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Domain walls and theta dependence in QCD with an effective Lagrangian approach

Todd Fugleberg,* Igor Halperin,† and Ariel Zhitnitsky‡
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British Columbia, Canada V6T 1Z1

~Received 24 September 1998; published 10 March 1999!

We suggest an anomalous effective Lagrangian which reproduces the anomalous conformal and chiral Ward
identities and topological charge quantization in QCD. It is shown that the largeNc Di Vecchia–Veneziano–
Witten effective chiral Lagrangian is locally recovered from our results, along with 1/Nc corrections, after
integrating out the heavy ‘‘glueball’’ fields. All dimensionful parameters in our scheme are fixed in terms of
the quark and gluon condensates and quark masses. We argue that for a certain range of parameters, metastable
vacua appear which are separated from the true vacuum of lowest energy by domain walls. The surface tension
of the wall is estimated, and the dynamics of the wall is discussed. TheU(1) problem and the physics of the
pseudo Goldstone bosons at differentu angles are addressed within the effective Lagrangian approach. Impli-
cations for axion physics, heavy ion collisions and the development of the early Universe during the QCD
epoch are discussed.@S0556-2821~99!00109-5#

PACS number~s!: 12.38.Aw, 11.15.Tk
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I. INTRODUCTION

The effective Lagrangian techniques have proved to b
powerful tool in quantum field theory. Generally, there ex
two different definitions of an effective Lagrangian. One
them is the Wilsonian effective Lagrangian describing
low energy dynamics of the lightest particles in the theory
QCD, this is implemented by effective chiral Lagrangia
~ECL’s! for the pseudoscalar mesons, which are essent
constrained by the global non-anomalousSU(Nf)
3SU(Nf) and ~for large Nc) anomalousU(1) chiral sym-
metries. Another type of effective Lagrangian~action! is de-
fined as the Legendre transform of the generating functio
for connected Green functions. This object is relevant
addressing the vacuum properties of the theory in term
vacuum expectation values~VEV’s! of composite operators
as they should minimize the effective action. Such an
proach is suitable for the study of the dependence of
QCD vacuum on external parameters, such as the light q
masses or the vacuum angleu. The lowest dimensional con

densateŝ C̄C&,^G2&,^GG̃&, which are the most essentia
for the QCD vacuum structure, are related to the anom
lously and explicitly broken conformal and chiral symm
tries of QCD. Thus, one can study the vacuum of QCD w
an effective Lagrangian realizing at the tree level anomal
conformal and chiral Ward identities of the theory. The u
ity of such an approach to gauge theories was recogn
long ago for supersymmetric~SUSY! models, where anoma
lous effective Lagrangians were found for both the pu
gauge case@1# and super-QCD~SQCD! @2#.

The purpose of this paper is a detailed analysis of
anomalous effective Lagrangian for QCD withNf light fla-
vors andNc colors ~more precisely, of its potential part!
which was suggested recently by two of us, and briefly
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scribed in @3#. It was obtained as a generalization of a
anomalous effective Lagrangian for pure Yang-Mills~YM !
theory which was proposed earlier in@4#. The constructions
of @4# and @3# can be viewed as non-supersymmetric cou
terparts of the Veneziano-Yankielowicz~VY ! effective po-
tential @1# for SUSY YM theory and the Taylor-Veneziano
Yankielowicz ~TVY ! effective potential for SQCD,
respectively. The results obtained in@4,3# reveal some strik-
ing similarities between the supersymmetric and no
supersymmetric effective potentials and the physics that
lows. Notably, the effective potentials for QCD an
gluodynamics are holomorphic functions of their field
analogously to the SUSY case.1 Moreover, they have both
‘‘dynamical’’ and ‘‘topological’’ parts—a structure which is
similar to that of the~amended@5#! VY effective potential
@1#. As will be discussed in detail below, this ‘‘topological
part of the effective potential turns out to be crucial for t
analysis of the physicalu dependence in QCD.

The interest in such an effective Lagrangian for anom
lously broken conformal and chiralU(1) symmetries is
several-fold. First, it provides a generalization of the lar
Nc Di Vecchia–Veneziano–Witten~VVW ! ECL @6# ~see
also@7#! for the case of arbitraryNc after integrating out the
massive ‘‘glueball’’ fields. At this stage, no holomorphy
present in the resulting effective chiral potential. In this w
we arrive at a Wilsonian effective Lagrangian for the lig
degrees of freedom consistent with the Ward identities of
theory and a built-in quantization of the topological char
~see below!. One may note that in principle such a Wilsonia

1It should be noted that the status of holomorphy in SUSY a
ordinary QCD is different. In supersymmetric theories, holomorp
is a consequence of supersymmetry and, moreover, holomor

combinationsG26 iGG̃ are determined by the structure of th
anomaly supermultiplet. On the contrary, holomorphy in the or
nary YM theory ~in a special sense! follows provided we make
some plausible assumptions which are shown to be self-consista
posteriori; see Sec. II.
©1999 The American Physical Society23-1
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effective Lagrangian satisfying all general requirements
the theory could also be written down without constructi
first a more complicated anomalous effective potential
cluding also the ‘‘glueball’’ degrees of freedom. The resu
ing effective potential is found to contain a sine-Gordon te
whose largeNc expansion reproduces the VWW effectiv
potential in the vicinity of the global minimum, along wit
1/Nc corrections. The presence of such term in the effec
potential implies that the theory sustains the domain w
excitations. This observation may be important in the c
texts of cosmology and heavy ion collisions. Furthermo
our two-step approach to the derivation of the effective ch
Lagrangian has an additional merit in that all dimension
parameters in our scheme are fixed in terms of the gluon
quark condensates and quark masses.@The only entries
which are not fixed in our scheme are two dimensionl
integer-valued parameters related to the vacuum struc
and u dependence of the theory. As their values are sti
subject of some controversy~see Sec. III!, in most of the
paper we will keep them as free parameters.# The absence o
free dimensionful parameters helps to better understand
origin of the h8 mass@the famousU(1) problem#. In par-
ticular, it yields a new mass formula for theh8 for finite Nc
in terms of quark and gluon condensates in QCD@see Eq.
~57! below#. Second, it allows one to address related qu
tions of the phenomenology of pseudoscalar mesons, suc
p0-h-h8 or h-h8 mixing, with no further phenomenologica
input. Third, such an effective Lagrangian allows one to
dress the problem ofu dependence in QCD. In contrast wit
the approach of Ref.@6# which deals from the very beginnin
with the light chiral degrees of freedom and explicitly inco
porates theUA(1) anomaly without restriction of the topo
logical charge to integer values, in our method both
UA(1) anomaly and topological charge quantization are
cluded in the effective Lagrangian framework. After th
‘‘glueball’’ fields are integrated out, the topological charg
quantization still shows up in the limitV→` via the pres-
ence of certain cusps in the effective potential, which are
present in the largeNc ECL of Ref.@6#. Analogous ‘‘glued’’
effective potentials containing cusp singularities arise in
persymmetricN51 theories when quantization of the top
logical charge is imposed@5,8,9#. As will be discussed be
low, these modifications are not essential for the lo
properties of the effective chiral potential in the vicinity
the global minimum. In this case, the results of Ref.@6# are
reproduced along with calculable 1/Nc corrections. On the
other hand, for large values ofu and/orf i our results deviate
from those of@6#. Last but not least, the problem of theu
dependence in QCD is directly relevant for the construct
of a realistic axion potential that would be compatible w
the Ward identities of QCD. This is because an axion pot
tial V(a) can be obtained, provided the functional form
the vacuum energy in QCD,Evac(u), is known, by the for-
mal substitutionu→a(x)/ f a .

