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Putative light scalar nonet
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We investigate the “family” relationship of a possible scalar nonet composed i {t#80), thef,(980)
and theo and k type states found in recent treatmentsmof and wK scattering. We work in the effective
Lagrangian framework, starting from terms which yield “ideal mixing” according to Okubo’s original formu-
lation. It is noted that there is another solution corresponding to dual ideal mixing which agrees with Jaffe’s
picture of scalars agqqq states rather thagq states. At the Lagrangian level there is no difference in the
formulation of the two caseéother than the numerical values of the coefficienta order to agree with
experiment, additional mass and coupling terms which break ideal mixing are included. The resulting model
turns out to be closer to dual ideal mixing than to conventional ideal mixing; the scalar mixing angle is roughly
—17° in a convention where dual ideal mixing is (S0556-282(99)05007-9

PACS numbgs): 13.75.Lb, 11.15.Pg, 11.80.Et, 12.39.Fe

I. INTRODUCTION and decays ar€roughly) explained according to a nonet
scheme, first proposed by Okuf@4], known as “ideal mix-
Recently there has been renewed discusgler2(] about ing.” It has been widely recognized that the low-lying sca-
evidence for low energy broad scalar resonances innthe lars[at least the well-observea}(980) andfy(980)] do not
and 7K scattering channels. In the approdth-3] on which  appear to fit this usual pattern. Hence J§#8] proposed an
the present paper is based, a need was found forraeso-  attractive scheme, in the context of the MIT bag mdaél,

nance ¢r) at 560 MeV and arK resonance«) around 900 in which the light scalars are taken to havejaqq quark
MeV. That approach, motivated by theNL/[21] approxima-  structure(and zero relative orbital angular moment®ther
tion to QCD, involves suitably regularizegear the poles models explaining light scalars as “meson-meson” mol-
tree level diagrams computed from a chiral Lagrangian an@éculeg27] or as due to unitarity corrections related to strong
containing resonances within the energy range of interesmeson-meson interactiofid,12] also involve four quarks at
Attention is focussed on the real parts which satisfy crossinghe microscopic level and may possibly be related.
symmetry but may in general violate the unitarity bounds. Our concern in the present paper is to study the nonet
Then the unknown parametefisroperties of the scalarare  structure of the light scalars based on the approadh-e8.
adjusted to satisfy the unitarity boundise. to agree with  There, an effective chiral Lagrangian treatment was used. In
experimenk In this way an approximate amplitude satisfy- such a treatment, only th8U(3) flavor properties of the
ing both crossing symmetry and unitarity is obtained. scalars are relevah28]. At this level, one would not expect
Similar results for the scalars have been obtained in difany difference in the formulation of our model since both
ferent modelg4—19 although there is not unanimous agree- Okubo’s model and Jaffe’s model use nonets with the same
ment. These are, after all, attempts to go beyond the energyyy(3) flavor transformation properties. In fact, we shall
region where chiral perturbation theof92] can provide a  show(in Sec. 1) that the effective Lagrangian defining ideal
practical systematic framework. ~ mixing in Okubo'’s scheme has two “solutions.” The one he
Now if one accepts a light- and « and notes the exis- chose explains the light vector mesons with a natural quark-
tence of the isovector scalap(980) as well as thé,(980),  antiquark structure. The other solution is identical to Jaffe’s
there are exactly enough candidates to fill up a nonet ofyodel of the scalars. We note that it may be formally re-
scalars, all lying below 1 GeV. Presumably these are not thgarded as having a dual-quark—dual-antiquark structure,
“conventional” p-wave quark-antiquark scalars but some-where the dual quark is actually an anti-diquark.

thing different. It would then be necessdsee for example  The initial appearance is that the four masses of the light
the“d|scuss[on on p. 355 f23]) to have an additional nonet nonet candidates obey the ordering relafigg. (2.9) below]
of “conventional” heavier scalars. of the dual ideal mixing picture but not the more stringent

Most mesons fit nicely into a pattern where they haverequirement of this picture, E€R.4). Furthermore, the decay
guantum numbers of quark-antiquarkd) bound states with  f,(980)— = is experimentally observed but is predicted to
various orbital angular momenta. Furthermore, their masseganish according to ideal mixing. Thus, it is necessary to

consider some corrections to the ideal mixing model. When
such correction terms are addgd yield a structure like Eq.

*Electronic address: black@physics.syr.edu (2.10] the new model actually displays two different solu-
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ideal mixing picture is more nearly correct. In order to re- Ni GV
solve this question the predictions for the scalar- _ s o
pseudoscalar-pseudoscalar coupling constants are first com- N=|a Nz «° | (2.2
puted for each of these two solutions. The five coupling kK~ K® NS

constants needed farK scattering are found to depend on

only two parameters —A andB in Eq. (3.8). Then(see Sec. yjth a=(N1-N3)/y2. There are two iso-singlet states: the
IV) the 7K scattering is recalculated, taking these two pa-.ompination NEENZ+N3)/V3 is anSU(3) singlet while
rameters as quantities to be fit. However, it turns out thaEN1+N2—2N3)/\/§ beloSQS to ar8U(3) octet. These wil
both solutions yield equally probable fits to the scatter- in éenezral mii with each other whedU(3) is Broken Di-

ing amplitudes. Finally, the question is resolved by noting
agonalizing the fields in Eq2.1) yields the diagonalideally
that only one of the two solution sets gives results which mixed) states (\|1+N2)/\/§ andN3

could be compatible with the previoy@] m scattering Now it is easy to read off the particle masses from Eq

analysis and with théy(980)— 77 decay rate. : B S
The favored solution is characterized by a scalaf (2.'1) n term_s ofa, b andx. This information is conve-
niently described by the two sum rules

