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Entropy of 2D black holes from counting microstates
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We present a microscopical derivation of the entropy of the black hole solutions of the Jackiw-Teitelboim
theory. We show that the asymptotic symmetry of two-dimensional~2D! anti–de Sitter space is generated by
a central extension of the Virasoro algebra. Using a canonical realization of this symmetry and Cardy’s formula
we calculate the statistical entropy of 2D black holes, which turns out to agree, up to a factorA2, with the
thermodynamical result.@S0556-2821~99!50406-2#

PACS number~s!: 04.70.Dy, 04.50.1h
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The idea of asymptotic symmetry plays an important r
in the recent developments in string theory and black h
physics. The anti–de Sitter–~ADS-!conformal field theory
~CFT! correspondence@1# is just one example of how
asymptotic symmetries can be used to bring in touch dif
ent theories in spacetimes of different dimensions. The c
jectured equivalence between supergravity onD-dimensional
ADS space and conformal field theory on th
(D21)-dimensional boundary is a very useful tool to ga
information about the nonperturbative regime of gauge th
ries and to solve the problem of the microscopic interpre
tion of black hole entropy.

The previous ideas have found a nice application forD
53. It is well known since the work of Brown and Hen
neaux@2# that the asymptotic symmetry group of ADS3 is
the conformal group in two dimensions. Using this res
Strominger has calculated the entropy of the thr
dimensional~3D! Bañados-Teitelboim-Zanelli~BTZ! black
hole by counting excitations of ADS3 @3#. A nice feature of
this microscopical derivation of the black hole entropy is th
it does not use string theory or supersymmetry, but just g
eral properties of 3D gravity. This fact makes the Stromin
calculation of Ref.@3# more similar to that of Carlip@4# than
to statistical derivations of black hole entropy that rely bo
on supersymmetry and string theory@5#.

It looks very natural to try to apply the microstate coun
ing procedure of Strominger to two-dimensional~2D! black
hole solutions in ADS spacetime. The simplest 2D grav
theory that admits ADS space as solution is the Jack
Teitelboim ~JT! model @6#. The JT model admits solution
that can be interpreted as 2D black holes in ADS space
that behave very similarly to their four- and thre
dimensional cousins. One can associate with them a Ha
ing temperature and a thermodynamical entropy@7#. More-
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over, at the semiclassical level takes place the evapora
process, whose Hawking radiation flux has been already
culated@7#.

In this Rapid Communication we present a microscopi
derivation of the entropy of the black hole solutions of the
model. The approach used in Ref.@3# for the 3D case canno
be immediately extended to the 2D one. The obstruction
mainly due to the dimensionality of thex→` boundary of
ADS2, which makes both the mathematical treatment a
the physical interpretation of the results highly nontrivia
For this reason we will present here only the main outcom
of our investigation. The details of the calculations and
thorough discussion of the physical meaning of our res
will be published elsewhere.

We compute the entropy of the JT black hole by count
states on the one-dimensional, timelike,x→`, boundary of
ADS2. To this end we first show how theSL(2,R) isometry
group of ADS2 can be promoted to an asymptotic symme
group on the boundary. This asymptotic symmetry gro
turns out to be generated by a central extension of the V
soro algebra. Using a canonical realization of the asympt
symmetry, we calculate the central chargec of the algebra.
Applying Cardy’s formula@8# for the asymptotic density o
states, we calculate the statistical entropy of the JT bl
hole reproducing, up to a factorA2 , the thermodynamica
result.

The JT model is described by the action

A5
1

2E A2g d2x h~R12l2!, ~1!

wherel is the 2D cosmological constant andh is a scalar
field related to the usual definition of the dilatonf by h
5exp(22f). The theory admits solutions that can be inte
preted as 2D black holes in ADS space, which in
Schwarzschild gauge take the form@7#:

ds252~l2x22a2!dt21~l2x22a2!21dx2, h5h0lx,
~2!
©1999 The American Physical Society01-1
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whereh0 is an integration constant anda2 is related to mass
M of the black hole by

M5
1

2
h0a2l. ~3!

Two-dimensional dilaton gravity does not allow for a dime
sionful analog of the Newton constant. However, it is evid
from the action~1! that the inverse of the scalar fieldh
represents the~coordinate-dependent! coupling constant of
the theory, whereas the inverse of the integration constanh0
plays the role of a dimensionless 2D Newton constant.

