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Generalized Bertimann-Martin inequalities for confining potentials
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The generalized Bertimann-Martin inequalities for the moments of the ground state wave function of a
two-body system are shown to be saturated within a few percent for confining potentials. Two kinds of
potentials are investigated: the superposition aof dhd rP, and the anharmonic oscillator potentials. The

application toqq hadrons is discussef50556-282199)00409-9

PACS numbegs): 11.55.Hx, 12.39.Pn

[. INTRODUCTION The purpose of the present work is to check the degree of
saturation of the GBM inequalities for a sample of confining

Studying the spectroscopy of heavy quark systems, aboutotentials. An interesting feature is that the degree of satura-
20 years ago, Bertimann and Martin proposed a number dion is increasing with the order of the moment 2\. Con-
inequalities valid for the case of a particle moving in a cen-sequently, only the lowest order has to be calculated; in prac-
tral potential, or a two-body system with a scalar interactiontice n=10 is a sufficient limit. The results are displayed in
[1,2]. Among various inequalities, the one which retainedSec. Il after recalling shortly the inequalities. Considering
our attention was derived from the Thomas-Reiche-Kuhrphysical situations, we discuss their application to tfe
sum rule[3], and is linking the rms radius of the ground state systems in Sec. Ill. Conclusions are drawn in Sec. IV.
wave function to the lowest dipole transition energy. In a
previous papef4], devoted to the spectroscopy of hypernu-
clei, we have generalized this result to higher multipole tran-
sitions in three dimensions. This provides us with a series of To generalize the Bertimann-Martin inequality to higher
recurrent inequalities, which will be denoted generalizedmyltipoles, we consider the operator
Bertimann-Martin (GBM) inequalities. Each sum rule of
multipolarity N\ gives access to thehX2th moment of the
ground state wave functiofr ).

It is interesting to note that an alternative derivation of the . o ,
original Bertimann-Martin inequalities has been proposed by ©" & particle of mass m moving in a central potential, the
Common, Martin and Stubbg5]. It is directly based on commutation relations give
properties of the Schdinger equation proved by Common
[6], whereas we are using sum rules. The goal of the present
work being merely focused on practical applications, we
simply refer the reader to the book by Grosse and Maitn

for deeper studies. _ _ _ _For the particular choice @, , (1), the second term of the
For the harmonic oscillator potential, these relationshipgight hand side vanishes. Assuming spherical symmetry, set-
turn to equalities. We have further found, by analytical asijng =0, it is easy to get from the double commutator

well as numerical investigations, that for finite range potenTQ, ,,[H,Q, ol] the sum rule linear in energ\&1)
tials the degree of saturation is increasing with the binding '

energy of the ground state. As soon as the recurrent inequali- 52
ties are saturated within 1-2 %, they can be used to constructz (E;(N)— Eo)(0]Qy olj A)|2=5=N(2N +1)(r?*~2).
the ground state wave function from its moments. In such a j ’ 2m

II. RESULTS FOR CONFINING POTENTIALS

QuN)=rY, ,(6,¢) . (1)

h? . . h?
[HQuul= = 5= (VQ ) V= 5-AQy,. (2

case the method could be applied to the inverse problem. The 3
example of aA hyperon bound to a nuclear core was dis-
played in Ref[4]. HereE, is the ground state energy aggl(\) is the energy

From these results, it is expected that for confining potenef the jth level of multipolarityh. The sum is running over
tials the generalized recurrent inequalities should approacéll states of the same multipolarity. Remember thatQhe,
equalities to the desired level of accuracy, namely within fewoperators connect the ground state to natural parity states
%. In fact, the answer is known for the infinite square well=(—)*, only. Following the technique proposed by Bertl-
potential, for which(r?) is given by the Bertimann-Martin mann and Martirf1], the inequalities are obtained by minor-
inequality to better than 1%. Consequently, physical systeming the sum. This is done by replacing all energy differences
described by confining potentials should constitute a privi-E;(\) —Eq by the lowest valu& () —E,, for each multi-
leged domain of application of this method. polarity. Then, by using the closure approximation, we get
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#2 (r -2y grees of freedom. They enter the Hamiltonian either in the
(rPMY<——AN2N+1)———==(r?") ; ; ; ; LT Ty :
~2m (E1(N)—Ep) GBM> spin-orbit coupling or in the hyperfines{ - o,) interaction,
with different consequences.
for A1 4) Suppose the spin-orbit interaction small enough to leave