Our presentation is organized as follows. In Sec. II
describe the approach of Refs.@4# and@3# to the construction
of an anomalous effective Lagrangian for pure YM theo
and QCD, respectively. Section III discusses different p
posals to find the dimensionless integer-valued parame
07402
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that enter our results. A particular method suggested in@10#
to fix these numbers in the context of pure YM theory
presented in an appendix in a form adopted for the cas
full QCD. In Sec. IV we show how the heavy ‘‘glueball’
degrees of freedom in our effective potential can be in
grated out, thus yielding an effective chiral potential for t
light degrees of freedom. A correspondence with the VW
ECL @6# is established. In Sec. V we discuss the vacu
properties,u dependence and domain wall solutions in t
resulting effective theory. Section VI is devoted to an ana
sis of theU(1) problem and properties of the pseudo Go
stone bosons at zero and non-zerou. Section VII deals with
the implications of our results for the properties of the axi
and a possible study of theu dependence and new axio
search experiment at the BNL Relativistic Heavy Ion C
lider ~RHIC!. We also discuss the possibility of baryogene
at the QCD scale, which seems suggestive in view of
results.

II. ANOMALOUS EFFECTIVE LAGRANGIAN FOR QCD

We start with recalling the construction@4# of the anoma-
lous effective potential for pure YM theory~gluodynamics!.
It is defined as the Legendre transform of the genera
functional for zero momentum correlation functions of t
marginal operatorsGmnG̃mn andGmnGmn which are fixed by
the conformal anomaly in terms of the gluon condens
@11,12#. The effective potential is a function of effective ze
momentum fieldsh,h̄ which describe the VEV’s of the com
posite complex fieldsH,H̄:

E dx h5 K E dx HL , E dx h̄5 K E dx H̄L , ~1!

where

H5
1

2S b~as!

4as
G21 i

1

jY M

as

4p
GG̃D ,

H̄5
1

2S b~as!

4as
G22 i

1

jY M

as

4p
GG̃D . ~2!

and b(as)52bY Mas
2/(2p)1O(as

3), bY M5(11/3)Nc is
the Gell-Mann–Lowb function for YM theory,2 andjY M is
a generally unknown parameter which parametrizes the
relation function of the topological density:

lim
q→0

i E dx eiqxK 0UTH as

8p
GG̃~x!

as

8p
GG̃~0!J U0L

Y M

5jY M
2 K b~as!

4as
G2L

Y M

. ~3!

2In what follows we will work with the one-loopb function.
However, most of the discussion below can also be formulated w
formally keeping the fullb function.
3-2
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The two-point function~3! and other zero momentum corre
lation functions ofasG

2,asGG̃ are defined via the Wick
type T-product by the nonperturbative part of the partiti
function log@Z(u)/ZPT# (ZPT stands for a perturbatively de
fined partition function which does not depend onu), where

Z~u!5ZPTexp$2 iVEv~u!%

5ZPTexpH 2 iV K 0Ub~as!

16as
G2U0L

u
J ~4!

by differentiation with respect to the bare coupling const
1/g0

2 and u. In Eq. ~4! we used the fact that the vacuu
energy is defined relative to its value in perturbation the
by a nonperturbative part of the conformal anomaly, for a
u. When the VEV in Eq.~4! is defined in this way, its de
pendence on 1/g0

2 is fixed by the dimensional transmutatio
formula

K 2
bas

8p
G2L 5const3FMRexpS 2

8p2

bg0
2 D G 4

. ~5!

Here MR is the ultraviolet cutoff mass, and the one-loopb
function is used. It is important to stress that different reg
larization schemes generally lead to different values of
constant in Eq.~5! but, once specified, the VEV~5! deter-
mines all zero momentum correlation functions o
b(as)/(4as)G

2, with perturbative tails subtracted. Atu
50, Eq. ~3! follows from Eq.~4! using the general relation
@4#

K b~as!

4as
G2L

u

5 K b~as!

4as
G2L

0

f ~u!,

f ~u![122j2 u21O~u4!. ~6!

The strong assumption made in@4# was that Eq.~3! is actu-
ally covariant inu, i.e. remains valid for any~at least, small!
value ofu. The assumption of covariance inu is reproduced
a posteriori from the effective Lagrangian, and is thus se
consistent. We note that covariance of Eq.~3! in u follows
automatically within the approach suggested in@12#. In fact,
it is this conjectured covariance of Eq.~3! in u that underlies
the holomorphic structure of the resulting effective poten
@see Eq.~9! below#. Thus, we are not able at the moment
proveholomorphy, but instead argue that it is there based
~i! self-consistency of this proposal~see Sec. III!, and~ii ! the
possibility of comparing our final formulas with the know
results~such as the largeNc effective chiral Lagrangian and
anomalous Ward identities in QCD; see Sec. IV!, and the
experience from the known models.

The advantage of using the combinations~2! is in the
holomorphic structure of zero momentum correlation fun
tions of operatorsG2,GG̃ written in terms of theH,H̄ fields
@4,10#:

lim
q→0

i E dxeiqx^0uT$H~x!H~0!%u0&524^H&,
07402
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lim
q→0

i E dxeiqx^0uT$H̄~x!H̄~0!%u0&524^H̄&,

lim
q→0

i E dxeiqx^0uT$H̄~x!H~0!%u0&50. ~7!

These relations are obtained by taking linear combination
Eq. ~3! with the anomalous conformal Ward identities~WI’s!
of Ref. @11# for zero-momentum correlation functions in
volving the operatorGmnGmn .3 It can be seen that the
n-point zero momentum correlation function of the opera
H equals (24)n21^H&. Multi-point correlation functions of
the operatorH̄ are analogously expressed in terms of
vacuum expectation valuêH̄&. At the same time, it is easy
to check that the decoupling of the fieldsH andH̄ holds for
arbitrary n-point functions ofH, H̄. This is the origin of
holomorphy of an effective Lagrangian for YM theory
which codes information on all anomalous WI’s.

