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Entropy of 2D black holes from counting microstates
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We present a microscopical derivation of the entropy of the black hole solutions of the Jackiw-Teitelboim
theory. We show that the asymptotic symmetry of two-dimensi¢2@) anti—de Sitter space is generated by
a central extension of the Virasoro algebra. Using a canonical realization of this symmetry and Cardy’s formula
we calculate the statistical entropy of 2D black holes, which turns out to agree, up to afactaith the
thermodynamical resulfS0556-282(199)50406-2

PACS numbegps): 04.70.Dy, 04.50th

The idea of asymptotic symmetry plays an important roleover, at the semiclassical level takes place the evaporation
in the recent developments in string theory and black holgrocess, whose Hawking radiation flux has been already cal-
physics. The anti—de SitteréADS-)conformal field theory culated[7].

(CFT) correspondencdl] is just one example of how In this Rapid Communication we present a microscopical
asymptotic symmetries can be used to bring in touch differderivation of the entropy of the black hole solutions of the JT
ent theories in spacetimes of different dimensions. The conModel. The approach used in RE3] for the 3D case cannot

jectured equivalence between supergravitybedimensional be _|mmed|ately exte_nded .to th_e 2D one. The obstruction is
ADS space and conformal field theory on the Mainly due to the dimensionality of the—c boundary of

(D —1)-dimensional boundary is a very useful tool to gainADSZ* which makes both the mathematical treatment and

information about the nonperturbative regime of gauge theothe physical interpretation of the results highly nontrivial.

ries and to solve the problem of the microscopic interpreta-':for th|s_ reas;?n \;ye W|!|I_r|?rege?t.|heref (t)r?ly thle nl]atl'n outcordnes
tion of black hole entropy. of our investigation. The details of the calculations and a

The previous ideas have found a nice applicationDor thorough discussion of the physical meaning of our results

=3. It is well known since the work of Brown and Hen- will be published elsewhere.

) We compute the entropy of the JT black hole by counting
neaux[2] that the asymptotic symmetry group of AB®  giates on the one-dimensional, timelikesoc, boundary of

the cqnformal group in two dimensions. Using this resuItADSZ_ To this end we first show how tHBL(2,R) isometry
S.tromln.ger has cglculated. the _entropy of the three-group of ADS can be promoted to an asymptotic symmetry
dimensional(3D) Barados-Teitelboim-Zanell(BTZ) black group on the boundary. This asymptotic symmetry group
hole by counting excitations of A 3]. A nice feature of  tyrns out to be generated by a central extension of the Vira-
this microscopical derivation of the black hole entropy is thatsoro algebra. Using a canonical realization of the asymptotic
it does not use string theory or supersymmetry, but just gensymmetry, we calculate the central chagef the algebra.
eral properties of 3D gravity. This fact makes the Stromingempplying Cardy’s formula[8] for the asymptotic density of
calculation of Ref[3] more similar to that of Carlip4] than  states, we calculate the statistical entropy of the JT black
to statistical derivations of black hole entropy that rely bothhole reproducing, up to a factaf2, the thermodynamical
on supersymmetry and string thed#j. result.

It looks very natural to try to apply the microstate count- The JT model is described by the action
ing procedure of Strominger to two-dimensioriaD) black L
hole solutions in ADS spacetime. The simplest 2D gravity
theory that admits ADS space as solution is the Jackiw- A= Ef V=g dx n(R+20%),
Teitelboim (JT) model [6]. The JT model admits solutions
that can be interpreted as 2D black holes in ADS space angthere\ is the 2D cosmological constant andis a scalar
that behave very similarly to their four- and three- field related to the usual definition of the dilatah by 7
dimensional cousins. One can associate with them a Hawk=exp(—2¢). The theory admits solutions that can be inter-
ing temperature and a thermodynamical entrpply More-  preted as 2D black holes in ADS space, which in a

Schwarzschild gauge take the fofim:

)
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where 7, is an integration constant ard is related to mass N andN* act as usual as Lagrange multipliers enforcing the
M of the black hole by constraints,