mixing angle which is closer to the dual form of ideal mixing
than to the usual form. Using a conventifsee Eq.(3.6)]

where an angleds=0 means dual ideal mixing anf| ) ) NI+ N3

= 77/2 means conventional ideal mixing, the favored solution m“(ag) =m 2 ) 2.3
hasfs~ —17°. It should be noted that this result is based on

an analysis of scalar coupling constants which are related to

each other “kinematically” but which are related to experi- mz(ao)—mZ(K)=m2(K)—m2(N§). (2.4
ment through “dynamical” models ofrK and == scatter-

ing. There are two characteristically different kinds of solutions,

Some technical details are put in three Appendixes. Apdepending on whether both sides of E2.4) are positive or
pendix A contains a brief discussion of some key features ofiegative. Okubo’s original scheme amounts to the choice
the qqaq scalars as expected in the quark model. Appendihat both sides of Eq2.4) are negative. Then
B shows how the needed terms of the Lagrangian including

the scalar nonet may be presented in chiral covariant form. N1+N3
Finally Appendix C contains a list of the various scalar- m?(N3)>m?(k)>m?(ag) =m? . (2.9
pseudoscalar-pseudoscalar coupling constants and their rela- V2

tions to the parameters of our Lagrangian and to the scalar

and pseudoscalar mixing angles. This is consistent with a quark model interpretation of the

composite nonet field:

IIl. SCALAR NONET MASSES NE~q,qP, (2.6)

For orientation, it may be useful to start off by paraphras- o N

ing Okubo’s classic discussig@4] of the “ideal mixing” of ~ identifying q;,0,,03=u.d,s. Specifically, Eq.(2.6) states
a meson nonet field, which we denote as the@Bmatrix  that N3 is composed of one strange quark and one strange

N2(x). In our case the field will havd®=0" rather than antiquark,« of one non-strange quark and one strange anti-
JP=1" as in the original case. The notation is such that gduark whileay and (N3+N3)//2 have zero strange content.
lower index transforms under flavé&U(3) in the same way Thus the ordering in E¢2.5) naturally follows if the strange
as a quark while an upper index transforms in the same wagiuark is heavier than the non-strange quark, as has been well
as an antiquark. In this discussion it is not strictly necessargstablished. This ideal mixing picture works well for the vec-
to mention the quark substructure Bf — only its flavor ~tor mesons [with the reidentifications N3— ¢, (N
transformation property will be of relevance. This lack of +N§)/\/§—>w,x—>K* anday— p] and reasonably well for
specificity turns out to be an advantage for our present pumost of the other observed meson multiplése p. 98 of

pose. [23]). The exceptions are the low-lying Gand 0" nonets. It
The “ideal mixing” model may be defined by the follow- is generally accepted that the deviation of therfbnet from
ing mass terms of an effective Lagrangian density: this picture can be understood from the special connection of

the pseudoscalar flavor singlet with th§1), anomaly of
QCD. The case of the 0Ononet has been less clear, in part
Limass= —a Tr(NN)—b Tr(NNM), (2.1)  because the existence of the scalar states needed to fill up a
low-lying nonet has been difficult to establish.
wherea andb are real constants whild1 is the “spurion Now a while ago, Jaff¢25] suggested that the low-lying

matrix” M=diag(1,1x), x being the ratio of strange to Scalars might have a quark substructure of the forguq
non-strange quark masses in the usual interpretation. Iso-spiather tharqq This model can be put in the identical form
invariance is being assumed. The names of the scalar paas our previous discussion of Eq2.1) — (2.4) by introduc-
ticles with non-trivial quantum numbers are ing “dual” flavor quarks (actually diquarks
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T,= eabc@a:’ Ta= €2°,9. , . where A is a positive quantity depending on the quark or
antiquark wave functionsS= ¢/2 is the spin operator and
wherein it should be noted that the quark fields are anticomE=M2 (A are the Gell-Mann matricgss the color-spin
muting quantities. Then we should write the scalar nonet a@Perator. The sum is to be taken over each paif)(of
objects(i.e. qqg,qq or qq) in the hadron of interest. Equation
(2.17) represents an approximation to the hyperfine interac-

sdds sus glud tion obtained from one gluon exchange in QCD; it is widely

NP~T,TP~| suds suus suud |. (2.8  Uused in both quark mod¢k9] and bag model treatments of
e hadron spectroscopy.
udds udus wud Standard application of E¢2.11) to the p— = and A

L —N mass differences in the simple quark model yields
In the presengqqq case both sides of EQ.4) should be
taken to be positive. The tentative identificatiofig 980) (mlHpdlm)=—Agq,  (p|Hnilp)=+3%Agq
1 2 3 / qq: hf p 342qq:
=(N3+ NZ)/\/E ando= N3 would then lead to an ordering
opposite to that of E¢(2.5):

(N[HpgNY=—3Aqqq,  (A[HpdA)=+3A4qq,

(2.12

in which a subscript has been given to thdactor for each
This is in evident good agreement with the experimentallyquark configuration. It can be seen thiatis expected to be
observed equality of thé,(980) anday(980) masses. Fur- fairly substantial — of the order of several hundred MeV —
thermore, it is seen that the Ordering in Ea_g) agrees with in these cases. The evaIuatioEf the expectation value of Eqg.
the number of underlyindtrue) strange objects present in (2.11) for the lowest scalafgqqgqg nonet statg25] is more

m?(fo)=m?(ag)>m?(k)>m?(o). (2.9

each meson according to the alternative an&ag). complicated than for the above cases and yields a large en-
If additional term$ are added to the ideal mixing model in hancement factor due to the color and spin Clebsch-Gordon
Eqg. (2.1) to yield manipulations:
Lmase< —a Tr(NN)—b Tr(NNM) —c Tr(N)Tr(N) (07[Hp|0")~=2.71gqqq- (2.13
—d Tr(N)Tr(NM), (2.10 Thus, quark model arguments make plausible a strongly

