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Quark mass dependence of hadron masses from lattice QCD
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We discuss lattice methods to obtain the derivatives of a lattice meson mass with respect to the bare sea and
valence quark masses. Applications are made to quenched and dynamical fermion configurations. We find
evidence for significant differences between quenched and dynamical fermion configurations. We discuss how
to relate dependence on the bare lattice parameters to more phenomenologically useful quantities.
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I. INTRODUCTION respect toB [3]. Here we use a similar approach to extract
derivatives with respect tas and k,—see alsd4].

In lattice studies of QCD, the action depends on several The derivative with respect ta, involves a three point
bare parameters such as the inverse coupBingnd those function of fermion fields and so cannot be obtained from
controlling the quark masses. Here we distinguish sea quarkyopagators from one source only. Here we choose to use
which contribute to the vacuum and valence quarks whictptochastic propagatof$] with maximal variance reduction
propagate in the vacuum but do not contribute to it. Thug>] Which allow the appropriate propagator combination to

there will be two possible parameters describing the quaere evaluated.

. ; For the derivative with respect tq;, a disconnected three
masses: the sea and valence hopping parametgenfix,). ; S ; ' ;
In lattice studies, unlike experiment, it is possible to Varypomt function is needed. In this case we use Z2 noise meth-

each of these mass parameters independently ods|[7,8] to evaluate the appropriate combination of propa-
It is of interest to establish the dependence of quantities o ators. We apply this to quenched and dynamical fermion

hvsical | h had h @uge configurations and see a significant difference. We
physical interest, such as hadron masses, on these qUa{fs. ss the impact of these results on the sea-quark depen-

mass parameters. For instance, the valence-quark mass @gsnce of meson masses.

pendence of the meson mass controlstimarameter which This study is exploratory and we discuss the computa-
is related[1] to the slope oM, versusM (whereMp and  tional effort needed to extract these derivatives with respect
M, are the pseudoscalar and vector meson masses resp@g-bare quark masses. We also compare our results with
tively). This slope is found in lattice studies to be signifi- those obtained by taking finite differences.
cantly smaller than the experimental value. It is a challenge
for dynamical fermion studies on a lattice to narrow this Il. QUARK MASS DEPENDENCES
discrepanc_y as the. sea quark mass is reduced. Another arédTthe mesonic masses in lattice studies are determined by
of current interest is the magnitude of sea quark effects op,ea5ring two-point correlations of appropriate operators at
hadron masses. The dominant effect of sea quarks is just {grge time separation. We then wish to take the formal
renormalize the couplingg); so it is valuable to have tech- derivative with respect to a parameter representing the quark
niques to explore in fine detail sea quark effects so thainass. This will give the required sum rules for the derivative
physically significant effects can be explored in dynamicalof the lattice hadron mass with respect to the quark mass
fermion studies. parameter.

One direct way to achieve this is to study the theory at Consider an action density
many different combinations of parameters. This is the con-
ventional way to study the valence quark mass dependence _ I s
and is reasonably efficient since the lattice configurations S_Sf+'859_; YMibt BS, @
themselves do not depend @) . For the sea quark mass,
however, this is a computationally challenging endeavowhere, for the Wilson-Dirac discretization of fermions,
since different gauge configurations must be constructed for M=m+D )
each x4 value and then the finite differences of hadron
masses between these different ensembles of configuratiomghere the quark mass parametee 1/, with « the conven-
will be small and quite noisy. tional hopping parameter; so in terms of the bare quark mass

One way to obtain estimates of derivatives by workingm, in the naive continuum limitn=8+2am,. The termD
with a lattice ensemble at one set of parameters is describegbntains the Wilson nearest neighbor gauge link terms as
in Ref.[2]. Here we specialize to explore a method to obtainwell as the Skeikholeslami Wohlef8W) clover terms with
the derivative of a hadron mass with respect to a parametefoefficientCg,,. The hadronic correlation is then given by
such askg. The method is essentially to take formally the 1
derivative of a lattice identity. This method, often called a _ + s
“sum rule,” has been used before to obtain derivatives with cv= Z f H(O)H (e ©
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Here for mesonsl will be of the formEF,J/ and in this work  varying the valence quark mass while the disconnected dia-
we will concentrate on the case of flavor non-singlet meson§ram corresponds to varying the sea quark mass.

so that hairpin diagrams will not be needed. Then the fermi- The two point hadronic correlation can be expressed in
onic degrees of freedom are integrated out, giving a factor oferms of a sum over intermediate states of masées

the inverse of the fermion matrixy=.M ~1) for each pair-

ing: C(t)=2, cle M. (10)

C(t)=(0|[G(O)HT G(t,0)[']|0). (4) , , o
The leading term in the derivative at largean be then be
At larget, this correlation will be dominated by the ground evaluated,

state meson with the quantum numbers createti by

dC(t) dMgy ., ded
C(t):coe*Mot_F..._ (5) WZ—IWCSG M0t+ﬁe Mot ...

