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Generalized Bertlmann-Martin inequalities for confining potentials
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The generalized Bertlmann-Martin inequalities for the moments of the ground state wave function of a
two-body system are shown to be saturated within a few percent for confining potentials. Two kinds of
potentials are investigated: the superposition of 1/r and r p, and the anharmonic oscillator potentials. The

application toqq̄ hadrons is discussed.@S0556-2821~99!00409-9#

PACS number~s!: 11.55.Hx, 12.39.Pn
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I. INTRODUCTION

Studying the spectroscopy of heavy quark systems, ab
20 years ago, Bertlmann and Martin proposed a numbe
inequalities valid for the case of a particle moving in a ce
tral potential, or a two-body system with a scalar interact
@1,2#. Among various inequalities, the one which retain
our attention was derived from the Thomas-Reiche-Ku
sum rule@3#, and is linking the rms radius of the ground sta
wave function to the lowest dipole transition energy. In
previous paper@4#, devoted to the spectroscopy of hypern
clei, we have generalized this result to higher multipole tr
sitions in three dimensions. This provides us with a serie
recurrent inequalities, which will be denoted generaliz
Bertlmann-Martin ~GBM! inequalities. Each sum rule o
multipolarity l gives access to the 2l-th moment of the
ground state wave function̂r 2l&.

It is interesting to note that an alternative derivation of t
original Bertlmann-Martin inequalities has been proposed
Common, Martin and Stubbe@5#. It is directly based on
properties of the Schro¨dinger equation proved by Commo
@6#, whereas we are using sum rules. The goal of the pre
work being merely focused on practical applications,
simply refer the reader to the book by Grosse and Martin@7#
for deeper studies.

For the harmonic oscillator potential, these relationsh
turn to equalities. We have further found, by analytical
well as numerical investigations, that for finite range pote
tials the degree of saturation is increasing with the bind
energy of the ground state. As soon as the recurrent ineq
ties are saturated within 1–2 %, they can be used to cons
the ground state wave function from its moments. In suc
case the method could be applied to the inverse problem.
example of aL hyperon bound to a nuclear core was d
played in Ref.@4#.

From these results, it is expected that for confining pot
tials the generalized recurrent inequalities should appro
equalities to the desired level of accuracy, namely within f
%. In fact, the answer is known for the infinite square w
potential, for which^r 2& is given by the Bertlmann-Martin
inequality to better than 1%. Consequently, physical syste
described by confining potentials should constitute a pr
leged domain of application of this method.
0556-2821/99/59~7!/076005~6!/$15.00 59 0760
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The purpose of the present work is to check the degre
saturation of the GBM inequalities for a sample of confini
potentials. An interesting feature is that the degree of sat
tion is increasing with the order of the momentn52l. Con-
sequently, only the lowest order has to be calculated; in p
tice n510 is a sufficient limit. The results are displayed
Sec. II after recalling shortly the inequalities. Consideri
physical situations, we discuss their application to theqq̄
systems in Sec. III. Conclusions are drawn in Sec. IV.

II. RESULTS FOR CONFINING POTENTIALS

To generalize the Bertlmann-Martin inequality to high
multipoles, we consider the operator

Ql,n~rW !5r lYl,n~u,f! . ~1!

For a particle of mass m moving in a central potential, t
commutation relations give

@H,Ql,n#52
\2

2m
~¹W Ql,n!•¹W 2

\2

2m
nQl,n . ~2!

For the particular choice ofQl,n ~1!, the second term of the
right hand side vanishes. Assuming spherical symmetry,
ting n50, it is easy to get from the double commutat
@Ql,0 ,@H,Ql,0## the sum rule linear in energy (l>1)

(
j

„Ej~l!2E0…u^0uQl,0u j ,l&u25
\2

2m
l~2l11!^r 2l22&.

~3!

HereE0 is the ground state energy andEj (l) is the energy
of the jth level of multipolarityl. The sum is running over
all states of the same multipolarity. Remember that theQl,m
operators connect the ground state to natural parity statep
5(2)l, only. Following the technique proposed by Ber
mann and Martin@1#, the inequalities are obtained by mino
ing the sum. This is done by replacing all energy differenc
Ej (l)2E0 by the lowest valueE1(l)2E0 , for each multi-
polarity. Then, by using the closure approximation, we g
©1999 The American Physical Society05-1
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^r 2l&<
\2

2m
l~2l11!