1 s _ bound qqa configuration. It should be remarked that the
the states N3+ N3)/\2 andN3 will no longer be diagonal. |owest lying 0" nonet state in the quark model which diago-
The physical states will be some linear combination of thesenalizes Eq(2.11) is a particular linear combination of state 1
This “non-ideally mixed” situation will be seen to be re- ;. \vnich theqq pair is in a 3of color and is a spin singlet

quired in order to explain the experimental pattern of scalat, 4 state 2 in which theq pair is in a color 6 and is a spin
decay modes. We would like to stress that, in the effectivqrimet:

Lagrangian approach, no more than the assumption of mass
terms like EQ.(2.10 is required; it is not necessary to as-
sume a particular quark substructure Nﬁ That field may
represent a structure like E@.6), one like Eq.(2.8), a linear
combination of these or something more complicated. O{ji
course, it is still interesting to ask whether the resulting pre
dictions are closer to those resulting from Eg.8) or from

|0")~0.5851)+0.8112). (2.14

A derivation of Eqs(2.13 and(2.14) is given in Appen-

x A. It is amusing to note that, at the quark level, the dual
‘quark and dual antiquark are strongly attracted by a
magnetic-type interaction.

Eq. (2.6).

A natural question concerns the plausibility of the “dual”
ansatz in Eq(2.8), which at first sight seems merely con- IIl. SCALAR NONET MIXINGS AND TRILINEAR
trived to yield the ordering in Eq(2.9). Jaffe[25] showed COUPLINGS

that there is a dynamical basis for such an ansatz in the MIT First |et us consider the consequences of the generalized
bag mo_de[26]. It essentially arises from the strong binding mass termg2.10, which allow for arbitrary deviations from
energy in such a configuration due to a hyperfine interactionyeg) mixing. The squared masses of teand « are read

Hamiltonian of the form off as
2 _
m?(k)=2a+(1+x)b. (3.1
lwe are neglecting a possible terme Tr(NM)Tr(NAM) which Using the basis(N3,(N1+N3)/\2), the mass squared
is second order in symmetry breaking. matrix of the two iso-scalar mesons is also read off as
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2m?(k) —m?(ap) +2c+2dx  \2[2¢+ (1+x)d] tially traded for the four masses. We will tak&3] the

5 . strange to non-strange quark mass ratto be 20.5 for defi-

\/§[2C+(1+X)d] m*(ap) +4c+4d niteness. Then, up to a discrete ambiguity, the mixing angle
(32 between the two isoscalars will be predicted.

In obtaining this result Eqg3.1) were used to eliminate the It seems worthwhile to point out that the structure of our
parameters andb. The physical isoscalar states and squarednass formulas providesonstraintson the allowed masses.
masses are to be obtained by diagonalizing this matrix. Nol© See this, note that the diagonalization of £2}2) yields
tice that the four parametess b, ¢ andd may be essen- the following quadratic equation fat=(1—x)d:

6d%—8[m?(ay) — m?(k)]Jd+[3m3(o)m?(f,) — 6m?(k)m?(ay) + 3m*(ag) — S(4m?( k) —m3(ay))]=0, (3.3

where 5=m?(o) + m?(fy) —2m?( k) and we have eliminated according to 8= 6— (4+2x)d. Hereo andf, stand respec-

tively for the lighter and heavier isoscalar particles. In orderdf@o be purely real, required at the present level of analysis,
we must have

[m?(ag) —4m?*(x) 1>+ 3m?(ag)[M?() + m*(f) ]+ 9m?(o)m*(f) < 12m?(ag) [m?(o) + m*(fo) . (3.4

Takingm(fy,) =980 MeV andm(ay)=983.5 MeV, accord- which defines the scalar mixing anglg. Since Eq(3.3) for
ing to [23], andm(o) =550 MeV from[2] we find that Eq. 7 s quadratic, we expect two different solutions for the pair

(3.4) limits the allowed range ofn(«) to (c,d) and hence fo, when we fix the four scalar masses
m(ay), m(x), m(o) andm(fy). A numerical diagonaliza-
685 MeV<m(k)<<980 MeV. (3.5  tion for the choican(x)~900 MeV as above yields the two

possible solutions
It is encouraging that our recent study ®K scattering[3]
(see alsd15]) yielded a value fom(«) of about 900 MeV,
within this range.
The physical particlesr and f, which diagonalize Eq. (8 Os~—21°
(3.2) are related to the basis state§ and (N1 +N2)/\2 by

N3 (b)  6~—89°. 3.7

o cosf; —sind
=(. ° I NIMNZ |, (3.8
fo sinf;  cos6g

\/E Solution (a) corresponds to & particle which is mostly\lg
100.0 , ‘ , (presumablyqqqq type) while solution(b) corresponds ter
which is (N]+N3)//2 (i.e. qq type). We see that when de-
viations from ideal mixing are allowed, the pattern of low
lying scalar masses is by itself not sufficient to determine the
quark substructure of the scalars. This statement is based on
Eq. (2.10 which contains all terms at most linear in the mass
spurion M.

For the complete allowed range wf in Eq. (3.5 the two
(“small” and “large” ) mixing angle solutions are displayed
in Fig. 1. Notice that the small angle solution is zero for
m,~800 MeV; this is approximately where=d=0,
son | V| which would correspond to the dual ideal mixing situation.

