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Ambiguities in the zero momentum limit of the thermal =’y y triangle diagram

Franois Gelis
Laboratoire de Physique Theque LAPTH, BP110, F-74941, Annecy le Vieux Cedex, France
(Received 19 June 1998; published 8 March 1999

Modifications of ther’— 2y decay amplitude by thermal effects have already been considered by several
authors, leading to quite different results. | consider in this paper the triangle diagram connecting a neutral pion
to two photons in a constituent quark model, within the real-time formulation of thermal field theory, and study
the zero external momentum limit of this diagram. It appears that this limit is not unique and depends strongly
on the kinematical configuration of the external particles. This nonuniqueness is shown to explain the contra-
diction between existing results. | end with some considerations suggesting that this decay amplitude may be
significantly modified by the resummation of hard thermal loops, due to infrared singularities.
[S0556-282(199)04705-0

PACS numbes): 11.10.Wx, 12.39.Fe

I. INTRODUCTION this calculation in the “retarded-advancedversion of the

real time formalism, but we stay at a more general level than

During the past two years, a lot of work has been devote : . . . .
to the study of the relationship between the axial f:lnomaly(]/i'{e‘cs'[1’7_q concerning the kinematical configuration of the

. external particles. In particular, we do not assume that exter-
and thew®— 2y decay rate at finite temperature, most nota- P P

bly by Pisarski, Tytgat, and Truemd—6|. The purpose of nal particles are on-shell. Similar to Ref4.9], we are in-

) . ’ ’ . : . ; terested in a small external momenta expansion for this dia-
this series of papers was to explain the following basic fact: ram. We arrive at the conclusion that this discrepancy is
the coefficient of the axial anomaly is independent of thed & pancy

. . . he nonuniquen f the zero momentum limit of th
temperature while the amplitude for the®— 2y decay is due to the nonuniqueness of the zero momentu t of the

considered Green'’s function. It appears indeed that this limit

modified. The problem was therefore to explain why the re'depends on the kinematical configuration of the external legs

lationship that relates at zero temperature the pion decay am- 1 that Pisarski and GN's calculations correspond to very

g:ﬁtrj:e to the axial anomaly ceased to be valid in a hot Meifferent configurations, GN’s configuration being the most

This work has been initiated by a calculation of the pionphySICaI for the decay of a pion into real photons. Then, we

) . .~ come back to Pisarski’'s statement about the pion decay rate
decay rate in a constituent quark model, performed by Pisar- . . )

L ) ) . . . .. in a hot chiral phase and show that, because of infrared sin-
ski in the imaginary time formalisifil,2]. More precisely, it

L . : . ._gularities, it may remain valid in GN’s kinematical configu-
consists in the calculation of the triangle diagram connectin ation (i.e., in the physical configuratiordespite a different
the pseudoscalar to the two emitted photons, via a quar . phy g b

. : . ) .. dependence in the mass if one considers the correction
loop. This diagram is considered at the first nonvan'Shm%rovided by hard thermal loops

order in the small external momenta. The result found in Ref?! In Sec. Il, we derive the expression for the triangle dia-

. L . . > )
[1] is that this d|agram_|s proportional w/T= wherem is gram in the retarded-advanced formalism, and its relation-
the mass of the quark in the loop afidhe temperature of ship with the pion decay rate. Then, we prove the existence
the heat bath, while the result found at zero temperature fOf¢ o jimit of zero external momentum, in a sense to be made
the same diagram is proportional tarl/The consequence of precise later.
this result is that the pion decay rate into two photons van- |, sec. I, we first give an expression for the zero mo-
ishes if the chiral symmetry is restored at high temperaturémentum limit showing clearly that this limit is not unique
sincem—0. and depends on the kinematical configuration of the external

The same diagram has been calculated in the real timgarticles. The remaining of this section is devoted to the
formalism by the authors of Ref§7,8], and also by Gupta detailed study of this limit in three particular configurations.
and NayakGN) in Ref.[9] who studied the zero momentum The first configuration studied corresponds to a situation
limit of this diagram. GN’s result for this diagram in the zero where both of the emitted photons have zero energy: the zero
external momentum limit is proportional to/mT. The dra- momentum limit reproduces in this case Pisarski's result.
matic difference is the behavior of this decay amplitude as dhe second important case is obtained with real photons and
function of the quark mass, because this behavior was cruci@ pion at rest in the frame of the plasma: this case reproduces
in Pisarski’'s calculationi1,2] to derive his conclusion about GN'’s result. Finally, a third simple case corresponds to the
the pion decay rate in a hot chirally symmetric phase.

The purpose of the present paper is to reconsider the cal-
culation of the triangle diagram already studied by Pisarski The choice of using the retarded-advanced formalism is just tech-
and Gupta and Nayak, in order to explain the discrepancyiical. The main point is to show that both Pisarski’s and GN’s
between the results they found. To that effect, we performesults can be recovered from a common formalism.

0556-2821/99/5F)/07600412)/$15.00 59 076004-1 ©1999 The American Physical Society



FRANCOIS GELIS PHYSICAL REVIEW D 59 076004

produced photons will escape from the plasma without ther-
malizing. The imaginary part of the®#° two-point function
is a sum over all the possible cuts through the corresponding
diagram, which means that this formula gives the total decay
rate, i.e., the sum of the contribution of all the channels. In
order to select a particular channel, one must look at the
FIG. 1. Self-energy of the pseudoscalar involved in the decay irappropriate cut.
2. Similar to Refs[1,9], | use a linear sigma modé&ee Ref.
[13], for instance where the fermion fields are constituent
decay of a static pion into two static virtual photons, thatquarks, in which the mesons are coupled to quark fields as
may subsequently decay into lepton pairs. indicated by the following Lagrangiah:
In Sec. IV, we study the implications of the above results
for Pisarski’'s assertion concerning the annulation of the pion — — ) 5
decay amplitude in a hot chiral phase. Despite the fact that L=IVDWY—29¥(ototim ty)W. @
this statement is incorrect in the bare theory if one considers
the physical situation in which the photons are real, the in{ consider two flavors of quarks and=3 colors. Thet
terplay of infrared singularities in this calculation makes thematrices are normalized witty=1/2 and Tr{,t,) = 5,1/2.
resummation of hard thermal loops necessary. The consehis coupling is invariant under the chiral symmetry
guence of this resummation is to change the parameter pla)SU(Z)Lx SU(2),. When this symmetry is spontaneously
ing the role of an infrared regulator. This has the effect Ofbroken, theo field acquires a nonvanishing vacuum expec-
making the pion decay amplitude vanish in a hot chirally,tion valué (o), which gives a masm=g(o) to the con-
symmetric phase, even when one is considering the physicalit ent quarks. In this model, the decay of pions in two
decay into real photons. _ photons appear only in the discontinuity of the three loop
Technical details are relegated to three appendixes. In Ap-o,_0 self-energy. Indeed, each external pseudo-scalars must
pendix A, we remind the reader of the potentially dangerougys ~onnected to a quark loop, and these two loops must be

effect of changing the variables in divergent expressiongineqd by the two photons. Then, among all the possible cuts,
since this is of some relevance for our calculation. Appendix,ne myst consider the cut that crosses the photon propagators
B gives the general expression of the functighl®1,K;)  (gee Fig. 1 Making use of the cutting rules for the “R/A”

andB(K,K) that appear at intermediate stages of the calzormalism[15], we find that the cut depicted in Fig. 1 con-
culations. Finally, Appendix C gives some details about gyiptes:

few integrals that appear in this paper.