^r 2l22&
„E1~l!2E0…

[^r 2l&GBM ,

for l>1. ~4!

These recurrent relationships emphasize the role playe
the levels of the yrast line, i.e., the line joining the lowe
energy states as a function of the multipolarity. The origi
Bertlmann-Martin inequality corresponds tol51. In a very
similar way, from the monopole transition operatorr 2

~which does not belong to the class of theQl,n), we get the
following relationship@4#:

^r 4&<
2\2

m

^r 2&
~E2s2E0!

1^r 2&2[^r 4&M . ~5!

Consequently, we get the estimate of^r 4& from both Eqs.~4!
and ~5!. Their ratio can be used as a consistency check.

Note that in the case of a two-body problem, the parti
mass m in Eqs.~2!–~5! has to be replaced by the reduc
massm.

It has to be noted that the above inequalities are part
larly useful when they are close to become equalities,
when they are saturated within a couple of percents. T
situation occurs as soon as the lowest excited stateu1,l&
carries a large fraction of the sum rule. The limiting case
this respect is given by the harmonic oscillator, for which t
1 phonon excitation exhausts the sum rule. On the o
hand, the situation is much less promising for potentials w
singularity at the origin. For instance, in the case of the C
lomb potential the expectation value^r 2& equals to only 3/4
of the GBM value@RHS of relation~4! for l51]. For such
potentials, Bertlmann and Martin have modified the RHS
the inequalities by introducing an additional multiplicativ
factor. Modified relation~4! for l51 acquires the form

^r 2&<
\2

2m~E1p2E0!S 12
1

4
CD , ~6!

where

C5S E2s1E1s22E1p

E2s2E1s
D 2

. ~7!

Factor C has been constructed by fitting the Coulomb c
while simultaneously respecting the extreme situation of
harmonic oscillator~HO!, i.e., C51 and 0 for Coulomb and
HO, respectively. Numerous tests with power potentials
the form r a for 21,a,1`, and superpositions of th
form 2A(1/r )1Br, A,B.0 revealed that estimate~6! is
valid to within a few per mille. We therefore believe it
justified to use this correction factor also in our calculatio
of generalized GBM inequalities. We will refer to correcte
GBM inequalities whenever the factor C is applied.

It is clear that this approach is applicable to the two-bo
problem, replacingm by the reduced mass. The extension
two fermion systems requires the handling of the spin
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grees of freedom. They enter the Hamiltonian either in
spin-orbit coupling or in the hyperfine (sW 1•sW 2) interaction,
with different consequences.

Suppose the spin-orbit interaction small enough to le
the sum rules unchanged, the strength will be distribu
among the two partners according to their degeneracy. C
sequently the lowest energy differenceE1(l)2E0 has to be
replaced by the weighted average

1

2~2l11!(j
~2 j 11!„E1~ j !2E0…

with j 5l61/2. Note that the same kind of average has to
introduced in the case when the degeneracy of thel states is
removed by nonspherical interaction.

The situation is somehow different with the hyperfin
term. First of all the singlet and triplet states behave like t
independent sets of eigenvalues. Thus the generalized G
inequalities can be used separately to get the moment
both ground states~S 5 0 and S5 1!. Whereas the structure
of the singlet states is simple, the excited triplet states oc
also as triplets havingJW5LW 1SW . In this case it is again nec
essary to introduce a weighted average for the energy dif
ences.

In order to get a quantitative estimate of the virtues of
relationships~4! and ~5! for confining potentials, we have
investigated two classes. The first class corresponds to
tentials constructed forqq̄ systems that can be expressed in
form

V~r !52
a

r
1br p1L1

g

mimj

exp~2r /r 0!

rr 0
2

sW 1•sW 2. ~8!

