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Ambiguities in the zero momentum limit of the thermal p0gg triangle diagram

François Gelis
Laboratoire de Physique The´orique LAPTH, BP110, F-74941, Annecy le Vieux Cedex, France

~Received 19 June 1998; published 8 March 1999!

Modifications of thep0→2g decay amplitude by thermal effects have already been considered by several
authors, leading to quite different results. I consider in this paper the triangle diagram connecting a neutral pion
to two photons in a constituent quark model, within the real-time formulation of thermal field theory, and study
the zero external momentum limit of this diagram. It appears that this limit is not unique and depends strongly
on the kinematical configuration of the external particles. This nonuniqueness is shown to explain the contra-
diction between existing results. I end with some considerations suggesting that this decay amplitude may be
significantly modified by the resummation of hard thermal loops, due to infrared singularities.
@S0556-2821~99!04705-0#

PACS number~s!: 11.10.Wx, 12.39.Fe
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I. INTRODUCTION

During the past two years, a lot of work has been devo
to the study of the relationship between the axial anom
and thep0→2g decay rate at finite temperature, most no
bly by Pisarski, Tytgat, and Trueman@1–6#. The purpose of
this series of papers was to explain the following basic fa
the coefficient of the axial anomaly is independent of
temperature while the amplitude for thep0→2g decay is
modified. The problem was therefore to explain why the
lationship that relates at zero temperature the pion decay
plitude to the axial anomaly ceased to be valid in a hot m
dium.

This work has been initiated by a calculation of the pi
decay rate in a constituent quark model, performed by Pi
ski in the imaginary time formalism@1,2#. More precisely, it
consists in the calculation of the triangle diagram connec
the pseudoscalar to the two emitted photons, via a qu
loop. This diagram is considered at the first nonvanish
order in the small external momenta. The result found in R
@1# is that this diagram is proportional tom/T2 wherem is
the mass of the quark in the loop andT the temperature o
the heat bath, while the result found at zero temperature
the same diagram is proportional to 1/m. The consequence o
this result is that the pion decay rate into two photons v
ishes if the chiral symmetry is restored at high temperatu
sincem→0.

The same diagram has been calculated in the real
formalism by the authors of Refs.@7,8#, and also by Gupta
and Nayak~GN! in Ref. @9# who studied the zero momentum
limit of this diagram. GN’s result for this diagram in the ze
external momentum limit is proportional tom/mT. The dra-
matic difference is the behavior of this decay amplitude a
function of the quark mass, because this behavior was cru
in Pisarski’s calculation@1,2# to derive his conclusion abou
the pion decay rate in a hot chirally symmetric phase.

The purpose of the present paper is to reconsider the
culation of the triangle diagram already studied by Pisar
and Gupta and Nayak, in order to explain the discrepa
between the results they found. To that effect, we perfo
0556-2821/99/59~7!/076004~12!/$15.00 59 0760
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this calculation in the ‘‘retarded-advanced’’1 version of the
real time formalism, but we stay at a more general level th
Refs.@1,7–9# concerning the kinematical configuration of th
external particles. In particular, we do not assume that ex
nal particles are on-shell. Similar to Refs.@1,9#, we are in-
terested in a small external momenta expansion for this
gram. We arrive at the conclusion that this discrepancy
due to the nonuniqueness of the zero momentum limit of
considered Green’s function. It appears indeed that this li
depends on the kinematical configuration of the external l
and that Pisarski and GN’s calculations correspond to v
different configurations, GN’s configuration being the mo
physical for the decay of a pion into real photons. Then,
come back to Pisarski’s statement about the pion decay
in a hot chiral phase and show that, because of infrared
gularities, it may remain valid in GN’s kinematical configu
ration ~i.e., in the physical configuration! despite a different
dependence in the massm if one considers the correctio
provided by hard thermal loops.

In Sec. II, we derive the expression for the triangle d
gram in the retarded-advanced formalism, and its relati
ship with the pion decay rate. Then, we prove the existe
of a limit of zero external momentum, in a sense to be ma
precise later.

In Sec. III, we first give an expression for the zero m
mentum limit showing clearly that this limit is not uniqu
and depends on the kinematical configuration of the exte
particles. The remaining of this section is devoted to
detailed study of this limit in three particular configuration
The first configuration studied corresponds to a situat
where both of the emitted photons have zero energy: the
momentum limit reproduces in this case Pisarski’s res
The second important case is obtained with real photons
a pion at rest in the frame of the plasma: this case reprodu
GN’s result. Finally, a third simple case corresponds to

1The choice of using the retarded-advanced formalism is just te
nical. The main point is to show that both Pisarski’s and GN
results can be recovered from a common formalism.
©1999 The American Physical Society04-1
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FRANÇOIS GELIS PHYSICAL REVIEW D 59 076004
decay of a static pion into two static virtual photons, th
may subsequently decay into lepton pairs.

In Sec. IV, we study the implications of the above resu
for Pisarski’s assertion concerning the annulation of the p
decay amplitude in a hot chiral phase. Despite the fact
this statement is incorrect in the bare theory if one consid
the physical situation in which the photons are real, the
terplay of infrared singularities in this calculation makes t
resummation of hard thermal loops necessary. The co
quence of this resummation is to change the parameter p
ing the role of an infrared regulator. This has the effect
making the pion decay amplitude vanish in a hot chira
symmetric phase, even when one is considering the phys
decay into real photons.

Technical details are relegated to three appendixes. In
pendix A, we remind the reader of the potentially dangero
effect of changing the variables in divergent expressi
since this is of some relevance for our calculation. Appen
B gives the general expression of the functionsA(K1 ,K2)
andB(K1 ,K2) that appear at intermediate stages of the c
culations. Finally, Appendix C gives some details abou
few integrals that appear in this paper.

II. TRIANGLE DIAGRAM IN THE ‘‘R/A’’ FORMALISM

A. p0 decay rate

The decay rate of pions in a thermal bath is related to
p0p0 retarded self-energy via the relation@10,11#

dN

dt dx
52

dq0 d3q

~2p!4 2eq0 /TnB~q0!Im PRA~q0 ,q!, ~1!

which gives the number ofp0 decays per unit time and pe
unit volume of the plasma, in the four momentum ran
dq0d3q. This formula does not take into account the reve
process~see, for instance, Refs.@10,12#! 2g→p0 that cana
priori occur in the medium. This is justified if one conside
a quark-gluon plasma of small dimensions, like the one
pected in heavy ion collisions. Indeed, if the size of t
plasma is smaller than the mean free path of photons,

FIG. 1. Self-energy of the pseudoscalar involved in the deca
2g.