All the solutions~2! are locally anti–de Sitter, but hav
different global properties. In particular, we consider thea
50 solutions~which following the notation of Ref.@7# will
be denoted by ADS0) as the ground state of the mode
ADS0 is not geodesically complete and differs globally fro
full 2D ADS space@the a2521 solution in Eq.~2!# @7#. A
similar phenomenon occurs also for the 3D BTZ black h
solutions.

Using standard arguments one can easily calculate
thermodynamical parameters associated to the black hole~2!.
For the entropyS we have@7#

S54pAh0M

2l
52phh , ~4!

wherehh is the value of the scalar field at the horizon. In tw
spacetime dimensions we do not have an area law for
black hole entropy. However, the second equality in Eq.~4!
can be interpreted as a generalization to 2D of
Bekenstein-Hawking entropy. This follows simply from th
fact that according to Eq.~2!, h is nothing but the ‘‘radial’’
coordinate of the 2D space.

The anti–de Sitter space is invariant under theSO(1,2)
;SL(2,R) group of isometries which, in the case of ADS0,
are generated by the three Killing vectors

~1!x5
1

l

]

]t
,

~2!x5t
]

]t
2x

]

]x
,

~3!x5lS t21
1

l4x2D ]

]t
22ltx

]

]x
. ~5!

The asymptotic symmetries are best investigated in
Hamiltonian formalism. With the parametrization

ds252N2dt21s2~dx1Nxdt!2, ~6!

the Hamiltonian of the JT theory reads@9#

H5E dx~NH1NxHx!. ~7!
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N andNx act as usual as Lagrange multipliers enforcing
constraints,

H52PhPs1s21h92s22s8h82l2sh50, ~8!

Hx5Phh82sPs850,

where

Ph5N21
„2ṡ1~Nxs!8…, Ps5N21~2ḣ1Nxh8!,

~9!

are the momenta conjugate toh ands, respectively. A dot
denotes derivative with respect tot and a prime with respec
to x.

In case of non-compact spacelike surfaces, however,
well known that, in order to have well defined variation
derivatives, one must add to the Hamiltonian a surface te
dJ, which in general depends on the boundary conditio
imposed on the fields@10#. In our case, the boundary reduc
to a point and the variationdJ must be given by

dJ52 lim
x→`

@N~s21dh82s22h8ds!

2N8~s21dh!1Nx~Phdh2sdPs!#. ~10!

Using suitable boundary conditions, this can be written a
total variation at infinity of a functionalJ.

We have now to fix the boundary conditions at spat
infinity such that the metric behaves asymptotically as tha
ADS0 and to study under which transformations they a
preserved. We require that, forx→`

gtt;2l2x21o~1!,

gtx;oS 1

x3D ,

gxx;
1

l2x2 1oS 1

x4D . ~11!

Actually, in order to enforce anti–de Sitter behavior at infi
ity, one could choose milder asymptotic conditions. Ho
ever, our stronger conditions are needed in order to h
well-defined chargesJ. The asymptotic conditions~11! im-
ply

s;
1

lx
1oS 1

x3D , N;lx1oS 1

xD , Nx;oS 1

xD . ~12!

Imposing that the asymptotic form~11! of the metric is con-
served under the action of the Killing vectorsxm, one ob-
tains that these must have the form
1-2
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x t5T~ t !1
1

2l4

d2T~ t !

dt2
1

x2
1oS 1

x4D ,

~13!

xx52
dT~ t !

dt
x1oS 1

xD ,

whereT is an arbitrary function oft. Diffeomorphisms with
T50 fall off rapidly asx→`. They represent ‘‘pure’’ gauge
transformations.

One still has to consider how the transformations~13!
affect the dilaton. The variation of a scalar fieldh is given by
Lxh5xm]mh, which is asymptoticallyo(x) for h of the
form ~2!, and hence of the same order as the field itself. T
is quite disturbing, but is an inescapable consequence o
scalar nature of the dilaton, and is also in accordance w
the fact thath is defined up to the scale factorh0 by the field
equations. The previous considerations together with Eq.~9!
permit us to fix the asymptotic behavior of the remaini
canonical variables:

h;o~x!, Ps;o~1!, Ph;o~x24!. ~14!

We can now write down the algebra generated by
asymptotic symmetries~13!. Since the anti–de Sitter spac
has a natural periodicity int, it is convenient to expand th
function T(t) in a Fourier series in the interval 0,t
,2p/l. The generators of the asymptotic symmetries re
then

Ak5
1

lS 12
k2

2l2x2D cos~klt !
]

]t
1kx sin~klt !