Il. TRIANGLE DIAGRAM IN THE “R/A” FORMALISM Im HRA(qO,Q)
A. 7° decay rate 1 d*Ky [ d*K, o 2 0 2
The decay rate of pions in a thermal bath is related to the Ef 2m)?) 2mrem etk K 2mello) o(Ky)

7070 retarded self-energy via the relatiph0,11]
X (2m)*8(Q+ Ky +K )T 53 Q. Ky, Kp)
dN  dgyd®q XTRAMu(Q, Ky ,Ky), (€)

dtdx 2m)" 2e%/Tng(go)IMII*A(qe,a), (1)

where I',%Y(Q,K;,K,) is the triangle diagram connecting

\L/Jvr?iltct]/o%vgse tg? tr%lém;)lzrsr%f; ?ﬁctif f%irr umngrﬂrgriuar:drs%ethe pseudoscalar to two photons. This object will be the sub-
, X RAA .
dgodg. This formula does not take into account the rever:séect of our study from now onl(,, is closely related to the

processsee, for instance, Reff10,12) 2y— ° that cana previous ong In fact, two diagrams contribute to this one-

priori occur in the medium. This is justified if one considers !oop three-point function because of the possibility of cross-

a quark-gluon plasma of small dimensions, like the one exiN9 the photons in the fin_al sta.te, as outlined in Fig. 2. I.n
pected in heavy ion collisions. Indeed if'the size of theorder to take the two configurations into account, it is suffi-

plasma is smaller than the mean free path of photons, the

v u 2We can also include in this model an explicit chiral symmetry
/K2 /K1 breaking term such asc, that induces a small mass,. for the
pion. In this paper, we assume this mass to be very small. In fact,
K, K, this mass is the scale of the external momenta in the small momen-
-=>- P + -—>=- P

tum expansion | will perform later.
3This vacuum expectation value can be identified with the pion

\K1 \K2 decay constant ;. for two flavors at zero temperature. At nonzero
2% v temperature, they differ someho(gee, for instance, Refl4]).
FIG. 2. One-loop triangle diagrams contributing#8— . Anyway, both of them vanish when the chiral symmetry is restored.
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cient to calculate in detail the first one, and then add the tern]jrARR
. . . . . nv (K3IK11K2)
obtained by interchanging the indices g} (2,v).

. d3
B. Matrix element —4am Nezgewa,; ki’ké’f ﬁg

Let us first give the value of the vertex functid“r}/iF;R.

: : . Ne(wpei,) — O(— €)
Using the Feynman’s rules established for the R/A formal- % 2

ism (see Refs[16,17]), a straightforward calculation gives 2wp+k2
for one flavor of electric charge
o [ [
[ {Ka Ky Ky) 2P K+ K2 2P (K, + Ky) + K2— K2 | po+K2=
E(‘)p+k2
; d*p e . Ne(wp) — 0(— €) [ i ‘
:4mN929%a5k1k2f 2 ne(p k) 20, ~2P-Ky K] 2P-Kp+K3|
= ew,
X SA(P—K1)SA(P)DiscSX(P+K,) +ne(p°) MRl 70
20p, 2P.-K;—K?

X SA(P—K4)S}(P+K,)DiscSR(P) +ng(p°—k?) i ‘

X 707 00—
X SR(P)SR(P+K,)DiscSF(P— K1)} 2P+ (Ky+Kp) + K3—K3| P-4

Ewpi kl

+(Kyp,u)=(Ky,v),

+(K1,/.L)H(K2,V), (4) (7)

wherem is the mass of the quark running in the 16cand  where we denotev,= J(p?+m?). This expressiohof the
SRAP)=i/(P2—m?+ip®0™) the scalar part of the retarded vertex function will be the basis of further considerations.
(advanceg quark propagatomg is the Fermi-Dirac’s distri-

bution defined asi(x)=1[expi/T)+1]. In the following,

we can forget about the retarded or advanced labels for the C. Existence of a zero external momenta limit

denominators. Indeed, to recover the correct prescriptions, it \ye are interested now in the zero momentum limit of this
is sufficient to perform at the very end of the calculation theyqrtex function in order to understand the origin of the dis-

substitutions crepancy between Pisarski’'s and GN'’s result. Only two of
the three external momenta are independent ones due to the
0 10 i 0 0. s 0 10 minms energy-momentum conservation: therefore we choose to
ki—ki+i0", ky—ky+i0", kz—kz—2i0". (5) considerK,; and K, as independent momenta and replace
everywher@K; by —K;—K,. In order to take the zero mo-
mentum limitK;,K,—0, we must assume th&t; and K,
propagator generates a Dirac’s delta function =K,(A=0)=0. This amounts to consider the limit along a
path that ends at the origii; ,=0 in momentum space. We
R 0 _— will see later that this limit does not exist if we consider the
DiscS*(P)=2me(p”) 8(P*—m?) (6)  most general paths. In fact, the limit exists only if the path
admits a tangent at the origin. This amounts to writing in the
vicinity of the origin
which enables us to do easily one of the integrations. To be
more definite, it is convenient to use these Dirac’s functions ) )
to perform the integration over the variaht®, so that we Ki=AK;+O(N2), Ky=AK,+O(\?), (8)
are left with a three-dimensional integration

5The reader who may wonder why we do not repl&ceK, by P

“Because the vertex coupling the pion to the quark loogy, Z]ptpheen;rxstAterm andP—K, by P in the third one is referred to

the result is proportional to the mass of the quark. If we were in a
chirally symmetric modelfi=0), the Dirac’s trace would be van-  °From now on, we drop the explicit reference to the argunient

ishing. in FZF;R.
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where the components &1,2 are fixed and of order unity. rﬁ'jﬁ()\,kl,kz):rﬁ'ﬁ_)\,kl,kz), (12)
The components olﬁlvz are the components of the tangent

vector of the path along which the limit is considered. Tak-y other words, the one-loop vertex function is an even func-
ing such a parametrization for the components of the MOgion of \. This implies automatically that the terms of order
menta amounts to assume that this path admits a tangent gt1 i, the Laurent's expansion of the integral are vanishing.
the origin, but not necessarily that it is a straight line. By thisgor this cancellation to occur, it is essential to perform the
substitution, we are lead to considering the limit when  symmetrization with respect to the external photons. There-
—0 of a univariate functioriF(\), theK, , playing the role fore, if we write
of constant parameters.