FIG. 2. One-loop triangle diagrams contributing top0→gg.
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produced photons will escape from the plasma without th
malizing. The imaginary part of thep0p0 two-point function
is a sum over all the possible cuts through the correspond
diagram, which means that this formula gives the total de
rate, i.e., the sum of the contribution of all the channels.
order to select a particular channel, one must look at
appropriate cut.

Similar to Refs.@1,9#, I use a linear sigma model~see Ref.
@13#, for instance! where the fermion fields are constitue
quarks, in which the mesons are coupled to quark fields
indicated by the following Lagrangian:2

L5 i C̄D” C22gC̄~st01 i p•tg5!C. ~2!

I consider two flavors of quarks andN53 colors. Thet
matrices are normalized witht051/2 and Tr(tatb)5dab/2.
This coupling is invariant under the chiral symmet
SU(2)

L
3SU(2)

R
. When this symmetry is spontaneous

broken, thes field acquires a nonvanishing vacuum expe
tation value3 ^s&, which gives a massm5g^s& to the con-
stituent quarks. In this model, the decay of pions in tw
photons appear only in the discontinuity of the three lo
p0p0 self-energy. Indeed, each external pseudo-scalars m
be connected to a quark loop, and these two loops mus
linked by the two photons. Then, among all the possible c
one must consider the cut that crosses the photon propag
~see Fig. 1!. Making use of the cutting rules for the ‘‘R/A’’
formalism @15#, we find that the cut depicted in Fig. 1 con
tributes:

Im PRA~q0 ,q!

52
1

2E d4K1

~2p!4E d4K2

~2p!42pe~k1
0!d~K1

2!2pe~k2
0!d~K2

2!

3~2p!4d~Q1K11K2!Gmn
ARR~Q,K1 ,K2!

3GRAAmn~Q,K1 ,K2!, ~3!

where Gmn
ARR(Q,K1 ,K2) is the triangle diagram connectin

the pseudoscalar to two photons. This object will be the s
ject of our study from now on (Gmn

RAA
is closely related to the

previous one!. In fact, two diagrams contribute to this one
loop three-point function because of the possibility of cro
ing the photons in the final state, as outlined in Fig. 2.
order to take the two configurations into account, it is su

2We can also include in this model an explicit chiral symme
breaking term such ases, that induces a small massmp for the
pion. In this paper, we assume this mass to be very small. In f
this mass is the scale of the external momenta in the small mom
tum expansion I will perform later.

3This vacuum expectation value can be identified with the p
decay constantf p for two flavors at zero temperature. At nonze
temperature, they differ somehow~see, for instance, Ref.@14#!.
Anyway, both of them vanish when the chiral symmetry is restor

in
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AMBIGUITIES IN THE ZERO MOMENTUM LIMIT OF . . . PHYSICAL REVIEW D 59 076004
cient to calculate in detail the first one, and then add the t
obtained by interchanging the indices (1,m)↔(2,n).

B. Matrix element

Let us first give the value of the vertex functionGmn
ARR

.
Using the Feynman’s rules established for the R/A form
ism ~see Refs.@16,17#!, a straightforward calculation give
for one flavor of electric chargee

Gmn
ARR~K3 ,K1 ,K2!

54mNe2gemnabk1
ak2

bE d4P

~2p!4$nF~p01k2
0!

3SA~P2K1!SA~P!DiscSR~P1K2!1nF~p0!

3SA~P2K1!SR~P1K2!DiscSR~P!1nF~p02k1
0!

3SR~P!SR~P1K2!DiscSR~P2K1!%

1~K1 ,m!↔~K2 ,n!, ~4!

wherem is the mass of the quark running in the loop4 and
SR,A(P)[ i /(P22m26 ip001) the scalar part of the retarde
~advanced! quark propagator.nF is the Fermi-Dirac’s distri-
bution defined asnF(x)[1/@exp(x/T)11#. In the following,
we can forget about the retarded or advanced labels for
denominators. Indeed, to recover the correct prescription
is sufficient to perform at the very end of the calculation t
substitutions

k1
0→k1

01 i01, k2
0→k2

01 i01, k3
0→k3

022i01. ~5!

It is worth recalling that the discontinuity of the qua
propagator generates a Dirac’s delta function

DiscSR~P!52pe~p0!d~P22m2! ~6!

which enables us to do easily one of the integrations. To
more definite, it is convenient to use these Dirac’s functio
to perform the integration over the variablep0, so that we
are left with a three-dimensional integration

4Because the vertex coupling the pion to the quark loop isgg5,
the result is proportional to the mass of the quark. If we were i
chirally symmetric model (m50), the Dirac’s trace would be van
ishing.
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Gmn
ARR

~K3 ,K1 ,K2!

54mNe2gemnab k1
ak2

bE d3p

~2p!3

3 (
e56 H nF~vp1k2

!2u~2e!

2vp1k2

3
i

2P•K21K2
2

i

2P•~K11K2!1K2
22K1

2Up01k
2
05

evp1k2

1
nF~vp!2u~2e!

2vp

i

22P•K11K1
2

i

2P•K21K2
2U

p05evp

1
nF~vp2k1

!2u~2e!

2vp2k1

i

2P•K12K1
2

3
i

2P•~K11K2!1K2
22K1

2U p02k
1
05

evp2k1

J 1~K1 ,m!↔~K2 ,n!,

~7!

where we denotevp[A(p21m2). This expression5 of the
vertex function will be the basis of further considerations

C. Existence of a zero external momenta limit

We are interested now in the zero momentum limit of th
vertex function in order to understand the origin of the d
crepancy between Pisarski’s and GN’s result. Only two
the three external momenta are independent ones due t
energy-momentum conservation: therefore we choose
considerK1 and K2 as independent momenta and repla
everywhere6 K3 by 2K12K2 . In order to take the zero mo
mentum limit K1 ,K2→0, we must assume thatK1 and K2
are functions of some parameterl, such thatK1(l50)
5K2(l50)50. This amounts to consider the limit along
path that ends at the originK1,250 in momentum space. We
will see later that this limit does not exist if we consider t
most general paths. In fact, the limit exists only if the pa
admits a tangent at the origin. This amounts to writing in t
vicinity of the origin

K1[lK̂11O~l2!, K2[lK̂21O~l2!, ~8!

a

5The reader who may wonder why we do not replaceP1K2 by P
in the first term andP2K1 by P in the third one is referred to
Appendix A.

6From now on, we drop the explicit reference to the argumentK3

in Gmn
ARR

.
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FRANÇOIS GELIS PHYSICAL REVIEW D 59 076004
where the components ofK̂1,2 are fixed and of order unity.7

The components ofK̂1,2 are the components of the tange
vector of the path along which the limit is considered. Ta
ing such a parametrization for the components of the m
menta amounts to assume that this path admits a tange
the origin, but not necessarily that it is a straight line. By t
substitution, we are lead to considering the limit whenl

→0 of a univariate functionF(l), the K̂1,2 playing the role
of constant parameters.

