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Putative light scalar nonet
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We investigate the ‘‘family’’ relationship of a possible scalar nonet composed of thea0(980), thef 0(980)
and thes andk type states found in recent treatments ofpp andpK scattering. We work in the effective
Lagrangian framework, starting from terms which yield ‘‘ideal mixing’’ according to Okubo’s original formu-
lation. It is noted that there is another solution corresponding to dual ideal mixing which agrees with Jaffe’s

picture of scalars asqqq̄q̄ states rather thanqq̄ states. At the Lagrangian level there is no difference in the
formulation of the two cases~other than the numerical values of the coefficients!. In order to agree with
experiment, additional mass and coupling terms which break ideal mixing are included. The resulting model
turns out to be closer to dual ideal mixing than to conventional ideal mixing; the scalar mixing angle is roughly
217° in a convention where dual ideal mixing is 0°.@S0556-2821~99!05007-9#

PACS number~s!: 13.75.Lb, 11.15.Pg, 11.80.Et, 12.39.Fe
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I. INTRODUCTION

Recently there has been renewed discussion@1–20# about
evidence for low energy broad scalar resonances in thepp
andpK scattering channels. In the approach@1–3# on which
the present paper is based, a need was found for app reso-
nance (s) at 560 MeV and apK resonance (k) around 900
MeV. That approach, motivated by the 1/Nc @21# approxima-
tion to QCD, involves suitably regularized~near the poles!
tree level diagrams computed from a chiral Lagrangian
containing resonances within the energy range of inter
Attention is focussed on the real parts which satisfy cross
symmetry but may in general violate the unitarity boun
Then the unknown parameters~properties of the scalars! are
adjusted to satisfy the unitarity bounds~i.e. to agree with
experiment!. In this way an approximate amplitude satisf
ing both crossing symmetry and unitarity is obtained.

Similar results for the scalars have been obtained in
ferent models@4–19# although there is not unanimous agre
ment. These are, after all, attempts to go beyond the en
region where chiral perturbation theory@22# can provide a
practical systematic framework.

Now if one accepts a lights and k and notes the exis
tence of the isovector scalara0(980) as well as thef 0(980),
there are exactly enough candidates to fill up a none
scalars, all lying below 1 GeV. Presumably these are not
‘‘conventional’’ p-wave quark-antiquark scalars but som
thing different. It would then be necessary~see for example
the discussion on p. 355 of@23#! to have an additional none
of ‘‘conventional’’ heavier scalars.

Most mesons fit nicely into a pattern where they ha
quantum numbers of quark-antiquark (qq̄) bound states with
various orbital angular momenta. Furthermore, their mas
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and decays are~roughly! explained according to a none
scheme, first proposed by Okubo@24#, known as ‘‘ideal mix-
ing.’’ It has been widely recognized that the low-lying sc
lars @at least the well-observeda0(980) andf 0(980)] do not
appear to fit this usual pattern. Hence Jaffe@25# proposed an
attractive scheme, in the context of the MIT bag model@26#,

in which the light scalars are taken to have aqqq̄q̄ quark
structure~and zero relative orbital angular momenta!. Other
models explaining light scalars as ‘‘meson-meson’’ m
ecules@27# or as due to unitarity corrections related to stro
meson-meson interactions@4,12# also involve four quarks a
the microscopic level and may possibly be related.

Our concern in the present paper is to study the no
structure of the light scalars based on the approach of@1–3#.
There, an effective chiral Lagrangian treatment was used
such a treatment, only theSU(3) flavor properties of the
scalars are relevant@28#. At this level, one would not expec
any difference in the formulation of our model since bo
Okubo’s model and Jaffe’s model use nonets with the sa
SU(3) flavor transformation properties. In fact, we sh
show~in Sec. II! that the effective Lagrangian defining ide
mixing in Okubo’s scheme has two ‘‘solutions.’’ The one h
chose explains the light vector mesons with a natural qua
antiquark structure. The other solution is identical to Jaff
model of the scalars. We note that it may be formally
garded as having a dual-quark–dual-antiquark struct
where the dual quark is actually an anti-diquark.

The initial appearance is that the four masses of the li
nonet candidates obey the ordering relation@Eq. ~2.9! below#
of the dual ideal mixing picture but not the more stringe
requirement of this picture, Eq.~2.4!. Furthermore, the deca
f 0(980)→pp is experimentally observed but is predicted
vanish according to ideal mixing. Thus, it is necessary
consider some corrections to the ideal mixing model. Wh
such correction terms are added@to yield a structure like Eq.
~2.10!# the new model actually displays two different sol
tions for the particle eigenstates corresponding to a gi
scalar mass spectrum~see the discussion in Sec. III!, and so
it becomes unclear as to whether the ordinary or the d
©1999 The American Physical Society26-1
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ideal mixing picture is more nearly correct. In order to r
solve this question the predictions for the scal
pseudoscalar-pseudoscalar coupling constants are first
puted for each of these two solutions. The five coupl
constants needed forpK scattering are found to depend o
only two parameters —A andB in Eq. ~3.8!. Then~see Sec.
IV ! the pK scattering is recalculated, taking these two p
rameters as quantities to be fit. However, it turns out t
both solutions yield equally probable fits to thepK scatter-
ing amplitudes. Finally, the question is resolved by not
that only one of the two solution sets gives results wh
could be compatible with the previous@2# pp scattering
analysis and with thef 0(980)→pp decay rate.

The favored solution is characterized by a scalars-f 0
mixing angle which is closer to the dual form of ideal mixin
than to the usual form. Using a convention@see Eq.~3.6!#
where an angleus50 means dual ideal mixing anduusu
5p/2 means conventional ideal mixing, the favored solut
hasus'217°. It should be noted that this result is based
an analysis of scalar coupling constants which are relate
each other ‘‘kinematically’’ but which are related to expe
ment through ‘‘dynamical’’ models ofpK andpp scatter-
ing.