. (1D
This sketch of the formalism allows us to explore taking theand it thus behaves as~Mot whereM, is the ground state
derivative with respect to the quark mass parametdac- meson mass.

tually the inverse hopping parametemn each side of the  \we now extract the contribution from the right hand side
above expressions f@(t). This derivative is to be taken at which has this same behavior. For bofhy and D3, the
fixed B. Then, since formally the onlyn-dependence is in  insertion is summed over all space and time. Then the lead-
the exponent, the derivative brings down a factoNe#): ing term arises when the lightest allowed meson propagates
and when 6<t,<t. This will produce terms which are linear

dc(t) 1 — 1 — in t which arise from the: possible insertionéatt,) between
S _ t S_ - S 1
dm Zf HOH(ON e C(t)zf Niyye the creation and destruction of the meson. Then evaluating
(6)  this ground state meson contribution, for the connected dia-
gram, gives

where the second term comes from tmedependence im-
plicit in Z. On integrating out the six fermions, this will give

. - =c2t (XD (2)ya—Mot—= (1 (2)
two diagrams, connected and disconnecgeiually only the %C3(tl’t) Cot(XH+XT)e Ho=t(XH+X)C(1)

connected part of the disconnected diagram will contribute (12)
as discussed belgwThus, summing explicitly over the in-
sertion att;, we have where the suffix refers to the insertion on quark propagator 1

or 2 andX is the matrix element of thér¢s insertion between
ground state hadrons. A similar expression applies for the
disconnected case.

Equating the coefficients of the terms behavingeig"o'
where for the connected diagram there will be terms from then each side of the identity then gives the exact result that
insertion on either quark line,

dC(t)

G =2 [FCat 0 +NDs(t, 0] (D)

%=X(1)+X(2) (13
Cs(ty,t)=(0[[G(0t1)G(ty,1)T'G(t,0T] dm,
+[GOHTG(t.t)G(t1,01']|0), ®) where the matrix element sum can be obtained by extracting

while the disconnected diagram is, for each flavor of quark ir'{)hee 31;?522 dSts;etgsiTgtmgO% 3(23; t/|gn '{5 pgﬂg'hplti;rt"%ﬁan
3 1

the loop, <t and botht; andt—t; are large so that the ground state
D3(tl,t):<O|[G(0,t)FG(t,O)F][G(t1,tl)]|0> contributes. So we can write
—(0|[G(0H)I'G(t,00T']|0)(0|[ G(t4,t1)]|0) dMy i Cs(ty,t) (14)
) dm, ty,(t=tg)—ee Cv)

where square brackets imply a trace over color, spin and This sum rule relates the derivative to an expression that
space coordinates. can be evaluated from lattice configurations at only one set
In the quenched approximation, only the connected diaef parameters. It is an exact identity. If there is a dependence
gram contributes. This can be seen another way sivts8  of the lattice meson madd, on the finite spatial siz& of
=1 implies MdG/dm+dM/dm G=0 and sincedM/dm the lattice, the derivative should be taken at fixed number of
=1 by definition, thendG/dm=— M "'G=—-GG. Thus lattice spacings, not at fixed physical size. These consider-
either fermion propagator in the mesonic correlator can bations are very similar to those used in the lattice sum rules
“opened” by an insertion. derived by taking formal derivatives with respect@d3].
For dynamical fermions, both types of diagram contribute For the disconnected diagram, the equivalent expression
but one can see that the connected diagram corresponds it
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dm Dj(ty,t)
dm(’z—Nf lim % (15) O
° f(tmty) e 0 t ¢ 0 t t
In order to evaluate these expressions on a lattice, it is / x N\ / N\
useful to consider efficient ways in which excited state con-t r r r

tributions can be eliminated, since the formal limits of large ™\ / N\ /

t will have big noise to signal. Here we consider the con-

nected correlatiol; and use a complete set of hadron states FIG. 1. The diagrams corresponding@g andDs.
of massM; in the intermediate intervals of time extantand
t,=t—t;. trix element involved will cancel for the round the back term.

In practice, we will be using more than one operator toln contrast the two-body correlat@ will be a sum of two
create and destroy the hadronic state. This allows an optim&¢rms. lllustrating this for the ground state component for
combination of these operators to be formed that minimize§ne type of operator, we have
the excited state contribution. Then the two-body correlation 2 Moty 2 Mo(T—1)
between operatora att=0 andb att will be given by C=cge "o+cpe MO (19

2o
C@(t)= c@eMic (16) Cy=cZe Molxq,. (20)
1

Hence

CEY(ty,tp) =2, c[Pe Mitiy; e Mitac(P) (17 1
] C3/C=XOOW. (21)

wherexqg is the required quantityX!)+ X(?))—the matrix . _ _
element appropriate to the ground state meson of mass This formalism can be u_sed to correct fo_r the dlff_erent
We might expecky; to be similar in sign and magnitude to t-dependences when looking for a plateaudg/C and in

X0 if the quark mass dependence of the excited state is conRs/C ast increases.

parable to that of the ground state and thus excited state We now dlscyss efficient methods to evaluate these corr-
contributions would cancel in the rati®;/C. This is incor-  €lators on a lattice.

rect, since the off-diagonal terms) will dominate the

excited state contributions 15 since the excited state only ll. VALENCE QUARK MASS DEPENDENCE

propagates for the shorter intervigl (or t,). One way to
extractxgg is to make a fit to the three point data with both

t1(>)tmin and t,>tyin, keeping the coefficients and MaSSeS¢ nction needs to be evaluated—see Fi@) T'hus conven-

a ; : : :