We now want to show that the integral appearing in E
~7! has a finite limit whenl→0. If we recall Eq.~7!, we can
see that this integral is the sum of six terms~three terms, plus
the terms obtained in the symmetrization with respect to
external photons!, each term behaving similar tol22 in the
limit l→0. Therefore, in order to obtain a finite result, w
must expand the integrand in Eq.~7! up to the orderl0, and
show that we have cancellations among the various term
order to eliminate the ordersl22 andl21.

The orderl22 is easy to obtain, since we can drop thel
dependence in the statistical functions to extract it, wh
gives

Gmn
ARR~K1 ,K2!ul225

4mNe2g

l2 emnabk1
ak2

b

3E d3p

~2p!3 (
e56

nF~vp!2u~2e!

2vp

3H i

2P•K̂2

i

2P•~K̂11K̂2!
U

p05evp

2
i

2P•K̂1

i

2P•K̂2
U

p05evp

1
i

2P•K̂1

i

2P•~K̂11K̂2!
U

p05evp

J
1~K̂1 ,m!↔~K̂2 ,n!50. ~9!

As we can see, the cancellation of the orderl22 is in fact a
consequence of the energy-momentum conservation~it
works because we have replacedK3 by 2K12K2).

The cancellation of the orderl21 is a consequence of th
parity properties inK1 andK2 of the vertex function. Indeed
looking at Eq.~7!, it is rather straightforward to check th
identity

Gmn
ARR~K1 ,K2!5Gmn

ARR~2K1 ,2K2!. ~10!

Making use of the variablel, it can be rewritten as

7Therefore,l is the scale of the external momenta and is of
same order of magnitude as the pion massmp , assumed to be
infinitesimal.
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Gmn
ARR~l,K̂1 ,K̂2!5Gmn

ARR~2l,K̂1 ,K̂2!. ~11!

In other words, the one-loop vertex function is an even fu
tion of l. This implies automatically that the terms of ord
l21 in the Laurent’s expansion of the integral are vanishin
For this cancellation to occur, it is essential to perform t
symmetrization with respect to the external photons. The
fore, if we write

Gmn
ARR~l,K̂1 ,K̂2!54mNe2gemnabk1

ak2
bG̃mn

ARR~l,K̂1 ,K̂2!,
~12!

then liml→0 G̃mn
ARR(l,K̂1 ,K̂2) is finite.

III. NONUNIQUENESS OF THE LIMIT

A. Generalities

After some tedious expansions,8 we find

lim
l→0

Gmn
ARR~l,K̂1 ,K̂2!54mNe2gemnabk1

ak2
b

3E d3p

~2p!3H 3

8

122nF~vp!

vp
5

2
A~K̂1 ,K̂2!

4

n
F
8~vp!

vp
4 )

i 51

3
1

@~P1•K̂ i !~P2•K̂ i !#
2

2
B~K̂1 ,K̂2!

4

n
F
9~vp!

vp
3 )

i 51

3
1

~P1•K̂ i !~P2•K̂ i !
J , ~13!

where we denoteP6[(vp ,6p). The functionsA andB are
quite intricate; since their detailed expression is not rea
helpful here, they have been quoted in Appendix B. Mo
over, it should be emphasized that, strictly speaking, the z
momentum limit does not exist since there is a residual
pendence uponK̂1 and K̂2 . Indeed, the fact that the abov
expression still depends onK̂1 and K̂2 means that the value
of the zero momentum limit depends upon the path chose
reach the pointK15K250 in momentum space. It also in
dicates that this limit exists only if this path admits a tange
at the origin~i.e., the limits exist only if the ratioski

0/ki
m of

the components are constant in the vicinity of the origin!. As
a partial conclusion, one can say that the only limit th
exists is the limitl→0 along a given path that has a tange
at the origin, but not something such as the ‘‘zero mom
tum limit.’’ 9

8At this stage we have proven the existence of the limitl→0, we
can speed up the calculations by making using of some comp
algebra system such asMAPLE for instance.

9The same limitation exists when one takes the soft momen
limit of some amplitude in order to get its hard thermal loop~HTL!
part, and is therefore not new in thermal field theory.
4-4
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The conditions for the existence of the zero moment
limit and its nonuniqueness should not be a surprise.
amples of such a phenomenon are well known in ther
field theory. For instance, the same calculation applied to
P00

RA component of the photon polarization tensor in mass
QED leads to

lim
l→0

P00
RA~l,K̂ !54e2E d3p

~2p!3 n
F
8~p!

~p• k̂!2

~P1•K̂ !~P2•K̂ !
,

~14!

which is nothing but the HTL contribution to this function
Here also, the residual dependence uponK̂ indicates the
nonuniqueness of the limit. In both cases, this remain
dependence on how the small momentum limit is reac
implies that the corresponding term in an effective Lagra
ian is nonlocal.

There is though an important difference between Eq.~13!
and the HTL amplitudes. The hard thermal loop approxim
tion consists in retaining only two orders in the expansion
powers ofl ~the lowest order is trivially vanishing due t
momentum conservation!. In the case of Eq.~13!, we have
combined two diagrams so that the second order is also
ishing. We therefore need to calculate the third order of t
expansion, and this is why the functionsA andB are much
more involved than what is usually encountered in hard th
mal loops @Eq. ~14!, for instance#. As a consequence, on
may expect that the effectivep0gg coupling near the critica
point exhibits a nonlocality of a completely differen
nature.10

Before going on with some specific kinematical config
rations, a comment is worth concerning the zero-tempera
limit of Eq. ~13!. Since form.0 we have limT→0 nF(vp)
5 limT→0 nF8 (vp)5 limT→0n

F
9(vp)50, the zero-temperatur

limit is trivial:

lim
l→0,T→0

Gmn
ARR~l,K̂1 ,K̂2!54mNe2gemnabk1

ak2
b

3E d3p

~2p!3

3

8vp
5 . ~15!

As one can see, the integral is now totally independent of
kinematical configuration of the external particles. The
fore, the fact that the numerical coefficient in front of th
zero momentum limit of this diagram may not be unique
defined is a purely thermal effect.

10Let us recall that nearT50, the nonlocality of the anomalou
couplings is found to be closely related to that of hard thermal lo
@4,18#. More precisely, HTL-like amplitudes are encountered
thermal corrections at the orderT2/ f p

2 in a low-temperature expan
sion. Near the chiral phase transition, we are in the opposite l
T@ f p , and it is likely that new nonlocal terms appear.
07600
x-
al
e
s

g
d
-

-
n

n-
is

r-

-
re

e
-

B. Spacelike photons

A first possibility is to consider the situation wherek1,2
0

50 while k1,2Þ0. This corresponds to external spaceli
photons. In this particular case, the functionsA and B be-
come much simpler:

A~K̂1 ,K̂2!523~p• k̂1!4~p• k̂2!4@p•~ k̂11 k̂2!#4,

B~K̂1 ,K̂2!52~p• k̂1!2~p• k̂2!2@p•~ k̂11 k̂2!#2. ~16!