Some technical details are put in three Appendixes. A
pendix A contains a brief discussion of some key feature
the qqq̄q̄ scalars as expected in the quark model. Appen
B shows how the needed terms of the Lagrangian includ
the scalar nonet may be presented in chiral covariant fo
Finally Appendix C contains a list of the various scala
pseudoscalar-pseudoscalar coupling constants and their
tions to the parameters of our Lagrangian and to the sc
and pseudoscalar mixing angles.

II. SCALAR NONET MASSES

For orientation, it may be useful to start off by paraphra
ing Okubo’s classic discussion@24# of the ‘‘ideal mixing’’ of
a meson nonet field, which we denote as the 333 matrix
Na

b(x). In our case the field will haveJP501 rather than
JP512 as in the original case. The notation is such tha
lower index transforms under flavorSU(3) in the same way
as a quark while an upper index transforms in the same
as an antiquark. In this discussion it is not strictly necess
to mention the quark substructure ofN — only its flavor
transformation property will be of relevance. This lack
specificity turns out to be an advantage for our present p
pose.

The ‘‘ideal mixing’’ model may be defined by the follow
ing mass terms of an effective Lagrangian density:

Lmass52a Tr~NN!2b Tr~NNM!, ~2.1!

wherea and b are real constants whileM is the ‘‘spurion
matrix’’ M5diag(1,1,x), x being the ratio of strange to
non-strange quark masses in the usual interpretation. Iso-
invariance is being assumed. The names of the scalar
ticles with non-trivial quantum numbers are
07402
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N5F N1
1 a0

1 k1

a0
2 N2

2 k0

k2 k̄0 N3
3
G , ~2.2!

with a0
05(N1

12N2
2)/A2. There are two iso-singlet states: th

combination (N1
11N2

21N3
3)/A3 is an SU(3) singlet while

(N1
11N2

222N3
3)/A6 belongs to anSU(3) octet. These will

in general mix with each other whenSU(3) is broken. Di-
agonalizing the fields in Eq.~2.1! yields the diagonal~ideally
mixed! states (N1

11N2
2)/A2 andN3

3 .
Now it is easy to read off the particle masses from E

~2.1! in terms of a, b and x. This information is conve-
niently described by the two sum rules

m2~a0!5m2S N1
11N2

2

A2
D , ~2.3!

m2~a0!2m2~k!5m2~k!2m2~N3
3!. ~2.4!

There are two characteristically different kinds of solution
depending on whether both sides of Eq.~2.4! are positive or
negative. Okubo’s original scheme amounts to the cho
that both sides of Eq.~2.4! are negative. Then

m2~N3
3!.m2~k!.m2~a0!5m2S N1

11N2
2

A2
D . ~2.5!

This is consistent with a quark model interpretation of t
composite nonet field:

Na
b;qaq̄b, ~2.6!

identifying q1 ,q2 ,q35u,d,s. Specifically, Eq.~2.6! states
that N3

3 is composed of one strange quark and one stra
antiquark,k of one non-strange quark and one strange a
quark whilea0 and (N1

11N2
2)/A2 have zero strange conten

Thus the ordering in Eq.~2.5! naturally follows if the strange
quark is heavier than the non-strange quark, as has been
established. This ideal mixing picture works well for the ve
tor mesons @with the reidentifications N3

3→f, (N1
1

1N2
2)/A2→v,k→K* anda0→r] and reasonably well for

most of the other observed meson multiplets~see p. 98 of
@23#!. The exceptions are the low-lying 02 and 01 nonets. It
is generally accepted that the deviation of the 02 nonet from
this picture can be understood from the special connectio
the pseudoscalar flavor singlet with theU(1)A anomaly of
QCD. The case of the 01 nonet has been less clear, in pa
because the existence of the scalar states needed to fill
low-lying nonet has been difficult to establish.

Now a while ago, Jaffe@25# suggested that the low-lying
scalars might have a quark substructure of the formqqq̄q̄

rather thanqq̄. This model can be put in the identical form
as our previous discussion of Eqs.~2.1! – ~2.4! by introduc-
ing ‘‘dual’’ flavor quarks ~actually diquarks!:
6-2
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PUTATIVE LIGHT SCALAR NONET PHYSICAL REVIEW D59 074026
Ta5eabcq̄
bq̄c, T̄a5eabcqbqc , ~2.7!

wherein it should be noted that the quark fields are antico
muting quantities. Then we should write the scalar none

Na
b;TaT̄b;F s̄d̄ds s̄d̄us s̄d̄ud

s̄ūds s̄ūus s̄ūud

ūd̄ds ūd̄us ūd̄ud
G . ~2.8!

In the presentqqq̄q̄ case both sides of Eq.~2.4! should be
taken to be positive. The tentative identificationsf 0(980)
5(N1

11N2
2)/A2 ands5N3

3 would then lead to an orderin
opposite to that of Eq.~2.5!:

m2~ f 0!5m2~a0!.m2~k!.m2~s!. ~2.9!

This is in evident good agreement with the experimenta
observed equality of thef 0(980) anda0(980) masses. Fur
thermore, it is seen that the ordering in Eq.~2.9! agrees with
the number of underlying~true! strange objects present i
each meson according to the alternative ansatz~2.8!.

If additional terms1 are added to the ideal mixing model
Eq. ~2.1! to yield

Lmass52a Tr~NN!2b Tr~NNM!2c Tr~N!Tr~N!

2d Tr~N!Tr~NM!, ~2.10!

the states (N1
11N2

2)/A2 andN3
3 will no longer be diagonal.

The physical states will be some linear combination of the
This ‘‘non-ideally mixed’’ situation will be seen to be re
quired in order to explain the experimental pattern of sca
decay modes. We would like to stress that, in the effec
Lagrangian approach, no more than the assumption of m
terms like Eq.~2.10! is required; it is not necessary to a
sume a particular quark substructure forNa

b . That field may
represent a structure like Eq.~2.6!, one like Eq.~2.8!, a linear
combination of these or something more complicated.
course, it is still interesting to ask whether the resulting p
dictions are closer to those resulting from Eq.~2.8! or from
Eq. ~2.6!.

