Equation(22) suggests that we introduce
new coordinates The phase difference between them is
X=x—a, y=y-e. (23 AT(Y)=T(x )= T(x) (30
This coordinate transformations are just parallel translations ~ Fo .~
by the constant vectow, and we can change the integral :X /§/2+4+In y“+a+y (31)
variable of Eq.(21) from x to x: 2 y2+4—h§/.
gobs(y)zj_of_f d? exdifT(x,y)], (24)  Thus, the total wave intensity is magnified by the factor
i

where |Eons/ Eol = |+ |2 s |2 sin(f AT) (32)

V2+2+2sin(f AT)

yVy?+4
Therefore it is clear that the whole pattern is just shifted by, i , i ,
the amounta. The third term of this equation expresses the interference of

As we show in Sec. IV.A, we consider the case where waves reaching from the two images. By exchanging the

>1, i.e., when the wavelength is much shorter than themIe.S of_sourcg and observer, i.e,ands, we expect by
gravitational radius of the lens. In this case we can evaluatieCIProcity an interference pattern to appear on the observer

Eq. (24) using the stationary phase approximation. The phasglane. This interference pattern is c_ircular and has the same

. ~ : L~ shape as for the case of a non-rotating lens. The effect of the
funct.|on T(Xl |n~Eq. (2? has ,EWO ~sta'F|onary. p.omtzi a5 lens spin is just to shift the whole pattern translationally by
solutions of VT(x)=0,(V:=d/dx). x, is a minimum, and  the small vectora. In physical units, this shift on the ob-
X_ is a saddle point. Actually these stationary points correserver plane is

T(Xy) =% [X=y|2—InX. (25) (33
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d+s of galaxy, takingm=10®M, which corresponds to a geo-
Tasm@, (34 metrical mass of 3 10* cm, i.e., the mass of the black hole
located at the center of our galaxy. For these values the Ein-
where® is the angle between the angular momentum vectoftein  radius (impact parametgr is §,=y4md~5
of the lens and the line of sight. X 10*® cm; we can easily check that=(a/&y)sin O is less
Let us estimate the width of these interference fringeghan 6x107°, i.e., a very small number, the fact we used in

near the caustic wherefiy<1. From Eq.(33) the condi- the approximation which has lead us to E2p). In this case
tion for constructive interference i§ AT(Y)=m(2n+ 1) we have the following distance between fringes located near

. . : ~ o~ o~ ) h ic:
with the integem. SinceAT(y)=2y for y<1, the distance the caustic
between adjacent fringes near the centerO of the inter- N \F
ference pattern is given hiy==/f, or by 4 EQOA AU. (39
m /d(d+s) (35) The interference pattern we expect is therefore huge. If we
© 4ms ’ assumea=0.1m and ® = 7/2, the pattern will be shifted by
in physical units on the observer plane. a=3x102 cm~0.2 AU. (40)

Since the stationary phase approximation breaks down for
y=1/f, diffraction effects become important at the center ofThe maximum magnification is given by
the interference pattern, where the wave amplitude has its
maximum. Performing the diffraction integral E@4) with

~ m
y=0 yields ,u:8772xw8>< 10°. (41)
. P e T2
Eaps= —1&of . dxxt~ el (36)  This gigantic magnification motivates a brief discussion,
given in the next section, on the possibility to detect gravi-
= &,(F12) 24 (1 Lif), 37) tational waves lensed not only by the center of our own

galaxy but by the centers of other galaxies as well.

and the wave intensity at the center of the interference pat-
tern is B. Detection rate estimate — lenses dispersed in the universe

In this section we estimate quantitatively the detection
af - . .
|50bs/50|2:_7f2477mw, (38)  rate of lensed gravitational waves following the method in
l-e™ ™ Ref.[13]. We consider a situation in which waves from coa-
lescing neutron star binaries are lensed by intervening mas-
sincef>1. This is exactly the same as the maximum mag-sijve objects(e.g., galaxies whose gravitational radius is
nification for the case of a Schwarzschild Ig#ds. larger than wavelength so that the geometric optic approxi-
We conclude thatl) the whole interference pattern is mation is valid[12]. Lensing would increase the detection
shifted by e, which can be understood as a dragging of therate since faint signals from some distant sources become
gravitational wave by the rotation of the massive object, andjetectable because of the amplification of the wave intensity.
(2) all the other features of the circular diffraction/ Figure 2 plots the number of detection events per year for the
interference pattern are the same as in the case of a nonrpGO-type detector versus the minimum detector ndisg,
tating lens. The analogy to the Aharon_ov—Bohm effect shoulddefined to beyf, S, in the notation of Ref[14]). Solid,
now be apparent, the quantity proportional to the angular dashed and dotted curves show respectively the event rate
momentum of the lens object having a similar effect on thewithout gravitational lensing, the increase of event rate due
interference of gravitational waves as the magnetic flux hag the lensing amplification and the rate of those lensed