(¢ andM;) fixed from the fit to the two-point function data {jona1 quark propagators from one source are inadequate for

with t>tp;,. This can be compared with the more direct s task. One feasible way forward is to use a stochastic

approach of looking for a plateau @y(t;,t)/C(t) ast; and  jpyersion method which allows the evaluation of quark

t, are increasedwith t=t; +t,). _ . propagators from any site to any other site. Although the
When two (or morg different types of hadronic creation siochastic method is not more efficient than the conventional

operators are used, a variational m.eth(.)d is an effective wayersion from one source for mesons made of light quarks

to determine the ground state contribution@@nd hence to (5] it does allow the flexibility to evaluate three point cor-

extract the ground state contribution@. Alternatively, if  relations readily. For this reason it allows an exploratory
a two state fit to the two-body correlation between two op-stydy of this area.

erators at each end is made, then from the coefficients it giochastic propagatof$,6] are one technique to invert
follows that a combination of operatoe§”’H; —c{"H, will  the fermionic matrix for the light quarks. They can be used
remove the contribution of the excited state in the approxiin place of light quark propagators calculated with the usual
mation that only two states contribute to the correlationsdeterministic algorithm. The stochastic inversion is based on
Then we can use this combination to evaluate the groun¢he relation

state component d€,/C, using

.1
c@cPcit—2cPcrc?+ eV Gij=M;; 122 f D(Michi)* bi exl — ¢ (MT M) ¢;]
CPCACI o@Dy (D (18) (22)

As a first application, we consider the dependence of the
hadron mass on the valence quarks. For this a three point

A similar analysis holds equivalently for the extraction of thewhere, in our caseM is the improved Wilson-Dirac fermi-
ground state contributiodyy to D5. onic operator and the indicegj,k represent simultaneously

Whent~T/2, the contributions from propagation around the space-time coordinates, the spinor and color indices. For
the time boundary of the lattice may be significant. Bar  every gauge configuration, an ensemble of independent fields
there will be no such “round the back” term because the¢; (we use 24 following[5]) is generated with Gaussian
insertion is made explicitly, while fob ; the connected ma- probability
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1 3 T T T L | T T T | T T 1T | T T T 1
Pl#]=sexd — ¢f (MTM);;]. (23 B :
All light propagators are computed as averages over the i 1
pseudo-fermionic samples: 2 ]
o ] ]
(MP)F i) R,
Gjj=1 or (24 L g
ys( ¢ (Mb)i) ¥ e 7
where the two expressions are related ®y= sG] ys. i p
Moreover, the maximal variance reduction method is applied | | | |

in order to minimize the statistical noi§6]. The maximal 0
variance reduction method involves dividing the lattice into & 4 6 y 8 10 12
two boxes (6<t<T/2 andT/2<t<T) and solving the equa- ¢
tion of motion numerically within each box, keeping the  FIG. 2. The connected correlatid®, /C versus timet=t;+t,
pseudo-fermion fields on the boundary fixed. According to in lattice units. The data are for the variational combination that
the maximal reduction method, the fields which enter thereduces the excited state contribution and are from quenched lat-
correlation functions must be either the original fielflor  tices with«=0.14077 with|t, —t,| <2. We expect the ground state
solutions of the equation of motion in disconnected regionscontribution to be dominant whety>2 andt,>2, that is fort
The stochastic propagator is therefore defined from eack6.
point in one box to every point in the other box or on the
boundary. For this reason, when computing the three-poinvhere P is a projector overSU(3), and U4 are the
correlation function staples attached to the link in the spatial directions. Five
iterations of fuzzing withf = 2.5 are used and then the fuzzed
links are combined to straight paths of length three. The
> (O[H(ty,X)O(te,y)H (t,,2)|0) (25  fuzzed fermionic fields are defined followirgo0].
¥z We employed two types of hadronic operator for the
_ correlations—local and fuzzed—yielding axX2 matrix.
the operato (which is¢ ) is forced to be on the boundary From this we use a variational approach to extract the linear
(to=0 or T/2) and the other two operators must be in dif- combination of operators which maximizes the ground state
ferent boxes, while the spatial coordinates are not coneontribution—as described above. Since we are able to get
strained. Ifj is a point of the boundary, not all the terms in good two state fits to the two-body correlations for the pseu-
(M¢); lie on the boundary because the operatefr in-  doscalar meson far=3, this variational linear combination
volves first neighbors in all directions. Hence, whenever avas determined usingvalues 3 and 4. In order to maximize
propagatorG;; is needed with one of the points on the the ground state contribution relative to excited states, we
boundary, we use whichever of the two expressions in Egevaluated the three point diagra®(t,,t,) using values of
(24) has M ¢ computed away from the boundary. This im- t; andt, near tot/2 wheret=t,+t,. The ground state im-
plies that we are restricted te=2. proved ratio ofC5(tq,t5)/C(t) is plotted in Fig. 2. The ex-
The numerical analysis used 24 stochastic samples oaction of the ground state should be good,ift,=3. For
each of 20 quenched gauge configurations, genefélednh  odd values ot there are higher statisti¢érom the 3,4 and
a 12x24 lattice at B=5.7, corresponding toa ! 4,3 partitions oft=7 for instancg Thus we expect=7 to
=0.91GeV. With improved clover coefficiel@sy=1.57, be the best determined value and this is given in Table I.
we use two values of: k;=0.14077 andc,=0.13843. The

lighter valuex; corresponds to a bare mass of the light quark TABLE I. Quenched connected loop correlations.

