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Extracting B„v˜p1p2
… from the timelike pion form factor

S. Gardner* and H. B. O’Connell†
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We extract theG-parity-violating branching ratioB(v→p1p2) from the effectiver0-v mixing matrix

elementP̃rv(s), determined frome1e2→p1p2 data. Thev→p1p2 partial width can be determined either
from the timelike pion form factor or through the constraint that the mixed physical propagatorDrv

mn(s)
possesses no poles. The two procedures are inequivalent in practice, and we show why the first is preferred, to
find finally B(v→p1p2)51.960.3%. @S0556-2821~99!05005-5#

PACS number~s!: 11.30.Hv, 12.40.Vv, 13.25.Jx, 13.65.1i
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I. INTRODUCTION

The presence of thev resonance ine1e2→p1p2, in the
region dominated by ther0, signals the presence of th
G-parity-violating decayv→p1p2. Our purpose is to ex-
tract the value of B(v→p1p2) from fits to e1e2

→p1p2in ther0-v interference region. To do so, we mu
consider the relationship between the partial widthG(v
→p1p2) and the effectiver0-v mixing matrix element

P̃rv(mv
2 ), determined in our earlier fits@1# to e1e2

→p1p2 data@2,3#. Thee1e2→p1p2 cross sections(s)
can be written ass(s)5sem(s)uFp(s)u2, wheresem(s) is
the cross section for the production of a structurelessp1p2

pair ands is the usual Mandlestam variable. The timeli
pion form factorFp(s) can in turn be written, to leading
order in isospin violation, as@1#

Fp~s!5Fr~s!F11
1

3S P̃rv~s!

s2mv
2 1 imvGv

D G , ~1!

whereFr(s) parametrizes ther0 resonance andP̃rv(s) is
the effective r0-v mixing matrix element noted earlier
G(v→p1p2) is determined by the effectivev→p1p2

coupling constantgvpp
eff , which can be extracted either from

the timelike pion form factor or from the relationship b
tween the physical and isospin-perfect vector meson fie
determined through the constraint that the mixed phys
propagatorDrv

mn(s) possesses no poles. We evaluate not o
the relationship between these two different methods,
also the impact of the uncertainty in ther0 mass and width
on B(v→p1p2) before reporting our final results. Despi

the close connection betweenB(v→p1p2) and P̃rv(s),
we believe this work represents the first attempt to determ
both simultaneously frome1e2→p1p2 data.

II. G„v˜p1p2
… AND r0-v MIXING

If isospin symmetry were perfect, ther andv resonances
would be exact eigenstates ofG parity, so that ther, of even
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G-parity, would decay to two, but not three, pions and thev,
of odd G-parity, would decay to three, but not two, pion
Yet this is not strictly so, forr0-v interference ine1e2

→p1p2 is observed in nature@4#. Nevertheless, it is usefu
to introduce an isospin-perfect basisr I

0 and v I in which to
describe the physicalr0 andv. In this basis,G-parity can be
violated either through ‘‘mixing,’’̂ v I uHmixur I&, whereHmix

represents isospin-violating terms in the effective Ham
tonian in the vector meson sector, or through the direct de
^v I uHmixup1p2&. The vector mesons ine1e2→p1p2

couple to a conserved current, so that we can write th
propagators asDVV

mn(s)[gmnDVV(s), thereby defining the
scalar part of the propagator,DVV(s). The propagator pos
sesses a pole in the complex plane ats5zV , so that in the
vicinity of this pole we haveDVV(s)51/(s2zV)[1/sV . The
difference between the diagonal scalar propagator in
physical and isospin-perfect bases, i.e., betweenDVV(s) and
DVV

I (s), is of non-leading-order in isospin violation, so th
DVV

I (s)51/sV as well. Consequently, the pion form factor
the resonance region in the isospin-perfect basis can be
ten, to leading order in isospin violation, as

Fp~s!5
gr Ipp f r Ig

sr
1

gv Ipp f v Ig

sv
1

gr IppPrv
I ~s! f v Ig

srsv
, ~2!

wheregVIpp and f VIg
are the vector-meson–pion-pion an

vector-meson–photon coupling constants, respectively.
first term reflects the dominant processg→r0→p1p2,
whereas theG-parity-violating terms reflect the direct deca
v→p1p2 andr0-v mixing, v→r0→p1p2, respectively,
noting the mixing matrix elementPrv

I (s). Defining G
[gv Ipp /gr Ipp we can rewrite Eq.~2! as

Fp~s!5
gr Ipp f r Ig

sr
1

gr Ipp f v Ig

srsv
„G~s2zr!1Prv

I ~s!…

[
f r Ig

gr Ipp

sr
F11

f v Ig

f r Ig
S P̃rv~s!

s2zv
D G . ~3!