One should note that the right hand side of the last eq
tion in Eqs.~7! does contain perturbative contributions pr
portional to regular powers ofas . However, they are irrel-
evant for our purposes, as we are only interested in
decoupling of the fieldsH and H̄ at the level of nonpertur-
bativeO(e21/as) effects. Holomorphy of an effective poten
tial for YM theory has the same status. Thus, in contras
the supersymmetric case where holomorphy is an exact p
erty of the effective superpotential, in the present case it o
refers to a ‘‘nonperturbative’’ effective potential which doe
not include perturbative effects to any finite order inas . We
assume that perturbative and nonperturbative effects ca
separated, at least in principle and/or by some suitable c
vention@12,4#. As a result, a perturbatively defined partitio
function ZPT bearing a non-holomorphic dependence ong0

2

decouples in zero momentum correlation functions. On
other hand, theu dependence appears only in the nonpert
bative part ofZu . Thus, thenonperturbativevacuum energy
depends only on a single complex combinationt51/g0

2

1 iubq/(32p2p) @12,10#. Indeed, arguments based on reno
malizability, analogous to those used in Ref.@11# ~see also
Sec. III!, imply the relation

K 2
bas

8p
G2L

u

5const3ReM0
4expS 2

32p2

bg0
2

2 i
q

p
u D

[const3ReM0
4expS 2

32p2

b
t D . ~8!

@This expression coincides with the result obtained in@4#
directly from the effective Lagrangian~9!.# This is exactly
the origin of the relations~7! which are obtained by differ-
entiation of log(Zu /ZPT) with respect to the holomorphic

3It should be noted that the relations~7! imply a particular regu-
larization scheme~see the discussion below! and thus cannot be
viewed as the scheme independent WI’s of the theory.
3-3
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sourcest,t̄. Thus, once an assumption of the separation
perturbative and nonperturbative contributions in Eq.~4! is
made, a new complex structure emerges due to the non
turbative origin of theu parameter which combines wit
another parameter 1/g0

2 into the unique complex combinatio
t.

The final answer for the improved effective potent
W(h,h̄) @here ‘‘improved’’ refers to the necessity of summ
tion over the integersn,k in Eq. ~9!; see below# reads@4#

e2 iVW~h,h̄!5 (
n52`

1`

(
k50

q21

expH 2
iV

4 S h Log
h

CY M
1h̄ Log

h̄

C̄Y M
D

1 ipVS k1
q

p

u12pn

2p Dh2h̄

2i J , ~9!

where the constantsCY M ,C̄Y M can be taken to be real an
expressed in terms of the vacuum energy in YM the
at u50, CY M5C̄Y M522eEv

(Y M)(0)522e^2bY Mas /
(32p)G2&, and V is the 4-volume. The integer numbersp
and q are relatively prime and related to the parametej
introduced in Eq.~3! by q/p52j. Thus, we expect that th
parameterj defined in Eqs.~2!,~3! is a rational number. This
expectation is motivated by the fact that it turns out to be
case in all existing proposals to fix the value ofj, to be
discussed in the next section, and by experience with su
symmetric models.~In all likelihood, irrational values ofj
would produce a non-differentiableu dependence for YM
theory.! On general grounds, it follows thatp5O(Nc),q
5O(Nc

0). The symbol ‘‘Log’’ in Eq. ~9! stands for the prin-
cipal branch of the logarithm. The effective potential~9! pro-
duces an infinite series of anomalous WI’s. By constructi
it is a periodic function of the vacuum angleu.4 The effec-
tive potential~9! is suitable for a study of the YM vacuum a
described above.

The double sum over the integersn,k in Eq. ~9! appears
as a resolution of an ambiguity of the effective potential
defined from the relations~7! and their multi-point generali-
zations. As was discussed in@4#, this ambiguity is due to the
fact that any particular branch of the multi-valued functi
h log(h/c)p/q, corresponding to some fixed values ofn,k, sat-
isfies the anomalous WI’s. However, without the summat
over the integersn,k in Eq. ~9!, the effective potential would
be multi-valued and unbounded from below. An analogo
problem arises with the original VY effective Lagrangian.

4As was explained in@4#, u should appear in the effective La
grangian in the combinationu12pn, as this combination arises i
the original YM partition function when the topological charg
quantization is explicitly imposed. This prescription automatica
ensures periodicity inu with period 2p. However, with an addi-
tional integerk in Eq. ~9! and the above way of introducingu into
the effective potential, one more invariance under the shiftsu→u
22p l /q arises. As will be discussed in Sec. V in the context
QCD, the choiceqÞ1 is not in contradiction with the known re
sults concerning theu dependence for small values ofu.
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was cured by Kovner and Shifman in@5# by a similar pre-
scription of summation over all branches of the multi-valu
VY superpotential. Moreover, the whole structure of Eq.~9!
is rather similar to that of the~amended! VY effective po-
tential. Namely, it contains both the ‘‘dynamical’’ and ‘‘to
pological’’ parts~the first and the second terms in the exp
nent, respectively!. The ‘‘dynamical’’ part of the effective
potential~9! is similar to the VY@1# potential;S log(S/L)Nc

~hereS is an anomaly superfield!, while the ‘‘topological’’
part is akin to the improvement@5# of the VY effective po-
tential. Similarly to the supersymmetric case, the infinite s
over n reflects the summation over all integer topologic
charges in the original YM theory. The difference of our ca
from that of supersymmetric YM theory is that an effecti
potential of the form (1/N)f log(f/L)N, as in the SUSY
case, implies a simpler form of the ‘‘topological’’ term
;2p in/N(f2f̄) with only one ‘‘topological number’’n
which specifies the particular branch of the multi-valu
logarithm. In our case, we allow for a more general situat
when the parameterN is a rational numberN5p/q. In this
case we have two integer valued ‘‘topological numbers’n
andk, specifying the branches of the logarithm and ration
function, respectively. Our choice is related to the fact t
some proposals to fix the values ofp,q suggest thatqÞ1;
see Sec. III.@As follows from Eq.~8!, the values ofp,q are
fixed if theu dependence is known.# One may expect that the
integersp andq are related to a discrete symmetry survivin
the anomaly, which may not be directly visible in the orig
nal fundamental Lagrangian.

It should be stressed that the improved effective poten
~9! contains more information in comparison to that pres
in the anomalous Ward identities just due to the presenc
the ‘‘topological’’ part in Eq.~9!. Without this term Eq.~9!
would merely be a kinematical reformulation of the conte
of anomalous Ward identities for YM theory. The reason
that the latter refer, as usual, to the infinite volume~thermo-
dynamic! limit of the theory, where only one state of a low
est energy~for u fixed! survives. This state corresponds
one particular branch of the multi-valued effective potent
in Eq. ~9!. At the same time, the very fact of the mult
valuedness of the effective potential implies that there
other vacua which should all be taken into considerat
whenu is varied. When summing over the integersn,k, we
keep track of all~including excited! vacua of the theory, and
simultaneously solve the problems of the multi-valuedn
and unboundedness from below of the ‘‘one-branch theor
The most attractive feature of the proposed structure of
effective potential~9! is that the same summation overn,k
reproduces the topological charge quantization and 2p peri-
odicity in u of the original YM theory.