around the strange mass. The chiral limit corresponds;to

=0.14351[9]. Error estimates come from bootstrap over thex, Mp dMp/dm, dmZ/dm, t

Some chmarmical fermion configurations, as il be discuseed? 14077 0528 1eT2n 2089 7

later. ' 0.13843 0.73@) 1.5622) 2.3032) 7
inite diff. 2.184)

In smearing the hadronic interpolating operators, spatia

fuzzed links are used. Following the prescriptio®n0], to v My dMy/dm, t
which the interested reader should refer for details, the®-14077 0.816) 1.99) 7
fuzzed links are defined iteratively as 0.13843 0.938) 0.34) 7
0.13843 0.938) 0.9326) 5
4 0.13843 0.938) 0.9018) 4
Upnew™ 73( onld+zl Ubendi) (26)  Finite diff. 1.027)
“
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TABLE II. Dynamical fermion connected loop correlations. sample size. For the pseudoscalar meson two-point correla-
tions, we find acceptable two state fits fer2 (the hadronic

Ky Mp dMp/dm, t operators are local and fuzzed with straight paths of 2 Jinks
and this implies that we may use the variational method to

0.1395 0.55 1.33 7 .
01395 0 55:; 1 3((33 5 extract the ground state contribution @;/C for t=4 as
' ' ' shown in Table Il. These results are consistent with the value
0.1395 0.558) 1.4(5) 4 . _ . L . .
Finit diff 2.24) usingt=7 and with the finite difference value within errors.
inite lvll ' dM Id ) The vector meson case is too noisy to be of any use. The
Ko v viam, main conclusion is that the ratio of correlatidig/C is very
0.1395 0.78®) 0.21.1) 7

similar in the dynamical configurations to the quenched case.
This is not really surprising since the sea quark masses used

. . ) in the dynamical quark study are fairly large—larger than the
Consistency at higharvalues confirms that the ground state strange quark mass.

extraction is correct. In some cases, we are able to extract the
ground state contribution for smaller values tefand t,,

namely 2, and this allows a determination of the connected IV. SEA QUARK MASS DEPENDENCE
correlation down ta=4. These values are also reported in

the tables where appropriate. , suring two gauge invariant contributions: the two-point had-

For the pseudoscalar meson, we expect Mtis ap-  onic correlatolC and the loop contribution corresponding to
proximately linear inm, . ThusdM,/dm, should decrease (-1 yhere the trace is a sum over color, spin and spatial
!lke 1/Mp which is md_eed Cor_1$|_stent with the results shown g dinates at a given timey. This needs the propagator
in Table I. From the high statistics spectroscopy at these We,m each site on a time slice to a sink corresponding to the
hopping paramete®], one can use %he finite difference be- game site. There is an efficient way to evaluate this making
tween theMp values to evaluateMp/dm, and this value e of 72 stochastic sourcEg8]. Here we propose a variant
agrees very well with the values determined from the sunpf this method which is appropriate for our current study.
rules atx,=0.14077 and 0.13843 respectively as shown inThis method also gives the two point correla@t; ,t,) for
Table . o . pseudoscalar mesons and vector mesons from anyttirte

For the vector meson, the expectation is the} is ap-  any other timet,. Then combined with the loop contribution
proximately linear inm, and the finite difference is evalu- to, we have the ingredients needed to evaluate the re-
ated accordingly. The sum rule determination with our CUr-guired connected paR; of the disconnected correlation.
rent statistics. is too noisy at=7 to give an accurate value. Details of the Z2 method used are given in the Appendix.
For the heavier quark mass(=0.13843), a two-state de- | this exploratory study on £24 lattices, we use local op-
scription of the two point correlation data can be made forferators to create the pseudoscalar and vector mesons. We
t=2. This allows us to use=4 and 5 for theCs/C ratioand  pave used rather generous values of the number of Z2
the values from these analyses are also shown in Table éamples per time slicevamely between 16 and 32 for each
They are seen to be in .excellent agreement with the expecte the two related types of source ugethis amounts to 768
value from the finite difference. At the lighter quark mass, or more inversiongequivalent to 64 conventional propagator
we needt=3 for a two-state fit so the poor result remains. jnversions from 12 color spin sourdgser gauge configura-
This is a disappointment, since from the valuesibfy/dm,  tijon. Because of the decreased number of iterations of the
anddMp/dm,, one can evaluate thkparametewhich is  jnversion algorithm in our case, the time used is equivalent
the physical quantity, defined in the continuum limit asto about 30 conventional propagator determinations per
MydMy/dMZ at My/Mp=1.8) at a quark mass corre- gauge configuration. This is a substantial computational
sponding tom, . ThusJ can be determined at the lightest challenge, but it does provide a significant resource: the loop
quark mass directly, rather than as a difference between tweontributions at each and the pseudoscalar and vector cor-
quark masses. Thid parameter is a useful indicatpt] of  relators from anyt, to anyt,. Because of our choice of
the distance between quenched Q@Bth J~0.37) and ex- number of Z2 samples, we have negligible errors coming
periment [with J=0.48(2)]. Hence a quick and accurate from the Z2 noise for the value of J# ~* from each time-
method to determiné would be useful to calibrate dynami- slice and for the pseudoscalar correlator froto t,. For
cal fermion studies. the vector meson correlator, the error from the Z2 method is