Note that we have defined the effective mixing matrix e

ment P̃rv(s), as G and Prv
I (s) cannot be meaningfully

separated in a fit to data@5,6#, for both terms ares-dependent
©1999 The American Physical Society02-1
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S. GARDNER AND H. B. O’CONNELL PHYSICAL REVIEW D59 076002
@7,8#. As Gv!mv a Breit-Wigner lineshape may be used
model thev resonance, but the large width of ther relative
to its mass obliges a more sophisticated treatment. Ra
than adoptingsr5s2zr , appropriate fors'zr , for the en-
tire resonance region, we replacef r Ig

gr Ipp /sr by Fr(s), a
function constructed to incorporate the constraints impo
on the form factor by time-reversal invariance, unitarity, an
lyticity, and charge conservation. For further details, see R
@1# and references therein. Using

Fp~s!5Fr~s!F11
f v Ig

f r Ig
S P̃rv~s!

s2mv
2 1 imvGv

D G ~4!

with the SU~6! value of f v Ig
/ f r Ig

51/3, we findP̃rv(mv
2 )

5235006300 MeV2, where the systematic error due
the r0 parametrization adopted is negligible@1#. Note that

both the imaginary part ofP̃rv(s), Im P̃rv(mv
2 )52300

6300 MeV2, and itss-dependence abouts5mv
2 , P̃rv(s)

5P̃rv(mv
2 )1(s2mv

2 )P̃rv8 (mv
2 ) with P̃rv8 (mv

2 )50.03
60.04, are also negligible@1#.

Equation ~3! can also be used to define an effectiv
isospin-violating coupling constant,gvpp

eff (s), such that

Fp~s!5
gr Ipp f r Ig

sr
1

gvpp
eff ~s! f v Ig

sv
, ~5!

so thatgvpp
eff (s)[gr IppP̃rv(s)/sr . To determine the partia

width G(v→p1p2), and henceB(v→p1p2), we must
relate it to the effective coupling constantgvpp

eff (s).
In a Lagrangian model in which the pion is an element

field andgVpp denotes the vector meson coupling constan
two pions, the vector meson self-energyPVV(s), noting
DVV

21(s)5s2m22PVV(s), can be approximated as a sum
iterated bubble diagrams, where each bubble contains a
pion intermediate state@9#. HeregVpp is a simple constant
and direct calculation yields@9#

Im PVV~s!52gVpp
2

~s24mp
2 !3/2

48pAs
Q~s24mp

2 !. ~6!

Finally, noting lims→m
V
2 Im PVV(s)52mVG(V→p1p2),

then @9,10#

G~V→p1p2!5
gVpp

2

48p

~mV
224mp

2 !3/2

mV
2

. ~7!

Replacing gvpp by ugvpp
eff (s)u, one finds that B(v

→p1p2), to leading order in isospin violation, is given b

B~v→p1p2!

5
1

48p

~mv
2 24mp

2 !3/2

mv
2 Gv

U gr IppP̃rv~s!

sr

U2U
s5m

v
2
. ~8!
07600
er

d
-
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,
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Another relation forgvpp
eff (s) emerges through conside

ation of the pion form factor in the physical basis@11#. To
leading order in isospin violation, we have@5,6#

Fp~s!5grppDrr f rg1grppDrv f vg1gvppDvv f vg ,
~9!

where we introduce ar0-v mixing matrix element,Prv(s),
such that@8#

Drv
I ~s!5Dvv

I ~s!Prv~s!Drr
I ~s!. ~10!

To relate the physical statesr and v to the isospin perfect
onesr I andv I , we introduce two mixing parameters,e1 and
e2 , such that@5,6#

r5r I2e1v I ; v5e2r I1v I . ~11!

Requiring the mixed physical propagatorDrv(s) to possess
no poles,e1 ande2 are determined to be@5,6#

e15
Prv~zv!

zv2zr
, e25

Prv~zr!

zv2zr
. ~12!

Using Eqs.~9! and ~11!, andDVV5DVV
I 51/sV for s in the

vicinity of zr ,zv yields

Fp~s!5
gr Ipp f r Ig

sr
1

gv Ipp

svsr

3FG~s2zr!1
~Prv~zr!2Prv~zv!!

zv2zr

3~s2zv1s2zr!1Prv~s!G f v Ig
. ~13!