We now want to show that the integral appearing in Eq.

AR 7 X\ — a, BT AR 7% 7,
(7) has a finite limit whem\ — 0. If we recall Eq.(7), we can Ly NKLR) 4mNezge#mﬁk1k2FM VKLRy),

v v

see that this integral is the sum of six tertiwee terms, plus (12
the terms obtained in the symmetrization with respect to the _ L
external photons each term behaving similar to~2in the  then lim _ T4 Y\ Ky ,K5) is finite.
limit A—0. Therefore, in order to obtain a finite result, we
must expand the integrand in EJ) up to the orden?, and Ill. NONUNIQUENESS OF THE LIMIT
show that we have cancellations among the various terms in '
order to eliminate the ordeds 2 and\ ~*. A. Generalities
The order)\.‘2 is easy_to_ obtain, s_ince we can drqp the_ After some tedious expansiofsye find
dependence in the statistical functions to extract it, which = o
gives lim F#VR()\,Kl,Kz):4mN€2gE’u,,aBklk2
A—0

4mN€g

FQT%K1!K2)|)\’2: )\2 6,u,va,8k:?kg d3p I3 1—2n,:(wp)
(277)3[ 8 o,
d3p nF(wp)_ 0(—¢€)
~ ~ ’ 3
Xf (277)3ezi pr A(KlaKZ) nF(wp)H 1
_ . _ _
| | 4 @p E1[(Py-K)(P--Kp]?
X[zp-kz 2P (K, +K5,) B(Ky,K,) Ni(wp) 2 1
pO=ew,, — 2 3 H _ . (13

i i
 2P-K, 2P-R,

where we denoté®.. =(w,,*p). The functionsA andB are

quite intricate; since their detailed expression is not really

| i | helpful here, they have been quoted in Appendix B. More-
] over, it should be emphasized that, strictly speaking, the zero

p0=ewp

+ = = =
2P-K; 2P (K;+Ky) momentum limit does not exist since there is a residual de-
pendence upoi, andK,. Indeed, the fact that the above

+(Kq,p)—(K,,v)=0. (99  expression still depends dty andK, means that the value
of the zero momentum limit depends upon the path chosen to
As we can see, the cancellation of the ordlé? is in facta  reéach the poinK,=K,=0 in momentum space. It also in-
consequence of the energy-momentum Conserva‘(ion dicates that this limit exists Only if this path admits a tangent
works because we have repladég by —K;—K,). at the origin(i.e., the limits exist only if the ratiok/k/ of
The cancellation of the ordar ! is a consequence of the the components are constant in the vicinity of the ojighs
parity properties irK; andK of the vertex function. Indeed, @ partial conclusion, one can say that the only limit that
looking at Eq.(7), it is rather straightforward to check the €Xists is the limit\—0 along a given path that has a tangent

‘pozswp

identity at the origin, but not something such as the “zero momen-
tum limit.” °
IARRK 1K) =48 =Ky, —Ky). (10)
Making use of the variabla, it can be rewritten as 8At this stage we have proven the existence of the limit0, we

can speed up the calculations by making using of some computer
algebra system such ampLE for instance.

Therefore,\ is the scale of the external momenta and is of the °The same limitation exists when one takes the soft momentum
same order of magnitude as the pion mass, assumed to be limit of some amplitude in order to get its hard thermal Iq6{TL)
infinitesimal. part, and is therefore not new in thermal field theory.

076004-4



AMBIGUITIES IN THE ZERO MOMENTUM LIMIT OF . .. PHYSICAL REVIEW D 59 076004

The conditions for the existence of the zero momentum B. Spacelike photons
limit and its nonuniqueness should not be a surprise. Ex-

I f h h Il K in th | A first possibility is to consider the situation Whell@’2
omies 0 Sl 8 Phenofienon are wel o I SeITEL 0 while ki ,#0. This corresponds to external spacelike

;'Te,lsi theory. FOI’tlnfSttant;.‘], tthe sarlne_ catl_culatltlon applled tol thghotons. In this particular case, the functiohsand B be-
oo component of the photon polarization tensor in masslesg,me mych simpler:

QED leads to
A(K1,Kz)==3(p-ky)*(p- k) [p- (kg +k2)1%,

. R d°p (p-k)2
lim TIge(\,K) = 4e? n’(p) - =
Jim Tl J (2m)3 (7;+.K)(7D,-K)(14) B(K1,Kz)=—(p-ky)2(p-kp)qp- (ky+ky)1%  (16)

which is nothing but the HTL contribution to this function. Plugging these expressions into E#3), we find

Here also, the residual dependence ugorindicates the

nonuniqueness of the limit. In both cases, this remaining A
im TARRONL K, K>)

dependence on how the small momentum limit is reache)\ py (NaINLIN2

implies that the corresponding term in an effective Lagrang-

ian is nonlocal. d®p
There is though an important difference between #8) :4mN9296MVagk§kgf 27
and the HTL amplitudes. The hard thermal loop approxima-
tion consists in retaining only two orders in the expansion in 31-2ng(wp) 3 NE(wp) 1 NE(w)p)
powers of\ (the lowest order is trivially vanishing due to <13 5 1 a8 @
@p @p @p

momentum conservatignin the case of Eq(13), we have
combined two diagrams so that the second order is also van-
ishing. We therefore need to calculate the third order of thiﬁ/\/ : : : : .
expansion, and this is why the functioAsand B are much e can perform at this point the analytic continuation of Eq.
more involved than what is usually encountered in hard ther(5). Since the functionsA(K,,K;) and B(K,,K;) exactly
mal loops[Eq. (14), for instancé As a consequence, one cancel the denominators of E€L3), this analytic continua-
may expect that the effective®yy coupling near the critical tion does not introduce any imaginary part in the result. This
point exhibits a nonlocality of a completely different fact is a consequence of a result proven by EVai%, ac-
naturet® cording to which all the retarded and advanced Green’s func-
Before going on with some specific kinematical configu-tions are equal if the external energies are set to zero.
rations, a comment is worth concerning the zero-temperature The angular integration is trivial here since it just amounts
limit of Eq. (13). Since form>0 we have lim_ong(w,) to multiplying the result by 4. It remains to perform the
=limy_oNf(wp) =limr_on”(w,) =0, the zero-temperature integral _overp=||p||. This integral cannot be performed ana-
Iytically if m=#0, but we can consider performing an expan-