the sum rules unchanged, the strength will be distributed

These recurrent relationships emphasize the role played gy ond the two partners according to their degeneracy. Con-

the levels of the yrast line, i.e., the line joining the IowestQ’eqluengybth?hlowes_t Etnzrgy differenBe(A) —Eq has to be
energy states as a function of the multipolarity. The originalrep aced by the weighted average

Bertimann-Martin inequality corresponds te=1. In a very
similar way, from the monopole transition operatof

(which does not belong to the class of 3¢ ,), we get the
following relationship[4]:

1 . .
s> (A DE)-Eo)

) ) with j=X\ = 1/2. Note that the same kind of average has to be
a ﬁ (rs) N2_/.4 introduced in the case when the degeneracy ohtistates is
(r)y= () =({"m. (5) he \
m (Ezs—Eop) removed by nonspherical interaction.

The situation is somehow different with the hyperfine

Consequently, we get the estimate(o‘f) from both Eqs(4) term. First of all the singlet and triplet states behave like two
and(5). Their ratio can be used as a consistency check. independent sets of eigenvalues. Thus the generalized GBM

Note that in the case of a two-body problem, the particleénequalities can be used separately to get the moments of
mass m in Eqs(2)—(5) has to be replaced by the reduced both ground state&S = 0 and S= 1). Whereas the structure
massu. of the singlet states is simple, the excited triplet states occur

It has to be noted that the above inequalities are particualso as triplets havin§= L+S. In this case it is again nec-
larly useful when they are close to become equalities, i.e.essary to introduce a weighted average for the energy differ-
when they are saturated within a couple of percents. Thignces.
situation occurs as soon as the lowest excited dthie) In order to get a quantitative estimate of the virtues of the
carries a large fraction of the sum rule. The limiting case inrelationships(4) and (5) for confining potentials, we have
this respect is given by the harmonic oscillator, for which theinvestigated two classes. The first class corresponds to po-

1 phonon excitation exhausts the sum rule. On the othefyntials constructed farq systems that can be expressed in a
hand, the situation is much less promising for potentials withyy,y,

singularity at the origin. For instance, in the case of the Cou-
lomb potential the expectation valge®) equals to only 3/4

of the GBM value]RHS of relation(4) for A=1]. For such
potentials, Bertimann and Martin have modified the RHS of
the inequalities by introducing an additional multiplicative
factor. Modified relation4) for A=1 acquires the form

exp(—rlrg) . .
Y o 0)01_02. )

o
V(r)=——+BrP+A+
(N=-—+8 T

A characteristic example of this class is the linear potential
42 1 (p=1) of Bhaduri[8] with «=0.52, 8=0.186 GeV, y
<r2>s—(1——c), (6) =a, A=-0.9135 GeV,r,=2.305 GeV! m,=my=337
2m(Eqp—Eo) 4 MeV, m=600 MeV,m,=1.870 GeV, andn,=5.259 GeV.
First, we studied potentials with= 0 (the hyperfine interac-

where tion was switched ojf and kept the other parameters un-
changed. For the sake of comparison we tpek1/2, 1 and
EastE1s—2Ey, 2 2. The results of calculations represented by the equivalent
T EE. ) (™ radii R(n)=(r"*" divided by the GBM values from the

RHS of Eq.(4), ((r"/{r"sem)", (denoted by pand cor-

Factor C has been constructed by fitting the Coulomb casictéd GBM valuesb) are presented in Table I. The cor-

while simultaneously respecting the extreme situation of th&€cted GBM values are clearly closer to the equivalent radii

harmonic oscillato(HO), i.e., C=1 and 0 for Coulomb and _than th_e ongmql ones. Moreover, the GBM predlcnons are