We now proceed to the generalization of Eq.~9! to the
case of full QCD withNf light flavors andNc colors. In the
effective Lagrangian approach, the light matter fields are
scribed by the unitary matrixUi j corresponding to theg5

phases of the chiral condensate:^C̄L
i CR

j &52u^C̄LCR&uUi j

with

U5expF iA2
pala

f p
1 i

2

ANf

h8

f h8
G , UU151, ~10!

f
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wherela are the Gell-Mann matrices ofSU(Nf), pa is the
pseudoscalar octet, andf p5133 MeV. As is well known
@6#, the effective potential for theU field ~apart from the
mass term! is uniquely determined by the chiral anomal
and amounts to the substitution

u→u2 i Tr logU ~11!

in the topological density term in the QCD Lagrangian. T
rule ~11! is valid for anyNc . Note that for spatially indepen
dent vacuum fieldsU, Eq. ~11! results in the shift ofu by a
constant. This fact will be used below. Furthermore, in
sense of anomalous conformal Ward identities@11# QCD re-
duces to pure YM theory when the quarks are ‘‘turned o
with the simultaneous substitution̂G2&QCD→^G2&Y M and
b[bQCD→bY M . Analogously, an effective Lagrangian fo
QCD should transform to that of pure YM theory when t
chiral fieldsU are ‘‘frozen.’’ Its form is thus suggested b
the above arguments and Eqs.~9!,~11!:

e2 iVW~h,U !5 (
n52`

1`

(
k50

q21

expH 2
iV

4
S h Log

h

2eE
1h̄ Log

h̄

2eE
D

1 ipVS k1
q

p

u2 i log DetU12pn

2p Dh2h̄

2i

1
i

2
V Tr~MU1H.c.!J , ~12!

whereM5diag(mi u^C̄ iC i&u) and the complex fieldsh,h̄ are
defined as in Eq. ~2! with the substitution bY M→b
5(11/3)Nc2(2/3)Nf . The integers p,q and parameter
j(q/p52j) in Eq. ~12! are in general different from thos
standing in Eq.~9!. Possible approaches to fix the values
parametersp and q in gluodynamics and QCD will be dis
cussed in the next section. The constantE can be related to
the gluon condensate in QCD,E5^bas /(32p)G2&, as will
be clear below. We note that the ‘‘dynamical’’ part of th
anomalous effective potential~12! can be written asWd

1Wd
1 where

Wd~h,U !5
1

4

q

p
h logF S h

2eED p/q DetU

e2 iu G2
1

2
Tr MU,

~13!

which is quite similar to the effective potential@2# for
SQCD.5

Let us now check that the anomalous WI’s in QCD a
reproduced from Eq.~12!. The anomalous chiral WI’s are
automatically satisfied with the substitution~11! for anyNc ,

5For an early attempt to search for holomorphy in the effect
Lagrangian framework for QCD, see@13#. The problem with the
approach of Ref.@13# was that the resulting effective potential wa
multi-valued and unbounded from below. The prescription of su
mation over all branches of the multi-valued action in Eqs.~9!, ~12!
cures both problems.
07402
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in accordance with@6#. Further, it can be seen that th
anomalous conformal WI’s of@11# for zero momentum cor-
relation functions of operatorG2 in the chiral limit mq→0
are also satisfied with the above choice of constantE. This is
obvious from Eq.~14!; see below. As another important ex
ample, we calculate the topological susceptibility in QC
near the chiral limit from Eq.~12!. For simplicity, we con-
sider the limit of SU(Nf) isospin symmetry withNf light
quarks, mi!LQCD . For the vacuum energy for smallu
,p/q we obtain@see Eq.~44! below#

Evac~u!52E1m^C̄C&NfcosS u

Nf
D1O~mq

2!. ~14!

Differentiating this expression twice with respect tou, we
reproduce the result of@14#:

lim
q→0

i E dx eiqxK 0UTH as

8p
GG̃~x!

as

8p
GG̃~0!J U0L

52
]2Evac~u!

] u2
5

1

Nf
m^C̄C&1O~mq

2!. ~15!

Other known anomalous WI’s of QCD can be reproduc
from Eq. ~12! in a similar way. Therefore, we see that E
~12! reproduces the anomalous conformal and chiral W
identities of QCD and gives the correctu dependence for
small values ofu, and in this sense passes the test for it to
the effective anomalous potential for QCD. Further arg
ments in favor of correctness of Eq.~12! will be given in
Sec. IV, where we show that Eq.~12! correctly reproduces
the VVW ECL @6# in the vicinity of the global minimum in
the largeNc limit after integrating out the heavy ‘‘glueball’’
degrees of freedom, and in addition yields an infinite ser
of 1/Nc corrections. On the other hand, we will explain wh
we obtain a different behavior of the effective chiral pote
tial for large values of the chiral condensate phasesf i .

III. WHAT ARE THE VALUES OF PARAMETERS
p AND q ?

In the previous section we have considered the anoma
effective potentials for YM theory and QCD, which involv
some integer numbersp and q, with 2j5q/p, which were
not specified so far. The purpose of this section is to desc
different proposals to fix the numbersp,q, which exist in the
literature, and to make some comments on them. A rela
discussion can be found in the Appendix.

Historically, the first suggestion to fix the proper hol
morphic combinations of the fieldsG2 andGG̃ was formu-
lated in Ref.@11#. For the case of pure YM theory, the au
thors proposed that fields of definite dualities dominate
vacuum, and therefore the correct holomorphic combinati
areG26 iGG̃. Leaving aside the issue of justification of th
hypothesis, it is of interest to discuss what values of
parametersp andq are implied in this scenario. As was a
gued in@11#, theu dependence of the vacuum energy is fix
in this case by the renormalization group arguments, si

e

-
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for the VEV’s of interest the net effect of theu term reduces
to the redefinition of the coupling constant

1

g0
2
→

1

g0
2

1
iu

8p2
, ~16!

which yields, for the vacuum energy for small values ofu,

K 2
bas

8p
G2L

u

5const3ReM0
4expS 2

32p2

bg0
2

1 i
4u

b D ,

~17!

which corresponds toq/p54/b; see Eq.~8!. Thus, we see
that the self-duality hypothesis of Ref.@11# implies the val-
uesp511Nc ,q512, for generic odd values ofNcÞ3k with
some integerk. As the value ofp determines the number o
different non-degenerate vacua in the theory@4#, we end up
with 11Nc vacua, which may look strange. This is in contra
to the case of supersymmetric YM theory where the ho
morphic combinations areknown to be G26 iGG̃, but the
number of vacua isNc for any number of colors. This ma
be understood in terms of renormalization group argume
similar to Eqs. ~16!,~17! ~with the substitution ^G2&
→^ll&) as a result of the interplay between the integer v
uedb functionbSY M53Nc , which is determined by the zer
modes alone and has a geometrical meaning, and the dim
sion d53 of the gluino condensate. It appears that this c
spiracy is very specific to supersymmetric theories. It is
teresting to note in this reference that if for some reason o
the zero mode contributionb54Nc , instead of the fullb
5(421/3)Nc , were to be retained in theb function, Eq.
~17! would imply Nc vacua. However, we are unable at t
moment to see any compelling reason why such a subs
tion should be made. Thus, it remains unclear whether or
the appealing choiceG26 iGG̃, p5Nc can be compatible
with the renormalization group and conformal anomaly
non-supersymmetric YM theory.