Plugging these expressions into Eq.~13!, we find

lim
l→0

Gmn
ARR~l,K̂1 ,K̂2!

54mNe2gemnabk1
ak2

bE d3p

~2p!3

3H 3

8

122nF~vp!

vp
5 1

3

4

nF8 ~vp!

vp
4 2

1

4

nF9 ~vp!

vp
3 J . ~17!

We can perform at this point the analytic continuation of E
~5!. Since the functionsA(K̂1 ,K̂2) and B(K̂1 ,K̂2) exactly
cancel the denominators of Eq.~13!, this analytic continua-
tion does not introduce any imaginary part in the result. T
fact is a consequence of a result proven by Evans@19#, ac-
cording to which all the retarded and advanced Green’s fu
tions are equal if the external energies are set to zero.

The angular integration is trivial here since it just amou
to multiplying the result by 4p. It remains to perform the
integral overp5ipi . This integral cannot be performed an
lytically if mÞ0, but we can consider performing an expa
sion of the result in powers ofm/T, assumingm!T. In fact,
replacingm by zero in the expression inside the brackets,
can see that the integral overp is infrared-safe without the
need of this mass. As a consequence, the first term of
expansion in powers ofm/T is trivial to extract

lim
l→0

Gmn
ARR~l,K̂1 ,K̂2!

54mNe2gemnabk1
ak2

bE
0

1` dp

~2p!2

3H 3

4

122nF~p!

p3 1
3

2

nF8 ~p!

p2 2
1

2

nF9 ~p!

p J
3F11OS m

T D G . ~18!

Integrating by parts in order to get rid of the inverse pow
of p, we obtain

s

it
4-5
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FRANÇOIS GELIS PHYSICAL REVIEW D 59 076004
lim
l→0

Gmn
ARR~l,K̂1 ,K̂2!52

mNe2g

4p2T2 emnabk1
ak2

b

3E
0

1`

dx ln~x!n̂
F
-~x!F11OS m

T D G ,
~19!

where we denoten̂F(x)[1/@exp(x)11# andx[p/T. Making
use of

n̂F-~x!56n̂F
4~x!212n̂F

3~x!17n̂F
2~x!2n̂F~x!, ~20!

and of Eq.~C6!, we finally find11

lim
l→0

Gmn
ARR~l,K̂1 ,K̂2!5

7z~3!mNe2g

16p4T2 emnabk1
ak2

b

3F11OS m

T D G , ~21!

which is equivalent to formula~11! of Ref. @1#. Therefore,
we have shown that Pisarski’s result, obtained in the ima
nary time formalism with external momenta set to zero rig
from the beginning, corresponds in fact to a zero-momen
limit taken with spacelike external photons.

This fact can be interpreted as follows: since in the ima
nary time formalism the energy component of four vectors
a discrete quantity, the only possible way of taking the ‘‘ze
momentum limit’’ in this formalism is to first set the extern
‘‘energies’’ to the discrete value zero, and then consider
limit of zero three momenta. The above analysis shows
the limit is unique once the external energies are set to z
@the dependence onk̂1,2 has disappeared in Eq.~17!#, which
implies that the imaginary time formalism leads to
uniquely defined limit that coincides with the result obtain
here with spacelike photons.

It is worth mentioning the paper by Baier, Dirks, an
Kober @21#, who reproduced the result of Ref.@1# in a some-
what different framework. Instead of calculating the triang
diagram in a particular model, they considered the We
Zumino-Witten@22,23# functional near the chiral symmetr
restoration. Intermediate steps of their work involve the c
culation in the imaginary time formalism of a function whe
the external momenta are set to zero. It seems that this t
nical analogy with Ref.@1# is the reason of the agreemen
Since the zero momentum limit of thep0gg triangle is not
uniquely defined, a complete calculation of the We
Zumino-Witten Lagrangian near the chirally symmet
phase should be extremely careful when using the imagin
time formalism~or avoid it!, in order to get the correct non
locality for the couplings contained in this functional.

11The formula~C6! of Appendix C naturally leads to the quant
ties z(22) andz8(22). In order to simplify the result, we use th
identitiesz(22)50 andz8(22)52z(3)/4p2 ~see, for instance
Ref. @20#!.
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C. Real photons

Gupta and Nayak chose to consider the decay of a m
sive pion at rest in the frame of the plasma into two re
photons. This choice corresponds to the constraintsk11k2

50 andk1
05k2

05iuk1,2i . If one gives a small massmp to the
decaying pion~this mass is of orderl and becomes infini-
tesimal whenl→0), then the pion must be static when i
momentum goes to zero in the frame of the plasma. T
remark indicates that there is auniqueway of considering
the small momentum limit of the decay of a slightly massi
pion into real photons.

This implies some simplifications for the functionsA and
B:

A~K̂1 ,K̂2!516k̂1
0 4vp

4@~vpk̂1
0!22~p• k̂1!2#4,

B~K̂1 ,K̂2!54k̂1
0 2vp

2~p• k̂1!2@~vpk̂1
0!22~p• k̂1!2#,

~22!

and for the vertex function

lim
l→0

Gmn
ARR~l,K̂1 ,K̂2!

54mNe2gemnabk1
ak2

bE d3p

~2p!3 H 3

8

122nF~vp!

vp
5

2
1

4

nF8 ~vp!

vp
4 2

1

4

nF9 ~vp!

vp
3

~p• k̂!2

vp
22~p• k̂!2J , ~23!

where we denotek̂[k1 /ik1i the unit vector in the direction
of the emission of the first photon. The analytic continuati
of Eq. ~5! generates a termd@vp

22(p• k̂)2#. Anyway, since
vp.p, the Green’s functionGmn

ARR remains real. A few
words are worth saying concerning the conditionmp,2m,
which is found in Refs.@8,9# to simplify the result by forbid-
ding some processes~such as the decay of the pion into
thermalizedqq̄ pair, followed by the decay of a thermalize
qq̄ pair into two photons!, since this is the place where th
condition can appear in the present calculation. The rea
why this condition does not appear explicitly in the prese
calculation is related to the zero momentum limit I ha
taken, which is equivalent tomp→0, so that the above in
equality is automatically satisfied.12

As one can see now, the angular integral is not define
the quark mass is vanishing, due to a collinear singular
This could have been expected since we are looking at
emission of real photons. The angular integration gives
expression

12As said before, this is reasonable within the linears model with
an explicit symmetry breaking term going to zero. Whether t
model is a good one near the critical temperature is definitel
relevant question, but since the results I want to compare have
derived in this model, I must use it also.
4-6
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lim
l→0

Gmn
ARR~l,K̂1 ,K̂2!