A characteristic example of this class is the linear poten
(p51) of Bhaduri @8# with a50.52, b50.186 GeV2, g
5a, L520.9135 GeV,r 052.305 GeV21

, mu5md5337
MeV, ms5600 MeV,mc51.870 GeV, andmb55.259 GeV.
First, we studied potentials withg50 ~the hyperfine interac-
tion was switched off! and kept the other parameters u
changed. For the sake of comparison we tookp51/2, 1 and
2. The results of calculations represented by the equiva
radii R(n)5^r n&1/n divided by the GBM values from the
RHS of Eq.~4!, (^r n&/^r n&GBM)1/n, ~denoted by a! and cor-
rected GBM values~b! are presented in Table I. The co
rected GBM values are clearly closer to the equivalent ra
than the original ones. Moreover, the GBM predictions a
improving with increasingp; for p52 the relations~4! are
becoming practically equalities. For completeness, the e
mates of̂ r 4&GBM from Eq. ~4! divided by ^r 4&M from rela-
tion ~5! are listed in the last row of the table. The results f
the Bhaduri potential (p51 andg5a) for singlet ~S! and
triplet ~T! cases are presented in Table II.

As the next example we have chosen the quartic an
monic oscillator

V~r !5 1
2 ar21br4. ~9!
5-2
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GENERALIZED BERTLMANN-MARTIN INEQUALITIES . . . PHYSICAL REVIEW D 59 076005
This potential has been subject to numerous studies in
past thanks to its possible applications in the description
molecular vibrations and in modelling of nonlinear quantu
field theories. In order to investigate the sensitivity of t
GBM predictions to the strength of the quadratic and qua
terms in potential~9! we varied parameters a and b betwe
210 and 1, and 1 and 10, respectively. Four typical poten
examples are drawn in Fig. 1. Their corresponding GB
values are displayed in Table III. The worst case is the
denoted AO3, which develops a pronounced minimum
finite distance. Note in particular that in this case the ratio
the two ^r 4& estimates differ by 22%. This is exception
among the investigated potentials.

III. APPLICATION TO qq̄ SYSTEMS

It is very tempting to apply the considerations of the p
ceding section to meson spectra. Since the earlier days o
quark model, non-relativistic~or semi-relativistic! calcula-
tions of the hadron spectra have successfully reproduced
experimental levels~see for instance Ref.@9# for recent fits!.
Unfortunately, the electromagnetic form factors, which g
access to the particle sizes, have been measured only fo
lightest mesons, thep1 and theK1. This is limiting the

TABLE I. The equivalent radius R~n! divided by the GBM
value @(^r n&/^r n&GBM)1/n# is listed up to n510 in columns a. The
confining potential is of the formV(r )5V01a/r 1br p where p
51/2,1,2 ~see text!. In columns b, the corrected GBM sum ru
values are used~see text!. The ratioŝ r 4&GBM /^r 4&M @see relations
~4! and ~5!# are listed in the last row for completeness.

p51/2 p51 p52
a b a b a b

n52 0.982 1.003 0.993 1.001 0.999 1.00
n54 0.986 0.997 0.995 0.999 0.990 1.00
n56 0.991 0.998 0.996 0.999 1.000 1.00
n58 0.991 0.997 0.997 0.999 1.000 1.00
n510 0.992 0.997 0.997 0.999 1.000 1.00
^r 4&GBM /^r 4&M 0.999 0.999 0.999

TABLE II. The equivalent radius R~n! divided by the GBM
value@(^r n&/^r n&GBM)1/n# is listed up to n510 for Bhaduri@8# sin-
glet ~S! and triplet~T! potential~see text!. In columns a the original
GBM sum rule was used whereas in columns b we applied
corrected sum rule values~see text!. The ratioŝ r 4&GBM /^r 4&M @see
relations~4! and ~5!# are listed in the last row for completeness.

S T
a b a b

n52 0.947 1.003 0.997 0.999
n54 0.973 1.001 0.998 0.999
n56 0.983 1.003 0.998 0.999
n58 0.991 1.005 0.998 0.998
n510 0.990 1.001 0.998 0.998
^r 4&GBM /^r 4&M 0.929 0.992
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scope of our analysis and requires some caveats.
The generalized inequalities~4! and~5! have been derived

in the framework of non-relativistic quantum mechanic
They remain valid in the case of the Dirac equation. At t
‘‘no-pair’’ approximation, relativistic corrections leave th
sum rules~3! unchanged, as recently shown by Romero a
Aucar @10#. We have also verified that, up to minor corre
tions arising mainly from its non-locality, the solutions of th
Dirac equation saturate the GBM inequalities equally well
the Schro¨dinger ones@11#.