We also evaluated the same quantities for dynamical ferin some cases comparable to the intrinsic variation and we
mion configurationg11] at 3=5.2 with two flavors of sea correct for this in derived quantities by increasing our errors
quarks atks=0.1395 on a 124 lattice using a SW-clover appropriately where necessary. Indeed, in retrospect, it
improved action withCs\,= 1.76. The correlation was evalu- would have been more efficient for the present study to use
ated withx, =k and is given in Table Il. In this case the less Z2 samples and to explore more gauge configurations.
higher statistics determination of the masgEH allows the  Our approach, however, was that so much computational ef-
derivative at fixedxs to be evaluated, givinglMp/dm,  fort has gone into the production of the dynamical fermion
=2.2(4) from the finite difference between of 0.1395 and configurations that the large number of inversions used in
0.1390. Our analysis is from only 5 gauge configurations angneasurement are in effect a relatively small extra overhead.
so the error may be underestimated because of the small We evaluated these quantities for dynamical fermion con-

The disconnected diagrafsee Fig. 1b)] involves mea-
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TABLE lll. Quenched disconnected loop correlations.

K Mp de/de MV deldms RO ngauge nz
0.14077 0.52@) 1.1826) 0.8155) 1.6(5) 2.921) 20 16x 2
0.13843 0.73@) 0.8615) 0.9383) 1.02) 2.921) 20 16X 2

figurations[11] at 8=5.2 with two flavors of sea quarks at  This anti-correlation is seen to be very similar for pseu-
ks=0.1390, 0.1395 and 0.1398 on a22 lattice using a doscalar and vector mesons. One qualitative argument for the
SW-clover improved action witiCgy=1.76. In our evalua- sign of the correlation is that an upward fluctuation @f
tions we restrict ourselves to the case where the propagatiraprresponds to configurations in which quarks propagate eas-
guarks have the sea-quark mass, #.g= k5. The number of ily over large distances whereas an upward fluctuation of the
gauge configurations used and number of Z2 samplesre  loop (7) comes from configurations in which quarks do not
given in Tables lll, IV. We also quote, for completeness, thepropagate easily—and so have a bigger amplitude at the ori-
pseudoscalar and vector meson masses andRg¢healues gin. In terms of our identities which relate this disconnected
obtained from higher statistics by conventional methodscorrelation to the derivativedM/dmg, we see that the main
[9,12,11. HereR, is defined implicitly byR3F(R,)=1.65  effect comes from the dependence of the lattice spaziog
whereF(R)=dV(R)/dR andV(R) is the potential between mg at fixed 8. It is well known thata decreases as the sea-
static sources. guark mass decreases: indeed this is whyahalue used in

It is possible to measure the disconnected diagram ilynamical simulations is smaller than that used in quenched.
quenched gauge configurations as well as in dynamical ferffhe UKQCD study{11] of the dynamical fermion configu-
mion configurations. We use the same gauge configuration@tions we are using findd loga/dm~—4—as shown in
as discussed in the previous section. For the quenched caddg. 4. Furthermore, the slope appears larger at smaller sea
we include a factor oN;=2 explicitly to facilitate compari- quark mass—in line with what we find in Table IV.
son with the dynamical fermion configurations that hae We also measure the same disconnected correlation in
=2, quenched configurations. The results are qualitatively similar

As discussed previously, the disconnected 3-point correto those from dynamical fermion configurations. This im-
lation D(ty,t,) can be fitted to obtain the matrix element plies that one can explore the sea-quark dependence of me-
doo that gives usdM/dmg. Because we only have data on SOn masses usinguenchedconfigurations. This appears a
the correlations from local hadronic operators in this studystriking advance—one can get at essential information con-
we choose to make use of the results of conventional studiegerning sea quarks without the heavy computational over-
of the 2-point correlators from both local and non-localhead of dynamical fermion simulations. However, it is
(smeared or fuzzédoperators from larger samples of con- Widely appreciated that most lattice observables are insensi-
figurations[9,11] to determine the couplings of the ground  tive to the presence of sea quarks if the lattice spacing and
state and excited state mesons to our operators. We find thifte /My ratio are lined up. Hence, once one has expressed
adequate two-state fits can be made to these 2-point correlthe quantity of interest as a vacuum expectation value, it may
tions fort>2. Then keeping the masses and coefficients be evaluated using quenched configurations. We now ex-
fixed, we can fit all the 3-point data with>2 andt,>2.  plore this in a little more detail.
Some typical fits are shown in Fig. 3. The fit results are For the heavier quenched«{0.13843) and dynamical
shown in Table Il from quenched configurations and in(x=0.1390) cases, the lattice spacingaken fromRy~3)
Table IV for dynamical fermions. and theMp/M,, ratio (at 0.78 are very similar. Thus we

The sign of the effect implies that the loopZ ( may directly compare thelM/dmg values obtained. From
=TrM ~1) is anti-correlated with the pion two-point corre- Tables IlI, IV, we see thal M/dmy has significantly smaller
lation C which straddles it in time on a lattice. This anticor- values(by two standard deviationsn quenched than in dy-
relation is large with, for example, namical fermion configurations. This conclusion is rein-
forced by the presentation of the fits to these data shown in
Fig. 3. These data suggest that this observable is indeed ca-
pable of distinguishing between configurations with different
sea quark structure. One note of caution is that since the
att=6 for both the dynamical fermion and quenched casedattice spacing is rather coarse, the different finite lattice

(8C,8THI[{(8C)*)((6T)*H)]¥*~~-05  (27)

TABLE IV. Dynamical fermion disconnected loop correlations.