limit is trivial: sion of the result in powers of/ T, assumingn<<T. In fact,
replacingm by zero in the expression inside the brackets, we
lim TARR\ R, K,)=4mNé KoKB can see that the integral ovpris infrared-safe without the
A—0T0 ’“’R( 1K2) 9€urapala need of this mass. As a consequence, the first term of the
expansion in powers af/T is trivial to extract
j d’p 3
X | — —=. (15
(2m)° 8wy o ARR. o o
lim TA%RN K1, Ky)
A—0
As one can see, the integral is now totally independent of the ce g
. ; . X X p
kinematical configuration of the external particles. There- :4mN929€waﬂki“k'gf —
fore, the fact that the numerical coefficient in front of the (2m)
zero momentum limit of this diagram may not be uniquely , "
defined is a purely thermal effect. « 3 1-2ne(p) n 3Ne(p) 1 ng(p)
4 p3 2 p> 2 p
m
10 et us recall that neaf =0, the nonlocality of the anomalous X|1+0 —” (18)

couplings is found to be closely related to that of hard thermal loops T

[4,18]. More precisely, HTL-like amplitudes are encountered in

thermal corrections at the ord@?/ff, in a low-temperature expan-

sion. Near the chiral phase transition, we are in the opposite limitntegrating by parts in order to get rid of the inverse powers
T>f_, and it is likely that new nonlocal terms appear. of p, we obtain
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lim TARR\ K, K,) = mN€g KKE C. Real photons
xlino pr MK K2 = = oo €urapkihs Gupta and Nayak chose to consider the decay of a mas-

sive pion at rest in the frame of the plasma into two real
+eo ~ m photons. This choice corresponds to the constraiptsk,
X fo dxIn(x)nZ’(x) 1+O(?> ’ =0andk{=k3=| |k, 4|. If one gives a small mass,, to the
decaying pion(this mass is of ordek and becomes infini-
(19 tesimal whem —0), then the pion must be static when its
. momentum goes to zero in the frame of the plasma. This
where we denoteg(x)=1/[expk)+1] andx=p/T. Making  remark indicates that there isumiqueway of considering
use of the small momentum limit of the decay of a slightly massive
~ R ~ . ~ pion into real photons.
Ny (x)=6Nng(x)—12n3(x)+ 7n2(x)—ne(x),  (20) This implies some simplifications for the functioAsand
B:

and of Eq.(C6), we finally find o A A A
A(K1,K)=16k7 *wp ' (wpki) ?— (p-kp)?T*,

L. 7Z(3)mN€&g
lim TARRO K Kp) = —r e mﬁk‘szﬁ P N N N N
o 167777 B(K 1K) =4k 2w,2(p-ky) [ (wpk)2 = (p-ky)?],
22
m (22)
X|1+0| =], (21) _
T and for the vertex function
which is equivalent to formuldl1) of Ref. [1]. Therefore, lim FARR()\ K. K )
we have shown that Pisarski's result, obtained in the imagi;_,~ #» ~"' 12
nary time formalism with external momenta set to zero right
from the beginning, corresponds in fact to a zero-momentum . d’p [3 1-2ng(wp)
limit taken with spacelike external photons. =4mN9296,wa3k1k2 (2m)3 ) P
This fact can be interpreted as follows: since in the imagi- P
nary time formalism the energy component of four vectors is / " 2
a discrete quantity, the only possible way of taking the “zero  _ E n':((:p) — E n':(‘;)p) (p-k) — (23
momentum limit” in this formalism is to first set the external 4 o, 4 w0y wi-(p-k?

“energies” to the discrete value zero, and then consider the

limit of zero three momenta. The above analysis shows thafhare we denoté= K,
the limit is unique once the external energies are set to Z€I0¢ the emission of the
[the dependence dA{l,z has disappeared in E(L7)], which
implies that the imaginary time formalism leads to a
uniquely defined limit that coincides with the result obtained
here with spacelike photons.

/| k4| the unit vector in the direction
first photon. The analytic continuation
of Eq. (5) generates a term[ w;—(p-k)2]. Anyway, since
w,>p, the Green’s function[,%R remains real. A few
words are worth saying concerning the condition<2m,

It is worth mentioning the paper by Baier, Dirks, and W_hiCh is found in Refs|8,9] to simplify the result by for_bid-
Kober[21], who reproduced the result of R¢l] in a some- ding some processésuch as the decay of the pion into a
what different framework. Instead of calculating the trianglethermalizedqq pair, followed by the decay of a thermalized
diagram in a particular model, they considered the Wessgq pair into two photonk since this is the place where this
Zumino-Witten[22,23 functional near the chiral symmetry condition can appear in the present calculation. The reason
restoration. Intermediate steps of their work involve the calwhy this condition does not appear explicitly in the present
culation in the imaginary time formalism of a function where calculation is related to the zero momentum limit | have
the external momenta are set to zero. It seems that this tectaken, which is equivalent tm,—0, so that the above in-
nical analogy with Ref[1] is the reason of the agreement. equality is automatically satisfiéd.

Since the zero momentum limit of the®yy triangle is not As one can see now, the angular integral is not defined if
uniquely defined, a complete calculation of the Wessthe quark mass is vanishing, due to a collinear singularity.
Zumino-Witten Lagrangian near the chirally symmetric This could have been expected since we are looking at the
phase should be extremely careful when using the imaginargmission of real photons. The angular integration gives the
time formalism(or avoid if), in order to get the correct non- expression

locality for the couplings contained in this functional.

12As said before, this is reasonable within the lineanodel with
The formula(C6) of Appendix C naturally leads to the quanti- an explicit symmetry breaking term going to zero. Whether this
ties{(—2) and{’(—2). In order to simplify the result, we use the model is a good one near the critical temperature is definitely a
identities £(—2)=0 and{'(—2)=—¢(3)/4xw? (see, for instance, relevant question, but since the results | want to compare have been
Ref.[20]). derived in this model, | must use it also.
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lim TARRN, K ,K5) o ARR. 5 5 . 3mNég . m
o0 - ' )!ImOFMR()\'Kl'KZ):Wfﬂmﬁklkg 1+o T
+»p?dp[ 3 1-2ng(wp) (29
=4mNé€ kS f - P
m J€uvapK1K o (277_)2[4 wg
E. Generic result
_ nF(“;p) + nF(wSP)[l_ ﬂln wpt P _ (24) The above particular examples have demonstrated clearly
2w, 2w, 17 2p wp— P the nonuniqueness of the zero momentum limit of the tri-

angle diagram responsible for the pion decay in two photons.
In addition to the potential collinear singularity, another dra-Moreover, the particularity of the first situation must be em-
matic difference of this case with respect to the previous on@hasized: when one expands the integral in powens/df,
lies in the infrared behavior of the integral. It is now impos- there is a cancellation of the terms of ordefm T so that the
sible to take the limitm—0 in the expression inside the first nonvanishing terms is of orden/T2. This difference
brackets because the integral opewould behave asp/p>  can be traced back in the infrared behavior of the integrand
at smallp. This means that the expansion of the integral in(at softp). In order to study Eq(13) in the infrared sector,
powers ofm/T begins with a term in 1T, to be compared we can just drop the mass and remember that the effect of
with the 17T2 of the previous situation. Integrating by parts mwould be to regularize integrals such ép/p?~m™1. If
the above equation, we can transform it into we drop the massn and study the sofp behavior of the
lim FQRFY)\,RLRZ) functionsA(---) andB(---) of Appendix B, we find ge-