54mNe2gemnabk1
ak2

bE
0

1` p2 dp

~2p!2H 3

4

122nF~vp!

vp
5

2
nF8 ~vp!

2vp
4 1

nF9 ~vp!

2vp
3 F12

vp

2p
lnS vp1p

vp2pD G J . ~24!

In addition to the potential collinear singularity, another d
matic difference of this case with respect to the previous
lies in the infrared behavior of the integral. It is now impo
sible to take the limitm→0 in the expression inside th
brackets because the integral overp would behave asdp/p2

at smallp. This means that the expansion of the integral
powers ofm/T begins with a term in 1/mT, to be compared
with the 1/T2 of the previous situation. Integrating by par
the above equation, we can transform it into

lim
l→0

Gmn
ARR~l,K̂1 ,K̂2!

54mNe2gemnabk1
ak2

b

3E
0

1` p dp

~2p!2

122nF~vp!

4vp
4 lnS vp1p

vp2pD , ~25!

which is equivalent to the result given by Gupta and Nay
for the decay of a static pion into two real photons@see
formula ~2.12! of @9##. The first term of the expansion i
powers ofm/T is

lim
l→0

Gmn
ARR~l,K̂1 ,K̂2!5

mNe2g

8pmT
emnabk1

ak2
bF11OS m

T D G .
~26!

D. Photons at rest

Another simple case is the situation where the emit
photons are both massive and produced at rest in the fr
of the plasma~they can subsequently decay into lept
pairs!. Therefore, the kinematical constraints we must
force are nowk1,250 while k1,2

0 Þ0. With these constraints
the functionsA andB become trivial:

A~K̂1 ,K̂2!50, B~K̂1 ,K̂2!50, ~27!

so that we have

lim
l→0

Gmn
ARR~l,K̂1 ,K̂2!

54mNe2gemnabk1
ak2

bE d3p

~2p!3

3

8

122nF~vp!

vp
5 . ~28!

Again, the angular integration is trivial and for the remaini
integral on the variablep we can only perform an expansio
in powers ofm/T. The analytic continuation of Eq.~5! has
no effect on this result. Here also, this integral is infrar
divergent if we putm50 in the integrand. As a consequenc
the result of the integration behaves as 1/mT instead of 1/T2.
More precisely, we have
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lim
l→0

Gmn
ARR~l,K̂1 ,K̂2!5

3mNe2g

32pmT
emnabk1

ak2
bF11OS m

T D G .
~29!

E. Generic result

The above particular examples have demonstrated cle
the nonuniqueness of the zero momentum limit of the
angle diagram responsible for the pion decay in two photo
Moreover, the particularity of the first situation must be e
phasized: when one expands the integral in powers ofm/T,
there is a cancellation of the terms of orderm/mT so that the
first nonvanishing terms is of orderm/T2. This difference
can be traced back in the infrared behavior of the integr
~at softp). In order to study Eq.~13! in the infrared sector,
we can just drop the massm, and remember that the effect o
m would be to regularize integrals such as*dp/p2;m21. If
we drop the massm and study the softp behavior of the
functionsA(•••) and B(•••) of Appendix B, we find ge-
nerically

A~K̂1 ,K̂2!;p12, ~30!

B~K̂1 ,K̂2!;p6. ~31!

If we plug these expressions in Eq.~13!, we find that the
terms proportional tonF andnF8 are infrared singular~in the
absence ofm) so that they givem/mT, while the term pro-
portional tonF9 givesm/T2. We can therefore write the ge
neric result as

lim
l→0

Gmn
ARR~l,K̂1 ,K̂2!

54mNe2gemnabk1
ak2

bF a0

mT
1

a1

T21OS m

T3D G ,
~32!

where the coefficientsa0 ,a1 , . . . , arecomplicated func-
tions of theK̂ i . The conditiona050 defines a zero measur
subset of all the configurations, to which Pisarski’s config
ration belongs. In this sense, the behavior found by Pisa
is exceptional.

IV. IR SENSITIVITY OF p0
˜2g AND HARD

THERMAL LOOPS

A. Preliminaries

The behavior of the decay rate of thep0 into 2g when the
chiral symmetry is restored is closely related to the behav
of the Gmn

ARR function in the limit where the massm goes to
zero. The above study shows how this behavior depend
the kinematical configuration of the external photons. In p
ticular, we observe that the imaginary time calculation p
formed with external momenta set to zero does not co
spond to the physical situation where the emitted photons
real, but rather to a situation where the photons are b
spacelike. The fact that the imaginary time calculation do
4-7
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not correspond to real photons could have been expe
thanks to the absence of any collinear singularity in this
proach.

The problem is now that GN’s situation, which seem
more physical because the photons are assumed to be
leads to a very different behavior for the triangle diagram
smallm. Indeed, Pisarski’s result behaves asm/T2 and there-
fore vanish in the limit of chiral symmetry restoration. O
the contrary, GN’s result behaves asm/mT and therefore
tends to a nonvanishing constant when we consider the s
limit. The question is therefore: is the conclusion that t
p0→2g decay rate vanishes if the chiral symmetry is
stored at finite temperature correct, since it has been der
using the result for spacelike photons? At first sight, it see
that this conclusion is erroneous, because it makes m
sense to consider the result established for real photon
this context.

B. Infrared sensitivity and hard thermal loops

Nevertheless, another aspect of the problem is to be c
sidered, which may have important consequences in the l
of chiral symmetry restoration. Indeed, as seen above,
zero momentum limit in the case of real photons contain
strong infrared divergence, which gives the factor 1/mT ~in-
stead of 1/T2) once regularized by the massm. This means
that the integral over the loop momentum is dominated
the soft scale. More accurately, the momentump, of orderm,
becomes softer and softer as one approaches closer t
chiral symmetry restoration. Therefore, there is a point wh
the loop momentum is soft enough to justify the resumm
tion of hard thermal loops@24–27# on the quark propagators
as outlined in Fig. 3. Since we have two coupling constane
andg in our model, we can define two soft scaleseT andgT.
But since the coupling constantg is related to strong inter
action whilee comes from electro-magnetic interactions
the quarks, one may expect that loop corrections involv
the constantg are the dominant ones. As a consequence,
will consider only loop corrections involving thes or p, as
shown in Fig. 4. Looking at the Lagrangian in Eq.~2!, we
see that the coupling of thes field to the quark field is
2ig while the coupling of thep to the quarks isgg5 ~I do
not write here the isospin matrices since they appear in s
a way that the end result for the quark self-energy is prop
tional to the identity in flavor space!. Moreover, in order to
derive the contribution ofs andp loops to the HTL correc-
tion to the quark propagator, we can neglect the massm of

FIG. 3. p0gg Green’s function at one loop in the HTL expan
sion.
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the constituent quarks sincem!gT when we approach the
critical temperature. We obtain for the retarded self-energ
HTL order

2 iS” RA~P! us52 ig2E d3l

~2p!3

@nB~ l !1nF~ l !#

2lP•L̂
L”̂ ,

2 iS” RA~P! up51 ig2E d3l

~2p!3

@nB~ l !1nF~ l !#

2lP•L̂
g5L”̂ g5,

~33!

where we denoteL̂[(1,l̂). As one can see, the sum of th
above two contributions is precisely equal to the stand
result of QED withe2 replaced byg2. As a consequence, w
know already all the properties of the effective propaga
obtained by the resummation of the above self-energies:
resummation introduces a cutoff of ordergT in loop involv-
ing these effective propagators.