A natural question concerns the plausibility of the ‘‘dua
ansatz in Eq.~2.8!, which at first sight seems merely con
trived to yield the ordering in Eq.~2.9!. Jaffe @25# showed
that there is a dynamical basis for such an ansatz in the
bag model@26#. It essentially arises from the strong bindin
energy in such a configuration due to a hyperfine interac
Hamiltonian of the form

Hh f52D(
i , j

Si•SjFi•Fj ~2.11!

1We are neglecting a possible term2e Tr(NM)Tr(NM) which
is second order in symmetry breaking.
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where D is a positive quantity depending on the quark
antiquark wave functions.S5s/2 is the spin operator and
F5l/2 (l are the Gell-Mann matrices! is the color-spin
operator. The sum is to be taken over each pair (i , j ) of
objects~i.e. qq,q̄q̄ or qq̄) in the hadron of interest. Equatio
~2.11! represents an approximation to the hyperfine inter
tion obtained from one gluon exchange in QCD; it is wide
used in both quark model@29# and bag model treatments o
hadron spectroscopy.

Standard application of Eq.~2.11! to the r2p and D
2N mass differences in the simple quark model yields

^puHh fup&52Dqq̄ , ^ruHh fur&51 1
3 Dqq̄ ,

^NuHh fuN&52 1
2 Dqqq , ^DuHh fuD&51 1

2 Dqqq ,
~2.12!

in which a subscript has been given to theD factor for each
quark configuration. It can be seen thatD is expected to be
fairly substantial — of the order of several hundred MeV
in these cases. The evaluation of the expectation value of
~2.11! for the lowest scalarqqq̄q̄ nonet state@25# is more
complicated than for the above cases and yields a large
hancement factor due to the color and spin Clebsch-Gor
manipulations:

^01uHh fu01&'22.71Dqqq̄q̄ . ~2.13!

Thus, quark model arguments make plausible a stron
bound qqq̄q̄ configuration. It should be remarked that th
lowest lying 01 nonet state in the quark model which diag
nalizes Eq.~2.11! is a particular linear combination of state
in which theqq pair is in a 3̄of color and is a spin single
and state 2 in which theqq pair is in a color 6 and is a spin
triplet:

u01&'0.585u1&10.811u2&. ~2.14!

A derivation of Eqs.~2.13! and~2.14! is given in Appen-
dix A. It is amusing to note that, at the quark level, the du
quark and dual antiquark are strongly attracted by
magnetic-type interaction.

III. SCALAR NONET MIXINGS AND TRILINEAR
COUPLINGS

First let us consider the consequences of the general
mass terms~2.10!, which allow for arbitrary deviations from
ideal mixing. The squared masses of thea0 and k are read
off as

m2~a0!52a12b

m2~k!52a1~11x!b. ~3.1!

Using the basis„N3
3 ,(N1

11N2
2)/A2…, the mass squared

matrix of the two iso-scalar mesons is also read off as
6-3



e
re
N
-

gle

ur
.

BLACK, FARIBORZ, SANNINO, AND SCHECHTER PHYSICAL REVIEW D59 074026
F2m2~k!2m2~a0!12c12dx A2@2c1~11x!d#

A2@2c1~11x!d# m2~a0!14c14d
G .

~3.2!

In obtaining this result Eqs.~3.1! were used to eliminate th
parametersa andb. The physical isoscalar states and squa
masses are to be obtained by diagonalizing this matrix.
tice that the four parametersa, b, c and d may be essen
07402
d
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tially traded for the four masses. We will take@33# the
strange to non-strange quark mass ratiox to be 20.5 for defi-
niteness. Then, up to a discrete ambiguity, the mixing an
between the two isoscalars will be predicted.

It seems worthwhile to point out that the structure of o
mass formulas providesconstraintson the allowed masses
To see this, note that the diagonalization of Eq.~3.2! yields
the following quadratic equation ford̃5(12x)d:
sis,
6d̃228@m2~a0!2m2~k!#d̃1@3m2~s!m2~ f 0!26m2~k!m2~a0!13m4~a0!2d„4m2~k!2m2~a0!…#50, ~3.3!

whered5m2(s)1m2( f 0)22m2(k) and we have eliminatedc according to 6c5d2(412x)d. Heres and f 0 stand respec-
tively for the lighter and heavier isoscalar particles. In order ford̃ to be purely real, required at the present level of analy
we must have

@m2~a0!24m2~k!#213m2~a0!@m2~s!1m2~ f 0!#19m2~s!m2~ f 0!,12m2~a0!@m2~s!1m2~ f 0!#. ~3.4!
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Takingm( f 0)5980 MeV andm(a0)5983.5 MeV, accord-
ing to @23#, andm(s)5550 MeV from@2# we find that Eq.
~3.4! limits the allowed range ofm(k) to

685 MeV,m~k!,980 MeV. ~3.5!

It is encouraging that our recent study ofpK scattering@3#
~see also@15#! yielded a value form(k) of about 900 MeV,
within this range.

The physical particless and f 0 which diagonalize Eq.
~3.2! are related to the basis statesN3

3 and (N1
11N2

2)/A2 by

S s

f 0
D 5S cosus 2sinus

sinus cosus
D S N3

3

N1
11N2

2

A2
D , ~3.6!

FIG. 1. Scalar mixing angle solutions as functions ofmk .
which defines the scalar mixing angleus . Since Eq.~3.3! for

d̃ is quadratic, we expect two different solutions for the p
(c,d) and hence forus when we fix the four scalar masse
m(a0), m(k), m(s) andm( f 0). A numerical diagonaliza-
tion for the choicem(k)'900 MeV as above yields the tw
possible solutions

~a! us'221°

~b! us'289°. ~3.7!