Another approach to the problem of the number of vac
and proper holomorphic combinations of the fieldsG2 and
GG̃ is based on the analysis of softly broken SUSY theor
@15#, which is under theoretical control as long as the glu
mass is much smaller than the dynamical mass scale:mg
!LSY M. A rather detailed discussion of this scenario h
been recently given by Shifman@16# using supersymmetric
gluodynamics withNc53 as an example. In the limit o
small mg the VEV of the holomorphic combinationG2

1 iGG̃ is proportional to the VEVmg^ll& where the gluino
condensatêll& is to be calculated in the supersymmet
limit mg50. Theu dependence of the latter is known@17#:
^ll&;exp(iu/Nc12pk/Nc), k50,1, . . . ,Nc21, which corre-
sponds toNc degenerate vacua. WhenmgÞ0, the vacuum
degeneracy is lifted. ForNc53 andu50, we have one state
with negative energyE52mgLSY M

3 and two degenerate
states with positive energyE5(1/2)mgLSY M

3 . The former is
the true vacuum state of softly broken SUSY gluodynam
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while the latter are metastable states with brokenCP. The
lifetime of the metastable states is large for smallmg , and
decreases asmg approachesLSY M. When u is varied, the
three states intertwine, thus restoring the physical 2p peri-
odicity in u. This picture suggests the valuesp5Nc , q
51.

The problem with the above SUSY-motivated scenario
that the genuine case of pure YM theory corresponds to
limit mg@LSY M which is not controlled in this approach
Moreover, the conformal anomaly in softly broken SUS
gluodynamics is different from that of pure YM theory. O
the other hand, it is clear from the above discussion that
conformal anomaly and dimensional transmutation are v
essential for the analysis of theu dependence in gluodynam
ics. Perhaps, it is worthwhile to mention that the valuep
511Nc follows also within a non-standard non-soft SUS
breaking suggested recently@18# as a toy model to match th
conformal anomaly of non-supersymmetric YM theory at t
effective Lagrangian level.

With these reservations, it is nevertheless reasonabl
expect that the above SUSY-motivated scenario is clos
what actually happens in the decoupling limitmg@LSY M.
Two different versions of this scenario may be expect
First, it may happen that atall generic values ofu there
exists one true vacuum of lowest energy plus (p21) meta-
stableCP-violating vacua, which are separated by potent
barriers and intertwine whenu evolves. Another possibility
is that metastable vacua exist only in the vicinity of a lev
crossing point inu, while for other values ofu they become
the saddle points or maxima@6,19#. In one of these forms
such a picture seems to be needed to match the Wit
Veneziano@20# resolution of theU(1) problem. The sce-
nario discussed in@16# implies that the number of vacuap
remainsNc in the limit mg@LSY M, but it is conceivable that
an additional level splitting occurs with passing the regi
mg;LSY M where SUSY methods become inapplicable. A
tually, the picture arising in our approach will be just in th
vein ~see Sec. V!. As will be discussed there, which of th
above two versions is realized is mostly determined by
value of parameterq. WhenqÞ1, metastable vacua exist fo
all values ofu, as happens in the SUSY scenario. Furth
more, it will be argued that large lifetimes of metastab
states, necessary for this scenario to work, are ens
parametrically—a fact which is not seen@16# in the SUSY-
motivated picture.

One more possible approach we wish to discuss is ba
on an idea formulated some time ago by Ku¨hn and Zakharov
~KZ! @21#. These authors have suggested that in QCD w
massless quarks nonperturbative matrix elements shoul
holomorphic in the Pauli-Villars fermion massMR . Assum-
ing this kind of holomorphy, they have proposed to relate
proton matrix element of the topological density,^puGG̃up&,
to the matrix element̂puG2up& which is fixed by the con-
formal anomaly. However, it is not easy to separate per
bative and nonperturbative contributions to the latter due
non-trivial proton wave function. This may be a potentia
problematic point when the KZ holomorphy is consider
3-6
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for the matrix elements.6 On the other hand, for vacuum
condensates and zero momentum correlation functions
nonperturbative contributions can be systematically sing
out, at least formally@12#. In this respect, the latter objec
are simpler than the hadron matrix elements, and thus ap
preferable for testing the KZ holomorphy. This issue w
addressed in@12# where a method similar to that of Ref.@21#
was used in the context of pure YM theory to relate the z

momentum two-point function ofGG̃ to that ofG2. In this
approach, pure gluodynamics was considered as a low
ergy limit of a theory including a heavy quark, while holo
morphy in thephysical fermion massm→` was argued to
hold based on decoupling arguments. Appealing to this
lomorphy, it was suggested that for the case of pure Y
theory the parameters of interest arep53bY M511Nc and
q58, for oddNc . Furthermore, as the anomalous conform
WI’s for the operatorG2 @11# are covariant inu, one can
conclude that the Ku¨hn-Zakharov holomorphy, if it holds
indeed implies covariance of Eq.~3! in u, and thus leads to
the holomorphic effective potential for gluodynamics, E
~9!.

An inverse route was undertaken in@10#. In this paper, the
starting point was the holomorphic effective potential~9! for
pure YM theory, with unspecified parametersp andq. Again,
the idea was that the meaning of this holomorphy can
clarified by coupling pure YM theory to a very heavy fe
mion with massm→`, while the values of parametersp and
q would be fixed in this case by some kind of consisten
conditions. In contrast to the previous approach, it was s
gested in@10# to introduce a heavy fermion directly at th
effective Lagrangian level by using the ‘‘integrating in’’ pro
cedure familiar in the context of SUSY theories@22,23#.
Thus, the ‘‘integrating in’’ method is used here to constru
an effective Lagrangian for the system (YM
1heavy fermion) from the effective Lagrangian for pu
YM theory. The consistency condition suggested in@10# is
that the holomorphic structure of the latter should arise fr
the holomorphic structure of the former, assuming the st
dard form of the fermion mass term. Then, the ‘‘integrati
in’’ method and the above consistency condition are found
select the only possible valuesp53bY M511Nc and q58.
These results coincide with the ones obtained with the
proach of@12#. Thus, the ‘‘integrating in’’ method seems t
suggest the effective Lagrangian realization of the Ku¨hn-
Zakharov holomorphy. The agreement of these two lines
reasoning is encouraging, and shows that different assu
tions made in@12# and@10# are at least consistent with eac
other.