! In our convention— 7/2< .= /2.
-80.0 | 1 Next let us consider the trilinear scalar-pseudoscalar-

1000 , ‘ , pseudoscalar interaction which is related to the main decay

0.60 0.70 . fi-ggv) 0.90 1.00 modes of the light scalar nonet states. We denote the matrix
i of pseudoscalar nonet fields bég(x). The generaSU(3)

FIG. 1. Scalar mixing angle solutions as functionsyf. flavor invariantN¢ ¢ interaction is written as

20.0

-20.0 |

o Large—angle solution

-40.0 | Small-angle solution
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ﬁNqub:Afabcfdengaﬂ¢gaM¢£+B Tr(N)Tr(d, 0, ¢) shown is that, by itself, the first term of E3.9 Bredicts
zero coupling constants for bofj— 77 andc— KK when
+CTI(NI,)Tr(d,.) the “dual” ideal mixing identifications,a=N§ and f,

+D Tr(N)Tr(d, ) Tr(d, ), (3.8 =(Ni+N3/\2, are made. This is in agreement with Jaffe’s

o picture(see Sec. V B of25]) of the dominant scalar decays
whereA,B,C,D are four real constants. The derivatives of arising as the “falling apart” or “quark rearrangement” of

the pseudoscalars were introduced in order that 8® neir constituents. It is easy to see from E8.9) that N

properly follows from a chiral invariant Lagrangian in which . — L N2)/ 2
the field ¢2 transforms non-linearly under axial transforma- cannto_t ia” apart int&KK and that N1 + N3)/y2 cannot fall
apart intom .

tions. The chiral aspect of our model is largely irrelevant to .
the discussion in the present paper but, for completeness, Of coursefo— ma must be non-zero becau$g(980) is
will be briefly treated in Appendix B. observed inrar scattering. In fact it also vanishes with just
Notice that the first term of Eq3.8) may be rewritten as the term Tr(Nd, ¢4, ¢) and the “conventional” identifica-
tion o= (N}+N3)/\/2 andf,=N3. Our model contains two
2ATr(NG,¢d,¢)—ATIH(N)TI(d,¢d,b) sources forf p— 7rar: the deviation from ideal mixing due to
_ thec andd terms in Eq(2.10 and also the presence of more
2ATHNG, $)Tr(9,¢) + ATH(N)TH(3, $)Tr(d,¢). than one term in Eq(3.8). Note again that the use of Egs.
(3.9  (2.10 and(3.8 does not require us to make any commitment

Thus, if desired, the complicated looking first term of Eq.as to the quark substructure .
(3.8) may be eliminated in favor of the most standard form Using isotopic spin invariance, the trilineblfg ¢ interac-
Tr(Nd,¢d,¢). Our motivation for presenting it in the way tion resulting from Eq(3.8) must have the form

Yomm oKK Ytomar Yt KK

YK Y - 0 0 -
\/5 0'07#17' 07#174' TO’(?MK(S’MK‘F Wfoﬂﬂﬂ" (9,”74’ ffoa#K&#K

_£N¢¢:_((9#ET (9M77K+ HC)+

V2

YagKK
V2

+ Yagry' Q0" 3,70, + VopnT0u M0yt Vory 09,M0,10' + Yoy pod,m'd,n'+ 'yfo,mfoaﬁn&ﬂn

+

d,K7 a9, K+ vk, (kd, Kd,n+H.C)+ vk, (kd ,Kd,n"+H.c)+ Yagm 720" 4, m7d,m

+yfonn,foaﬂnﬁﬂn'-i-yfo,?r”rfoﬁﬂn'&ﬂn’, (3.10

where they's are the coupling constants. The fields which (3.10)], their coupling constants only involve two parameters

appear in this expression are the isomultiplets: A andB. These are the terms which will be needed for the
subsequent work in the present paper.
K+ . . P . . Other related discussions of the scalar-pseudoscalar-
K= KO)' K=(K~ K9, K=( KO)’ k=(x" &9, pseudoscalar coupling constants are givefBii+32.
1 IV. TESTING THE MODEL'S COUPLING CONSTANT
Wi:T(WlIiWZ)' 0= 13, PREDICTIONS
2

Now let us consider how well the five coupling constants
YiKmr Yommr YoKK: 7f07777 and YfOKK can be correlated in

a§=i(a011ia02), a8=ao3, (3.11) terms of th_e two pgrametgﬁs and B. These coupling con-

\/E stants, which are listed in Eq$C4)—(C8), are the ones

which are relevant for the discussionsmofr scattering given

in addition to the isosinglets, f,, 7 and%’. The expres- in [2] and wK scattering given in3].

sions for they’s in terms of the parameters, B, C andD A very important question concerns the way in which
as well as the scalar and pseudoscalar mixing angles athesey’'s are to be related to experiment. For an “isolated”
listed, together with some related material, in Appendix C.narrow resonance the magnitude of the coupling constant is
Notice that if we restrict our attention to those terms inproportional to the square root of the width. Actually, the
which neither any nor an#’ appeaiffirst six terms of Eq. only one of the five for which this prescription roughly ap-
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TABLE I. Coupling constants previously obtained [ia] and  time. Furthermore, their interpretation is linked to the dy-

[3]. namical model from which they are obtained.
It seems to us that a relatively clean way to test the cor-

Coupling constant Value (GeV) Obtained from relation between the coupling constants in Table | is to re-
] 04 7 scattering calculate therK scattering amplitude and, inste_ad of taking
mo::' 1o 7 scattefing | YVt gmal 7’foKK| and| ¥yl from.tr.]e mar scattering output
Iy 0 | 78 = scattering and regardingy,x , and y,kx as fitting parameters as 8],

o ' . just A andB are now taken to be fitted.
L""K’J Eg :E 222::2::8 We work within the same theoretical framework that was

oKK =

developed i 2] for the =& scattering analysis and was fur-
ther explored in[3] for the case ofsK scattering. In this
framework, thewK scattering amplitude is computed in a
model motivated by the W, picture of QCD and its real part

is given as a sum of regularized tree level graphs which

. . > . include all resonances that contribute to the amplitude up to
uncertain in the range 40-100 MeV. The determinationy,, energy region of interest. The relevant Feynman dia-

| Vigmnl =2.43 GeV'!l given in [2] is based on using grams are shown in Fig. 1 8],