14

A—0 nerically
K W \_nl2
=AMNEge,,, 5K K5 A(Ky,Kz)~p™, (30)
7 7 6
+=pdp 1-2ng(wp) [ wpt+p B(K1,K2)~p®. (32)
fo (2m)° 4w3 In w,— P/’ (25 If we plug these expressions in E{.3), we find that the

terms proportional tm andni are infrared singula(in the
kabsence ofn) so that they given/mT, while the term pro-
portional tonf givesm/T2. We can therefore write the ge-
neric result as

for the decay of a static pion into two real photoisee
formula (2.12 of [9]]. The first term of the expansion in
powers ofm/T is

H AR 7, 7,
. ~ A~ mNég m lim I‘#V"_Y)\,K]_,Kz)
){Imorﬁﬁa)\,Kl,Kz):méﬂyaﬁklkg 1+0 ?)} A—0
(26) o ao Ofl m
=4mNezgeMm5klk"23 m_-i— F+O =/
D. Photons at rest (32
Another simple case is the situation where the emittedvhere the coefficientsyy,aq, ..., arecomplicated func-

photons are both massive and produced at rest in the framgyns of theK; . The conditionzy=0 defines a zero measure
of the plasma(they can subsequently decay into leptonsypset of all the configurations, to which Pisarski’s configu-

pairg. Therefore, the ki.nemoatical constraints we must enyation belongs. In this sense, the behavior found by Pisarski
force are nowk; ;=0 while ki ,# 0. With these constraints, s exceptional.

the functionsA and B become trivial:
A(Ky,R2)=0, B(Ky,K;)=0, (27)

IV. IR SENSITIVITY OF 170—>2'y AND HARD
so that we have

THERMAL LOOPS

; AR R %
i|m0FMVFYA,K1,K2) A. Preliminaries
d®p 3 1-2ng(wy) The behavior of the decay rate of thd into 2y when the _
=4mNe2geMmﬁkfk§f 27738 5 (28 chiral symmetry is restored is closely related to the behavior
@p of the T,%F function in the limit where the mass goes to

Again, the angular integration is trivial and for the remainingzero. The above study shows how this behavior depends on
integral on the variable we can only perform an expansion the kinematical configuration of the external photons. In par-

in powers ofm/T. The analytic continuation of Ed5) has ticular, we observe that the imaginary time calculation per-

no effect on this result. Here also, this integral is infraredformed with external momenta set to zero does not corre-
divergent if we putm=_0 in the integrand. As a consequence, spond to the physical situation where the emitted photons are
the result of the integration behaves as T/instead of 1T2. real, but rather to a situation where the photons are both
More precisely, we have spacelike. The fact that the imaginary time calculation does
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not correspond to real photons could have been expectec o,n
thanks to the absence of any collinear singularity in this ap- N
proach. s ! y

The problem is now that GN'’s situation, which seems
more physical because the photons are assumed to be rea
leads to a very different behavior for the triangle diagram at
smallm. Indeed, Pisarski’s result behavesad? and there-
fore vanish in the limit of chiral symmetry restoration. On

the contrary, GN’s result behaves agmT and therefore

o . the constituent quarks singe<<gT when we approach the
tends to a nonvanishing constant when we consider the same.
. o . : Cfitical temperature. We obtain for the retarded self-energy at
limit. The question is therefore: is the conclusion that the

0 ) ) . ; HTL order

m — 27y decay rate vanishes if the chiral symmetry is re-
stored at finite temperature correct, since it has been derived
using the result for spacelike photons? At first sight, it seems —iZga(P)|p= —ing 0
that this conclusion is erroneous, because it makes more
sense to consider the result established for real photons in

this context.

FIG. 4. Dominant topologies contributing to the HTLs of Fig. 3.

¢ [ne()+ne()]
2m)°  p.L

. _ dl [ng(h+ne(] ..
_IERA(P)|ﬁ:+|92f (271_)3[ BZIPI:F ]75175!

B. Infrared sensitivity and hard thermal loops (33

Nevertheless, another aspect of the problem is to be con-
sidered, which may have important consequences in the limivhere we denoté=(1,). As one can see, the sum of the
of chiral symmetry restoration. Indeed, as seen above, thabove two contributions is precisely equal to the standard
zero momentum limit in the case of real photons contains aesult of QED withe? replaced byg?. As a consequence, we
strong infrared divergence, which gives the factanT/(in- know already all the properties of the effective propagator
stead of 1T?) once regularized by the mass This means obtained by the resummation of the above self-energies: this
that the integral over the loop momentum is dominated byesummation introduces a cutoff of ordgT in loop involv-
the soft scale. More accurately, the momengyrof orderm,  ing these effective propagators.
becomes softer and softer as one approaches closer to theFor the sake of completeness, we can give expressions for
chiral symmetry restoration. Therefore, there is a point whenhe HTL part of the above vertices. Starting with tbreﬁ
the loop momentum is soft enough to justify the resummayertex, we find
tion of hard thermal loopg24—27 on the quark propagators,
as outlined in Fig. 3. Since we have two coupling constants
andg in our model, we can define two soft scaésBandgT. Fyqq(Q P_p— Q)|“
But since the coupling constagtis related to strong inter- = ARR
action whilee comes from electro-magnetic interactions of
the quarks, one may expect that loop corrections involving
the constang are the dominant ones. As a consequence, we
will consider only loop corrections involving the or , as
shown in Fig. 4. Looking at the Lagrangian in Eg), we
see that the coupling of the field to the quark field is for the contribution of ther field, and
—ig while the coupling of therr to the quarks igyy® (I do
not write here the isospin matrices since they appear in such
a way that the end result for the quark self-energy is propor- Fyqq(Q P—P- Q)|,L
tional to the identity in flavor spageMoreover, in order to ARR
derive the contribution ofr and s loops to the HTL correc- 3 50 uil A5
tion to the quark propagator, we can neglect the nmags =ieg2f d™ 3 [nB(IHnF(IA)]yJLV Ly