Solution ~a! corresponds to as particle which is mostlyN3
3

~presumablyqqq̄q̄ type! while solution~b! corresponds tos

which is (N1
11N2

2)/A2 ~i.e. qq̄ type!. We see that when de
viations from ideal mixing are allowed, the pattern of lo
lying scalar masses is by itself not sufficient to determine
quark substructure of the scalars. This statement is base
Eq. ~2.10! which contains all terms at most linear in the ma
spurionM.

For the complete allowed range ofmk
2 in Eq. ~3.5! the two

~‘‘small’’ and ‘‘large’’ ! mixing angle solutions are displaye
in Fig. 1. Notice that the small angle solution is zero f
mk'800 MeV; this is approximately wherec5d50,
which would correspond to the dual ideal mixing situatio
In our convention2p/2<us<p/2.

Next let us consider the trilinear scalar-pseudosca
pseudoscalar interaction which is related to the main de
modes of the light scalar nonet states. We denote the ma
of pseudoscalar nonet fields byfa

b(x). The generalSU(3)
flavor invariantNff interaction is written as
6-4
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LNff5Aeabcede fNa
d]mfb

e]mfc
f 1B Tr~N!Tr~]mf]mf!

1C Tr~N]mf!Tr~]mf!

1D Tr~N!Tr~]mf!Tr~]mf!, ~3.8!

whereA,B,C,D are four real constants. The derivatives
the pseudoscalars were introduced in order that Eq.~3.8!
properly follows from a chiral invariant Lagrangian in whic
the fieldfa

b transforms non-linearly under axial transform
tions. The chiral aspect of our model is largely irrelevant
the discussion in the present paper but, for completen
will be briefly treated in Appendix B.

Notice that the first term of Eq.~3.8! may be rewritten as

2ATr~N]mf]mf!2ATr~N!Tr~]mf]mf!

22ATr~N]mf!Tr~]mf!1ATr~N!Tr~]mf!Tr~]mf!.

~3.9!

Thus, if desired, the complicated looking first term of E
~3.8! may be eliminated in favor of the most standard fo
Tr(N]mf]mf). Our motivation for presenting it in the wa
ch

a
C
in
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shown is that, by itself, the first term of Eq.~3.8! predicts

zero coupling constants for bothf 0→pp ands→KK̄ when
the ‘‘dual’’ ideal mixing identifications,s5N3

3 and f 0

5(N1
11N2

2)/A2, are made. This is in agreement with Jaffe
picture~see Sec. V B of@25#! of the dominant scalar decay
arising as the ‘‘falling apart’’ or ‘‘quark rearrangement’’ o
their constituents. It is easy to see from Eq.~2.8! that N3

3

cannot fall apart intoKK̄ and that (N1
11N2

2)/A2 cannot fall
apart intopp.

Of coursef 0→pp must be non-zero becausef 0(980) is
observed inpp scattering. In fact it also vanishes with ju
the term Tr(N]mf]mf) and the ‘‘conventional’’ identifica-
tion s5(N1

11N2
2)/A2 andf 05N3

3 . Our model contains two
sources forf 0→pp: the deviation from ideal mixing due to
thec andd terms in Eq.~2.10! and also the presence of mo
than one term in Eq.~3.8!. Note again that the use of Eq
~2.10! and~3.8! does not require us to make any commitme
as to the quark substructure ofNa

b .
Using isotopic spin invariance, the trilinearNff interac-

tion resulting from Eq.~3.8! must have the form
2LNff5
gkKp

A2
~]mK̄t•]mpk1H.c.!1

gspp

A2
s]mp•]mp1

gsKK

A2
s]mK̄]mK1

g f 0pp

A2
f 0]mp•]mp1

g f 0KK

A2
f 0]mK̄]mK

1
ga0KK

A2
]mK̄t•a0]mK1gkKh~ k̄]mK]mh1H.c.!1gkKh8~ k̄]mK]mh81H.c.!1ga0pha0•]mp]mh

1ga0ph8a0•]mp]mh81gshhs]mh]mh1gshh8s]mh]mh81gsh8h8s]mh8]mh81g f 0hh f 0]mh]mh

1g f 0hh8 f 0]mh]mh81g f 0h8h8 f 0]mh8]mh8, ~3.10!
rs
he

lar-

ts

ch
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e

p-
where theg ’s are the coupling constants. The fields whi
appear in this expression are the isomultiplets:

K5S K1

K0 D , K̄5~K2 K̄0!, k5S k1

k0 D , k̄5~k2 k̄0!,

p65
1

A2
~p17 ip2!, p05p3 ,

a0
65

1

A2
~a017 ia02!, a0

05a03, ~3.11!

in addition to the isosingletss, f 0 , h andh8. The expres-
sions for theg ’s in terms of the parametersA, B, C andD
as well as the scalar and pseudoscalar mixing angles
listed, together with some related material, in Appendix
Notice that if we restrict our attention to those terms
which neither anh nor anh8 appear@first six terms of Eq.
re
.

~3.10!#, their coupling constants only involve two paramete
A and B. These are the terms which will be needed for t
subsequent work in the present paper.

Other related discussions of the scalar-pseudosca
pseudoscalar coupling constants are given in@30–32#.

IV. TESTING THE MODEL’S COUPLING CONSTANT
PREDICTIONS

Now let us consider how well the five coupling constan
gkKp , gspp , gsKK , g f 0pp andg f 0KK can be correlated in
terms of the two parametersA and B. These coupling con-
stants, which are listed in Eqs.~C4!–~C8!, are the ones
which are relevant for the discussions ofpp scattering given
in @2# andpK scattering given in@3#.

A very important question concerns the way in whi
theseg ’s are to be related to experiment. For an ‘‘isolated
narrow resonance the magnitude of the coupling constan
proportional to the square root of the width. Actually, th
only one of the five for which this prescription roughly a
6-5
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plies isg f 0pp ; the appropriate formula is given in Eq.~4.5!
of @2#. Even here there is a practical ambiguity in that, wh
the pp branching ratio is listed in@23#, the total width is
uncertain in the range 40–100 MeV. The determinat
ug f 0ppu52.43 GeV21 given in @2# is based on using

G tot( f 0) as a parameter in the model analysis ofpp scatter-
ing and making a best fit.