Finally, we would like to comment on another relate
development. Very recently, Witten@24# has shown how the
qualitative features of theu dependence in non
supersymmetric YM theory—such as a multiplicity of vac
;Nc , the existence of domain walls and exact vacuum d
bling at some special values ofu—can be understood usin
the anti–de Sitter and conformal field theory~AdS-CFT! du-

6V. I. Zakharov~private communication!.
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ality. The latter@25# provides a continuum version of th
strong coupling limit, with a fixed ultraviolet cutoff, for YM
theory withNc→`, gY M

2 Nc→`. As was shown in@24#, in
this regime theu dependence of the vacuum energy in Y
theory takes the form

Evac~u!5C min
k

~u12pk!21O~1/Nc!, ~18!

whereC is some constant. We would like to make two com
ments on a comparison of our results with the picture ad
cated by Witten in the largeNc limit. First, we note that the
structure of Eq.~18! agrees with our modified definition o
the path integral including summation over all branches o
multi-valued~effective! action. Indeed, Eq.~18! suggests the
correspondence

C min
k

~u12pk!2⇔ lim
V→`

S 2
1

VD logF(
k

e2VC~u12pk!2G
~19!

using the definition of the vacuum energy through the th
modynamic limit of the path integral. With this definition
which prescribes the way the volumeV appears in the for-
mula for the vacuum energy, the correspondence~19! ap-
pears to be the only possible one. On the other hand,
latter expression has exactly the structure that arises with
definition of the improved effective potential~9!. Therefore,
our prescription of the summation over all branches o
multi-valued ~effective! action seems to be consistent wi
the picture developed by Witten using an approach based
the AdS-CFT correspondence. In particular, our picture
bubbles of metastable vacua bounded by domain walls c
sidered in the context of QCD in Sec. V is in qualitativ
agreement with that suggested by Witten@24# for the pure
YM case.

Second, one may wonder whether the approach of R
@24# can provide an alternative way to fix the parametersp,q
of interest. We note that Eq.~18! indicates a non-analyticity
at the valuesuc5p(mod 2p) only, whereCP is broken
spontaneously. If the technique based on the AdS-CFT d
ity could be smoothly continued to the weak coupling regim
of non-supersymmetric YM theory, this would result in th
valuesq51,p;Nc . However, the possibility of such an ex
trapolation is unclear, as for smalll5gY M

2 Nc the back-
ground geometry develops a singular behavior and the su
gravity approach breaks down. There might well be a ph
transition @26# when the effective YM couplinggY M

2 Nc is
reduced. That such a phase transition should occur in
supergravity approach to three-dimensional QCD (QCD3)
was argued in@27#. Other reservations about the use of t
supergravity approach to the non-supersymmetric YM the
in D54 have been expressed in@28# where no perturbative
indication was found for a decoupling of unwanted mass
Kaluza-Klein states of string theory. On the other hand, th
exists some evidence from lattice simulations that a criti
value ofu moves fromuc5p in the strong coupling regime
to uc,p in the weak coupling regime@29#. In terms of the
parametersp,q, such a case corresponds toqÞ1. Therefore,
3-7
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we conclude that if no phase transition existed in the sup
gravity approach, the results of Refs.@12,10# would be in
conflict with the latter which would implyp5O(Nc), q
51. In this case, the assumptions made in@12,10# would
have to be reconsidered. Alternatively, there might be
conflict between the two approaches if such a phase tra
tion does occur.

To summarize, at the qualitative level we expect
vacuum structure similar to that suggested by the SUSY
nario. As for the quantitative results for the parametersp and
q, different lines of reasoning lead to generally different a
swers. The self-duality hypothesis, Ku¨hn-Zakharov-type ar-
guments and non-standard SUSY breaking toy model
suggestp53bY M511Nc with q58 or 12 for the pure YM
case. The compatibility of the appealing choiceG2

6 iGG̃, p5Nc , q51, suggested by the soft SUSY brea
ing scenario, with the renormalization group and conform
anomaly for non-supersymmetric YM theory remains u
clear. It is conceivable that our current understanding of
effective Lagrangian is incomplete, and a more care
analysis—perhaps along the lines of Refs.@25,24#—will
solve the puzzle~if it is a puzzle! of the ‘‘extra 1/3,’’ thus
favoring the SUSY-type scenario. Alternatively, the numb
p511Nc , q58 ~for odd Nc) suggested by the methods
@10,12# may be the correct answer, though perhaps so
what ‘‘counter-intuitive.’’ For these reasons, below we w
keep the general notationp,q, while a separate analysis wi
be given in cases when the concrete values ofp,q are essen-
tial. The reader is referred to the Appendix for the details
the ‘‘integrating in’’ method of@10# adopted to the case o
full QCD, which suggests the valuesp53b511Nc
22Nf , q58.

IV. EFFECTIVE CHIRAL LAGRANGIAN FOR FINITE Nc

The anomalous effective potential~12! contains both light
chiral fieldsU and heavy ‘‘glueball’’ fieldsh,h̄, and is thus
not an effective potential in the Wilsonian sense. On
other hand, only light degrees of freedom, described by
fields U, are relevant for low energy physics. An effectiv
potential for theU,Ū fields can be obtained by integratin
out theh,h̄ fields in Eq.~12!. It corresponds to a potentia
part of a low energy Wilsonian effective Lagrangian for e
ergies less than the glueball masses.7 The transition from the
effective potential~12! for the U,h fields to a Wilsonian
effective potential for theU fields by integrating out theh,h̄
fields is analogous to the transition@22# from the TVY ef-
fective Lagrangian@2# for SUSY QCD to the Affleck-Dine-
Seiberg@30# low energy effective Lagrangian. The purpo
of this section is to obtain such an effective potential for
light U,Ū fields by integrating out theh,h̄ fields in Eq.~12!.

To find this effective potential for the lightU,Ū fields, we

7Such an object is not precisely Wilsonian effective action in
usual sense as it does not involve e.g. the vectorr,v mesons whose
masses are compatible with that of theh8.
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make two observations. First, the mass term in Eq.~12! does
not couple to the ‘‘glueball’’ fields, and is thus unessent
for integrating them out. To simplify the subsequent form
las, in this section we will omit the mass term, and add it
the end of calculation. Second, the only remaining effect
the light matter fieldsU,Ū is formally reduced, as was dis
cussed in Sec. II, to the redefinition~shift! ~11! of the u
parameter, and the changes of the numerical paramete
the effective potential~9! for pure YM theory. Therefore, for
space-time independent fieldsU,Ū we can integrate out the
‘‘glueball’’ fields h,h̄ in Eq. ~12! in the same way as theu
dependence of the vacuum energy for the pure YM case
found in @4#. For the sake of completeness, this calculat
will be repeated below for the present case of QCD.
before, we will keep the total space-time 4-volume fini
while a transition to the thermodynamic limitV→` will be
performed at the very end.