I'ioi(fo) as a parameter in the model analysismaf scatter- In thel =% channel, we perform g2 fit, using theminuIT

ing and making a best fit. package, of this model to the experimental data. Specifically,
The situation fory; kx is somewhat similar due to the in addition toA andB, the parameters to be fit are the regu-

poorly determined’,(fo). There is an additional difficulty larization parameter in the propagatorG,. (which can also

since the central value of tHg(980) mass ibelowtheKK  be interpreted as a total decay width, and parameters of
threshold. Thus the valuleys kk|~10 GeV ' presented in the resonanck(1430): its masi, , its couplingy, and

Sec. V of[2] is based on a model taking the finite width of the regularization parameter in gchannel propagatdg, -
the initial state into account. Incidentally, the non-negligible This will be done for different choices ah, . Note that the
branching ratio foff g— KK in spite of the unfavorable phase scalar mixing anglé, (see Sec. I will be different for each

space is an indication that tHg “wave function” has an choice of m, . In fact_, as already discussed, this actually
important piece containingg gives two different mixing angles for each, : one (large

The o, as “seen” from the analysis g&], for example, is angle solutioh closer to theqq ansatz(2.6) and the other

neither isolated nor narrow. A suitable regularization of the(Small angle solutioncloser to theqqqq ansatz(2.9). It is

tree amp"tude near the po|e was argued to be of the form Vvery interesting to see which one is chosen in our model.
More details of the model are given {18]. The possible
values ofm, are limited by Eq.(3.5) for consistency with
m,G _ m,G (4.)  our present model for masses based on(Ed.0.
m2—s mi-s—im,G’’ Let us first choosen,=897 MeV, as obtained ifh3].
Then the fif to the real part of thé=3 amplitude,R}?, is
whereG and G’ are real.G is taken to be proportional to shown in Fig. 2 while the fitted parameters and resulting
¥>.__ while G’ is considered to be a regularization param-predicted coupling constants are given in Table Il. The re-
eter. For a narrow resonance with negligible background isults for both possible mixing angles correspondingrtp
would be expected tha’' =G. However, considering both =897 MeV are included. It is seen that théfits to R(l)’2 are
G andG’ as quantities to be fifor, essentially equivalently, essentially equally good compared to each other and com-
restoring local unitarity in a crossing symmetric wayelds  pared to the one if8]. However, if we compare the coupling
G’'#G. The determinatior}y,,.|=7.81 GeV'! is based constants in Table Il with those obtained previously in Table
on such a fit. I, we see that while the coupling constants
The situation concerning ., is similar to the one for — y¢ .., ¥t k. Yomr and v, Obtained with s~ —20°

Yonr- Making an analogous fit to the-= ; amplitude ofrK  agree with those obtained earlier in connection with and
scattering(see Sec. IV of(3)) yields |yu.|~5 GeV'". 7K scattering, their values obtained witQ~—89° do not
This value, however, is based on inputting theagree so well.

|Yigmals |1kl @and|y,r,| values obtained as above and ~ Fyrthermore, the value Ofys,nn Obtained with 6

making a particular choice of,«k . The value ofy,«k was  ~—89° would lead to a value for thig, width several times
however not very accurately determined in this model; aarger than the experimentally allowed range. It thus seems

i ; ~ 1
coerromlse Ch(;'(t:ﬁ Wa%KlKMS GetV’t. iouslv obtai hat theqqqq picture, to whichfs~—17° is much closer,
summary ot the coupling constants previously oblaiN€Cy;yes 5 petter overall description of the scalar nonet than

is shown in Table I. —
The discussion above illustrates that it seems necessary #9€S theaq picture.

obtain the coupling constants of the low-lying scalars from a

detailed consideration of the relevant scattering processes. It

is not sufficient to read them off frof23] at the present  2The experimental data points are taken fri8¥].

plies is Yigmm: the appropriate formula is given in EG.5)
of [2]. Even here there is a practical ambiguity in that, while
the 77r branching ratio is listed ii23], the total width is

074026-6



PUTATIVE LIGHT SCALAR NONET

' TABLE Illl. Extracted parameters from a fit to theK data.
m,=875 MeV.
0.4 +
Fitted parameter 6= —15.61 0s=86.14
as | G 346+2 MeV 357+3 MeV
M, 1389+4 MeV 13884 MeV
Ve 4.42+0.09 GeV!  4.39+0.09 GeV'!
e 00T G, 275+10 MeV 272+10 MeV
A 2.87+0.03 GeVv'! 2.96+0.03 GeVv'!
-0z | « Experiment B —2.34+0.03 GeV! -2.56+0.04 GeV'!
m,=897MeV, 6,=-20.33 ¥2 3.23 3.26
—04 | Predicted couplings
Yk —5.75 GeV'! —5.92 Gev'!
06 , , , , Yomm 8.36 GeV'! —4.58 Gev'!
0.6 0.8 1.0 1.2 14 1.6 Vimm 253 Ge\fl 8.13 Ge\fl
Vs (GeV) 1 1
YokK 10.45 GeV —15.62 GeV
FIG. 2. Comparison of the theoretical predictionR}f? with its ¥k« 12.76 GeV'! 8.30 GeV'!
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experimental data.

be made by examining the=2#7K amplitude® shown in
Fig. 3. It is seen that decreasing, worsens the agreement
with experiment. This feature arises becaysgy , to which
the 1=% amplitude is sensitive, increases with decreasing
m, . This situation was discussed in more detail in Sec. V of
[3], where it was noted that higher mass resonances may be
important in this channel.