The situation forg f 0KK is somewhat similar due to th

poorly determinedG tot( f 0). There is an additional difficulty
since the central value of thef 0(980) mass isbelow the KK̄
threshold. Thus the valueug f 0KKu'10 GeV21 presented in
Sec. V of@2# is based on a model taking the finite width
the initial state into account. Incidentally, the non-negligib
branching ratio forf 0→KK̄ in spite of the unfavorable phas
space is an indication that thef 0 ‘‘wave function’’ has an
important piece containingss̄.

Thes, as ‘‘seen’’ from the analysis of@2#, for example, is
neither isolated nor narrow. A suitable regularization of t
tree amplitude near thes pole was argued to be of the form

msG

ms
22s

→
msG

ms
22s2 imsG8

, ~4.1!

whereG and G8 are real.G is taken to be proportional to
gspp

2 while G8 is considered to be a regularization para
eter. For a narrow resonance with negligible backgroun
would be expected thatG85G. However, considering both
G andG8 as quantities to be fit~or, essentially equivalently
restoring local unitarity in a crossing symmetric way! yields
G8ÞG. The determinationugsppu57.81 GeV21 is based
on such a fit.

The situation concerninggkKp is similar to the one for
gspp . Making an analogous fit to theI 5 1

2 amplitude ofpK
scattering~see Sec. IV of@3#! yields ugkKpu'5 GeV21.
This value, however, is based on inputting t
ug f 0ppu, ug f 0KKu and ugsppu values obtained as above an

making a particular choice ofgsKK . The value ofgsKK was
however not very accurately determined in this model
compromise choice wasgsKK'8 GeV21.

A summary of the coupling constants previously obtain
is shown in Table I.

The discussion above illustrates that it seems necessa
obtain the coupling constants of the low-lying scalars from
detailed consideration of the relevant scattering processe
is not sufficient to read them off from@23# at the present

TABLE I. Coupling constants previously obtained in@2# and
@3#.

Coupling constant Value (GeV21) Obtained from

ug f 0ppu 2.4 pp scattering
ug f 0KKu '10 pp scattering
ugsppu 7.8 pp scattering
ugkKpu 5.0 pK scattering
gsKK '8 pK scattering
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time. Furthermore, their interpretation is linked to the d
namical model from which they are obtained.

It seems to us that a relatively clean way to test the c
relation between the coupling constants in Table I is to
calculate thepK scattering amplitude and, instead of takin
ug f 0ppu, ug f 0KKu and ugsppu from thepp scattering output

and regardinggkKp andgsKK as fitting parameters as in@3#,
just A andB are now taken to be fitted.

We work within the same theoretical framework that w
developed in@2# for thepp scattering analysis and was fu
ther explored in@3# for the case ofpK scattering. In this
framework, thepK scattering amplitude is computed in
model motivated by the 1/Nc picture of QCD and its real par
is given as a sum of regularized tree level graphs wh
include all resonances that contribute to the amplitude up
the energy region of interest. The relevant Feynman d
grams are shown in Fig. 1 of@3#.

In the I 5 1
2 channel, we perform ax2 fit, using theMINUIT

package, of this model to the experimental data. Specifica
in addition toA andB, the parameters to be fit are the reg
larization parameter in thek propagator,Gk8 ~which can also
be interpreted as a totalk decay width!, and parameters o
the resonanceK0* (1430): its massM* , its couplingg* and
the regularization parameter in itss-channel propagatorG

*
8 .

This will be done for different choices ofmk . Note that the
scalar mixing angleus ~see Sec. III! will be different for each
choice of mk . In fact, as already discussed, this actua
gives two different mixing angles for eachmk : one ~large
angle solution! closer to theqq̄ ansatz~2.6! and the other
~small angle solution! closer to theqqq̄q̄ ansatz~2.8!. It is
very interesting to see which one is chosen in our mod
More details of the model are given in@3#. The possible
values ofmk are limited by Eq.~3.5! for consistency with
our present model for masses based on Eq.~2.10!.

Let us first choosemk5897 MeV, as obtained in@3#.
Then the fit2 to the real part of theI 5 1

2 amplitude,R0
1/2, is

shown in Fig. 2 while the fitted parameters and result
predicted coupling constants are given in Table II. The
sults for both possible mixing angles corresponding tomk

5897 MeV are included. It is seen that thex2 fits to R0
1/2 are

essentially equally good compared to each other and c
pared to the one in@3#. However, if we compare the couplin
constants in Table II with those obtained previously in Ta
I, we see that while the coupling constan
g f 0pp , g f 0KK , gspp and gkKp obtained withus'220°

agree with those obtained earlier in connection withpp and
pK scattering, their values obtained withus'289° do not
agree so well.

Furthermore, the value ofg f 0pp obtained with us

'289° would lead to a value for thef 0 width several times
larger than the experimentally allowed range. It thus see
that theqqq̄q̄ picture, to whichus'217° is much closer,
gives a better overall description of the scalar nonet th
does theqq̄ picture.

2The experimental data points are taken from@34#.
6-6
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It is interesting to investigate the effect of changingmk

within the range given in Eq.~3.5!. As examples, Tables II
and IV show the fitted parameters formk5875 MeV and
mk5800 MeV respectively. Several trends can be d
cerned. Asmk decreases from 897 MeV the goodness of
actually improves from x253.94 to x252.3 at mk

5800 MeV. On the other hand the value ofg f 0pp increases

so that atmk5875 MeV the f 0→pp width is in slightly
better agreement with experiment and atmk5800 MeV it is
many times larger than allowed by experiment. It seems
the fit atmk5875 MeV is not very different from the one a
mk5897 MeV; this gives an estimate of the ‘‘theoretic
uncertainty’’ in our calculation. On the other handmk

5800 MeV seems to be ruled out, as are still lower valu
of mk .

Another argument in favor of the larger values ofmk can

FIG. 2. Comparison of the theoretical prediction ofR0
1/2 with its

experimental data.