For the sake of completeness, we can give expression
the HTL part of the above vertices. Starting with thegqq̄
vertex, we find

G
ARR

gqq̄~Q,P,2P2Q!u
s

m

52 ieg2E d3l

~2p!3

@nB~ l !1nF~ l !#L”̂ gmL”̂

4lP•L̂R•L̂
~34!

for the contribution of thes field, and

G
ARR

gqq̄~Q,P,2P2Q!u
p

m

5 ieg2E d3l

~2p!3

@nB~ l !1nF~ l !#g5L”̂ gmL”̂ g5

4lP•L̂R•L̂

~35!

for the contribution of thep field, where we denoteR[P
1Q. If we add the two contributions, we can see that it
equal to the QED HTL vertex with two factors ofe replaced
by g. Exactly in the same way, we can obtain the HTL co
tribution to the vertexp0qq̄. In fact, the result is obtained b
substituting in Eqs.~34! and~35! the last power ofe by g and
the matrix gm by ig5. Since g5 anticommutes with the
Dirac’s matrices, we see that the product of matrices ente
in this vertex is always proportional toL” L”5L250. There-

FIG. 4. Dominant topologies contributing to the HTLs of Fig.
4-8



at

as

s

ig
he
a
t
e

ifi
n-

th

e-
y
t
m
o
tio
th
i

a

u
th

o

s i
in
l

f-
em-

e

s as

e in
pli-

ults
the
gle
ki’s
,

ons
to

erfi-
ich
ric

the

co
e,
ib
o

n
o

t I
is
t.
ot

e
es
ec-
e its

l
not

AMBIGUITIES IN THE ZERO MOMENTUM LIMIT OF . . . PHYSICAL REVIEW D 59 076004
fore, thep0qq̄ vertex does not have a HTL contribution
the scalegT ~it may have one at the much smaller scaleeT
though!.

C. Effect of HTLs on p0
˜2g

This resummation has the effect of giving a thermal m
mT to the quark, and this thermal mass remains constant13 as
we approach the point of chiral symmetry restoration~i.e.,
limT→Tc

mT;gTc), while the constituent quark massm goes

to zero (limT→Tc
m50). In other words, the thermal mas

will become the relevant infrared regulator as soon asm
!mT ~i.e., the relevant infrared regulator is always the b
gest one available!. Moreover, the thermal mass has t
property of not modifying the chiral properties of the prop
gator which means that ifm→0, the thermal mass will no
change anything to the fact that the Dirac’s trace vanish
On the basis of these arguments, one can expect a mod
tion of the m/mT behavior in the case of real photons. I
deed, if we track the origin of the variousm factors in this
result, we see that the massm in the numerator comes from
the Dirac’s trace, and is closely related to the fact that
chiral symmetry is broken by the massm. On the contrary,
the thermal massmT does not break chiral symmetry. Ther
fore, this factorm at the numerator remains unmodified b
the resummation of the thermal mass. The mass factor in
denominator has a completely different origin: it comes fro
the infrared sensitivity of the integration over the loop m
mentum. This infrared scale is affected by the resumma
of the thermal mass. As a consequence, we may expect
the massm is replaced by the thermal mass in the denom
nator but not in the numerator, whenm!mT.

Therefore the resummation of the thermal massmT would
lead to the behaviorm/mTT for real photons,14 near the chi-
ral symmetry restoration. As a consequence, the result
cording to which the pion decay rate for the channelp0

→2g vanishes in the chiral phase at finite temperature s
vives. More precisely, the situation that emerges from
constituent quark model used in this paper is summarized
Fig. 5. Assuming that the chiral symmetry restoration is
second order phase transition, the constituent quark mas
function m5m(T) of temperature that vanishes at a certa
critical temperatureTc . We can also define two additiona

13Assuming a second order phase transition, we expect the
pling constantg to depend only logarithmically upon temperatur
while the vacuum expectation value of the sigma field, respons
for the massm of the constituent quarks, vanishes as a power
T2Tc at the critical temperatureTc .

14This expression is obtained by just replacingm by the thermal
mass in the result found in the bare theory. The exact calculatio
the effect of HTLs would require the calculation of the diagram
Fig. 3, which is an extremely involved task. Anyway, the poin
want to make here is just that the denominator is unlikely to van
in the chiral limit if the HTL corrections are taken into accoun
Therefore, knowing in detail the effect of HTL corrections is n
really required here.
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temperature scalesT1 and T2 for which m(T1)5T1 and
m(T2)5gT2 ,15 respectively.

Then, for TP@0,T1#, the temperature has negligible e
fects, and the decay amplitude is very close to the zero t
perature one: it behaves as 1/m. When the temperature
reaches values of order ofT1 , thermal corrections becom
important, which has the effect of replacing the factor 1/m2

by 1/mT. As a consequence, the decay amplitude behave
1/T for TP@T1 ,T2#. Finally, in the domain@T2 ,Tc#, the
resummation of thermal masses plays the dominant rol
the regulation of infrared singularities, and the decay am
tude eventually vanishes forT5Tc since it goes asm/gT2.

V. CONCLUSIONS

First, we have seen that the difference between the res
of Pisarski and GN can be interpreted as an effect of
nonuniqueness of the zero-momentum limit of the trian
diagram at finite temperature. It appeared also that Pisars
result, originally derived in the imaginary-time formalism
corresponds in fact to a situation where the emitted phot
are spacelike. The most physical situation corresponding
the case where the emitted photons are both real, a sup
cial analysis tends to invalidate the result according to wh
the p0→2g decay rate vanishes in a hot chirally symmet
phase.

Nevertheless, this calculation seems incomplete in

u-

le
f

of
f

h

15The Fig. 5 assumes thatg is smaller than 1, which may not b
the case sinceg comes from strong interactions. This remark do
change anything to the necessity of performing the HTL corr
tions. In fact, the larger the thermal mass, the more important ar
effects.