However, it is not clear at all that the ‘‘no-pair’’ approxi
mation is sufficient to describe both the spectra and the fo
factors of mesons, a task which requires to go beyond r
tivistic quantum mechanics. It is precisely one of our goals
show explicitly the limits of potential models.

As far as the data are concerned, we rely on the last is
of the Review of Particle Physics@12#. The levels we are
taking into account for the S50 and S51 states of I51 nn̄,
I51/2 ns̄ and n̄c and I50 cc̄ are summarized in Table IV
Our analysis does not exhaust allqq̄ systems; we concentrat

e

FIG. 1. Shape of the anharmonic potentials used to check
degree of saturation of the GBM inequalities~Table III!. From the
left to the right the 4 lines correspond to potentials AO2, AO4, AO
and AO3, respectively.

TABLE III. The generalized GBM inequalities for the anha
monic oscillatorV(r )51/2ar 21br 4 and parametersa51, b51
~AO1!, a51, b510 ~AO2!, a5210, b51 ~AO3!, and a
5210, b510 ~AO4!. The ratioŝ r 4&GBM /^r 4&M @see relations~4!
and ~5!# are listed in the last row for completeness.

AO1 AO2 AO3 AO4

n52 0.998 0.997 0.861 0.990
n54 0.997 0.997 0.921 0.992
n56 0.997 1.000 0.948 0.994
n58 0.998 0.999 0.962 0.995
n510 0.999 0.999 0.972 0.996
^r 4&GBM /^r 4&M 1.002 0.996 0.778 0.986
5-3
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TABLE IV. Mesonic states used in the present analysis.

nn̄ I51 ns̄ I51/2 cn̄ I51/2 cc̄ I50

1S0 p 139. K 494 D 1869 hc 2979
1P1 b1 1231. K1 1273. D1 2423 hc 3526
1D2 p2 1670. K2 1580., 1773.
1F3 a3 2080. K3 2324.
1G4 K4 2490.
21S0 p 1300.6100. K 1460. hc 3594.
3S1 r 770. K* 892. D* 2010. J/C 3097.
3P0 a0 984. K0* 1429. xc0 3415.
3P1 a1 1230. K1 1402. xc1 3511.
3P2 a2 1318. K2* 1425. D2* 2456. xc2 3556.
3D1 r 1720. K* 1714. C 3770.
3D2 K2 1816.
3D3 r3 1690. K3* 1770.
3F2 K2* 1975.
3F4 a4 2040. K4* 2045.
3G5 r5 2330. K5* 2382.
23S1 r 1460. K* 1412. C(2s) 3686
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our effort on cases having a sufficient number of clear s
assignations. Even so some uncertainties remain, and
are indicated in Table IV.

The GBM inequalities yield the moments of the grou
state wave function in terms of the average of the rela
distance between the two quarks^r n&. Charge form factors
are measured from the center of mass. Taking into acco
the charges of the quarks (e1 ,e2), the moments of the charg
radius^r c

n& are given by

^r c
n&5Fe1

1

~11«!n
1e2

«n

~11«!nG ^r n&. ~10!

If m1 andm2 refer to the mass of the quark 1 and 2, resp
tively, with m1<m2 ,«5m1 /m2 .

Another difficulty arises from the values of the qua
masses. Using constituent quark masses of 336 MeV for
u and the d quarks, and 600 MeV for the quark s, lead
charged radii an order of magnitude smaller than exp
ments. This is a well known defect of non-relativistic qua
model. It is due to the fact that the lowest order diagr
coupling the quark to the electromagnetic field accounts o
for a minor contribution. The dressing of the quark do
improve the situation but it is not sufficient to match t
experiments@9#.