on the interference of electron waves. events in which the two images are both detectable. The
three curves correspond to cases in which the cosmological
IV. NUMERICS parameters are{}y,\)=(1,0),(0.2,0) and(0.2,0.9 from

bottom to top. In the figure the threshold of detection is set to
be S/N>5, the density parameter contributed from lens ob-
In the case of large distances of the source from the lengects is 0.004(this is the observed value of the density pa-
we can ses— . In this case the shift will be almost exactly rameter of galaxie$10]), the coalescence rate density at
asin®, and the distance between fringes near the focal lingresent epoch is 7:410° Mpc3yr~* [15], the maximum
(caustig will depend only on the wavelength of the gravita- redshift of sources is 5, and,=70 km s *Mpc™ 1. Since
tional radiation\ and the distance to the ledsLet us take the value ofh,,, is 4.2< 10 2* for the advanced LIGO su-
as a typical wavelength of gravitational radiation=3 perinterferometef16], we conclude from the figure that the
x10° cm, which corresponds to a frequency of 1 Hz, anddetection of gravitationally lensed gravitational wavemre
ford=8 kpc=2.4x10?% cm, i.e., the distance to our center than once per yeamay be possible by lowering the noise by

A. Orders of magnitude — the case of our galactic center
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log{event rate)
N

22 225 23 235 24 245 25 255 26
-log{minimum noise)

FIG. 2. The number of detection events per year for the LIGO-type detector versus the minimum detectby,poiSelid: event rate
without lensing magnification; dashed: increase of event rate due to lensing magnification; dotted: lensed event rate with both two images
detectable. Three curves correspond to different cosmological mddgla g) =(1,0),(0.2,0) and (0.2,0.8) from bottom to top. See text for
the assumed values of parameters.

a factor of several beyond the level of advanced interferomhave a pure shift of the interference pattern based on the
eters if our universe is dominated by the cosmological conphase shift resulting from a change in magnetic flux inside
stant. the solenoid. On the other hand, the COW experiment is
essentially the same as the effect we described, the Corriolis

V. SUMMARY AND DISCUSSION force acting upon the neutron-waves, causing the interfer-

We pointed out that in astrophysical situation there existsence patter to shift, just as the gravitational dragging acts

a parallel phenomenon with the Aharonov-Bohm effect oriPon the gravnatlon.al waves. . .
the COW experiment in quantum mechanics, namely, gravi- In real astrophysical situations it is urlhkely _that we can
tational lensing of gravitational waves by a spinning massiv easure _the Kerr. parameter of a lensing object from the
object. The main result of our paper is summarized as folabove shift of the interference pattern for.the followmg rea-
lows. Due to the high coherence of gravitational waves, ar_§ons.(1) As we found above, except for this shift the overall
interference pattern is formed near the caustic on the ognterference pattern does not depend on the Kerr parameter.
server plane. This pattern is circular whether the lens is spinJnlike for the case in atomic physics, we cannot prepare a
ning or not, and the effect of lens spin is to shift the patternarge screen on the observer plane. In other words the sole
translationally by the amourdsin® in the observer plane, observable effect would be the misalignment of the lens and
wherea is the Kerr parameter arfd is the angle between the the two images, i.e., the stationary points. These are on one
lens angular momentum vector and the line of sight. Thidine with the lens when the lens is not spinning. But the angle
shift occurs in the direction perpendicular to the angular mo-of this misalignment- (Kerr parametef(distance to lensis
mentum vector projected onto the lens plane, i.e. the direciny and currently irresolvable(2) This tiny misalignment
tion of dragging, leaving all the other properties of themay well be due to other reasons such as the external shear
diffraction-interference pattern unchanged. We conclude thatom nearby objects surrounding the lei8) As shown in
the gravitomagnetic field around a Kerr black hole affectsSec. IVB detection of lensed waves would also be rare for
not only the path of the gravitational way@,9] but causes the laser interferometer detectors under construction such as
also a phase shift in parallel with the magnetic field or thethe advanced LIGQ17].
Corriolis force field in the above mentioned quantum me- Einstein wrote in his seminal paper on the gravitational
chanical effects, resulting in a shift of the interference patterrensing effect of electromagnetic radiatiph] that “there is
formed near the caustic. no hope of observing this phenomenon directly.” Gravita-
It should be pointed out, however, that in the Aharonov-tional lensing of electromagnetic radiation, however, has
Bohm effect no force acts upon the electron waves and weeen observed on several occasions in the meantime. Due to
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the weak interaction and therefore high coherence of graviThen the equation of motion is
tational waves, interference of gravitational waves by lensing