FIG. 5. Shape of the temperature dependence of thep0→2g
decay amplitude in a constituent quark model. The dotted curve~1!
is an extrapolation of theT50 result with aT dependent quark
mass. The dotted curve~2! is the result obtained with real externa
photons when one takes into account thermal corrections, but
the resummation of hard thermal loops.
4-9
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FRANÇOIS GELIS PHYSICAL REVIEW D 59 076004
chiral limit since the loop integral is now sensitive to so
momenta, which means that the resummation of hard ther
loops may have important effects. Taking them into acco
will change the infrared regulator, and modify GN’s result
such a way that it now vanishes in the hot chiral phase.

I will add also a word of caution concerning the imag
nary time formalism. Since the zero-momentum limit of the
mal Green’s functions is not unique and depend on the lo
tion of the external legs with respect to the light cone, t
limit cannot be handled correctly in the imaginary time fo
malism ~there is no light cone in an Euclidean formalism!.
Indeed, in such situations, this formalism gives a num
which corresponds to one particular way of taking the lim
but which is not necessarily the most appropriate for
problem under study. Moreover, the information about
nonlocality of the corresponding effective coupling is lost

Among the related topics that seem worth studying
would mention the case of the box diagram appearing
p0s→gg, since one can expect here also to have a nonlo
effective coupling in a hot chirally symmetric phase. Anoth
interesting aspect is to find a work-around for the limitatio
of the imaginary time formalism in the derivation of th
anomalous processes near the phase transition from
Wess-Zumino-Witten Lagrangian.
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APPENDIX A: SIDE EFFECTS
OF HAZARDOUS TRANSLATIONS

A superficial inspection of the expression of the vert
function given in Eq.~7! indicates that it may be advanta
geous to change the integration variable in the first and t
term. Namely, changingP1K2 into P in the first term and
P2K1 into P in the third term would allow the factorizatio
of a common statistical weight@nF(vp)2u(2e)#/2vp . In
addition to this factorization, the major advantage of suc
transformation would be to eliminate theK1,2 dependence
~i.e., thel dependence! in this statistical factor: as a conse
quence, the subsequent expansions in powers ofl would
become much simpler. This technique can be applied
GN’s situation where it leads directly to Eq.~25!, without the
need of performing a cumbersome integration by parts~the
reason for that lies in the fact that no derivatives ofnF are
generated in this second approach, because the stati
prefactor does not contain the expansion parameterl). This
method works also for the third case studied in Sec.
Nevertheless, we avoided its use to derive the general l
presented in Eq.~13! because this transformation is not a
ways legitimate.
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The reason why the above transformations are so
times illegitimate comes in fact from the infrared sector.
be more definite, let me focus on the situation of Pisars
since for this one the above changes of variables are
allowed. The particularity of this configuration is thatk1

0

5k2
050. Therefore, the denominators in Eq.~7! are combi-

nations of 2p•k12k1
2 and 2p•k21k2

2 . As a consequence, th
expansion of these factors in powers ofl generates powers
of ki

2/(p•ki). A simple counting shows that the orderl0

behaves as*dp/p2 in the infrared region, even if we keepm
strictly positive. Therefore, each individual term in Eq.~7! is
strongly infrared divergent atp50. Of course, a conspirac
of the three terms occur in order to cancel this divergence
that the final result is finite. If one performs different tran
lations on the three terms, then the way this cancellat
works is modified and finite terms are modified. The corr
answer can only be obtained when the same transforma
~or no transformation at all! is applied to the three terms.

An alternative way to see that this transformation is n
legitimate in Pisarski’s situation is as follows. If we are a
lowed to perform this transformation, it is obvious that
generates an integrand proportional to 122nF(vp), without
any derivatives of the Fermi-Dirac distribution. Therefor
let us integrate by parts the result of Eq.~17! in order to try
to get rid of the derivativesnF8 and nF9 , to see if we can
recover this simple structure:

E
0

1`

p2 dpH 3

4

122nF~vp!

vp
5 1

3

2

nF8 ~vp!

vp
4 2

1

2

nF9 ~vp!

vp
3 J

5E
0

1`

p2 dpH 3

4vp
5 1

1

2

nF~vp!

p4vp

1
1

2

nF~m!

vp
5 F62

3vp
2

p2 2
vp

4

p4 G J
5

122nF~m!

4m2 1E
0

1`

dp
nF~vp!2nF~m!

2p2vp
. ~A1!

As one can see, some terms innF(m) appear in this integra-
tion by parts, which are absolutely necessary to ensure
infrared finiteness of the integral. There is no way of tran
forming this integral in order to have the temperature dep
dence only in a factor 122nF(vp), as it would be if the
changes of variablesP1K2→P,P2K1→P were possible.16

16The condition to be able to eliminate thenF(m) terms is

lim
p→0

vp

p

]

]pF p

vp
2E dVpB~K̂1 ,K̂2!)

i 51

3
1

~P1•K̂ i !~P2•K̂ i !
G50,

~A2!

which is satisfied in GN’s case but not in Pisarski’s one. A mo
extensive study seems to indicate that this condition is satisfied
all configurations, excepted the configuration that correspond
Pisarski’s calculation~see also Section III E!.
4-10
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APPENDIX B: FUNCTIONS A„K1 ,K2… AND B„K1 ,K2…

A~K1 ,K2!5k1
03k1

05~3k1
01k2

0!~k1
0k2

21k2
0k1

2!vp
121k1

0k2
04@k1

0k2
04~p•k1!21k1

02k2
03~p•k1!212k1

02k2
03~p•k1!~p•k2!

1k2
03k1

2~p•k1!2110k1
03k2

02~p•k1!~p•k2!22k1
03k2

02~p•k1!22k1
03k2

02~p•k2!212k1
0k2

02k1
2~p•k1!~p•k2!

23k1
0k2

02~p•k1!2k2
216k1

0k2
02k1

2~p•k1!214k1
02k2

0k1
2~p•k1!~p•k2!210k1

02k2
0k2

2~p•k1!218k1
04k2

0~p•k1!~p•k2!