We note that the three parameters describing the

It is interesting to investigate the effect of changimg
within the range given in Eq3.5). As examples, Tables I
and IV show the fitted parameters for,=875 MeV and
m,=800 MeV respectively. Several trends can be dis
cerned. Asm, decreases from 897 MeV the goodness of fit
actually improves from y?=3.94 to x?=2.3 at m,
=800 MeV. On the other hand the value«pffow increases

better agreement with experiment andrgt=800 MeV it is All the fits yield for the parameters and B that B/A

many times larger than allowed by experiment. It seems that — 1. Using Eqs(3.8) and (3.9) then shows thaty,s ap-
the fit atm,=875 MeV is not very different from the one at proximately looks like

m,=897 MeV; this gives an estimate of the “theoretical
uncertainty” in our calculation. On the other hand, Lngpp=2A[Tr(Nd, ¢d,¢)—pTr(N)Tr(d,,¢d, )]+ -,
=800 MeV seems to be ruled out, as are still lower values (4.2
of m,.
Another argument in favor of the larger valuesnof can
3The experimental data points are taken fri86].

TABLE II. Extracted parameters from a fit to theK data.m, TABLE IV. Extracted parameters from a fit to theK data.

=897 MeV. m,=800 MeV.
Fitted parameter 6s=—20.33 6s—=—89.14 Fitted parameter 0s=—0.84 0s=71.37
G. 314+3 MeV 3223 MeV G/ 4502 MeV 4792 MeV
M, 1390+4 MeV 1389+4 MeV M, 1387+4 MeV 1384+4 MeV
Ve 4.42+0.09 GeVv'! 4.4+0.09 GeVv'! Ve 4.40+0.09 GevV'!  4.36+0.09 GeV'!
G, 275+10 MeV 273+11 MeV G, 273+10 MeV 268+11 MeV
A 2.51+0.03 GeV! 2.57+0.03 GeVv'? A 4.32+0.03 GeV'?! 4.50+0.04 GeV'!
B —1.95+0.04 GevV! -2.12+0.04 GeVv'? B —3.91+0.03 GeV'! —4.29+0.04 GeV'!
X2 3.94 3.95 X2 2.34 2.39
Predicted couplings Predicted couplings
Yk —5.02 GeVv'! —5.14 GeVv'! Yk —8.64 Gev'! —9.01 Gev'!
VYomm 7.26 Gev'? 4.33 Gev'!? VYomm 11.76 GeVv'! —4.15 GeVv'!
Vimn 1.46 GeV'! —6.56 GeV'? Vi 7.65 Gev'?! 1452 Gev'?
YokK 9.62 GeVv'! 13.69 GeV'! YokK 11.41 GeVv'! —20.91 GeVv'?
Yikk 10.10 GeVv'? —5.78 GeVv'!? YVikK 24.12 GeVv'! 19.85 GeVv'!
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7 grangian[see Eq.(2.10]. The resulting mass, mixing and
——- m,=800 MeV, 0,=71.37° scalar-pseudoscalar-pseudoscalar coupling patfeees Eqg.
145 T mesl e giggﬁ: S (3.8)] were discussed in detail. The outcome of this analysis
—— m=875 MeV, 0,=-15.61° 7 is that the dual picture is in fact favored. More quantitatively,
- ngg; Mov. g:::gg:;g: . ] the appropriate scalar mixing angle in E8.6) comes out to

« Experiment Z be about—17°*=4° compared with 0° for dual ideal mixing

- and*+90° for conventional ideal mixing. This corresponds to
m,. ranging from 865 to 900 MeV.

The coupling constant results obtained here may be useful
for a number of applications in low energy hadron phenom-
enology. These are defined in E§.10 and listed in Appen-

dix C. Typical values oA andB may be read from the small
magnitude angle solution in Tables Il and Ill. We expect to
improve and further check the accuracy of this model by
extending the underlying models efr and 7K scattering to
105 10 12 higher energies and to other channels. Finally, it may be
5 (GeV) interesting to compare our results with those of quark model
and lattice gauge theory approaches to QCD. In the future,
ongoing experiments on radiative decays of #(@020) can
be expected to provide important information about the na-
ture of thef,(980) statd 36)].

1.0

06 -

FIG. 3. Comparison of the theoretical predictions_gf with its
experimental data.

wherep is a positive number slightly less than unity and the
ellipsis stands for th€ andD terms which only contribute to ACKNOWLEDGMENTS
vertices involving at least ong or 7’.

Using this model we can also estimate the partial decay The work of D.B., A.H.F. and J.S. has been supported in
width of a,(980)—~KK which is entirely determined in P&t by the U.S. DOE under contract DE-FG-02-85ER
terms of the parametek [see Eq.(C4)]. As in the case of 40231. The work of F.S. has been partially supported by the
£,(980), the resonance lies below the decay threshold, antl-S- DOE under contract DE-FG-02-92ER-40704.
so the effect of the finite width of the decaying state must be
taken into accounfsee for example footnote 2 ¢2]). The
results are shown in Table akingm,=897 MeV) corre-
sponding to the extremes of the total width range given in In this appendix, we give some explicit details of the deri-
[23]. Also the effect of the mass difference between thevation of Egs.(2.13 and (2.14 which, while not being ex-
charged and neutral kaons is taken into account. The numerplicitly used in our approach, furnish the main reason for

APPENDIX A: DIAGONALIZATION OF HYPERFINE
HAMILTONIAN

cal values seem reasonable. expecting the scalagqqq states to be especially strongly
bound. Our results agree with those of Jaffe who followed a
V. DISCUSSION different method.