MZ%’]Oaz?\. ©) H=—ILI,+0 *n"—o ¢’y =\2an=0, (8

Two-dimensional dilaton gravity does not allow for a dimen- Hy=11,7"— oll] =0,
sionful analog of the Newton constant. However, it is evident

from the action(1) that the inverse of the scalar field  where

represents thécoordinate-dependentoupling constant of

the theory, whereas the inverse of the integration consjgnt

plays the role of a dimensionless 2D Newton constant. IL,=N"Y(=o+(N0)"), I,=N"*(—7+N*y"),

All the solutions(2) are locally anti—de Sitter, but have 9
different global properties. In particular, we consider the ) _
=0 solutions(which following the notation of Ref(7] will ~ &r€ the momenta conjugate tpand o, respectively. A dot

be denoted by ADY as the ground state of the model. denotes derivative with respectt@and a prime with respect

ADSV is not geodesically complete and differs globally from tox. . .
full 2D ADS spacefthe a=—1 solution in Eq.(2)] [7]. A In case of non-compact spacelike surfaces, however, it is
similar phenomenon occurs also for the 3D BTZ black holewe” known that, in order to have well defined variational
solutions. derivatives, one must add to the Hamiltonian a surface term

Using standard arguments one can easily calculate th@): Which in general depends on the boundary conditions
thermodynamical parameters associated to the black(@ple MPosed on the fieldgl0]. In our case, the boundary reduces

For the entropyS we have[7] to a point and the variation must be given by
oM 5J=—X|Lrnoo[N(U_1577'—0'_27]'50')
S=4x ox =277, (4)

~N'(o"t8n)+N¥11,89—0dll,)]. (10

where, is the value of the scalar field at the horizon. In two
spacetime dimensions we do not have an area law for th
black hole entropy. However, the second equality in &j.
can be interpreted as a generalization to 2D of theinf
Bekenstein-Hawking entropy. This follows simply from the
fact that according to Eq2), % is nothing but the “radial”
coordinate of the 2D space.

The anti—de Sitter space is invariant under $©(1,2)

Using suitable boundary conditions, this can be written as a
fotal variation at infinity of a functional.

We have now to fix the boundary conditions at spatial

inity such that the metric behaves asymptotically as that of
ADS, and to study under which transformations they are

preserved. We require that, fgr— o

~SL(2,R) group of isometries which, in the case of ABS O~ — A2x?+0(1),
are generated by the three Killing vectors
1
19
X=X\ ot SRS
@0 _ 9 1 1
X= ot ox’ QXXNW‘FO F . (11
1 \9g 9 Actually, in order to enforce anti—de Sitter behavior at infin-
Gy=x t2+W o~ 2hx—. (5) ity, one could choose milder asymptotic conditions. How-

ever, our stronger conditions are needed in order to have

The asymptotic symmetries are best investigated in thd/ell-defined charged. The asymptotic conditiongl1) im-
Hamiltonian formalism. With the parametrization ply

ds?’= —N2dt?+ o?(dx+ N*dt)?, (6) 1
o~—+0

~A\X+
X , N~Ax+o0

x3

1) . 1)
; y N*~ o ; . (12)

the Hamiltonian of the JT theory reaf3]

Imposing that the asymptotic forfd1) of the metric is con-
_ x served under the action of the Killing vectoys, one ob-
H= f AX(NH+N"H,). @) tains that these must have the form
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1 d2T(t) 1 1 where y* =Ny!, x!=x*+N*y!, and the surface terrd[ x]
X'=T+———— (—4>, can be interpreted as the charge associated with the symme-
224 dt? x? X

try generatory”. In view of the boundary conditions dis-
(13 cussed above and adjusting the arbitrary constant soJthat

dT(t) 1 vanishes for AD8 the functionalJ[ x] can be written in
X =— X+0 ),

— finite form as
dt

X

1

whereT is an arbitrary function of. Diffeomorphisms with I ax
~(W)x (7" =M+ (M) — = (=A%)

T=0 fall off rapidly asx—. They represent “pure” gauge J[X]:x”m 7o

— 00

transformations.