Comparison with Eq.~2! shows thatPrv
I (s) andPrv(s) are

only equivalent ifPrv(zr)5Prv(zv). We can then write
gvpp

eff found above as

gvpp
eff ~s!5

gr Ipp

sr
P̃rv~s!

5
gr Ipp

sr
FG~s2zr!1

~Prv~zr!2Prv~zv!!

zv2zr

3~s2zv1s2zr!1Prv~s!G . ~14!

We could also have definedgvpp
eff directly from the relation

between the physical and isospin perfect bases, Eq.~11!:

gvpp
eff 5gv Ipp1e2gr Ipp

5
gr Ipp

zv2zr
@G~zv2zr!1Prv~zr!#. ~15!

These two possible definitions ofgvpp
eff areidenticalat thev

pole,s5zv . However, fits to the time-like pion form facto

data yieldP̃rv(s) merely at real values ofs, so that Eq.~14!
2-2
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TABLE I. The results of our fits@1# to the pion form-factor and the corresponding values ofG(r0

→e1e2), noting Eq.~26!, andB(r0→e1e2). Also shown are ther parameters,m̄r and Ḡr , defined from
the pole positionzr , as in Eq.~20!.

Fit mr MeV @1# Gr MeV @1# G(r→e1e2) (keV ) B(r→e1e2)3(105) m̄r (MeV) Ḡr ~MeV!

A 763.163.9 153.861.2 7.2760.08 4.7360.05 756.361.2 141.963.1
B 771.361.3 156.260.4 7.2460.08 4.6360.06 757.061.0 141.763.0
C 773.961.2 157.060.4 7.1960.08 4.5860.05 757.061.0 141.763.0
D 773.961.2 146.963.4 6.7360.10 4.5860.05 757.061.0 141.763.0
e
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is the only practicable definition ofgvpp
eff . The two expres-

sions differ in general as isospin-violating pieces are pres
in f rg as well; they vanish, however, ats5zv .

Interestingly, if we were to demand as in Ref.@6# that
Prv

I (s)[Prv(s), implying that Eq.~11! cannot be used to
relate f Vg to f VIg

andgVpp to gVIpp unlesse15e2 @6#, then

Eq. ~14! would become gvpp
eff (s)5gr Ipp@G(s2zr)

1Prv(s)#/sr . This latter definition ofgvpp
eff (s) would be

inconsistent with Eq.~15! at s5zv . We prefer the analysis
yielding Eq.~14!.

To determineB(v→p1p2) using Eq. ~8! we must
evaluategr Ipp /sr at s5mv

2 . As sr5s2zr only for s'zr , it

is appropriate to replacegr Ipp /sr by Fr(s)/ f r Ig
, noting

Eqs.~3! and ~4!, to yield finally

B~v→p1p2!5
~mv

2 24mp
2 !3/2

48pmv
2 Gv f v Ig

2 UFr~mv
2 !

1

3
P̃rv~mv

2 !U2

.

~16!

In the fit to data using Eq.~4!, ( f v Ig
/ f r Ig

)P̃rv(s) appears as

a single fitting parameter. Choosingf v Ig
/ f r Ig

51/3, then, al-

lows us to use our earlier value ofP̃rv523500 MeV2 @1#.
Equation ~16! defines the branching ratio in terms of th
phenomenologically well-constrained fitting functionsFr(s)

and P̃rv/3 and thus avoids the explicit introduction ofr
resonance parameters. The model dependence of Eq.~16! is
therefore minimal, and for this reason it is our preferred d
nition.

To assess its utility, we shall compare it with other de
nitions in the literature. We may also use Eq.~7! to replace
gr Ipp and writesr5s2mr

21 imrGr to find

B~2!~v→p1p2!