K Mp de/de MV delde Ro ngauge nZ

0.1398 0.476L4) 3.05) 0.70616) 2.7(6) 3.654) 20 32x2
0.1395  0.55@) 3.1(6) 0.7869) 3.007) 3.446) 20 32x2
0.1390 0.70%5) 1.94) 0.90%10) 1.8(3) 3.057) 24 20x 2
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L R I valence quark mass of,=0.1390 givedMp/dms=3.1(3)

L 1 and of k,=0.1395 givedMp/dms=4.3(4). Both of these
finite difference estimates are somewhat larger than the de-
rivatives determined above. The situation is the same for the
vector meson mass derivatives where the finite difference
determinations give 3(8) and 4.01.2) at a fixed valence
mass of 0.139 and 0.1395, respectively.

The two different approaches to determining these sea-
quark mass derivatives used different gauge ensembles
(propagators from the origin from about 100 gauge configu-
rations for Ref[11], compared to propagators from all sites
on about 20 gauge configurations Heaad the differences
- 1 are only at the two standard deviation level. At present the
ol v v v e v L0 quoted statistical errors from the derivative method we use

6 8 10 12 are comparable to those from finite differences of masses.

t/a Using the full set of gauge configurations available, our de-

FIG. 3. The disconnected correlationN;D3/C with N;=2 rivative method would give the more accurate determination
of the sea quark dependence of the meson masses.

versus timet=t; +1t, in lattice units. The upper data are from dy-
namical fermions withkg=0.139, while the lower data from

quenched lattices witk=0.13843. The curves show the two-state V. DISCUSSION

fits to these data witht; —t,|=0 or 1 as described in the text. The ) ] ] o

additional points(crosses and octagonsave|t,—t,|=2 or 3 and There are several issues of interest in determining the de-
are fitted by the dotted curve. pendence of hadron masses on the quark masses. Here we

are not concerned with the problem of defining precisely the

spacing effects in quenched and dynamical simulations maguark masses. Rather we discuss the dependence of the me-
be partly responsible for this observed difference. Son masses as the sea quark mass is reduced to look for
This ~ ability to distinguish quantitatively between €XPlicit signs of different physics as the quark loops become
quenched and dynamical gauge configurations (dnOre important in the vacuum. One of the complicating fea-
important—in most cases previously studied, no such distures in the lattice approach is that changing the sea-quark
crimination was detectable. That the observable currently un1ass parameter has several consequences—among them that
der study allows this discrimination is not entirely unex- the lattice spacing is changed. _
pected since the dynamical fermion configurations are AS an illustration, since the lattice spaciagiepends on
weighted by det{t) which is closely related to Twt ! the sea quark parameter,, let us consider the dimension-

which is a component of the disconnected correlator. less ratioMy/Mp. Then
For dynamical fermions it is possible to evaluate by con-
ventional methods the hadronic mass differences as the sea d My 1 dMy 1 dMp

—1In (28

guark mass is varied and so obtain an estimate of the deriva- dmg
tive which can be compared with our results. For the pseu-
doscalar meson, finite difference determinatiphy at fixed can be evaluated. Since we fidtl, /dms~=dM,, /dmg, this
gives a negative result which implies that th,/Mp ratio
40 T T increases as the sea quark mass is decreased. This change in
sea-quark mass parameter is at a constgnt however,
which is not necessarily what is required.
To clarify this discussion, it must be remembered that the
bare parameterg3 «, , k) which occur in the lattice formal-
ism are not simply related to the more physical parameters
and the sea and valence quark masses which we denote here
asm, andmg. One example of this intricate relationship is
that ask is increasedi.e. towardsk, so that the sea quarks
are lightey, thena becomes smallefthis can be seen from
the observation thaB needs to be reduced for dynamical
fermions to keepa approximately the sameFurthermore,
this change ok is also likely to result in a different value of
k¢ (here defined as the value which gives a massless pion on
w15 720 y 7es 730 varying «, at that sea quark masand hence the relationship
* of k, with m, will be modified too.
FIG. 4. The lattice evaluation dt, for dynamical fermion con- Thus one needs to set up a prescription to determine ap-
figurations with sea quarks of hopping parametdrom Ref.[11]. propriate values of the lattice parameters. One proposal is to
We definemg= 1/«. identify physical quantities which should not depend on all

M_p):M_V dmg Mp dmg

o
3.5

3.0

Ry

| T T T | LI | T T T
HH
| T R N | L1 | L1l

2.5

@

2.0|||||||||||||||||||
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of the physical parameters. Thus we can choose torgse  V(=RMy)
(defined via the static potential at moderate separatitms
determine the lattice spacirg assuming it to be indepen-
dent of the quark masses. This would not have been true if
the string tension were to have been used to set the scale
since the string breaking at large separation will be strongly P,.V,)
affected by the sea quark mass.