HO, respectively. Numerous tests with power potentials of MProving with increasing; for p=2 the relationg4) are

the form r® for —1<a<+%, and superpositions of the becoming Eractlcally equaI|t|e§. .For completeness, the esti-

form —A(Lfr)+Br,A,B>0 revealed that estimatt) is mates okr*)ggy from Eq.(4) divided by(r”)y from rela-

valid to within a few per mille. We therefore believe it is tion (5) are listed in the last row of the table. The results for

justified to use this correction factor also in our calculationsth® Bhaduri potentialf=1 andy=«) for singlet(S) and

of generalized GBM inequalities. We will refer to corrected {iPlet (T) cases are presented in Table II. _

GBM inequalities whenever the factor C is applied. As the next example we have chosen the quartic anhar-
It is clear that this approach is applicable to the two-bodyMenic oscillator

problem, replacingn by the reduced mass. The extension to

two fermion systems requires the handling of the spin de- V(r)=%ar?+br?, 9
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TABLE I. The equivalent radius @) divided by the GBM
value[ ({r™/{r™gem) "] is listed up to r=10 in columns a. The
confining potential is of the fornV(r)=Vy+ a/r+ BrP wherep
=1/2,1,2 (see text In columns b, the corrected GBM sum rule
values are usesee text The ratios(r*)ggm/(r*)u [see relations
(4) and(5)] are listed in the last row for completeness.

E
p=1/2 p=1 p=2 &,
a b a b a b =
=
n=2 0.982 1.003 0.993 1.001 0.999 1.001
n=4 0.986 0.997 0.995 0.999 0.990 1.000
n=6 0.991 0.998 0.996 0.999 1.000 1.000
n=8 0.991 0.997 0.997 0.999 1.000 1.000
n=10 0.992 0.997 0.997 0.999 1.000 1.000 E
(rYeem/(r*)u  0.999 0.999 0.999 o 05 1 15 2 25 3

r [fm]

This potential has been subject to numerous studies in the FIG. 1. Shape of the anharmonic potentials used to check the
past thanks to its possible applications in the description ofiegree of saturation of the GBM inequaliti€&able 111). From the
molecular vibrations and in modelling of nonlinear quantumleft to the right the 4 lines correspond to potentials AO2, AO4, AO1
field theories. In order to investigate the sensitivity of theand AO3, respectively.

GBM predictions to the strength of the quadratic and quartic

terms in potentia(9) we varied parameters a and b between

-10 arlld 1, anddl and 10Fresplec$\r/]ely Four typlcgl pOtggl'\A The generalized inequaliti€d) and(5) have been derived
examples are drawn In g €Ir corresponding in the framework of non-relativistic quantum mechanics.

values are displayed in Table Iil. The worst case is the Onei’hey remain valid in the case of the Dirac equation. At the
denoted AO3, which develops a pronounced minimum at‘no-pair” approximation, relativistic corrections leave the

finite distance. Note in particular that in this case the ratio of
the two (r?) estimates differ by 22%. This is exceptional sum rules(3) unchanged, as recently shown by Romero and

among the investigated potentials Aucar[;q]. We _have alsc_) verified thgt, up to min_or correc-
: tions arising mainly from its non-locality, the solutions of the
Dirac equation saturate the GBM inequalities equally well as
Ill. APPLICATION TO qq SYSTEMS the Schrdinger oneq11].
However, it is not clear at all that the “no-pair” approxi-

It is very tempting to apply the considerations of the pre-mation is sufficient to describe both the spectra and the form
ceding section to meson spectra. Since the earlier days of thgctors of mesons, a task which requires to go beyond rela-
quark model, non-relativisti¢or semi-relativisti¢ calcula-  tivistic quantum mechanics. It is precisely one of our goals to
tions of the hadron spectra have successfully reproduced thghow explicitly the limits of potential models.
experimental levelgsee for instance Reff9] for recent fitg. As far as the data are concerned, we rely on the last issue
Unfortunately, the electromagnetic form factors, which giveof the Review of Particle Physidd2]. The levels we are

access to the particle sizes, have been measured only for tlg&mg into account for the 50 and S-1 states of £1 nn,
lightest mesons, ther™ and theK™. This is limiting the
I=1/2 ns andnc and =0 cc are summarized in Table IV.