5
mr

2~mv
2 24mp

2 !3/2

mv
2 ~mr

224mp
2 !3/2

Gr

Gv
U P̃rv~mv

2 !

mv
2 2mr

21 imrGr

U2

,

~17!

where we have usedGr5G(r→p1p2). If we set mv

5mr , Eq. ~17! becomes that used in Ref.@12# to extract

P̃rv(mv
2 )524520 MeV2 @13#, a value commonly used in

the literature@14#. We prefer determining bothP̃rv(mv
2 ) and
07600
nt

-

-

B(v→p1p2) directly from our fits to the
e1e2→p1p2data. Yet another expression forB(v
→p1p2) results if we consider Eq.~15! in place of Eq.~14!
for gvpp

eff ; that is,

B~3!~v→p1p2!5
mr

2~mv
2 24mp

2 !3/2

mv
2 ~mr

224mp
2 !3/2

Gr

Gv
UP̄rv~mv

2 !

zv2zr
U2

,

~18!

where P̄rv(mv
2 )[G(zv2zr)1Prv(zr). P̄rv(mv

2 ) is not
determined directly in fits toe1e2→p1p2data and thus we
favor Eqs.~16! or ~17!. Nevertheless, as we found no signi

cants-dependence toP̃rv in our fits toe1e2→p1p2 data

@1#, we will replaceP̄rv(mv
2 ) by P̃rv(mv

2 ) in our subse-
quent numerical estimates. Neglecting terms ofO@(mv

2mr)/mav#, with mav5(mr1mv)/2, and settingzr5mr
2

1 imrGr , Eq. ~18! yields

G~v→p1p2!5
uP̄rv~mv

2 !u2

4mr
2S ~mv2mr!21

1

4
~Gv2Gr!2D Gr ,

~19!

and is thus equivalent to Eq.~B12! in Ref. @15#. So far we
have freely changed from one realization ofsr to another;
i.e., we have written bothsr5s2zr and sr5s2mr

2

1 imrGr . Yet it is important to recognize that for a broa
resonance, such as ther ~but unlike thev), these realiza-
tions are not necessarily equivalent. A parametrization
Fr(s) which explicitly suits the constraint of unitarity an
time-reversal invariance, obliging its phase to be that ol
51, I 51 p-p scattering fors where the scattering is elas
tic @17,18,1#, results in ans-dependent width@19#. Effec-
tively, then, „Fr(s)…21}s2mr

21 imrGr(s), where themr

andGr we have used thus far satisfyGr[Gr(mr
2). However,

the r pole, zr , in the complexs plane is determined by
requiring „Fr(zr)…2150. Thus, in the presence of
s-dependent width,Gr(s), zrÞmr

22 imrGr . If we param-
etrizezr as

zr[m̄r
22 im̄rḠr , ~20!

thenm̄r andḠr differ substantially frommr andGr @20#, as

illustrated in Table I. Moreover,m̄r and Ḡr are independen
2-3
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of the parametrization ofFr(s) @21–23,20#, whereasmr and
Gr arenot @24–26,1#. In marked contrast tomr andGr given

in Table I, the average values ofm̄r and Ḡr ,

m̄r5757.061.1 MeV, Ḡr5141.363.1 MeV, ~21!

are within one standard deviation of them̄r andḠr found in
each and every model. This is in excellent agreement w

Ref. @27#, where ther parameters are found to bem̄r

5757.561.5 MeV andḠr5142.563.5 MeV. The stability
shown here is that of the S-matrix pole position,zr , which is
model independent@21–23,20#. The separation ofzr into a
‘‘mass’’ and ‘‘width,’’ as in Eq. ~20!, though useful@21#, is
somewhat artificial, as Re(Azr) and ARezr could equally
well serve as the mass@28#. We shall consider the conse
quence of zrÞmr

22 imrGr on the numerical values o
B(3)(v→p1p2).

It should also be noted that the value ofP̃rv(mv
2 ) to be

used in Eqs.~17! and ~18! can be determined from our pre
vious, averaged result@1#, noting Eq.~4!, through

P̃rv~mv
2 !5

1

3

f r Ig

f v Ig
~23500 MeV2!. ~22!

We must therefore now determine the leptonic couplingsf r Ig

and f v Ig
.

III. VECTOR MESON ELECTROMAGNETIC COUPLINGS

We have related the branching ratioB(v→p1p2) to the

effective mixing termP̃rv(s) and various vector-meson pa

rameters, yet in order to fixP̃rv in a fit to e1e2→p1p2

data, we need to determine the ratior g[ f r Ig
/ f v Ig

. In the

SU~6! limit r g53, but this relation is broken at the;10%
level @10# by the larger width @19,29#. In this section we
discuss the extraction off r Ig

and f v Ig
.

The vector-meson–photon coupling constantf Vg is re-
lated to the leptonic decay widthG(V→ l 1l 2) through

G~V→l 1l 2!5
4pa2

3mV
3

f Vg
2 , ~23!

noting that lepton masses enter atO„(ml /mV)4
… @10#. The

cross-section fore1e2→p1p2, proceeding solely through
e1e2→r0→p1p2, that is, assuming no background, f
s5mr

2 is

s~e1e2→r I→p1p2!