TABLE II. Extracted parameters from a fit to thepK data.mk

5897 MeV.

Fitted parameter us5220.33 us5289.14

Gk8 31463 MeV 32263 MeV
M* 139064 MeV 138964 MeV
g* 4.4260.09 GeV21 4.460.09 GeV21

G
*
8 275610 MeV 273611 MeV

A 2.5160.03 GeV21 2.5760.03 GeV21

B 21.9560.04 GeV21 22.1260.04 GeV21

x2 3.94 3.95
Predicted couplings

gkKp 25.02 GeV21 25.14 GeV21

gspp 7.26 GeV21 4.33 GeV21

g f pp 1.46 GeV21 26.56 GeV21

gsKK 9.62 GeV21 13.69 GeV21

g f KK 10.10 GeV21 25.78 GeV21
07402
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be made by examining theI 5 3
2 pK amplitude,3 shown in

Fig. 3. It is seen that decreasingmk worsens the agreemen
with experiment. This feature arises becausegsKK , to which
the I 5 3

2 amplitude is sensitive, increases with decreas
mk . This situation was discussed in more detail in Sec. V
@3#, where it was noted that higher mass resonances ma
important in this channel.

We note that the three parameters describing
K0* (1430) are stable to varyingmk .

All the fits yield for the parametersA and B that B/A
*21. Using Eqs.~3.8! and ~3.9! then shows thatLNff ap-
proximately looks like

LNff'2A@Tr~N]mf]mf!2rTr~N!Tr~]mf]mf!#1•••,
~4.2!

3The experimental data points are taken from@35#.

TABLE III. Extracted parameters from a fit to thepK data.
mk5875 MeV.

Fitted parameter us5215.61 us586.14

Gk8 34662 MeV 35763 MeV
M* 138964 MeV 138864 MeV
g* 4.4260.09 GeV21 4.3960.09 GeV21

G
*
8 275610 MeV 272610 MeV

A 2.8760.03 GeV21 2.9660.03 GeV21

B 22.3460.03 GeV21 22.5660.04 GeV21

x2 3.23 3.26
Predicted couplings

gkKp 25.75 GeV21 25.92 GeV21

gspp 8.36 GeV21 24.58 GeV21

g f pp 2.53 GeV21 8.13 GeV21

gsKK 10.45 GeV21 215.62 GeV21

g f KK 12.76 GeV21 8.30 GeV21

TABLE IV. Extracted parameters from a fit to thepK data.
mk5800 MeV.

Fitted parameter us520.84 us571.37

Gk8 45062 MeV 47962 MeV
M* 138764 MeV 138464 MeV
g* 4.4060.09 GeV21 4.3660.09 GeV21

G
*
8 273610 MeV 268611 MeV

A 4.3260.03 GeV21 4.5060.04 GeV21

B 23.9160.03 GeV21 24.2960.04 GeV21

x2 2.34 2.39
Predicted couplings

gkKp 28.64 GeV21 29.01 GeV21

gspp 11.76 GeV21 24.15 GeV21

g f pp 7.65 GeV21 14.52 GeV21

gsKK 11.41 GeV21 220.91 GeV21

g f KK 24.12 GeV21 19.85 GeV21
6-7
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wherer is a positive number slightly less than unity and t
ellipsis stands for theC andD terms which only contribute to
vertices involving at least oneh or h8.

Using this model we can also estimate the partial de
width of a0(980)→KK̄ which is entirely determined in
terms of the parameterA @see Eq.~C4!#. As in the case of
f 0(980), the resonance lies below the decay threshold,
so the effect of the finite width of the decaying state must
taken into account~see for example footnote 2 of@2#!. The
results are shown in Table V~takingmk5897 MeV) corre-
sponding to the extremes of the total width range given
@23#. Also the effect of the mass difference between
charged and neutral kaons is taken into account. The num
cal values seem reasonable.

V. DISCUSSION

We studied the family relationship of a possible sca
nonet composed of thef 0(980), thea0(980) and thes andk
type states found in recent treatments ofpp scattering and
pK scattering. The investigation was carried out in the
fective Lagrangian framework, starting from the notion
‘‘ideal mixing.’’ First it was observed that Okubo’s origina
treatment allows two solutions: one the conventional~e.g.
vector meson! qq̄ type and the other a ‘‘dual’’ picture which
is equivalent to Jaffe’sqqq̄q̄ model.

The four masses of our scalar nonet candidates ha
similar, but not identical, pattern to the one expected in
dual ideal mixing picture. In order to allow for a deviatio
from ideal mixing, we have added more terms to the L

FIG. 3. Comparison of the theoretical predictions ofR0
3/2 with its

experimental data.

TABLE V. Predicteda0→KK̄ decay widths.

Decay widths Ga0

tot550 MeV Ga0

tot5100 MeV

G(a0
0→K0K̄ 0) 0.924 MeV 2.049 MeV

G(a0
0→K1K2) 1.371 MeV 2.455 MeV
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grangian@see Eq.~2.10!#. The resulting mass, mixing an
scalar-pseudoscalar-pseudoscalar coupling patterns@see Eq.
~3.8!# were discussed in detail. The outcome of this analy
is that the dual picture is in fact favored. More quantitative
the appropriate scalar mixing angle in Eq.~3.6! comes out to
be about217°64° compared with 0° for dual ideal mixing
and690° for conventional ideal mixing. This corresponds
mk ranging from 865 to 900 MeV.