TABLE II. The equivalent radius @) divided by the GBM Our analysis does not exhaust @} systems; we concentrate

value[ ((r™/{rMgem) ™ is listed up to r=10 for Bhaduri[8] sin-

glet(S) and triplet(T) potential(see text In columns a the original TABLE Ill. The generalized GBM inequalities for the anhar-
GBM sum rule was used whereas in columns b we applied thenonic oscillatorV(r)=1/2ar?+ gr* and parametera=1, f=1
corrected sum rule valuésee text The ratios(r*)cem/(r*yy [see  (AO1), a=1, =10 (AO2), a=-10, B=1 (AO3), and «a
relations(4) and(5)] are listed in the last row for completeness. =—10, 8=10(AO4). The ratios(r*)ggm/(r*)m [See relationg4)
and(5)] are listed in the last row for completeness.

fcope of our analysis and requires some caveats.

S T
a b a b AO1 AO2 AO3 AO4
n=2 0.947 1.003 0.997 0.999 n=2 0.998 0.997 0.861 0.990
n=4 0.973 1.001 0.998 0.999 n=4 0.997 0.997 0.921 0.992
n=6 0.983 1.003 0.998 0.999 n=6 0.997 1.000 0.948 0.994
n=8 0.991 1.005 0.998 0.998 n=8 0.998 0.999 0.962 0.995
n=10 0.990 1.001 0.998 0.998 n=10 0.999 0.999 0.972 0.996
(reem/rHu 0.929 0.992 (reem!/(r u 1.002 0.996 0.778 0.986
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TABLE IV. Mesonic states used in the present analysis.

nnl=1 nsl=1/2 cnl=1/2 ccl=0

15, o 139. K 494 D 1869 e 2979
p, b, 1231. K 1273. D, 2423 h. 3526
D, m, 1670. K, 1580., 1773.

', a; 2080. Ky 2324,

G, K, 2490.

21s, m 1300 100. K 1460. 7. 3594.
33, p T770. K* 892. D* 2010. JI¥  3097.
%Py a, 984. K} 1429. Xco 3415.
%P, a; 1230. K, 1402. Xe1 3511
p, a, 1318. K3 1425. D3 2456. Xc2 3556.
D, p 1720. K* 1714. ¥ 3770.
D, K, 1816.

D, ps 1690. K% 1770.

SF, K3 1975.

°F, a, 2040. K} 2045.

3Gs ps 2330. K 2382.

283, p 1460. K* 1412. P(2s) 3686

our effort on cases having a sufficient number of clear spin This is a first obvious limitation of the potential models. It
assignations. Even so some uncertainties remain, and théy confirmed by the very fact that to our knowledge no po-
are indicated in Table IV. tential model has been able to reach such a solution yet.
The GBM inequalities yield the moments of the ground The best we can afford at this stage is to fit the charge rms
state wave function in terms of the average of the relativeadius of theK* and search for the largest rms radius of the
distance between the two quarks'). Charge form factors . This procedure yieldsn,=111.4 MeV andms=222.8
are measured from the center of mass. Taking into accoumleV, which is about twice lower than the dressed quark
the charges of the quarkse;(,e,), the moments of the charge masses used by Semay and Silvestre-Bedc It would be

radius(rg) are given by interesting to check how far these masses are compatible
with heavier mesons. The lack of data or independent pre-
&h dictions for(r2) does not allow us to reach further conclu-
(riy=|e (rM. (10  sions.