(27) 41P-LR-L

v /K (35
2

for the contribution of ther field, where we denot®=P
K; +Q. If we add the two contributions, we can see that it is
equal to the QED HTL vertex with two factors efreplaced
by g. Exactly in the same way, we can obtain the HTL con-

\K, tribution to the vertexr°qq. In fact, the result is obtained by
u substituting in Eqs(34) and(35) the last power o€ by g and
the matrix y* by iy®°. Since y° anticommutes with the
FIG. 3. m%yy Green'’s function at one loop in the HTL expan- Dirac’s matrices, we see that the product of matrices entering
sion. in this vertex is always proportional . =L2=0. There-

3 T
:_|eg f(d I [nB +n|:(|)]IL’)/ L (34)

2m)? 41P-LR-L
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fore, the m°qq vertex does not have a HTL contribution at m(T) T
the scalegT (it may have one at the much smaller scale
though. i
o7
C. Effect of HTLs on 7°—2y :
. _ . | i T
This resummation has the effect of giving a thermal mass T T T
1 2 ¢

m; to the quark, and this thermal mass remains constast
we approach the point of chiral symmetry restoratioe.,
limr_t_mr~gTc), while the constituent quark massgoes

to zero (IimrHTCm=O). In other words, the thermal mass

will become the relevant infrared regulator as soonnas
<my (i.e., the relevant infrared regulator is always the big-
gest one availabje Moreover, the thermal mass has the
property of not modifying the chiral properties of the propa-
gator which means that ih— 0, the thermal mass will not
change anything to the fact that the Dirac’s trace vanishes.
On the basis of these arguments, one can expect a modifica-
tion of them/mT behavior in the case of real photons. In-  FIG. 5. Shape of the temperature dependence ofnthe 2y
deed, if we track the origin of the various factors in this ~ decay amplitude in a constituent quark model. The dotted diive
result, we see that the massin the numerator comes from S an extrapolation of th8=0 result with aT dependent quark
the Dirac’s trace, and is closely related to the fact that thdnass. The dotted curv@) is the result obtained with real external
chiral symmetry is broken by the mass On the contrary, photons when_ one takes into account thermal corrections, but not
the thermal masm; does not break chiral symmetry. There- the resummation of hard thermal loops.

fore, this factorm at the numerator remains unmodified by .
the resummation of the thermal mass. The mass factor in tHgmPerature lgcale@ and T, for which m(T,)=T, and
denominator has a completely different origin: it comes fromm(TZ):gTZ' respectively. -

the infrared sensitivity of the integration over the loop mo- Then, forTe[0,T,], th? temperature has negligible ef-
mentum. This infrared scale is affected by the resummatiorfleCtS’ and the d_ecay amplitude is very close to the zero tem-
of the thermal mass. As a consequence, we may expect thBfrature one: it hehaves asmil/When the _temperature
the masan is replaced by the thermal mass in the denomi_reaches values of order @f;, thermal corrections become

nator but not in the numerator, whem<m; important, which has the effect of replacing the factan4/
Therefore the resummation of the thermal massvould

by 1/mT. As a consequence, the decay amplitude behaves as
lead to the behaviom/m;T for real photong? near the chi- /T for Te[Ty,To]. Finally, in the domain[T,,T], the
ral symmetry restoration. As a consequence, the result agéSummation of thermal masses plays the dominant role in
cording to which the pion decay rate for the chanmél the regulation of infrared singularities, and the decay ampli-
— 2+ vanishes in the chiral phase at finite temperature sur

tude eventually vanishes fdr=T, since it goes as/gT?.
vives. More precisely, the situation that emerges from the
constituent quark model used in this paper is summarized on V. CONCLUSIONS

Fig. 5. Assuming that the chiral symmetry restoration is &  rjrst we have seen that the difference between the results
second order phase transition, the constituent quark mass is;2 pisarski and GN can be interpreted as an effect of the
functionm=m(T) of temperature that vanishes at a certainonyniqueness of the zero-momentum limit of the triangle
critical temperaturel.. We can also define two additional giagram at finite temperature. It appeared also that Pisarski’s

result, originally derived in the imaginary-time formalism,

corresponds in fact to a situation where the emitted photons

13Assuming a second order phase transition, we expect the co@re spacelike. The most physical situation corresponding to

pling constanig to depend only logarithmically upon temperature, the case where the emitted photons are both real, a superfi-
while the vacuum expectation value of the sigma field, responsibleial analysis tends to invalidate the result according to which
for the massm of the constituent quarks, vanishes as a power ofthe w°— 2y decay rate vanishes in a hot chirally symmetric
T—T. at the critical temperaturé. . phase.

4This expression is obtained by just replacimgby the thermal Nevertheless, this calculation seems incomplete in the
mass in the result found in the bare theory. The exact calculation of
the effect of HTLs would require the calculation of the diagram of
Fig. 3, which is an extremely involved task. Anyway, the point | °The Fig. 5 assumes thagtis smaller than 1, which may not be
want to make here is just that the denominator is unlikely to vanishthe case sincg comes from strong interactions. This remark does
in the chiral limit if the HTL corrections are taken into account. change anything to the necessity of performing the HTL correc-
Therefore, knowing in detail the effect of HTL corrections is not tions. In fact, the larger the thermal mass, the more important are its
really required here. effects.
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chiral limit since the loop integral is now sensitive to soft The reason why the above transformations are some-
momenta, which means that the resummation of hard thermaimes illegitimate comes in fact from the infrared sector. To
loops may have important effects. Taking them into accounbe more definite, let me focus on the situation of Pisarski,
will change the infrared regulator, and modify GN’s result in since for this one the above changes of variables are not
such a way that it now vanishes in the hot chiral phase. allowed. The particularity of this configuration is thh@

| will add also a word of caution concerning the imagi- =kg=0. Therefore, the denominators in Eg) are combi-
nary time formalism. Since the zero-momentum limit of ther-nations of - k; —k? and - k,+ k3. As a consequence, the
mal Green’s functions is not unique and depend on the l0Casypansion of these factors in powers)ofjenerates powers
t!or? of the external legs with respect to_the [lght cone, thisy ki2/(p~ki). A simple counting shows that the ordaP
limit cannot be handled correctly in the imaginary time for- o ayes agdp/p? in the infrared region, even if we keep
malism (t_here IS no I'ght cone in an E“_C"de?” formalism strictly positive. Therefore, each individual term in E@) is
Indeed, in such situations, this formalism gives a numtferstrongly infrared divergent gi=0. Of course, a conspiracy
which corresponds to one particular way of taking the limit, ,¢ y,o"three terms occur in order to cancel this divergence so
&hat the final result is finite. If one performs different trans-
Sations on the three terms, then the way this cancellation
works is modified and finite terms are modified. The correct