]

]x
,

~15!

Bk5
1

lS 12
k2

2l2x2D sin~klt !
]

]t
2kx cos~klt !

]

]x
,

wherek is an integer. The generators satisfy the commu
tion relations

@Ak ,Al #5
1

2
~k2 l !Bk1 l1

1

2
~k1 l !Bk2 l ,

@Bk ,Bl #52
1

2
~k2 l !Bk1 l1

1

2
~k1 l !Bk2 l , ~16!

@Ak ,Bl #52
1

2
~k2 l !Ak1 l1

1

2
~k1 l !Ak2 l .

In the Hamiltonian formalism, the symmetries associa
with the Killing vectorsxm are generated by the phase spa
functionalsH@x#, defined as

H@x#5E dx~x'H1x iHx!1J@x#, ~17!
08150
is
he
th

e

d

-

d
e

wherex'5Nx t, x i5xx1Nxx t, and the surface termJ@x#
can be interpreted as the charge associated with the sym
try generatorxm. In view of the boundary conditions dis
cussed above and adjusting the arbitrary constant so thJ
vanishes for ADS0, the functionalJ@x# can be written in
finite form as

J@x#5 lim
x→`

h0F2~lx!x'~h82l!1~lx!
]x'

]r
~h2lx!

1
l4x3

2
x'S gxx2

1

l2x2D 1
1

lx
x iPsG . ~18!

In general, the Poisson bracket algebra ofH@x# yields a
projective representation of the asymptotic symmetry gro
@2#:

$H@x#,H@v#%5H@@x,v##1c~x,v!, ~19!

wherec is the central charge of the algebra. By enforcing t
constraintsHn50 the chargesJ@x# give themselves a real
ization of the asymptotic symmetry group through the Dir
bracket, so that

$J@x#,J@v#%DB5J@@x,v##1c~x,v!. ~20!

In the case of three-dimensional anti–de Sitter space,
previous arguments give a simple way to calculate the c
tral charge of the algebra@2#. One just needs to observe th
the surface deformation algebra@x,v#SD is isomorphic to
the algebra of the asymptotic symmetries and that the va
tion of J@x# under surface deformations is given by th
Dirac bracket,

dvJ@x#5J@@x,v##1c~x,v!. ~21!

By evaluating the previous equation for ADS0, one finds that
the central chargec(x,v) is just given by the chargeJ@x#
evaluated on the surface deformed byv.

In the case of 2D anti–de Sitter space, however, the p
vious calculation method cannot work, at least in the fo
described above. In fact, the boundary being a point,
functional derivatives appearing in the Poisson bracket~19!
can be defined only for pure gauge transformations,
which the chargeJ@x# vanishes. Moreover, the Dirac brack
ets~20! have no meaning as long as thex→` boundary is a
point. As a consequence, the surface deformation algebra
no definite action on the chargesJ@x#, and Eq.~21! cannot
be used to calculate the central charge.

The simplest way to cure the disease is to define the ti
independent charges

Ĵ@x#5
l

2pE0

2p/l

dt J@x#. ~22!

The functional derivatives ofĴ@x# can be easily defined, s
that the Dirac bracket algebra$Ĵ@x#,Ĵ@v#%DB has now a
1-3
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meaning. One can also verify that the action of the surf
deformation on the chargesĴ@x# gives a realization of the
algebra~16!. Let us comment briefly on the physical mea
ing of the chargesĴ. Apart from J@A0#, which gives the
massM of the solution, the other chargesJ@Ak# are in gen-
eral time-dependent. This means that besides the mass
are no conserved quantities. This fact is strongly related
the presence of the dilaton and its behavior under the tr
formations~13!. On the other hand the chargesĴ represent a
sort of averaged charges that can be used to give a cano
representation of the algebra~16!.

We can now easily calculate the central chargesc. We
just need to use in Eq.~21! the chargesĴ instead ofJ. One
gets

c~Ak ,Al !5c~Bk ,Bl !50, c~Ak ,Bl !5h0k3d uku u l u .
~23!

Defining new generatorsLk52(Bk2 iAk), and shiftingL0
by a constant, one obtains the Virasoro algebra,

@Lk ,Ll #5~k2 l !Lk1 l1
c

12
~k32k!dk1 l , c524h0 .

~24!