The coupling constant results obtained here may be us
for a number of applications in low energy hadron pheno
enology. These are defined in Eq.~3.10! and listed in Appen-
dix C. Typical values ofA andB may be read from the sma
magnitude angle solution in Tables II and III. We expect
improve and further check the accuracy of this model
extending the underlying models ofpp andpK scattering to
higher energies and to other channels. Finally, it may
interesting to compare our results with those of quark mo
and lattice gauge theory approaches to QCD. In the fut
ongoing experiments on radiative decays of thef(1020) can
be expected to provide important information about the
ture of thef 0(980) state@36#.
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APPENDIX A: DIAGONALIZATION OF HYPERFINE
HAMILTONIAN

In this appendix, we give some explicit details of the de
vation of Eqs.~2.13! and ~2.14! which, while not being ex-
plicitly used in our approach, furnish the main reason
expecting the scalarqqq̄q̄ states to be especially strong
bound. Our results agree with those of Jaffe who followe
different method.

Let us begin by considering only flavor quantum numb
in order to write down the quark content of members o
qqq̄q̄ scalar nonet. Taking the quarks to be in the fundam
tal representation,3, of SU(3) f we have the familiar irreduc-
ible decomposition of products of quark states:

3^ 356% 3̄ ~A1!

3̄^ 3̄56̄% 3. ~A2!

So the only possibility for obtaining aqqq̄q̄ flavor nonet is
from the combination3̄^ 3 of q2

^ q̄2 states. Letqi be a basis
for the representation space3, where i 51, 2 and 3 corre-
spond to up, down and strange quarks respectively, with c
jugate ~antiquark! basis q̄i . Then we can consider ‘‘dua
quark’’ bases corresponding to theqq and q̄q̄ flavor triplet
spaces~thus the states are antisymmetric with respect to
change of flavor indices!, namely Tmªem jkq̄

j q̄k and Tm

ªem jkqjqk . Up to ~anti!symmetrization and linear combina
tions we have the flavor nonet given in Eq.~2.8!. SinceTm

and Tm contain at most one strange quark each, the no
6-8
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states contain at most two strange quarks. We note also
in contrast to the conventionalqq̄ scalar nonet,N3

3 is non-
strange in this realization.

In order to complete the description ofqqq̄q̄ scalar nonets
we consider the spin and color quantum numbers. Using
facts that~i! theqq andq̄q̄ parts of the state are individuall
totally antisymmetric and~ii ! the overallqqq̄q̄ hadron must
be a color singlet, where the quarks transform according
the fundamental representation ofSU(3)c , we obtain just
two possibilities which include scalar flavor nonets~noting
that 6c^ 6̄c51c% 8c% 27c), namely

u01,9&1ª@01,3̄f ,3̄c#qq^ @01,3f ,3c# q̄q̄ ~A3!

u01,9&2ª@11,3̄f ,6c#qq^ @11,3f ,6̄c# q̄q̄ , ~A4!

where we have shown the spin-parity, flavor and color r
resentations respectively forqq and q̄q̄ separately.

The ‘‘hyperfine’’ interaction Hamiltonian needed for ou
discussion is given in Eq.~2.11!.

Given two representations of SU(n) we have the well-
known relationship between the quadratic Casimir opera
of these representations, sayJA

2 and JB
2 , and that of their

product:

JA•JB5
1

2
@Jtotal

2 2JA
22JB

2 #. ~A5!

It can be seen, using Eq.~A5!, that the parts of the hyper
fine Hamiltonian which involve sums overqq or q̄q̄ pairs are
diagonal with respect to the bases for the scalar nonets
sen in Eqs.~A3! and~A4!. In order to calculate the expecta
tion value of theqq̄ terms in Eq.~2.11! using Eq.~A5! we
first expand the bases~A3! and~A4! in terms of states where
the spin and color of theqq̄ pairs are explicit.

To find the recoupling coefficients we follow Close@29#,
where more detail is given. For the case of spin recoup
we have, assuming that all of the quarks in the scalar me
are in relatives-wave states, that in order to couple to to
angular momentumJ50, either bothqq̄ pairs must be in
j P512 or both in j P502 states, which we denote as vect
~V! and pseudoscalar~P! respectively. Thus we can expan
the spin part of the state in the following manner:

uJtotal50&1 or 25aPP1bVV, ~A6!

wherea andb can be determined in each case by rewriti
both sides@the left-hand side will be different for the tw
states~A3! and~A4!# in terms of their constituent quarks an
antiquarks using the usual Clebsch-Gordon identities
SU(2).

Similarly for the color states we note that, since3^ 3̄58
% 1, only combinations of the form

a8u8c&qq̄^ u8c&qq̄1b8u1c&qq̄^ u1c&qq̄ ~A7!
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include color singlets and therefore the color parts of E
~A3! and ~A4! can be written in terms of this basis. Fo
brevity we simply present the results of our recoupling co
ficient expansions in Table VI.

In order to give an idea of the next step let us look at o
of the off-diagonal elements of^Hh f&, whereHh f is as in Eq.
~2.11!, with respect to the basis given in Eqs.~A3! and~A4!.
Labelling the quarks and antiquarksq1q2q̄3q̄4 we have that
the only non-vanishing off-diagonal pieces in^Hh f& are the
sums over the pairs~13!, ~14!, ~23! and ~24!. For example,
applying Eq.~A5! yields

S1•S3F1•F3u01,9f&15
1

2F2
6

4

1

2
PP1

1

2

A3

2
VVG

3F2
8

3

1

A3
1c^ 1c2

1

3
A2

3
8c^ 8cG ,

~A8!

where for the color operators we have used theSU(3) Ca-
simir operators given in Table VII. Finally we take the inn
product with the expansion ofu01,9&2 in Table VI which
gives that

^S1•S3F1•F3&215
1

4
A3

2
. ~A9!

There are, as noted above, four such combinations, al
which contribute equally. An analogous calculation can
performed for the diagonal matrix elements giving finally

^Hh f&ab52DF 1 A3

2

A3

2

11

6
G , ~A10!

TABLE VI. Spin and color recouplings for flavor nonets.