: . . 2" “answer can only be obtained when the same transformation

would mention the case of the box diagram appearing i

0 . h | h I r(or no transformation at alis applied to the three terms.
m 0 — Y, Since one can expect here also to have a nonlocal A, 4jterative way to see that this transformation is not

effective coupling in a hot chirally symmetric phase. Another|qqiimate in pisarski's situation is as follows. If we are al-
interesting aspect is to find a work-around for the I|m|tat|ons|owed to perform this transformation, it is obvious that it

of the I|mag|nary time formahshm |nh the denva_lt_lon ?f the enerates an integrand proportional te dn(w,), without
anomalous processes near the phase transition from t y derivatives of the Fermi-Dirac distribution. Therefore,

Wess-Zumino-Witten Lagrangian. let us integrate by parts the result of E@7) in order to try
to get rid of the derivativesir andnf, to see if we can
recover this simple structure:

nonlocality of the corresponding effective coupling is lost.
Among the related topics that seem worth studying, |
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APPENDIX A: SIDE EFFECTS 2 b B pz p
OF HAZARDOUS TRANSLATIONS 1—2ne(m) . (00) (m)
—2ng(m *  Ne(wy)—Ng(m
. _ =z +f dp——a7—. (A}
A superficial inspection of the expression of the vertex 0 P wp

function given in Eq.(7) indicates that it may be advanta-
geous to change the integration variable in the first and thir
term. Namely, changin@ + K, into P in the first term and
P—K, into P in the third term would allow the factorization
of a common statistical weightng(wp) — 6(—€)1/2w,. In
addition to this factorization, the major advantage of such
transformation would be to eliminate th€, , dependence
(i.e., thex dependengein this statistical factor: as a conse-
guence, the subsequent expansions in powers @fould
become much simpler. This technique can be applied in

GN'’s situation where it leads directly to E@5), without the 18The condition to be able to eliminate the(m) terms is
need of performing a cumbersome integration by péhs

%\s one can see, some termsnig(m) appear in this integra-
tion by parts, which are absolutely necessary to ensure the
infrared finiteness of the integral. There is no way of trans-
Jorming this integral in order to have the temperature depen-
dence only in a factor +2ng(wy), as it would be if the
changes of variableB+K,— P,P—K,— P were possiblé®

3
reason for that lies in the fact that no derivativesngfare imﬁi P | 40 B(R,. K1 1 —0
generated in this second approach, because the statistical ", p Jp Zg PETLTILY (PL R)(P_-K,) '
prefactor does not contain the expansion parametef his (A2)

method works also for the third case studied in Sec. Illl. o o ]
I\flhlch is satisfied in GN’s case but not in Pisarski's one. A more

Nevertheless, we avoided its use to derive the general IImextensive study seems to indicate that this condition is satisfied by

presented in Eq(13) because this transformation is not al- 5| configurations, excepted the configuration that corresponds to
ways legitimate. Pisarski's calculatiorisee also Section Il E
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A(Ky,K

APPENDIX B: FUNCTIONS A(K,K,) AND B(K4,K5)

2) =Kk (3K]+ Ko) (Kikg + koki) wp+ KK TRIK3 (- ka) 2+ kpka(p-ky)*+ 2K3 3G (p- ko) (p- k)

+KOIE (- ky) 2+ L0KEKG(p- ky) (p- kp) = 2KTKG(p- kp) 2= k3K p- ko) ?+ 2kTKGHKE (- Ky ) (p- ko)

— 3Kk kq) K5+ BKIKGK (- ky)?+ 4KFKIKT(p- ky) (p- ko) — 1OKIKIK5( - ky)?+ 8K (- ky) (p- ko)
— 2KPKIK5(p- k) (p- kp) + 10KFKIKE(p- k1)~ BKKI(p- kp) 2 — BKQAKIKE (- ko) ?— 10K§HG(p- ky)?
+5k3K5(p- ko) 2Jwp + k3T 4k3(p- ki) K3(p- Kp)3—8KIKT(p- k1) (p- ko) (p- k) *k§®
= 2K3'K9(p- kp)3(p- ka) — 20k5KLA(p- k1) 3(p- kp) — BKEKI(p- ky)* — 26Kk (- ko) 3(p- ky) — 9Kk H(p- ko) *
+ 7RI p- ky) 2(p- ko) = 3BKIKIH P+ ky)3(p- kp) + BKI(p- ko) 2K (- ky) 2 — 12KG% (- ky) * — 18K p- ky) *k3°
+KKA(p- ky)2(p- k)2 — 4KPKEX(p- Ky ) (p- ko) ®— 1293 p- k) 2K3(p- ko)
+3kI%3(p- ko) — 4kI%KIKZ(p- k1) 3(p- ko) + 2k5%KI(p- kq)3K3(p- ko) + 7KK (p- ki) *ka— 5kIKIHKZ(p- ky)*
— 3KIKIKT(p- kq)?(p- ko) 2= BKIAKIKI(p- k)= K3KE(p- ki) *+ 2k3 p- k) *K3+ 7kI(p- ky) kK3
— BKIK§AG(p- k) (p- ko) — 9KIKYA p- ky) 2k5(p- ky) 2= 4kIKIKTA p- ky)3(p- k)
— 4Kk ky) 3K5(p- kp) — 12KIKTAKT(p- ky)2(p- ko) wp+ (p- ky) KT BKI(p- ky)3kTKI(p- ky)?
+3K3(p- ky)KIKE(P- ka)* — 4K3(p- k1) 2KIK3(P- k) 3+ 6(p- kq) kG +8(p-ky)4(p- ko) k§*+ 2(p- K1) °k3(p- kp) 2kS®
+ 17(p- Ky KGPK§2(p- k) +20(p- ky) *kE(p- ko) kS +4(p- ky) 2KOKI(p- kp) 3+ 56(p- ky) KK (p- ko) ®
+13(p- kq) °koko>+ 1357 p- ky) *Kk{%+ 34K p- k) “(p- kp) KY*+ 2Kk p- kp)®
+31K3(p- ky) KX p- ko) 4 40KS(p- k) 2T p- ko) P+ 16(p- k) 2kYKG(p- ko) ®+ BKYKT(p- ko) S+ 42K5(p- ky)
X (p-kp) ?KP+ LA(p- ky) K§2KF(p- ko) + 11U(p- ky ) K3 - Kp) K5 — Ko p- kq) ki — 2K57(p- kq) ki (p- kp)?
+4k9A(p- K1) 3k3(p- ko) ?+4k9A(p- Ky) *kE(P- ko) — K9(p- K1) 3k3k3 + 43 (p- kq) *k3(p- Kp) k]
— 2k9(p- ky) *KE(p- ka) K — 4K3(p- ky) KE(p- ko) + 2k3(p- k) *k§kE(p- ko) 2+ 8K(p- k1) 2KkIKi(p- k)% @)
—(p- k1) 2kI[10KG p- kq) 3(p- kp) + 22K5%(p- Ky) (- kp) 2+ 24K5(p- ky) 3(p- ky) 3+ 3K53(p- ky)®
+8K3(p- k1) (- ko) + 23K57(p- ky) *(p- kp) 2kS +44K57(p- k1) °KE(p- k) 3+ 2K5A p- ky)KI(p- kz)®
+ 19K(P- kq) 2K(p- ko) 4 12K3(p- Ky) 3K3(p- ko) 3 — 4K (p- ky) 3kE(p- kp) 2+ 25KIKTA(p- k)
+ 76k9(p- kq)K§A(p- ka) >+ 2k (- Kq) *k5(p- ko) — 3K3(P- K1) 2KE(p- ky)*+8K(p- ky) *(p- kp)?k5
—KO(p- k1) (- ko) 2KF+48KI(p- kq)Z(p- kp) *K9%+ BKY(p- k) 2K5(p- ko) *+4(p- Ky )KKE(P- Kp) 3+ K3 (p- ko) OkG
+ (- ky) 2KIK5(p- ko) = 2(p- ky)KE(p- ko) *kE]wp+ B[ (p- ko) + (p- ky) TK(p- ky)*(p- ko)
X [K3(p-kq)3+3(p-ky)2KO(p- Kp) +4K3(p- Ky) (p- ko) ?+ 2k(p- kp) 3+ 2k1(p- ky) ] ],
—3(p-ky)*(p- ko) °[(p- k) + (- Ky) J[B(P- k) + (p- ko) T+ (kS k) = (KD kp),
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B(K1,Kz) =kIK3TkI(p- ko) +k3(p- k1) 2wp—K3(p- kp) (kI + kD) (p- ko) 2= K3(p- ky)[p- (Ki+ ko) I} 03
—(p-kp)2(p-k2)3[p- (kg + ko) 1+ (KT kq) e (K3, ko).

