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Solutions of the Ginsparg-Wilson relation

Ting-Wai Chiuf and Sergei V. Zenkih
Department of Physics, National Taiwan University, Taipei, Taiwan 106, Republic of China
(Received 22 June 1998; published 11 February 1999

We analyze the general solutions of the Ginsparg-Wilson relation for lattice Dirac operators and formulate
a necessary condition for such operators to have a nonzero index in the topologically nontrivial background
gauge fields[S0556-282(199)03405-0
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Recently there have been very interesting developmentahere the left-hand side stands for the fermionic average of

in the theoretical understanding of chiral symmetry on they, . calculated with the infinitesimal massadded to the
lattice. The idea stems from the Ginsparg-Wild@W) re-  operatorD, andn., (n_) are the number of the zero modes of
lation[1] which was derived in 1981 as the remnant of chiralp with positive (negativé chiralities. This is in contrast to

symmetry on the lattice after blocking a chirally symmetric the Wwilson-Dirac operator for which the left-hand siti#iS)

theory with .a Ch|ra||ty I:Jr-eak|ng local r_enqrmallzatlon gI’OUp genera”y iS not an integer on a f|n|te |attice_

transformation. The original GW relation is It is essentially due to these two properties that such for-
mulations of lattice QCD can possess the attractive features

1) pointed out in Refs[3—6]. However, only the GW relation
itself is not sufficient to guarantee that abysatisfying Eq.

(1) must possess exact zero modes with definite chiralities,
whereD is lattice Dirac operatomR is a nonsingular Hermit- and reproduce the Atiyah-Singer index theorem on the lat-
ian operator which is local in position space and trivial intice. In this paper, we analyze general solutions of GW rela-
Dirac space, ana is the lattice spacing which reminds us tion and formulate a necessary condition for them to have
that D becomes chirally symmetric in the continuum limit nonzero indices in topologically nontrivial background
a—0. According to the Nielsen-Ninomiya theoref@] the =~ gauge fields. We limit our consideration to the operafors
chiral symmetry of a local Dirac operator defined on thesatisfying the Hermiticity property
regular lattice must be broken in order to avoid species dou-
bling. The main advantage of the GW relation is that it in- Df=vy:Dys. (5)
troduces chiral symmetry breaking bfin the mildest way
[1]. Although it does not ensure the absence of the species

doubling, it does incorporate two remarkable properties. . L ,
7 : — relevant to topologically trivial gauge field background, ex-
The first is that the actioA=¢/D ¢ has an exact symme- cant possibly some “exceptional” configurations. Then Eq.
try (1) is equivalent to the following equation linear B *:

D ')/5+ ’)/5D = ZaD'}/5R D,

First, we consider the case of nonsingularwhich is

y—exdidys(1-RD)]4, 2 ysD 1+ D lys=2aysR, (6)

- - . and its general solution can be written in the form
— yexdi6(1-DR)ys], ()

D=(1+aD.R) 'D.=D.(1+aRD,) 1, (7
where ¢ is a global parameter, which was discovered by
Luscher[:_%]. The second is that any oper_aibrsau;fylng the where D, is the chirally symmetric lattice Dirac operator,
GW relation possesses a well defined integer index on a f'l’e
nite lattice[4,3] U

Dcys+ ysDc=0. (8

lime, (Y ysin)s=Tr(ysRD)=n_—n, =indexD, . . '
e~0 N Thus in the nonsingular case the problem of constructing

(4) explicit solutions ofD reduces to finding a proper realization
of the chirally symmetric operat®.. Note that by virtue of
the condition (5) and Eq. (8) the operatorD. is anti-

*Email address: twchiu@phys.ntu.edu.tw Hermitian, and therefore, normal. In order to avoid species

TPermanent address: Institute for Nuclear Research of the Russiatoubling for D defined on a regular latticd). should be
Academy of Sciences, 117312 Moscow, Russia. Email addresgionlocal. Additional limitations to the form d@ . come from
zenkin@al20.inr.troitsk.ru the requirement of the locality ob. For a more detailed

0556-2821/99/5F)/0745013)/$15.00 59 074501-1 ©1999 The American Physical Society



TING-WAI CHIU AND SERGEI V. ZENKIN

discussion on the properties Bf, we refer to our pap€f7]
where a few explicit examples are also presented.

It is interesting to observe that in this case bBthandD
can be constructed from a unitary operator(Vi=Vv~1)
which satisfies the Hermiticity condition

ysVys=V". 9
Indeed, for any given chirally invariam, satisfying Eq(5),
D. is anti-Hermitian, so that dedD.+1)#0. Then there
exists a unitary operator

V=(aD.—1)(aD¢+1)"?! (10

satisfying Eq.(9). SoD, can be represented as
D _ _+V 11
c=a -V’ (11)

provided thatl—V is nonsingular. Substituting EL1) into
Eq. (7), we obtain the general solution of E() for nons-
ingular D in terms of the unitary operatd/:

D=a {(1+V)R+1-V] (1+V) (12)

=a '(1+V)[RA+V)+1-V] L (13

Note that in contrast to Eqll) these expressions make
sense even when operator V is singular. As we will show
later, due to this fact Eq$12) and(13) represent a class of
solutions of Eq(1) also for singulaD, and thus are valid for
any gauge configurations.