22k1
02k2

0k2
2~p•k1!~p•k2!110k1

02k2
0k1

2~p•k1!223k1
04k2

0~p•k2!223k1
02k2

0k1
2~p•k2!2210k1

03k1
2~p•k2!2

15k1
03k2

2~p•k2!2#vp
101k2

03@4k1
03~p•k1!k2

2~p•k2!328k1
03k1

2~p•k1!~p•k2!32~p•k1!4k1
05

22k2
04k1

0~p•k1!3~p•k2!220k2
03k1

02~p•k1!3~p•k2!23k2
04k1

0~p•k1!4226k2
0k1

04~p•k2!3~p•k1!29k2
0k1

04~p•k2!4

17k2
02k1

03~p•k1!2~p•k2!2236k2
02k1

03~p•k1!3~p•k2!13k2
0~p•k2!2k1

04~p•k1!2212k2
03k1

02~p•k1!4218k2
02~p•k1!4k1

03

1k2
03k1

02~p•k1!2~p•k2!224k2
02k1

03~p•k1!~p•k2!3212k1
03~p•k1!2k2

2~p•k2!2

13k1
03k1

2~p•k2!424k2
02k1

0k1
2~p•k1!3~p•k2!12k2

02k1
0~p•k1!3k2

2~p•k2!17k2
02k1

0~p•k1!4k2
225k2

0k1
02k1

2~p•k1!4

23k2
02k1

0k1
2~p•k1!2~p•k2!225k2

02k1
2k1

0~p•k1!42k2
03k1

2~p•k1!412k2
03~p•k1!4k2

217k2
0~p•k1!4k1

02k2
2

26k2
0k1

02k1
2~p•k1!~p•k2!329k2

0k1
02~p•k1!2k2

2~p•k2!224k2
0k1

2k1
02~p•k1!3~p•k2!

24k2
0k1

02~p•k1!3k2
2~p•k2!212k2

0k1
02k1

2~p•k1!2~p•k2!2#vp
81~p•k1!k2

02@6k2
0~p•k1!3k1

2k1
0~p•k2!2

13k2
0~p•k1!k1

0k1
2~p•k2!424k2

0~p•k1!2k1
0k2

2~p•k2!316~p•k1!5k2
0418~p•k1!4~p•k2!k2

0412~p•k1!3k1
0~p•k2!2k2

03

117~p•k1!k2
02k1

02~p•k2!4120~p•k1!4k2
03~p•k2!k1

014~p•k1!2k2
03k1

0~p•k2!3156~p•k1!2k2
02k1

02~p•k2!3

113~p•k1!5k1
0k2

03113k2
02~p•k1!5k1

02134k2
02~p•k1!4~p•k2!k1

0212k2
0k1

03~p•k2!5

131k2
0~p•k1!k1

03~p•k2!4140k2
0~p•k1!2k1

03~p•k2!3116~p•k1!2k1
02k2

2~p•k2!316k1
02k1

2~p•k2!5142k2
02~p•k1!3

3~p•k2!2k1
02114~p•k1!k1

02k1
2~p•k2!4111~p•k1!k1

02~p•k2!4k2
22k2

02~p•k1!5k1
222k2

02~p•k1!3k1
2~p•k2!2

14k2
02~p•k1!3k2

2~p•k2!214k2
02~p•k1!4k2

2~p•k2!2k2
0~p•k1!5k2

2k1
014k2

0~p•k1!4k2
2~p•k2!k1

0

22k2
0~p•k1!4k1

2~p•k2!k1
024k2

02~p•k1!4k1
2~p•k2!12k2

0~p•k1!3k1
0k2

2~p•k2!218k2
0~p•k1!2k1

0k1
2~p•k2!3]vp

6

2~p•k1!2k2
0@10k2

03~p•k1!5~p•k2!122k2
03~p•k1!4~p•k2!2124k2

03~p•k1!3~p•k2!313k2
03~p•k1!6

18k2
03~p•k1!2~p•k2!4123k2

02~p•k1!4~p•k2!2k1
0144k2

02~p•k1!3k1
0~p•k2!312k2

02~p•k1!k1
0~p•k2!5

119k2
02~p•k1!2k1

0~p•k2!4112k2
0~p•k1!3k2

2~p•k2!324k2
0~p•k1!3k1

2~p•k2!3125k2
0k1

02~p•k2!6

176k2
0~p•k1!k1

02~p•k2!512k2
0~p•k1!5k2

2~p•k2!23k2
0~p•k1!2k1

2~p•k2!418k2
0~p•k1!4~p•k2!2k2

2

2k2
0~p•k1!4~p•k2!2k1

2148k2
0~p•k1!2~p•k2!4k1

0216k2
0~p•k1!2k2

2~p•k2!414~p•k1!k1
0k1

2~p•k2!51k1
0~p•k2!6k1

2

1~p•k1!2k1
0k2

2~p•k2!422~p•k1!k1
0~p•k2!5k2

2#vp
416@~p•k2!1~p•k1!#k2

0~p•k1!4~p•k2!2

3@k2
0~p•k1!313~p•k1!2k2

0~p•k2!14k2
0~p•k1!~p•k2!212k2

0~p•k2!312k1
0~p•k2!3#vp

2

23~p•k1!4~p•k2!6@~p•k2!1~p•k1!#@3~p•k1!1~p•k2!#1~k1
0 ,k1!↔~k2

0 ,k2!,
076004-11
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B~K1 ,K2!5k1
0k2

02@k1
0~p•k2!21k2

0~p•k1!2#vp
42k2

0~p•k1!2$~k1
01k2

0!~p•k2!22k2
0~p•k1!@p•~k11k2!#%vp

2

2~p•k1!2~p•k2!3@p•~k11k2!#1~k1
0 ,k1!↔~k2

0 ,k2!.
x

r-

us
APPENDIX C: CALCULATION
OF*0

1`dx xn ln„x…†exp„x…11‡2p

In Sec. III B, we need to evaluate integrals of the form

I n,p[E
0

1`

dx
xn ln~x!

~ex11!p, ~C1!

wheren,p are positive integers. The starting point is to e
pand (ex11)2p in powers ofe2x, which gives

I n,p5
~21!p

~p21!! (m51

1`

~21!m(
i 50

p21

ap21,im
i

3E
0

1`

dx xn ln~x!e2mx, ~C2!

where the numbersap21,i are the coefficients of the
polynomial17

Qp21~x![~x21!~x22!•••~x2p11![ (
i 50

p21

ap21,ix
i .

~C3!

17To be complete, one must define alsoQ0(x)[1.
-

ev

n

3

07600
-

We need then

E
0

1`

dx xn ln~x!e2mx5
An2n! @g1 ln~m!#

mn11 , ~C4!

whereg is the Euler’s constant, andAn are integers defined
recursively18 by

A050, An115n! 1~n11!An . ~C5!

It is now straightforward to collect the various pieces in o
der to obtain the following expression:

I n,p5
~21!pn!

~p21!! (
i 50

p21

ap21,iF ~2i 2n21!z8~n112 i !

22i 2n ln~2!z~n112 i !1~2i 2n21!

3S An

n!
2g D z~n112 i !G . ~C6!

18The solution of the recursion isAn5gn! 1G8(n11), where
G(z)5*0

1`dt e2ttz21, but this expression does not make obvio
the fact thatAn is an integer. Moreover, one usually needsAn for
small fixed values ofn, which makes the use of Eq.~C5! very
convenient in practice.
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