One still has to consider how the transformatidis) N3 1
affect the dilaton. The variation of a scalar fiejds given by + TXL O~ 2] ax I, |. (18)
L, n=x"d,mn, which is asymptoticallyo(x) for » of the A°X

form (2), and hence of the same order as the field itself. Thi
is quite disturbing, but is an inescapable consequence of t
scalar nature of the dilaton, and is also in accordance wit
the fact thaty is defined up to the scale factgg by the field
equations. The previous considerations together with(8q.
permit us to fix the asymptotic behavior of the remaining {HIx].H[o]}=H[[x,@]]+c(x,0), (19
canonical variables:

s general, the Poisson bracket algebraHify] yields a
rojective representation of the asymptotic symmetry group
2]:

wherec is the central charge of the algebra. By enforcing the
4 constraintsH, =0 the charged[ x] give themselves a real-
7~0(X), I1,~0(1), I,~o(x™"). (14  jzation of the asymptotic symmetry group through the Dirac

] bracket, so that
We can now write down the algebra generated by the

asymptotic symmetrieg€l3). Since the anti—de Sitter space B
has a natural periodicity it it is convenient to expand the x1 N wloe=d[x,w]]+c(x,®). (20

function T(t) in a Fourier series in the interval <0t | the case of three-dimensional anti—de Sitter space, the
<2m/\. The generators of the asymptotic symmetries rea‘ﬂ)revious arguments give a simple way to calculate the cen-

then tral charge of the algebif2]. One just needs to observe that
the surface deformation algebfa,w]sp is isomorphic to
1 k2 d ) J the algebra of the asymptotic symmetries and that the varia-
A= X(l—m) cogkht) - +kxsin(kit) —, tion of J[x] under surface deformations is given by the

(15) Dirac bracket,
< s k J K k i 0, x1=lx, w]]+ (), ). (21)
1_W sin( M)E_ X cog )\t)g,

1
Bk: X

By evaluating the previous equation for ABSone finds that
wherek is an integer. The generators satisfy the commutathe central charge(y,) is just given by the chargé[ x]
tion relations evaluated on the surface deformed by
In the case of 2D anti—de Sitter space, however, the pre-
1 1 vious calculation method cannot work, at least in the form
[AGA]==(k—D)Byy+ = (k+ 1By, described above. In fact, the boundary being a point, the
2 2 functional derivatives appearing in the Poisson bra¢két
can be defined only for pure gauge transformations, for
1 1 which the chargd[ x] vanishes. Moreover, the Dirac brack-
[By.B/]=— E(k_l)BkJrI"_ E(k+I)Bk,| , (16)  ets(20) have no meaning as long as theso boundary is a
point. As a consequence, the surface deformation algebra has
no definite action on the chargdgy], and Eq.(21) cannot
1 1 be used to calculate the central charge.
[Ac.Bi]= = 5 (k=D A+ 5 (KE DA The simplest way to cure the disease is to define the time-
independent charges

In the Hamiltonian formalism, the symmetries associated

with the Killing vectorsy* are generated by the phase space A N [2mn
functionalsH[ x], defined as Ix]I= 270 dt J{x]. (22)
B N | The functional derivatives ofi[)(] can be easily defined, so
H[X]_f dX(x " HA X Hy) +I0x], 17 that the Dirac bracket algebra[ x1,9[»]}ps has now a

081501-3



RAPID COMMUNICATIONS

MARIANO CADONI AND SALVATORE MIGNEMI PHYSICAL REVIEW D 59 081501

meaning. One can also verify that the action of the surfacé&om the 3D one by the ansatz

deformation on the chargel x] gives a realization of the
algebra(16). Let us comment briefly on the physical mean-

ing of the charges:]. Apart from J[Ay], which gives the
massM of the solution, the other chargdfA,] are in gen-

eral time-dependent. This means that besides the mass th ; :
are no conserved quantities. This fact is strongly related ggontext the 2D bI_ack hol€2) can be considered as the di-
nensional reduction of th@=0 (zero angular momentum

the presence of the dilaton and its behavior under the tran%‘TZ black hole. Simple calculations show that both the mass
formations(13). On the other hand the chargésepresent a ’ P

t of dch that b 410 ai .and the thermodynamical entropy of the BTZ black hole
sort oraveraged charges that can be Used o give a canoniCiyqq with our 2D results. The same is not true for the sta-
representation of the algeb¢&6).