Let us now consider the case whénis singular, i.e.,
detD =0, which is the result we would like to have in the
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D.=(1-aDR)"D. (16)
It is obvious that any zero mode bfis a zero mode ob,
and vice versa. Therefore ind&x=indexD. However, ac-
cording to the theorem proved in R¢8], the index of any
chirally symmetric normal Dirac operator is zero, so
indexD.=indexD=0. Since det{—aDR)=det(l—aRD),
this completes the proof.

In other words, we have proved that in order the operator
D to have nonzero index the chirally invariant operddQrin
Eq. (16), and therefore in Eq.7), should not exist. However,
D is still well defined and exists. Equatiori$l) and (12)
suggest a simple interpretation of this seemingly paradoxial
situation. As shown in Ref.9], for any unitary operato¥
satisfying Eq.(9), if it has real (1) eigenmodes then these
real eigenmodes are chiral and the total chirality of all real
eigenmodes must vanish:

ni,—n;;+nf;—n_,=0, (17)
wheren}(n;,) denotes the number of positifeegative
chirality eigenmodes of eigenvaluel, whilen”,(n-,) de-
notes the number of positii@egative chirality eigenmodes
of eigenvalue—1. The —1 eigenmodes o¥ correspond to
the zero modes ob. Thus, if D has nonzero indexn(;
—n’,;#0), thenn};—n;;#0 andV has eigenvalue+ 1.
Then the chirally invariant operatdd. in Eqg. (11) is no
longer defined, while the operat@ in Eq. (12) becomes
singular but still well defined. Therefore E{.2) is indeed a
class of general solutions for the GW relatigh) for any
gauge configurations.

Finding a unitary operatov which can have eigenvalues
+1 and—1 in the topologically nontrivial sectors, however,
is a highly nontrivial task. So far we know only one explicit
example ofV which does satisfy this requirement. It is the
unitary operator derived from the overlap formali§fi:

topologically nontrivial gauge field background. In this case
we are interested in only tho$2's which have the possibil-
ity to reproduce the index theorem on the lattice, i.e., have a

nonzero index in Eq(4). So we obtain a necessary condition whereD,, is the standard Wilson-Dirac operator but with a
for any solutions of Eq(1) to possess nonzero indices in negative mass in the range-@a*,0). In Ref.[9], it has
topologically nontrivial background gauge fields. We hopepeen demonstrated that this solution of the GW relation in-
that this condition not only serves as a discriminant to rulegeed reproduces exact zero modes and the index theorem is
out any unphysical solutions of GW relation but also cansatisfied exactly on a finite lattice. The zero modes are also
provide guidelines to construct viable solutions of GW rela-in very good agreement with the continuum theory. At this

V=D,(D]Dy) 2 (18)

tion. We state our result in the following theorem.
Theorem For any lattice Dirac operat@ satisfying her-
miticity condition (5) and the GW relatioril), the necessary

moment we cannot provide another examplé/afthich can
satisfy all our requirements.
It is instructive to note that solutions of the GW relation

condition for it to have a nonzero index in the topologically may have a zero index not only because zero modes with

nontrivial gauge background is
def{l-aDR)=0 (19
or, equivalently,
de{l—aRD)=0. (15

Proof. Assume that det-aDR) # 0. Then there exists a
chirally symmetric normal operator

opposite chiralities always appear in pairs but also because
they may not have any zero modes at all. Consider the naive
massless Dirac fermion operatBy, on the regular lattice,
the random latticd 10], and the random-block latticl 1],
respectively. Sinc®,, is chirally symmetric, it can be taken
asD. and the Dirac operatdd can be constructed from Eq.
(7). For any one of these GW-Dirac operators, we do not find
any genuine zero modes in any topologically nontrivial sec-
tors.
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To summarize, we have demonstrated that the GW relaerators of the lattice chiral transformations in E@.and(3)
tion does not guarantee the existence of exact zero modes nare singular. The general solution for the GW relatitpis
the realization of index theorem on the lattice. If a solutionobtained in Eq(12).
of GW relation D in topologically nontrivial sector gives This work was supported by the National Science Coun-
det(l—aRD) # 0, and therefore can be expressed in terms otil, R.O.C. under Grant No. NSC87-2112-M002-013.
a chirally invariant operatob.., its index must be zero, and T.W.C. would like to thank Herbert Neuberger for enlight-
thus it should be dropped from the list of viable lattice Diracening correspondences. S.V.Z is grateful to members of the
fermion operators. We note in passing that the necessamepartment of Physics at National Taiwan University for the
condition(14) or (15) is precisely the condition that the gen- hospitality extended to him during his stay at Taipei.
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