1] STe AT,
(1+e) (1+e) To illustrate the situation, we display in Table 7)1

If m; andm, refer to the mass of the quark 1 and 2, respec- TABLE V. GBM equivalent radiiR(n) =(r {)day of the = and
tively, with my<m,,e=m, /m,. K charge radius for three different values of the quark masses
Another difficulty arises from the values of the quark ano! my, the corresponding reduced massare_indicated. The ex-
masses. Using constituent quark masses of 336 MeV for theerimental values are presgnted for comparison. In the case of the
u and the d quarks, and 600 MeV for the quark s, lead td(,n>4, two values a_re listed; the first line corresponds to
charged radii an order of magnitude smaller than experi¥2(1580), the second line t,(1773).
ments. This is a well known defect of non-relativistic quark
model. It is due to the fact that the lowest order diagram
coupling the quark to the electromagnetic field accounts only
for a minor contribution. The dressing of the quark does

m, (MeV) 600 434 2228
m, /Mg 056 0509 05  Exp{13,14
w (MeV) 215 1464  74.27

improve the situation but it is not sufficient to match the n=2 0282 0348 0490 0.683.08

experimentg 9]. _ o n=4 0350 0432 0608  0.900.01
On the other hand, unless they are provujed us by mde—. n=6 0410 0505 0.711 1.120.01

pendent measurements, the masses appear in GBM inequali-

ties as free parameters. Consequently, adjusting the masses n=2 0.332 0412 0.580 0.580.04

to reproduce the charge rms radius, for instance, gives a n=4 0430 0537 0.758 0.290.05

model capable of describing both the spectr{anleast the 0.366 0.456 0.644

so called yrast lineand the charge form factor. Unfortu- K n=6 0.492 0.616 0.869 0.990.06

nately, this scheme is lacking universality. To be explicit, if 0.418 0524 0.739

we stick to therr ™ and theK™ cases, it is not possible to find n=8 0.558 0.699 0.987 1.380.07

m, (n=u,d) and mg values fitting simultaneously both 0.474 0594 0.839

spectra and charge form factors.
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= 0.85
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0.7 |
s 080
06 | O7p Lo 1w
- i 0 05 1 | 1.5 2
q [fm™]
05 I A T FIG. 3. Electromagnetic form factor of theé" calculated from
0 05 1 L5 1 2 25 3 the momentgr?)" listed in Table V for three different masses of
q [fm™] the quarks(see Table V. The dashed line corresponds to usual

. constituent quark mases, the dotted line to dressed quarks and the
FIG. 2. Electromagnetic form factor of the” calculated from  solid line to adjusted masses, respectividge text The experi-
the momentgr?)" listed in Table V for three different masses of mental values are taken from Ré14].

the quarks(see Table V. The dashed line corresponds to usual

constituent quark masses, the dotted line to dressed quarks and tagcreasing with n. It just reflects the repulsive interaction of
solid line to adjusted masses, respectivedge text The experi- o Lynerfine potential at the origin in the triplet state,
mental values are taken from R¢L3]. whereas at large distances the wave function is dictated by
~ the confining part of the potential. In the absence of data
for the 7w and theK sectors for 3 sets of the masses. The f'rStallowing a direct check of these predictions, we note that for
one corresponds to usual non-relativistic calculations, theéhe p and theK*, the mean square radii are twice the values
second uses dressed quark masses f@imand the third is  of the 77 and the sum of ther and theK values, respectively.
adjusted as stated above. Comparison is made with the eXhis is what can be naively expected from the fact thatethe
perimental values of Amendoliet al.[13,14). Note that be-  decays mostly into 2r and theK* into K+ . A contrario,
yond the rms radiUS, eXperimenta”y the hlgher moments argom the ana|ysis of the S|0pe of thﬁphotoproduction dif-
obtained by a single pole fit, which is of limited validity. For ferential cross section, by using the vector dominance model
this reason, we have plotted in Figs. 2 and 3 the form factorgogether with the Glauber model, the size of fhés found
corresponding to the three set of masses and compared theggighly equal to that of ther. This is corroborated by the
quantities directly to the experimental form factors. In thepgmeron exchange modgl5]. In other words the question

K+ case, we have verified that the uncertainties on the GBMemains open since none of these reasonings can be taken
moments due to the dubious assignment ofkhestate(see  \ith confidence.