i tistical entropy. From the 3D point of view we have contri-
We can now easily calculate the E:entral chargesve butions to the mass of the black hole coming from both the
just need to use in Eq21) the charges instead ofJ. One  right- and left-movers oscillators of the 2D conformal field
gets theory living on the boundary of ADS Becausel=0 im-
plies that the number of right-movers equals that of left-
_ _ _ 3 movers, we haveé,=M/2\, which inserted in the Cardy’s
ClAKA)=C(B B =0, c(AcBI) =70k dp - 23  formula reproduces the thermodynamical entrégy From
the 2D point of view only oscillators of one sector contribute
Defining new generators, = — (B,—iA,), and shiftingL, to the mass of the black hole givirig_: M/\ and the s_tatis-
by a constant, one obtains the Virasoro algebra, tical entropy(27). These results are in accordance with those
obtained by Strominger in a recent pajp#®], where ADS
is generated as the near-horizon, near-extremal limit of
ADS;. At first sight this seems to imply that there is no
intrinsically 2D explanation of the statistical entropy of 2D
(24 black holes. This is certainly true as long as the fields
interpreted as the radius of the internal circle, because the
To calculate the entropy of a generic black hole solution ofx—o boundary of AD$ corresponds to the region— o,
massM in terms of states living on the boundary, we justwhere the space decompactifies and the 2D theory becomes
need to use Cardy’s formula for the asymptotic density ofintrinsically 3D.

dsy) =dsf,) + 16G ?de?, (28)

é(ygereG is the 3D Newton constant andQp<2. In this

Cc
[Li,Li]= (K=D)L + 1—2(k3_k)5k+| ,  C=24,.

states: The previous considerations do not apply when ADS
arises as near-horizon geometry of higher dimensional black
holes with no intermediate ADBSyjeometry involved. We do
S=271 /C_lc” (25) not have a complete explanation of the fac{@rin this case.
6 In our opinion what is needed in order to find an explanation

of this discrepancy is a complete understanding of the role
where |, is the eigenvalue of the Virasoro generatay, played in our derivation by the global topology of ARS
which for a black hole of mashl is given by Full ADS, has a cylindrical topology with two disconnected
timelike boundaries. This fact plays a crucial role in Ref.
[12] because it makes the string theory on ADStheory of
(26) open strings. By studying the black hole solutions of the JT
theory we are forced to cut the spacetime onxked “sin-
gularity,” so that only one timelike boundary of full AQSs
Inserting Eq.(26) and the value of the central charggiven  available. It seems to us that a thorough understanding of the
by Eq.(24) into Eq.(25), we find, for the statistical entropy, statistical entropy of 2D black holes will be at hand only
when this point will be fully clarified.
M Our derivation of the statistical entropy of 2D black holes,
S=47 /770_, (27)  though very simple and elegant, has the same drawbacks as
A the derivation of Stromingef3] (for a critical review see
Ref.[11]). In particular the question remains open about the
which agrees, up to a factaf2, with the thermodynamical origin and the location of the relevant degrees of freedom on
result (4). The lack of knowledge about the theory on thethe boundary, whose number of excitations account for the
boundary renders difficult explaining this discrepancy be-entropy of the black hole. In our case, the nature of these
tween the statistical and the thermodynamical result. Neverdegrees of freedom is even more mysterious than in the 3D
theless, a simple explanation of the fact@ can be found if ~case. Even though one has no explicit description of the de-
one considers the modé€l) as a circular symmetric dimen- grees of freedom that are responsible for the entropy of the
sional reduction of three-dimensional gravity, with the field BTZ black hole, the underlying field theory is well known,
7 parametrizing the radius of the circle. Using the notationbeing 2D conformal field theory with given central charge.
of Ref.[3], the 2D dilaton gravity action can be obtained For 2D black holes, instead, we know very little about the

| M
0_)\'
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theory that should describe the excitations on the boundaryhis quantum mechanical system. On the other hand the fact
The one-dimensional nature of the latter implies that we ar¢hat one can use particle quantum mechaeegn though in
dealing with some kind of particle quantum mechanics,a still mysterious formto explain the entropy of 2D black
rather than quantum field theory. The quantum mechanicdioles seems to us a very exciting possibility.

system, whose states span a representation of the Virasoro Note addedAfter this manuscript was completed we be-
algebra(24), is most likely a very unconventional one. In came aware of the existence of the paper of R, in

this context the implementation of the ADS/CFT correspon-which the asymptotic symmetries of 2D anti—de Sitter space
dence in the 2D case could help to shed light on the nature a&re discussed.
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