. . . _ . Let us begin by considering only flavor quantum numbers
We studied the family relationship of a possible scalarin order to write down the quark content of members of a
nonet composed of thig(980), theay(980) and ther and« gqqq scalar nonet. Taking the quarks to be in the fundamen-

type states found in recent treatmentsnof scattering and | renresentatiors, of SU(3); we have the familiar ireduc-
7K scattering. The investigation was carried out in the ef'ible decomposition of products of quark states:

fective Lagrangian framework, starting from the notion of
“ideal mixing.” First it was pbserved that Okubo’s_ original 393=603
treatment allows two solutions: one the conventioe.
vector meso)wqatype and_the other a “dual” picture which 303-603. (A2)
is equivalent to Jaffe’sjqgg model.

The four masses of our scalar nonet candidates have So the only possibility for obtaining qqaflavor nonet is

similar, but not identical, pattern to the one expected in thg,qom the combinatio® 3 of q2®az states. Lety; be a basis
dual ideal mixing picture. In order to allow for a deviation ¢ he representation spad wherei=1, 2 alnd 3 corre-

from ideal mixing, we have added more terms to the La-gnond to up, down and strange quarks respectively, with con-
jugate (antiquark basis?. Then we can consider “dual
quark” bases corresponding to tloe andﬁflavor triplet
spacedthus the states are antisymmetric with respect to ex-

(A1)

TABLE V. Predicteda,— KK decay widths.

Decay widths I''=50 MeV I'2'=100 MeV e _—

— g e change of flavor indices namely T :=e€p;a'q and T™
I'(ad—KK %) 0.924 MeV 2.049 MeVv :=€e™kg;q,. Up to (ant)symmetrization and linear combina-
r(al—K*K") 1.371 MeV 2.455 MeV tions we have the flavor nonet given in E.8). SinceT™

and T, contain at most one strange quark each, the nonet
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states contain at most two strange quarks. We note also that, TABLE VI. Spin and color recouplings for flavor nonets.

in contrast to the conventionalq scalar nonetN3 is non- . — .
strange in this realization. Nonet Spins ofqq pairs Color products ofiq pairs

In order to complete the description @qﬁscalar nonets

i i i 3 1
we cons@er the spin a@ color quantum numb_ers_. psmg the+,9), %PP+\/__VV el \/g8c®8c
facts that(i) theqq andqq parts of the state are individually 2 V3
totally antisymmetric andii) the overallgqqq hadron must N 3
be a color singlet, where the quarks transform according t&0".9)2 —pp-ivv \/§1C® 1.+ \/§80®8C
the fundamental representation $tJ(3)., we obtain just 2

two possibilities which include scalar flavor nonéitmting

that 6.® 6.= 1.9 8.6 27;), namely include color singlets and therefore the color parts of Egs.

o (A3) and (A4) can be written in terms of this basis. For
|07,9)1:=[0",3,3:]qq®[0",3,3c]qq (A3)  brevity we simply present the results of our recoupling coef-
ficient expansions in Table VI.

In order to give an idea of the next step let us look at one
of the off-diagonal elements ¢f;), whereH is as in Eq.
(2.11), with respect to the basis given in E¢A3) and(A4).
Labelling the quarks and antiquarksqg,qsq, we have that
the only non-vanishing off-diagonal pieces(H;) are the
sums over the pair6l3), (14), (23) and (24). For example,
applying Eq.(A5) yields

0%,9),:=[17,3,6.]4q®[1",3.6cqq, (A4

where we have shown the spin-parity, flavor and color rep

resentations respectively fog and qq separately.

The “hyperfine” interaction Hamiltonian needed for our
discussion is given in Eq2.17).

Given two representations of Skh) we have the well-
known relationship between the quadratic Casimir operators
of these representations, sa§ and J3, and that of their
product:

61 143 }

1
. . + = —— — —_——
S+ SiF1-F50*,9), 2{ 15PPt5 5 WV

811 1 1\FS 8
_Eﬁc@)c_g §c®c

(A8)

1
JA'JBZE[‘JtzotaI_‘J,ZA_‘]é]' (A5) x

It can be seen, using EGAS), that the partso_fthe hyper-

fine Hamiltonian which involve sums ovegq or qq pairs are  where for the color operators we have used $14(3) Ca-
diagonal with respect to the bases for the scalar nonets chsimir operators given in Table VII. Finally we take the inner
sen in Eqs(A3) and(A4). In order to calculate the expecta- product with the expansion dD*,9), in Table VI which

tion value of theqq terms in Eq.(2.11) using Eq.(A5) we  gives that
first expand the basé43) and(A4) in terms of states where
the spin and color of thgq pairs are explicit. 1 \F

To find the recoupling coefficients we follow Clog29], (S1 SFo- F3>21:Z 2 (A9)
where more detail is given. For the case of spin recoupling
we have, assuming that all of the quarks in the scalar mesofhere are, as noted above, four such combinations, all of
are in relatives-wave states, that in order to couple to total which contribute equally. An analogous calculation can be

angular momentund=0, either bothqa pairs must be in performed for the diagonal matrix elements giving finally
jP=1" or both injP=0" states, which we denote as vector