On the other hand, unless they are provided us by in
pendent measurements, the masses appear in GBM ineq
ties as free parameters. Consequently, adjusting the ma
to reproduce the charge rms radius, for instance, give
model capable of describing both the spectrum~at least the
so called yrast line! and the charge form factor. Unfortu
nately, this scheme is lacking universality. To be explicit,
we stick to thep1 and theK1 cases, it is not possible to fin
mn (n5u,d) and ms values fitting simultaneously bot
spectra and charge form factors.
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This is a first obvious limitation of the potential models.
is confirmed by the very fact that to our knowledge no p
tential model has been able to reach such a solution yet

The best we can afford at this stage is to fit the charge
radius of theK1 and search for the largest rms radius of t
p. This procedure yieldsmn5111.4 MeV andms5222.8
MeV, which is about twice lower than the dressed qua
masses used by Semay and Silvestre-Brac@9#. It would be
interesting to check how far these masses are compa
with heavier mesons. The lack of data or independent p
dictions for ^r c

2& does not allow us to reach further concl
sions.

To illustrate the situation, we display in Table V̂r c
n&1/n

TABLE V. GBM equivalent radiiR(n)5^r c
n&GBM

1/n of thep and
K charge radius for three different values of the quark massesms

andmu , the corresponding reduced massm are indicated. The ex-
perimental values are presented for comparison. In the case o
K,n>4, two values are listed; the first line corresponds
K2(1580), the second line toK2(1773).

ms ~MeV! 600 434 222.8
mu /ms 0.56 0.509 0.5 Expt.@13,14#

m ~MeV! 215 146.4 74.27

n52 0.282 0.348 0.490 0.68360.08
p n54 0.350 0.432 0.608 0.9060.01

n56 0.410 0.505 0.711 1.1260.01

n52 0.332 0.412 0.580 0.5860.04
n54 0.430 0.537 0.758 0.7960.05

0.366 0.456 0.644
K n56 0.492 0.616 0.869 0.9960.06

0.418 0.524 0.739
n58 0.558 0.699 0.987 1.1860.07

0.474 0.594 0.839
5-4
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GENERALIZED BERTLMANN-MARTIN INEQUALITIES . . . PHYSICAL REVIEW D 59 076005
for thep and theK sectors for 3 sets of the masses. The fi
one corresponds to usual non-relativistic calculations,
second uses dressed quark masses form@9#, and the third is
adjusted as stated above. Comparison is made with the
perimental values of Amendoliaet al. @13,14#. Note that be-
yond the rms radius, experimentally the higher moments
obtained by a single pole fit, which is of limited validity. Fo
this reason, we have plotted in Figs. 2 and 3 the form fac
corresponding to the three set of masses and compared
quantities directly to the experimental form factors. In t
K1 case, we have verified that the uncertainties on the G
moments due to the dubious assignment of theK2 state~see
Table IV and V! have practically no effect on the form facto
up to q'1.6 fm21. Similarly, the adjustment of theK1

charge rms radius leads to a form factor~solid line in Fig. 3!
which is barely distinguishable from the pole fit up toq
'2.0 fm21.

At least two quantities exist, which are independent of
quark masses, and are thus firm and critical predictions
potential models. The first one is the ratio of the^r 4& values
derived either from the quadrupole or the monopole exc
tion. From the results displayed in Tables I–III, this ratio
expected to be close to 1, possibly less than 1 in the cas
an anharmonic potential with a minimum at a finite distan
~see AO3!. Values for thep, K, r, K* and J/c are dis-
played in Table VI. They clearly indicate limitations of th
usual potential model description of ther andK* .

The next prediction independent of the quark masse
the ratio of the triplet to singlet values for^r n&1/n. They are
listed in Table VII for ther, K* , J/c and D* . As ex-
pected from any potential model these ratios are.1 and