We start with introducing the ‘‘physical’’ real fieldsr,v
defined by the relations

h52E er1 iv, h̄52E er2 iv. ~20!

@This definition implies W(v12p)5W(v). As will be
seen, this condition of the single-valuedness of thev field is
satisfied with the substitution~20!.# Then, for the ‘‘dynami-
cal’’ part of Eq. ~12! we obtain

2
iV

4
S h Log

h

2eE
1h̄ Log

h̄

2eE
D

52 iVE er@~r21!cosv2v sinv#. ~21!

The summation over the integersn in Eq. ~12! enforces the
quantization rule due to the Poisson formula

(
n

expS 2p in
q

p
V

h2h̄

4i
D 5(

n
dS q

p
VEersinv2nD ,

~22!

which reflects quantization of the topological charge in t
original theory. Therefore, when the constraint~22! is im-
posed, Eq.~21! can be written as

2
iV

4
S h Log

h

2eE
1h̄ Log

h̄

2eE
D

52 iVEer~r21!cosv1 in
p

q
v. ~23!

Using Eqs.~22!,~23!, we put Eq.~12! ~with the mass term
omitted! in the form

e2 iVW5 (
n52`

1`

(
k50

q21

dS VE
q

p
ersinv2nD

3expF2 iVE er~r21!cosv1 inS ūk1
p

q
v D G

~24!

e

3-8
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where we denoted

ūk[u2 i log DetU12p
p

q
k. ~25!

To resolve the constraint imposed by the presence of thd
function in Eqs.~22!,~24!, we introduce the new fieldF by
the formula

dS VE
q

p
ersinv2nD}E DF expS iFVEersinv2 iF

p

q
nD .

~26!

Going over to Euclidean space by the substitutioniV→V,
we obtain, from Eqs.~24!,~26!,

W~U,r,v,F!

52
1

V
logH (

n52`

1`

(
k50

q21

expF2VEer$~r21!cosv

2F sinv%1 inS u2 i log DetU12pk
p

q
1

p

q
v2

p

q
F D

2«
n2

VEG J . ~27!

Here we introduced the last term to regularize the infin
sum over the integersn. The limit «→0 will be carried out at
the end, but before taking the thermodynamic limitV→`.
Note that Eq. ~27! satisfies the conditionW(v12p)
5W(v) which should hold as long asv is an angle variable
We also note that the periodicity inu with period 2p is
explicit in Eq. ~27!.

To discuss the thermodynamic limitV→` we use the
identity

u3~n,x!5
1

Apx
(

k52`

1`

expF2
~n1k!2

x G
5 (

l 52`

1`

exp@2 l 2p2x12i l np# ~28!

and transform Eq.~27! into its dual form

W~U,r,v,F!

52
1

V
logH (

n52`

1`

(
k50

q21

expF2VEer$~r21!cosv

2F sinv%2
VE

4« S u2 i log DetU12pk
p

q

1
p

q
v2

p

q
F22pnD 2G J , ~29!

where we have omitted an irrelevant infinite factor;«21/2 in
front of the sum. Equation~29! is the final form of the im-
proved effective potentialW, which is suitable for integrating
07402
e

out the ‘‘glueball’’ fieldsr,v, along with the auxiliary field
F. To this end, the functionW should be minimized in re-
spect to the three variablesr, v and F, with U fixed. In
spite of the frightening form of this function, its extrema ca
be readily found using the following simple trick. As at th
extremal points all partial derivatives of the functionW van-
ish, we first consider their linear combination in which th
sum overn,k cancels out. We thus arrive at the equation

]W

]r
5Eer~r cosv2F sinv!50

]W

]v
1

]W

]F
52Eer~r sinv1F cosv!50, ~30!

which is equivalent tor21F250. @We do not consider here
the caser→2` which would also solve Eqs.~30!; see
@10#.# Therefore, these equations have the only solution

^r&50, ^F&50, ~31!

while the minimum value of the angular fieldv is left arbi-
trary by them. The latter can now be found from either of t
constraints]W/]v50 or ]W/]F50, which become iden-
tical for ^r&5^F&50. The resulting equation reads

(
n52`

1`

(
k50

q21 S u2 i log DetU12pk
p

q
22pn1

p

q
v

12«
q

p
sinv DexpH VE cosv2

VE

4« S u2 i log DetU

12pk
p

q
1

p

q
v22pnD 2J 50, ~32!

in which we have to take the limit«→0 at a fixed 4-volume
V. One can see that non-trivial solutions of Eq.~32! at «
→0 are given by

^v& l52
q

p
~u2 i log DetU !1

2p

p
l 12pr ,

l 50,1, . . . ,p21, r 50,61, . . . . ~33!

Equation~33! shows thatp physically distinct solutions of
the equation of motion for thev field, while the series over
the integersr in Eq. ~33! simply reflects the angular charact
of thev variable, and is thus irrelevant. Substituting Eq.~33!
back to Eq.~29! and restoring the mass term for theU field,
we obtain the effective potential for the light chiral field
U,Ū @3#:
3-9
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We f f~U,U1!52 lim
V→`

1

V
logH (

l 50

p21

expFVE cosS 2
q

p

3~u2 i log DetU !1
2p

p
l D

1
1

2
V Tr~MU1M 1U1!G J . ~34!

Equation~34! is the final form of the effective potential fo
the chiral field which is valid for any value ofu. As was
mentioned in the beginning of this section, this form of t
effective potential~34! could be read off the formula@4# for
the vacuum energy as a function ofu in pure YM theory,
with the substitution of the parametersp,q by their values in
QCD, adding the mass term for the chiral field, and mak
the shift~11! of the u parameter. The meaning of the resu
ing expression is different, however. What was the vacu
energy as a function ofu describingp different vacua in YM
theory becomes the effective potential for the light chi
fields. At first sight, it could be expected that the resulti
effective chiral Lagrangian has the same numberp of differ-
ent vacua. It turns out that this naive expectation is wro
the number of different vacua in QCD is determined by
number of flavors,Nf , at least as long asNf,Nc . The rea-
son why the number of vacua differs from the number
branches of the effective potential is the angular characte
the corresponding chiral degrees of freedom. We hope
the last sentence will become clearer in the next sec
when we consider the concrete examples.