For the quark mass dependence, we are considering a
world where the valence quark mass can be varied inde-
pendently of the sea quark masg. This is not so far from
experiment if one regards thed quarks as sea quarks and
the strange quark as a valence quark whose contribution to dRMp)
the sea is relatively small. dm

To isolate the quark mass dependence, we choose to make
use of a very conspicuous experimental fact: the vector me-
sons are “magically mixed” with thep meson being almost
pure ss while the p and w are almost degenerate and com-
posed ofu,d quarks. Furthermore, thé has much reduced
decay matrix elements to final states containing amjg P(=RM,)
quarks. This is the Okubo-Zweiz-lizuK®ZI) rule: discon-
nected quark diagrams are Suppressed‘ All of this phenom_ FIG. 5. An illustration of the bare ValenceX and Sea@ quark
enology suggests that the vector meson nonet is well dgDass dependence of pseudoscalg) (@nd vector ¥) meson
scribed by the naive quark model: it does not containMasses in units dRy.
significant sea quark contributions to the masses. Thus we ) )
choose to define the sea quark magssuch that the vector Assumlng one had ac_:curgte \_/al_ues, we now discuss how
meson masses are independent of it. For other mesons, esp@-interpret them. The situation is illustrated on a plotRof
cially the pseudoscalar mesons, we do expect some depef-RoMp againstV=RoMy in Fig. 5.

dence of the masses explicitly on the sea-quark rmasand As the valence quark mass parametey is varied, a
we shall try to estimate it. curve is traced out. What is of interest, however, is the dif-

One way to proceed is to remove the explicit ference between such curves as the sea quark mass parameter

a-dependence of the lattice masses by forming the produdfs is varied. Assuming, as discussed above, that the vector

with Ry. ThenRyM p will be equal to the continuum product Mass ¥=RoMy) is independent ofjs then yields the re-

romp Up to lattice artifact corrections which are of order 9uired dependence of the pseudoscalar massipat fixed

for the Wilson fermion discretization but the clover- V-

improvement scheme we use should reduce these lattice ar-

tifact corrections to being dominantly of ordaf. For ease d(RoMp) —p._ EP (31)

of notation we defined®;=d(RyMp)/dmg etc. Here we as- dms |, SV, v

sume, as discussed above, tRgtis independent ofm, and

that it does depend oms through the dependence afon  We claim that this quantity will give the physically relevant

ms. This sea quark mass dependenc&®gftan be extracted part of the sea-quark dependence of meson masses:

by explicitly evaluatingR, at a range ofng values[11], as  d(R,Mp)/dms=r,d(mp)/dm,). Indeed a presentation in

illustrated in Fig. 4, giving this spirit was already shown in Réfl1]. There it was con-

cluded that as the sea-quark mass is reduced, the meson

1 d;Ro masses move towards closer agreement with the experimen-
Ry dmg tal data point s, ) with d(RgMp)/dmg|,>0 (here 7 is

the mass expected forss pseudoscalar mespn

where differences are taken frory of 0.1390-0.1395 and Since the precision we obtain in this preliminary study on

then 0.1395-0.1398 respectively. These values can then hige derivatives is not superior to that which was obtained by

®,,V,)

P
<

=—471.8,-4.02.0 (29

used to obtain directly varying the sea and valence madgds, the conclu-
sions of that work are not modified. However, for dynamical
o1 d(RoMp) ~ 1 dRy 1 dMp fermion studies where only one sea-quark mass is employed,
RoMp ° RgMp dmg  Rydmg Mp dmg our methods will enable the derivatives with respect to the

(30 sea-quark mass to be evaluated.

where a substantial cancellation occurs between the latter

- - ) VI. CONCLUSIONS
two terms. Thus we find that the resulting errors are suffi-

ciently large that even the sign &% is not well determined. One of the current problems in lattice study of hadron
However, the sign oP does not necessarily have any direct spectra is to evaluate the physical consequences of including
physical meaning as we now discuss. sea quark effects in the vacuum. We have presented lattice
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techniques to evaluate the dependence of meson masses laterpreting the sourceSas random with specific properties
the valence and sea-quark parameters. These techniques thlen makes this quantity, averaged over realizations of the
low such studies to be made using gauge configurations atrandom source, to be just that required, namely
single set of lattice parameters. This is a significant advance
for dynamical fermion studies which are very computation- (TP())=T(1). (A4)
ally intensive. Moreover, it implies that some estimates of o ) )
these sea-quark properties can even be made using quenchiyis allows the possibility of an unbiased estimate of the
configurations. required quantity with a moderate number of inversions
We have discussed how to extract physically useful infor{Nz). We require that the random sourcg§j(x,t) with p
mation about the sea-quark effects from these observables: 1.. .. nz are such that the only non-zero expectation val-
Our proposal takes account of the changes induced in thées of bilinears are given by
lattice spacing and in the valence mass definition as the sea D . 2 _
quark parameter is changed. (£5)(X1,t1)* Epi(X2,12)) = FpgPandijk Sy, x, 0, t,- (AD)
One rather encouraging feature is that we see evidence for ) o _
a significant difference for the disconnected correlation ratiol his can be implemented by assigning an independent ran-
(our D3/C) between quenched and dynamical quark condom number to each site, colora and Dirac indexj for
figurations. It will be of interest to explore this difference at €ach samplg. The optimum distribution of those random

finer lattice spacing to establish that it is indeed a continuunfiumbers can be chosen to minimize the variance of the re-
effect. quired observable.