FIG. 2. Electromagnetic form factor of thep1 calculated from
the momentŝ r c

n&1/n listed in Table V for three different masses
the quarks~see Table V!. The dashed line corresponds to usu
constituent quark masses, the dotted line to dressed quarks an
solid line to adjusted masses, respectively~see text!. The experi-
mental values are taken from Ref.@13#.
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decreasing with n. It just reflects the repulsive interaction
the hyperfine potential at the origin in the triplet sta
whereas at large distances the wave function is dictated
the confining part of the potential. In the absence of d
allowing a direct check of these predictions, we note that
ther and theK* , the mean square radii are twice the valu
of thep and the sum of thep and theK values, respectively
This is what can be naively expected from the fact that thr
decays mostly into 2p and theK* into K1p. A contrario,
from the analysis of the slope of ther photoproduction dif-
ferential cross section, by using the vector dominance mo
together with the Glauber model, the size of ther is found
roughly equal to that of thep. This is corroborated by the
Pomeron exchange model@15#. In other words the question
remains open since none of these reasonings can be t
with confidence.

IV. CONCLUSIONS

Investigating the generalized Bertlmann-Martin inequa
ties for confining potentials, we found a high degree of sa
ration. Consequently they constitute an efficient tool to
used in the framework of the inverse problem, reconstruct
the ground state wave function and the potential from
yrast energy levels. The correction proposed for the rms
dius by Bertlmann and Martin, based on the Coulomb pot
tial, brings further improvements. In practice, however,

l
the

FIG. 3. Electromagnetic form factor of theK1 calculated from
the momentŝ r c

n&1/n listed in Table V for three different masses o
the quarks~see Table V!. The dashed line corresponds to usu
constituent quark mases, the dotted line to dressed quarks an
solid line to adjusted masses, respectively~see text!. The experi-
mental values are taken from Ref.@14#.

TABLE VI. Ratio of ^r 4& obtained from the quadrupole and th
monopole inequalities. This ratio is independent of the qu
masses.

p K r K* J/C
1.056.05 1.152.98 .906.03 .876.03 1.07
5-5
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the level of 1–2 % it can be neglected.
For power-law potentialsr p, the degree of saturation i

decreasing with decreasing slopes. Nevertheless for p51/2 it
is still better than 2% for the rms radius, which is the wo
case. Anharmonic oscillators are close to the harmonic os
lator, unless they develop a profound well depth at fin
distance~see case AO3!.

As far as spin-dependent Hamiltonians are concerned
have investigated the case of a hyperfine interaction adde
a Coulomb and a linear term. Typically such a potential h
been used by Bhaduri to calculate meson spectra. The hy
fine part is attractive in the singlet and repulsive in the trip
states. The two sets of states are totally independent. In
they can be coupled only via tensor forces or nonsymme
spin-orbit coupling. Both are expected to be negligible in
qq̄ systems. It turns out the GBM inequalities are satura
within 5% and 2% for the singlet and triplet states, resp
tively. Note that in the singlet case, the correction to GB
brings the saturation of the rms radius inequality to .1%.

To our knowledge, the best confined system in natur
provided us by the hadrons, in particular byqq̄ mesons. De-

TABLE VII. Ratio of the equivalent radii for triplet to single
state^r n&S51

1/n /^r n&S50
1/n . These ratios are independent of the mass

the quarks.

n r K* J/C D*

2 1.51 1.19 1.13 1.11
4 1.14 1.05–1.10 1.12
6 1.07 1.08
8 1.04
h.

d

A
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scribing their properties within potential models, i.e.,
solving a Schro¨dinger or a Dirac equation, is really justifie
only for heavy quarks. Unfortunately, data related to the s
are only available for the lightest mesons, thep1 and the
K1. Since we do not knowa priori if the GBM inequalities
can be applied to such systems, the present study is mer
test showing the limitations of potential models. The adva
tage of our method is that it is independent of the shape
the potential. It does not require either complicated fitti
procedure.

The study of thep1 andK1 form factors underlines the
role played by the quark mass. Considering the masse
free parameters to be adjusted to the experimental
charge radius, it is not possible to find a unique set reprod
ing p1 andK1 data simultaneously. This reduces consid
ably the predicting power of the method.

Two quantities are independent of the quark masses,
appear thus as particularly valuable tests. The ratios
^r n&1/n for S51 and S50 states constitute one set of them
Information on the rms radii of ther andK* would be very
interesting in this respect. On the other hand, the consiste
check which is provided us by the ratio of the two estima
of ^r 4& put question marks on the usual potential descript
of the r and theK* .
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