5
pa2

3

~s24mp
2 !3/2

s5/2

~ f r Ig
gr Ipp!2

~s2mr
2!21mr

2Gr
2U

s5m
r
2

512p
G~r I→e1e2!G~r I→p1p2!

mr
2Gr

2
, ~24!
07600
th

where we have used Eqs.~7! and ~23!. This is a particular
case of the Cabibbo-Gatto relation for a resonant, spin-
interaction@30#, valid for any hadronic final state. Thus, a
analogous ‘‘Cabibbo-Gatto’’ formula exists fore1e2→v
→p1p0p2. In this manner,G(v→e1e2) and f v Ig

, via

Eq. ~23!, can both be inferred from thee1e2→p1p0p2

data @31#. We useG(v→e1e2)50.606.02 keV @26# in
what follows. We can now calculateG(r0→e1e2) and
hencef r Ig

. Recalling Eq.~4!, we find

s~e1e2→r I→p1p2!5
pa2

3

~s24mp
2 !3/2

s5/2
uFr~s!u2U

s5m
r
2

,

~25!

which when combined with Eq.~24! yields

G~r I
0→e1e2!5

a2

36

~mr
224mp

2 !3/2

mr
3

uFr~mr
2!u2Gr, ~26!

where Gr5G(r→p1p2), allowing us to determinef r Ig

from Eq. ~23!.
We note in passing that it is quite common in the liter

ture to see thev contribution to the pion form-factor ex
pressed in terms ofv partial widths@2,32#. Such an expres-
sion follows from our Eq.~5!, in concert with Eqs.~7! and
~23!, to yield

Fp~s!5Fr~s!1A36G~v→e1e2!G~v→p1p2!

mv
2 a2bv

3

3
mv

2

s2mv1 imvGv
, ~27!

where bv5(124mp
2 /mv

2 )1/2 and we replacef r Ig
gr Ipp /(s

2mr1 imrGr) with Fr(s) as earlier. Thus, our Eq.~16! is
explicitly equivalent to the determinations ofB(v
→p1p2) found in Refs.@2,32#.

IV. RESULTS AND DISCUSSION

We now use our fits of Ref.@1# to compute B(v
→p1p2), G(r→e1e2), and other associated paramete
in addition to their errors. Our fits to the pion form-facto
data@3#, noting Eq.~4!, adopt parametrizations ofFr(s) con-
sistent with the following theoretical constraints. That
analyticity requires thatFr(s) be real below threshold,s
54mp

2 , charge conservation requiresFr(0)51, and unitar-
ity and time-reversal invariance requires its phase be tha
l 51, I 51 p-p scattering fors where the latter is elastic
@18#. For the present work we shall concentrate on four
these choices forFr(s), labeled, as per Ref.@1#, A, B, C, and

D, in which P̃rv is an explicit fitting parameter. These fou

fits assumeP̃rv to be a real constant in the resonance regi
for the currente1e2→p1p2data supports neither a phas
nor s-dependent pieces@1#.

Table I shows our results forG(r0→e1e2) and B(r0
2-4
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TABLE II. Results for the effectiver0-v mixing element, P̃rv , and the branching ratioB(v
→p1p2), from Eq. ~16!, using the fits of Ref.@1#. f v Ig

follows from Eq.~23! and the parameters of Re

@26#. We also show the value ofP̃rv which results from using Eq.~22! with f r Ig
/ f v Ig

, as per Eqs.~23! and
~24!, again using the fits of Ref.@1#.

Fit P̃rv(mv
2 )(MeV2) @1# f r Ig

(GeV2) f r Ig
/ f v Ig P̃rv(mv

2 )(MeV2) B(v→p1p2)

A 234606290 0.12060.001 3.3660.07 238706320 1.8760.30%
B 234606290 0.12260.001 3.4060.06 239206330 1.8760.30%
C 234606290 0.12260.001 3.4160.06 239306330 1.8760.30%
D 234606290 0.11860.001 3.3060.06 238006330 1.8760.30%
ifi
-
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s
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ing
→e1e2)[G(r0→e1e2)/Gr as determined from Eq.~26!. We
find the following average values:

G~r0→e1e2!57.1160.0860.25 keV,

B~r0→e1e2!5~4.6360.0560.07!31025, ~28!

where the second error onG(r0→e1e2) is the theoretical
systematic error associated with the model choice@33#, and
all other errors are statistical.Gr from Fit D is significantly
lower than those from the other fits and leads to a sign
cantly lower value forG(r0→e1e2), indeed one commen
surate with the value of 6.7760.1060.30 keV reported in
Ref. @2#. This is likely consequent to the choice of th
Gounaris-Sakurai form factor@19# in both fits; our other fits
use a Heyn-Lang form factor@18#. Such model dependenc
also plagues the extraction of ther parametersmr andGr ,
as discussed following Eq.~20!.