Table IV and \j have practically no effect on the form factor
up to g~1.6 fm 1. Similarly, the adjustment of th&*
charge rms radius leads to a form factsolid line in Fig. 3 IV. CONCLUSIONS

which is barely distinguishable from the pole fit up do Investigating the generalized Bertimann-Martin inequali-
~2.0 fm = » _ , , ties for confining potentials, we found a high degree of satu-
At least two quantities exist, which are independent of theation. Consequently they constitute an efficient tool to be
quark masses, and are thus firm and critical predictions Qfise in the framework of the inverse problem, reconstructing
potential models. The first one is the ratio of f1€) values  the ground state wave function and the potential from the
derived either from the quadrupole or the monopole excitay st energy levels. The correction proposed for the rms ra-
tion. From the results displayed in Tables I-Ill, this ratio is gj,s py Bertimann and Martin, based on the Coulomb poten-
expected to be close to 1, possibly less than 1 in the case @y, prings further improvements. In practice, however, to
an anharmonic potential with a minimum at a finite distance
(see AO3. Values for thewr, K, p, K* andJ/y are dis- TABLE VI. Ratio of (r*) obtained from the quadrupole and the
played in Table VI. They clearly indicate limitations of the yonopole inequalities. This ratio is independent of the quark

usual potential model description of tipeand K*. masses.

The next prediction independent of the quark masses is
the ratio of the triplet to singlet values for")*". They are K p K* Jv
listed in Table VII for thep, K*, J/¢y and D*. As ex-  1.05+.05 1.15-.98 90+ .03 87+ .03 1.07

pected from any potential model these ratios a& and
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TABLE VII. Ratio of the equivalent radii for triplet to singlet

PHYSICAL REVIEW D 59 076005

scribing their properties within potential models, i.e., by

state(r")g",/(r")&",. These ratios are independent of the mass ofsolving a Schidinger or a Dirac equation, is really justified

the quarks.

n p K* JIv D*

2 151 1.19 1.13 111
4 1.14 1.05-1.10 1.12

6 1.07 1.08

8 1.04

the level of 1-2 % it can be neglected.
For power-law potentials®, the degree of saturation is
decreasing with decreasing slopes. Nevertheless$drd it

only for heavy quarks. Unfortunately, data related to the size
are only available for the lightest mesons, thé and the

K*. Since we do not knowa priori if the GBM inequalities

can be applied to such systems, the present study is merely a
test showing the limitations of potential models. The advan-
tage of our method is that it is independent of the shape of
the potential. It does not require either complicated fitting
procedure.

The study of ther* andK™ form factors underlines the
role played by the quark mass. Considering the masses as
free parameters to be adjusted to the experimental rms
charge radius, it is not possible to find a unique set reproduc-

is still better than 2% for the rms radius, which is the worsting #* andK* data simultaneously. This reduces consider-
case. Anharmonic oscillators are close to the harmonic oscilably the predicting power of the method.
lator, unless they develop a profound well depth at finite Two quantities are independent of the quark masses, and

distance(see case AO3

appear thus as particularly valuable tests. The ratios of

As far as spin-dependent Hamiltonians are concerned, wg ") for S=1 and S=0 states constitute one set of them.
have investigated the case of a hyperfine interaction added taformation on the rms radii of the andK* would be very
a Coulomb and a linear term. Typically such a potential hasnteresting in this respect. On the other hand, the consistency
been used by Bhaduri to calculate meson spectra. The hypetheck which is provided us by the ratio of the two estimates
fine part is attractive in the singlet and repulsive in the tripletof (r#) put question marks on the usual potential description

states. The two sets of states are totally independent. In fagff the p and theK*.
they can be coupled only via tensor forces or nonsymmetric
spin-orbit coupling. Both are expected to be negligible in the

gq systems. It turns out the GBM inequalities are saturated
within 5% and 2% for the singlet and triplet states, respec-
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