certainly occurs in our universe even if difficult to detect. 1 ]
0=— —ZAabS;CS*C
€
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If A,y is assumed to vanish at most on hypersurfaces, the
APPENDIX A: GRAVITATIONAL WAVE PROPAGATION leading term says
IN THE EIKONAL APPROXIMATION
. k.k?=0, (A8)
Let us recall the effect of the background on gravitational

wave propagatiof3]. As long as the amplitude of the waves j e, the wave vectok?= —g2PS, is a null vector, and the
|hap/ <1, whereh,;, obeys the linearized field equations and phase must obey the eikonal equation
represents a weak gravitational wave, the vacuum propaga-

tion equation is g?’S .S, =0. (A9)
hap:c“+ ZREadbh°d= 0, (A1) This equation which determines the characteristic wavefronts
. is a generalization of the time-dependent eikonal equation of
subject to the transverse traceless Lorentz gauge classical optic§11]. Moreover, sincek, is a gradient, i.e.,
he,=0=h,", (A2) Ka:b=Kp:a, it is straightforward to show that

b_
where the covariant derivative is taken using the background Ka;pk®=0, (A0)

metric form, andRS, 4, is the background Riemann tensor.

If the wavelength\ is much smaller than the typical ra-
dius of curvature of the background than one expects wav
behavior to go over to particle motion. Such waves appear,
relative to the observers of interest, as nearly plane and i €
monochromatic on a scale large compared with a typical A pSP+ AP+ By SP+ —B,,P=0. (Al11)
wavelength, but very small compared with the typical radius € '
of curvature of spacetime. Following the usual eikonal ex-r
pansion of the phase, we have

which means thak, is tangent to an affinely parametrized
eodesic.
The gauge condition reads

he leading term of the gauge condition says

eabkb: 0, (AlZ)

. €
hap= Re[ e's’f( Aab+ 7Bap | +0( 62)] : (A3)

which means that the polarization is orthogonal to the rays.

. . . The ! term of the equation of motion implies
where € is a dummy expansion parameter with eventual

value unity which serves to identify orders of magnitude. 2 A K+ A KC=0 (A13)
For an observer with proper timg world line x3(7) and abice abfe

4-velocity u®=dx°/dr, the circular frequency and the  \hich by contraction with4*2® and using the definitions of

wave vectork, of the wave are defined as the scalar amplitude and polarization tensor gives
ds c_
w=— E: —S'aua: kaua_ (A4) 2A;CkC+AkC,C_O, (A14)

. . ) or equivalently
Furthermore the scalar amplitude is defined as

1 1/2 (Azka);azou (A15)
—| = % ab
A_(ZAabA ) ' (AS) which means that the scalar amplitude decreases as the rays
o diverge from each other expressing the conservation of
and the polarization tensor as gravitons. Moreover, by definition of the polarization tensor,
1 Eq. (A13) together with Eq(A14) implies

€ab= ZAab . (AB) €a,ck°=0, (A16)
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meaning the polarization tensor is parallelly transported
along these null geodesics.

APPENDIX B: THE KIRCHHOFF INTEGRAL THEOREM

We rewrite the propagation equation, E§), for mono-
chromatic scalar waved of frequencyw, in the case of a
linearized Kerr metric as

AU=—(1+2m/r)w?U, (B1)
whereA=A+iw(4am/r®)(d/d$) andA is the spatial La-

placian. For two waved); and U, which both satisfy Eq.
(B1), the following volume integral vanishes:

ozf [U3AU;— U (AU,)*1dV (B2)
\%

- [ [uzau,—usauy*1av
v FIG. 3. A doubly connected region surrounding the observer O.

+4iamwf d—vi,.(U1U§). (B3) The rest of _the derivation can be_found in standard text-
vrd 9¢ books discussing wave opti¢41]. Using Green’s theorem,

Eq. (B3) is rewritten as
We take the integral volum¥ to be the one sandwiched

between the two closed surfacgs and.,, both containing
the observefFig. 3). For thisV, the second term of E¢B3) 21+ s,
becomes a two-dimensional integral B after performing

thed¢ integral. Then, this term is smaller than the first termwheredé is surface-element normal vector pointing inward
by an order~amirg, wherer, is the typical distance from to the volumeV. We takeS., to be a sphere whose center is
the lens to the stationary points of the phas&etl} onX;. at the observer, and let its radius shrink to zero. Settiag
For our choice o, in Eq.(9), rq is of order of the Einstein =e™'“"2/r, to be incoming spherical waves in flat space in
radiusé, [Eq. (2)]. Therefore the second term of E&3), of  the vicinity of the observer, the second integral of E84)
the order ofam/§5< 1, can be safely neglected comparedyields 4+ times the value otJ; at the observer. Thus Eq.

(UsVU,;-U,VU3%)-dS=0, (B4

with the first term. (6), where we replacet ; with &, has been justified.
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