(V) and pseudoscaldP) respectively. Thus we can expand 3
the spin part of the state in the following manner: 1 \[5
(Hhf)ap=—A4 1| (A10)
[Jrorai=0)1 or = PP+ BVV, (A6) \é u
wherea and 8 can be determined in each case by rewriting
both sidegthe left-hand side will be different for the two TABLE VII. SU(3) quadratic Casimir operators.
stateqdA3) and(A4)] in terms of their constituent quarks and
antiquarks using the usual Clebsch-Gordon identities for Representation F?
SU(2). — 4
L . = 3or3 3
Similarly for the color states we note that, sirée 3=38 8 3
@1, only combinations of the form 1 0
6 ¥

a'[8)qq® |80 gqt B'110)qq® 1) qq (A7)
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wherea and b run over the indices 1 and 2 labelling the form. We follow the general method of non-linear realization
flavor nonetg0",9); and|0*,9),. Thus the eigenstates of described if28] but our notation is as in Appendix B £8].
the hyperfine interaction are mixtures of these nonets, corréFhe objecté=exp(¢/F ) discussed there transforms as
sponding to energies E;=—-271A and E,

=—0.12A, which are in agreement witf25]. The corre-

sponding eigenstates are E—ULEKT=K UL (B1)
under chiral transformation. Our nonet field is considered to
|0*,9)=0.5850",9),+0.8110%,9), transform as if it were made of “constituent” quarks,
namely
|0",9%)=0.8110",9), —0.5850",9),. N—KNKT. (B2)
(A11)

With the convenient objects

APPENDIX B: CHIRAL COVARIANT FORM i i
Pu=5(£0,6 = £10,8), v,=5(£0,£'+819,8)
Here we present the terms of the total Lagrangian involv-
: bron s e (B3)
ing the scalar nonédi;(x) in chiral invariant or(for the mass
terms which break the chiral symmelkrn chiral covariant we write the additional Lagrangian terms involvihy

L=— %Tr(DMNDMN) —aTr(NN)— g TIINN(ETMET+ EM TE)]— ¢ Tr(N)Tr(N)

d T t T 2 abc d e f
— 5 TIN)TIIN(EME +EM T [+ FIL A€ €geNa(PL)b(Py) e+ B TH(N)Tr(p,p,)

+C Tr(Np,)Tr(p,)+D Tr(N)Tr(p,)Tr(p,)] (B4)

whereD=4,—iv, and M=M T is the spurion matrix de-

cosf, —sind,\ [ (pi+ ¢2—2¢3)/\£
fined after Eq.(2.1). The entire equatioriB4) is formally 7], =( o u) 11 22 33 .
invariant if we allow M to transform asM—U_MUFL. K sindy  cos6, |\ ($i+p3+ ¢3)16
This Lagrangian reproduces Eq2.10 and (3.8) but also (€2
contain interactions with extra pions. These extra interac-
tions do not change anything in this paper or in the tree-level ) )
formulas for ¢ scattering in2] and[3]. The relation between the two angles is
APPENDIX C: COUPLING CONSTANTS
Here we find the scalar-pseudoscalar-pseudoscalar cou- Op=0,+54.74°~37° (C3

pling constants defined in E¢B.10 in terms of the param-
etersA,B,C,D [see Eq.(3.9)], the scalar mixing anglEsee
Eq. (3.6)] and the pseudoscalar mixing ang,. The latter  in which case(see for exampl¢37]) 6,~—18° was taken.
is defined according to More recent analysef 38] and [39]) have modified this
treatment somewhat by considering derivative mixing terms
L as well as non-derivative ones.
7\ [cosfy —sindy| (1t b3)1\2 - Note that the basis for EGC1) was chosen so thafq is
7' "\ sin 6, cosb, ¢§ . (€D the more natural picture for the pseudoscalar nonet, in con-
trast to Eq.(3.6) for the scalars. Because the mixing angles
wheren andz' are the fields which diagonalize the pseudo-can take on any values, this in no way biases the analysis one
scalar analogue of E§3.2). The usual convention employs a way or the other.
different basis; in this convention the angledgand The y's are predicted in the present model as
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Yika™ Yagkk = —2A (C4
Yors=2B sinfs— \2(B—A)cosb (C5)
Yokk=2(2B—A)sin 65— 2/2B cosb (C6)
Ytymn= V2(A—B)sin f— 2B cosf, (C7)
¥t kk=2(A—2B)cosfs—2/2B sin b, (C8
0
Y.k »n=C sinf,—\/2(C—A)cos6 (C9)
Ui p p
Yk = 2(A—C)sin,—C cosé (C10
i p p
Yanr=(C—2A)sin6,—\2C cosé (C11)
077 p p
Yamy =(2A—C)cosf,—2C sino (C12
077 p p
1 . .
Yonn=| V2(B+D) = 5(C+2A+4D)sin 26,+ y2(C+ D)cos 6, sin b
1 _ .
—|(B+D)~— E(CJF 2D)sin 20,+ (A+D)cos’ 6,+ C sir? 6, |cosfs (C13
1
y(,v,”,:[\/i(m D)+ 5 (C+2A+4D)sin 26,+ \V2(C+D)sir? g, |sin 6
1 . .
—|(B+D)+ E(m 2D)sin 260, + (A+D)sir? 6,+C cos 6,,|cosbs (C19
Yoy =[V2(C+D)sin 26,+ (C+2A+4D)cos 26,]sin f
—[/2(C+2D)cos 20, + (A— C+ D)sin 26,]cosds (C15
1
yfo,,,,:[— V2(B+D)+ 5(C+2A+4D)sin 26,~ V2(C+D)cos 6, |cos,
1 . . .
—|(B+D)— E(cJr 2D)sin 20,+ (A+D)cog 6,+C sir? g, |sin 6 (C16)
[ 1
Vigy'n=—| V2(B+D)+ = (C+2A+4D)sin 26,+ V2(C+ D)SirF 6, |cosb,
' 1 . . _
—|(B+D)+ E(CJF 2D)sin 20,+ (A+D)sir? 6,+C cos’ 6, |sin s (C1?

Yignn' = —[\/E(C+ D)sin 26,+ (C+2A+4D)cos 26p]coses—[\/§(c+2D)cos 20,+(A—C+D)sin 26, ]sin 6;.
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