Nonet Spins ofqq̄ pairs Color products ofqq̄ pairs

u01,9&1 1
2PP1

A3

2
VV

1

A3
1c^ 1c2A 2

3 8c^ 8c

u01,9&2
A3

2
PP2

1
2 VV

A 2
3 1c^ 1c1A 1

3 8c^ 8c

TABLE VII. SU~3! quadratic Casimir operators.

Representation F2

3 or 3̄
4
3

8 3
1 0
6 10

3

6-9
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where a and b run over the indices 1 and 2 labelling th
flavor nonetsu01,9&1 and u01,9&2 . Thus the eigenstates o
the hyperfine interaction are mixtures of these nonets, co
sponding to energies E1522.71D and E2
520.12D, which are in agreement with@25#. The corre-
sponding eigenstates are

u01,9&50.585u01,9&110.811u01,9&2

u01,9* &50.811u01,9&120.585u01,9&2 .
~A11!

APPENDIX B: CHIRAL COVARIANT FORM

Here we present the terms of the total Lagrangian invo
ing the scalar nonetNa

b(x) in chiral invariant or~for the mass
terms which break the chiral symmetry! in chiral covariant
ac
v

co

o
a

07402
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form. We follow the general method of non-linear realizati
described in@28# but our notation is as in Appendix B of@3#.
The objectj5exp(if/Fp) discussed there transforms as

j→ULjK†5KjUR
† ~B1!

under chiral transformation. Our nonet field is considered
transform as if it were made of ‘‘constituent’’ quarks
namely

N→KNK†. ~B2!

With the convenient objects

pm5
i

2
~j]mj†2j†]mj!, vm5

i

2
~j]mj†1j†]mj!

~B3!

we write the additional Lagrangian terms involvingN:
L52
1

2
Tr~DmNDmN!2aTr~NN!2

b

2
Tr@NN~j†Mj†1jM †j!#2c Tr~N!Tr~N!

2
d

2
Tr~N!Tr@N~j†Mj†1jM †j!#1Fp

2 @Aeabcede fNa
d~pm!b

e~pm!c
f 1B Tr~N!Tr~pmpm!

1C Tr~Npm!Tr~pm!1D Tr~N!Tr~pm!Tr~pm!# ~B4!
ms

on-
es
one
whereD5]m2 ivm andM5M † is the spurion matrix de-
fined after Eq.~2.1!. The entire equation~B4! is formally
invariant if we allowM to transform asM→ULMUR

† .
This Lagrangian reproduces Eqs.~2.10! and ~3.8! but also
contain interactions with extra pions. These extra inter
tions do not change anything in this paper or in the tree-le
formulas forff scattering in@2# and @3#.

APPENDIX C: COUPLING CONSTANTS

Here we find the scalar-pseudoscalar-pseudoscalar
pling constants defined in Eq.~3.10! in terms of the param-
etersA,B,C,D @see Eq.~3.8!#, the scalar mixing angle@see
Eq. ~3.6!# and the pseudoscalar mixing angle,up . The latter
is defined according to

S h

h8
D 5S cosup 2sinup

sinup cosup
D S ~f1

11f2
2!/A2

f3
3 D , ~C1!

whereh andh8 are the fields which diagonalize the pseud
scalar analogue of Eq.~3.2!. The usual convention employs
different basis; in this convention the angle isuu and
-
el

u-

-

S h

h8
D 5S cosuu 2sinuu

sinuu cosuu
D S ~f1

11f2
222f3

3!/A6

~f1
11f2

21f3
3!/A6

D .

~C2!

The relation between the two angles is

up5uu154.74°'37° ~C3!

in which case~see for example@37#! uu'218° was taken.
More recent analyses~@38# and @39#! have modified this
treatment somewhat by considering derivative mixing ter
as well as non-derivative ones.

Note that the basis for Eq.~C1! was chosen so thatq̄q is
the more natural picture for the pseudoscalar nonet, in c
trast to Eq.~3.6! for the scalars. Because the mixing angl
can take on any values, this in no way biases the analysis
way or the other.

The g ’s are predicted in the present model as
6-10
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gkKp5ga0KK522A ~C4!

gspp52B sinus2A2~B2A!cosus ~C5!

gsKK52~2B2A!sinus22A2B cosus ~C6!

g f 0pp5A2~A2B!sinus22B cosus ~C7!

g f 0KK52~A22B!cosus22A2B sinus ~C8!

gkKh5C sinup2A2~C2A!cosup ~C9!

gkKh85A2~A2C!sinup2C cosup ~C10!

ga0ph5~C22A!sinup2A2C cosup ~C11!

ga0ph85~2A2C!cosup2A2C sinup ~C12!

gshh5FA2~B1D !2
1

2
~C12A14D !sin 2up1A2~C1D !cos2 upGsinus

2F ~B1D !2
1

A2
~C12D !sin 2up1~A1D !cos2 up1C sin2 upGcosus ~C13!

gsh8h85FA2~B1D !1
1

2
~C12A14D !sin 2up1A2~C1D !sin2 upGsinus

2F ~B1D !1
1

A2
~C12D !sin 2up1~A1D !sin2 up1C cos2 upGcosus ~C14!

gshh85@A2~C1D !sin 2up1~C12A14D !cos 2up#sinus

2@A2~C12D !cos 2up1~A2C1D !sin 2up#cosus ~C15!

g f 0hh5F2A2~B1D !1
1

2
~C12A14D !sin 2up2A2~C1D !cos2 upGcosus

2F ~B1D !2
1

A2
~C12D !sin 2up1~A1D !cos2 up1C sin2 upGsinus ~C16!

g f 0h8h852FA2~B1D !1
1

2
~C12A14D !sin 2up1A2~C1D !sin2 upGcosus

2F ~B1D !1
1

A2
~C12D !sin 2up1~A1D !sin2 up1C cos2 upGsinus ~C17!

g f 0hh852@A2~C1D !sin 2up1~C12A14D !cos 2up#cosus2@A2~C12D !cos 2up1~A2C1D !sin 2up#sinus .
~C18!
y su,
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