The variance of this estimator is minimizgd] by taking
Z2 noise(more correctly ZXZ2), namely each component
(for real and imaginary parts separajelp be randomly
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APPENDIX: ANALYSIS OF Z2 NOISE VECTOR

METHODS where only the off-diagonal part a4 ~! contributes and
here we include space, time, color and Dirac indices into
1. Introduction The variance can be reduced by using a more selective

We summarize first the salient ideas in the Z2 methodfOurce, for examplg] with specific Dirac components. This
[7,8], before indicating the special features that we havdnvolves more inversions, hoyvever, if the full signal is to _be _
made use of. evaluated. Here we choose, instead, to use a source which is

The required time-slice loop term can be expressed iPNly On a specific time-plant. Thus in the above formal-

terms of the quark propagatavl ~* on a given gauge con- 1SM EP(X, 1) pi i§ to be taken as zero outside the time-stige _
figuration as of interest. This reduces the variance by a factor of approxi-

mately 4 at the expense of Zih our casg times as many
1 inversions. This is not cost-effective for evaluatifidout it
T(= 2 Majaj (X BX,1) (A1) does enable us to extract mesonic two-point correlators as we
now discuss.

where we explicitly show the color indexand Dirac index

i here. SinceM is ys-Hermitian, thenT is real on any 2. Meson correlators

time-slice of any gauge configuration. To evaluate this ex- ¢ js also possible to use Z2 source methods to determine
pression for ali on a time slice using point sources would megon correlators. For illustration, consider the correlator

require solving the lattice Dirac equation fof sources of  petween local hadron operators of zero momentum given by
each color and Dirac index. Let us instead explore usingpe average in the gauge configurations:

distributed sourcegP(x,t),, wherep labels the source.
Then solving the lattice Dirac equation from such a C(t)=(0|H(t)H(t,)|0) (A7)
source
with t=|t;—t,| and where
GR(X' 1) =M X X DER(x ) (A2)

and combining with an appropriate combination involving H(t):; Pai(X O jkihai(x,1) (A8)
the same source, we have
creates a meson with quantum number given by the Dirac
_ p * P matrix I', wherel" = y5 for pseudoscalar mesons aheF v,
ﬁ(t)_; £ 17 Ggj(x.1) for vector mesons.
. Then, using theys-Hermitian property of the fermion ma-
= €5, D* Mg p X EX T ER(X ). (A3)  rix, we need to evaluatésuppressing the color indices
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In this case, combinatorial factors make the variance of this
C(t)= 2 (O|(T ¥8)ij M H(Xq t1 1 %5, L) estimator comparable to the signal; so it is an inefficient
a2 estimator. Using sources at alwould aggravate this prob-
X(T yg) M ﬂl*(Xl,t1§X2,tz)|0>- (A9) lem conside_rably: _ _
As described in the main text, we can combine the Z2
This can be evaluated using Z2 methods whaPét) is the  estimate of the loop dt with the Z2 estimate of the mesonic
propagator from sourcé” on time-slicet provided one also correlator, provided, is not the source point of the mesonic
has the propagatd®" (t) from source [ ys)£P on the same  correlator determination. This restriction is of no conse-
time-slice. Then the average over samppesf this source quence since we are interested in a loop roughly midway
will give the contribution taC(t) from one time-slice on one along the mesonic correlator.
gauge configuration:

3. Propagators from Z2 sources

— p . pl'x . =
CH= x22 Gi(t1ix2,1) G (tl'xz’tZ)(ry5)">' The techniques used to evaluate the propagator from a
(A10)  given Z2 source are just those used in a standard inversion
) . ) from any source. This is achieved by an iterative inversion
This _metho_d allows us to obtain mesonic correlators fronbrocess(either minimal residual oBICGSTAB algorithms
any time s_Ilce to any other. For the_ pseudos_calar meson, Nilere usedl The special feature is that the precision needed
additional inversions are needed sirligs=1 in that case. jn this iteration is such that any biases are at a level substan-
For the vector meson case, we Use y; with i=1, 2 0r 3 tjally below the statistical noise from the Z2 method. We are
randomly chosen for each sampde able to monitor several quantities of interésiy. ToM ~* on
In principle, one could_ (_)btain. mesqnic correlations using; time slice and the pion propagator to latyeontinuously
Z2 methods without additional inversions—for example byqyring the iterative inversion process. The convergence of

explicitly evaluating the average over samptesq of these quantities of interest during the iterative process is not
monotonic, but we are able to establish a value of the re-
> Gip(tl;xzytz)rij5}9*()(2,»[2) sidual that guarantees sufficiently small systematic errors
X2 from lack of convergence. In practice we need approximately
one half of the number of iterations used in a conventional
><E Gty X, t) T éP* (x1,t0). (A11) inversi(_)n. This has also been discussed by the SESAM Col-
X1 laboration[8].
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