Using G(r I→e1e2) of Table I and Eq.~23! yields f r Ig

and r g , using f v Ig
computed fromG(v→e1e2) of Ref.

@26#. In the SU~6! limit r g is 3; the ‘‘finite width’’ correction
@19,29#, as seen in Table II, is;10%, as also found in Ref
@10#, and hence significant. Including this correction as

Eq. ~22! gives us perhaps a more realistic value ofP̃rv(mv
2 )

@34#, and its model dependence appears to be modest, a
ing us to determine an average value of

P̃rv~mv
2 !5239006300 MeV2, ~29!
07600
-

r

w-

again some 10% larger than our value ofP̃rv(mv
2 )

5235006300 MeV2 in Ref. @1# using r g53.
Our preferred determination ofB(v→p1p2), Eq. ~16!,

does not requirer g , and we find

B~v→p1p2!51.960.3%. ~30!

Barkov et al., noting Eq.~27! and the discussion thereafte
obtain B(v→pp)52.360.4% @2# with the same data se
@3# used here. We agree closely, however, with the resul
Bernichaet al., 1.8560.30% @27#, obtained from the same
data@3#. Their relation for the branching ratio, Eq.~42! @27#,

is our Eq.~17!, though they use the parametersm̄r and Ḡr ,
noting Eq. ~20!, in place ofmr and Gr and useGr→e1e2

56.77 keV to compute the leptonic couplingf r Ig
@27#. The

latter effects compensate, so that we would expect to fin
branching ratio comparable to theirs. The data set we h
adopted@3# contains 30 data points for center of mass en
gies between 750 and 810 MeV, the region likely most r
evant for the determination ofG(v→p1p2). The older
work of Benaksaset al. @32#, which uses Eq.~27!, and Quen-
zer et al. @35# find B(v→pp)53.660.4% and B(v
→pp)51.660.9%, respectively, though both experimen
possess less than 10 data points in the energy region o
terest.

We can also computeB(v→p1p2) using Eqs.~17! or
~18! and ~22!, as shown in Table III. Apparently it make
little difference whether we use Eq.~16! or Eq. ~17!, though
the former, our preferred analysis, possesses essentiall
parametrization dependence.B(3)(v→pp), from Eq. ~18!,
is substantially larger, though this may be an artifact of us
the true S-matrix pole positionzr in Eq. ~18!. If we were to
s

TABLE III. The branching ratioB(v→p1p2) from our preferred method, Eq.~16!, compared with the

alternativesB(2)(v→p1p2), Eq. ~17!, andB(3)(v→p1p2), Eq. ~18!. In parentheses we give the value
for the branching ratio as determined by Eq.~18!, but replacezr with mr

22 imrGr , noting the discussion
preceding Eq.~20! and the results of Table I.

Fit B(v→p1p2) B(2)(v→p1p2) B(3)(v→p1p2)

A 1.8760.30% 1.9360.32% 2.4160.39% (2.1560.35%)
B 1.8760.30% 1.9760.32% 2.5060.40% (2.1960.35%)
C 1.8760.30% 1.9660.32% 2.5160.40% (2.1960.35%)
D 1.8760.30% 1.9560.32% 2.2060.37% (2.2060.35%)
2-5
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replacezr with mr
22 imrGr , noting the discussion surround

ing Eq. ~20!, the values, as shown in parentheses, wo
differ less, even though we were obliged to assume

P̄rv(mv
2 ) andP̃rv(mv

2 ) are the same.
In summary, we have elucidated the connection betw

P̃rv(mv
2 ) and B(v→p1p2) and shown how differen

methods of determiningB(v→p1p2) would be equivalent

were it possible to evaluateP̃rv(zv). In practice, the meth-
o

-

t.

l.

d

ll-

G.
,
,

07600
d
at

n

ods are different, yet, nevertheless, it seems that a plura
of methods of computingB(v→p1p2) yield roughly com-
parable results.
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