To calculate the entropy of a generic black hole solution
massM in terms of states living on the boundary, we ju
need to use Cardy’s formula for the asymptotic density
states:

S52pAc l0
6

, ~25!

where l 0 is the eigenvalue of the Virasoro generatorL0,
which for a black hole of massM is given by

l 05
M

l
. ~26!

Inserting Eq.~26! and the value of the central chargec given
by Eq. ~24! into Eq. ~25!, we find, for the statistical entropy

S54pAh0M

l
, ~27!

which agrees, up to a factorA2, with the thermodynamica
result ~4!. The lack of knowledge about the theory on t
boundary renders difficult explaining this discrepancy b
tween the statistical and the thermodynamical result. Ne
theless, a simple explanation of the factorA2 can be found if
one considers the model~1! as a circular symmetric dimen
sional reduction of three-dimensional gravity, with the fie
h parametrizing the radius of the circle. Using the notat
of Ref. @3#, the 2D dilaton gravity action can be obtained
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from the 3D one by the ansatz

ds~3!
2 5ds~2!

2 116Gh2dw2, ~28!

whereG is the 3D Newton constant and 0<w<2p. In this
context the 2D black hole~2! can be considered as the d
mensional reduction of theJ50 ~zero angular momentum!
BTZ black hole. Simple calculations show that both the m
and the thermodynamical entropy of the BTZ black ho
agree with our 2D results. The same is not true for the s
tistical entropy. From the 3D point of view we have cont
butions to the mass of the black hole coming from both
right- and left-movers oscillators of the 2D conformal fie
theory living on the boundary of ADS3. BecauseJ50 im-
plies that the number of right-movers equals that of le
movers, we havel 05M /2l, which inserted in the Cardy’s
formula reproduces the thermodynamical entropy~4!. From
the 2D point of view only oscillators of one sector contribu
to the mass of the black hole givingl 05M /l and the statis-
tical entropy~27!. These results are in accordance with tho
obtained by Strominger in a recent paper@12#, where ADS2
is generated as the near-horizon, near-extremal limit
ADS3. At first sight this seems to imply that there is n
intrinsically 2D explanation of the statistical entropy of 2
black holes. This is certainly true as long as the fieldh is
interpreted as the radius of the internal circle, because
x→` boundary of ADS2 corresponds to the regionh→`,
where the space decompactifies and the 2D theory beco
intrinsically 3D.

The previous considerations do not apply when AD2
arises as near-horizon geometry of higher dimensional b
holes with no intermediate ADS3 geometry involved. We do
not have a complete explanation of the factorA2 in this case.
In our opinion what is needed in order to find an explanat
of this discrepancy is a complete understanding of the r
played in our derivation by the global topology of ADS2.
Full ADS2 has a cylindrical topology with two disconnecte
timelike boundaries. This fact plays a crucial role in R
@12# because it makes the string theory on ADS2 a theory of
open strings. By studying the black hole solutions of the
theory we are forced to cut the spacetime on thex50 ‘‘sin-
gularity,’’ so that only one timelike boundary of full ADS2 is
available. It seems to us that a thorough understanding of
statistical entropy of 2D black holes will be at hand on
when this point will be fully clarified.

Our derivation of the statistical entropy of 2D black hole
though very simple and elegant, has the same drawback
the derivation of Strominger@3# ~for a critical review see
Ref. @11#!. In particular the question remains open about
origin and the location of the relevant degrees of freedom
the boundary, whose number of excitations account for
entropy of the black hole. In our case, the nature of th
degrees of freedom is even more mysterious than in the
case. Even though one has no explicit description of the
grees of freedom that are responsible for the entropy of
BTZ black hole, the underlying field theory is well known
being 2D conformal field theory with given central charg
For 2D black holes, instead, we know very little about t
1-4
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theory that should describe the excitations on the bound
The one-dimensional nature of the latter implies that we
dealing with some kind of particle quantum mechani
rather than quantum field theory. The quantum mechan
system, whose states span a representation of the Vira
algebra~24!, is most likely a very unconventional one. I
this context the implementation of the ADS/CFT correspo
dence in the 2D case could help to shed light on the natur
08150
y.
re
,
al
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-
of

this quantum mechanical system. On the other hand the
that one can use particle quantum mechanics~even though in
a still mysterious form! to explain the entropy of 2D black
holes seems to us a very exciting possibility.

Note added.After this manuscript was completed we b
came aware of the existence of the paper of Ref@13#, in
which the asymptotic symmetries of 2D anti–de Sitter sp
are discussed.
ev.
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