APPENDIX C: CALCULATION We need then
OF[&*dx x" In(x)[exp(x)+1]~P

. +e A,—n![y+In(m
In Sec. lll B, we need to evaluate integrals of the form f dx X" In(x)e” M= n rE1?‘l+1 ( )], (C4)
0
+o X" In(x) _ _ _
|n,pEJ’ X1 p (C1)  wherey is the Euler's constant, andl, are integers defined
0 (e +1) . 8
recursively® by
wheren,p are positive integers. The starting point is to ex- Ag=0, A,.i=nl+(n+1)A,. (C5)

pand €+1) P in powers ofe”*, which gives

i It is now straightforward to collect the various pieces in or-
P

(-1 der to obtain the following expression:
Inp (p— 1)|2 (—pm z ap_1;Mm
= ”p”'pf (27" 1)/ (n+ 1)
+oo a n+1—i
xf dx X' In(x)e” ™, (C2) P (p— 1)l = Pl
0 , .
=2'"""In(2)¢{(n+1-i)+(2'""-1)
where the numbersa, ,; are the coefficients of the A
polynomiat’ X n—'”—y g(n+1—i)} (C6)
p-1
Qo 10=(X=1)(X=2) - (x=p+1)= 2, ap 1;X
= 3 8The solution of the recursion is,=yn! +T''(n+1), where
['(2)=/4~dte '* 1, but this expression does not make obvious
the fact thatA, is an integer. Moreover, one usually neggsfor
small fixed values ofn, which makes the use of EqC5) very
"To be complete, one must define aRg(x)=1. convenient in practice.

[1] R. D. Pisarski, inFrom Thermal Field Theory to Neural Net- [12] R. L. Kobes and G. W. Semenoff, Nucl. PhyB272 329

works: A Day to Remember Tanguy Altheedited by P. Au- (1986.
renche, P. Sorba, and G. VeneziafWorld Scientific, Sin-  [13] V. Koch, Int. J. Mod. Phys. B, 203 (1997).
gapore, 1996 [14] A. Bochkarev and J. |. Kapusta, Phys. Revof) 4066(1996.
[2] R. D. Pisarski, Phys. Rev. Leff6, 3084(1996. [15] F. Gelis, Nucl. PhysB508, 483 (1997.
[3] R. D. Pisarski and M. G. H. Tytgat, Phys. Rev.93, 2989  [16] p. Aurenche and T. Becherrawy, Nucl. PhyB379, 259
(1996. (1992.

[4] R. D. Pisarski and M. H. G. Tytgat, Phys. Rev. L&®, 3622 [17] M. A. van Eijck, R. Kobes, and Ch. G. van Weert, Phys. Rev.
(1997. _ D 50, 4097(1994.
[5] R. D. Pisarski, T. L. Trueman, and M. H. G. Tytgat, Phys. Rev.[lg] C. Manuel, Phys. Rev. 57, 2871(1998.

D 56, 7077(1997).
o A . [19] T. S. Evans, Nucl. Phy$3496, 486 (1997.
[6] R. D. Pisarski, T. L. Trueman, and M. H. G. Tytgat, Talk given
at Yukawa International Seminar dvon-Perturbative QCD: [20] H. E. Haber and H. A. Weldon, J. Math. Phy3, 1852

(1982.
truct f th DV YKI t 1997
Struc ure of the QCD Vacuum (YKIS 9Ryoto, Japan, 199 [21] R. Baier, M. Dirks, and O. Kober, Phys. Rev. B, 2222
(unpublished (1996

[7] C. Contreras and M. Loewe, Z. Phys.40, 253(1988. ]
[8] A. Gomez Nicola and A. F. Alvarez-Estrada, Z. Phys6@  L22] J- Wess and B. Zumino, Phys. Le87B, 95 (1971).

711 (1993, [23] E. Witten, Nucl. PhysB223, 422(1983.
[9] S. Gupta and S. N. Nayak, Report No. TIFR/TH/97-03, [24] E. Braaten and R. D. Pisarski, Nucl. Ph837, 569 (1990.
hep-ph/9702205. [25] J. Frenkel and J. C. Taylor, Nucl. Phy&334, 199 (1990.
[10] H. A. Weldon, Phys. Rev. 28, 2007(1983. [26] E. Braaten and R. D. Pisarski, Phys. Rev4f) 1827(1992.
[11] C. Gale and J. I. Kapusta, Nucl. Phy&357, 65 (1991). [27] J. Frenkel and J. C. Taylor, Nucl. Phy&374, 156 (1992.

076004-12