The peculiarity of the resulting effective potential~34! is
that it is impossible to represent it by a single analytic fun
tion by directly performing the limitV→` in Eq. ~34!. In the
thermodynamic limitV→` the only surviving term in the
sum in Eq.~34! is the one maximizing the cosine functio
Thus, the thermodynamic limit selects, for a given value
u2 i log DetU, a corresponding value ofl, i.e. one particular
branch in Eq.~34!. The branch structure of Eq.~34! shows
up in the limitV→` by the presence of cusp singularities
certain values ofu2 i log DetU. These cusp singularities ar
analogous to the ones arising in the case of pure gluodyn
ics @4# for the vacuum energy as function ofu, showing the
non-analyticity of theu dependence at certain values ofu. In
the present case, the effective potential for the light ch
fields analogously becomes non-analytic at some value
the fields. The origin of this non-analyticity is the same as
the pure YM case—it appears when the topological cha
quantization is imposed explicitly at the effective Lagrang
level.

The general analysis of the effective potential~34! will be
given in the next section, while here we consider the c
when the combinationu2 i log DetU is small, and thus the
term with l 50 dominates. We obtain, for this case,

We f f
~ l 50!~U,U1!52E cosF2

q

p
~u2 i log DetU !G

2
1

2
Tr~MU1M 1U1!. ~35!
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Expanding the cosine~this corresponds to the expansion
q/p;1/Nc), we recover exactly the ECL of@6# at lowest
order in 1/Nc ~but only for smallu2 i log DetU,p/q), to-
gether with the ‘‘cosmological’’ term 2E
52^bas /(32p)G2& required by the conformal anomaly:

We f f
~ l 50!~U,U1!52E2

^n2&Y M

2
~u2 i log DetU !2

2
1

2
Tr~MU1M 1U1!1•••, ~36!

where we used the fact that, according to Eq.~3!, at large
Nc , E(q/p)252^n2&Y M where^n2&Y M,0 is the topologi-
cal susceptibility in pure YM theory. Corrections in 1/Nc
stemming from Eq.~35! constitute a new result. Thus, in th
large Nc limit the effective chiral potential~34! coincides
with that of @6# in the vicinity of the global minimum. At the
same time, terms withlÞ0 in Eq. ~34! result in different
global properties of the effective chiral potential in bo
casesq51 andqÞ1 in comparison with the one of Ref.@6#;
see below.

V. THETA DEPENDENCE, METASTABLE VACUA
AND DOMAIN WALLS

In this section we analyze the picture of the physicau
dependence and vacuum structure stemming from the e
tive potential ~34!. This is where we encounter the ma
difference of our results from the scenario of@6#. The origin
of this difference is the branch structure of the effective p
tential ~34!, with the prescription of summation over a
branches. As we have mentioned earlier, this effective po
tial has cusp singularities at certain values of the fiel
whose origin is the topological charge quantization in t
effective Lagrangian framework. It is therefore clear th
these cusp singularities cannot be seen in the usual treat
of the effective chiral Lagrangian, which deals from the ve
beginning with quark degrees of freedom only without im
posing quantization of the topological charge. Thus, the
ferent global form of the effective chiral potential as a fun
tion of the chiral condensate phasesf i , with cusp
singularities at certain values of the phasesf i , is the first
essential difference of our picture from that of Ref.@6#. An-
other important difference appears whenqÞ1. In this case,
we will find metastable vacua, separated by the barriers fr
the true physical vacuum of lowest energy, in the who
range of variation ofu. The properties of these metastab
vacua will be discussed below. Furthermore, for the sa
caseqÞ1 we will argue that the vacuum doubling at th
points u5(2k11)p/q occurs irrespective of the particula
values of the light quark masses~no Dashen’s constraint; se
below!.

It is convenient to describe the non-analytic effective c
ral potential~34! by a set of analytic functions defined o
different intervals of the combinationu2 i log DetU. Thus,
according to Eq.~34!, the infinite volume limit of the effec-
tive potential for the fieldsU5diag(expifq) is dominated by
its l th branch:
3-10
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We f f
~ l ! 52E cosS 2

q

p
u1

q

p( f i1
2p

p
l D

2( Micosf i , l 50,1, . . . ,p21, ~37!

if

~2l 21!
p

q
<u2( f i,~2l 11!

p

q
. ~38!

This can be viewed as the set of ‘‘p’’ different effective
potentials describing different branches in Eq.~12!. The pe-
riodicity in u is realized on the set of potentials~37! as a
whole, precisely as it occurs in the pure gauge case@4# where
different branches undergo a cyclic permutation under
shift u→u22p. As seen from Eq.~37!, the shift u→u
22p transforms the branch withl 5k into the branch with
l 5k1q. In addition, as long asqÞ1, there exists anothe
series of cyclic permutations corresponding tol 5k and l
5k11 in the above set, which are related to each other
the shiftu→u22p/q. If the numberq wereq51, the two
series would be, of course, the same. As was mentione
Sec. II, a valueqÞ1 thus implies some discrete symmet
arising at the quantum level.~Although the periodicity inu
with period 2p/q, qÞ1, rather than 2p, may look surpris-
ing, it is not the first time we encounter such a situation. W
would like to note inN52 Seiberg-Witten theories with
quarks theu dependence forNc52 has periodp, and not
the ‘‘standard’’ 2p @31#. A similar behavior was argued t
hold in some 2D models on the lattice@29#.! In what follows
we will discuss both casesq51 andqÞ1.

Consider the equation of motion for the lowest brancl
50:

sinS q

p
u2

q

p( f i D5
p

q

Mi

E
sinf i , i 51, . . . ,Nf ,

~39!

with the constraint~38! with l 50. At lowest order in 1/Nc
this equation coincides with that of@6#. For general values o
Mi /E, it is not possible to solve Eq.~39! analytically. How-
ever, in the realistic case«u ,«d!1,«s;1 where « i
5(p/q)Mi /E, the approximate solution can be found. N
glecting theO(«u ,«d) terms in the phasesf i ~in this ap-
proximation we deal with the caseNf52), we obtain

fs
~ l 50!50,

fu
~ l 50!1fd

~ l 50!5u,

«usinfu
~ l 50!5«dsinfd

~ l 50! . ~40!

One sees that the constraint~38! is automatically satisfied
The solution of Eqs.~40! reads

sinfu
~ l 50!5

mdsinu

@mu
21md

212mumdcosu#1/2
1O~«u ,«d!,
07402
e

y

in

e

sinfd
~ l 50!5

musinu

@mu
21md

212mumdcosu#1/2
1O~«u ,«d!,

sinfs
~ l 50!5O~«u ,«d!. ~41!

Thus, the solution for thel 50 branch coincides with the on
of Ref. @6# to leading order in«u ,«d . Let us now concentrate
on the caseq51. For the nextl 51 branch we obtain, in-
stead of Eq.~40!,

fs
~ l 51!50,

fu
~ l 51!1fd

~ l 51!5u22p,

«usinfu
~ l 51!5«dsinfd

~ l 51! . ~42!

One can easily see that the solutionf i
( l 51) of these equations

can be obtained from the previous one:fu,d
( l 51)5fu,d

( l 50)2p.
Obviously, solutions for branches withl .1 will coincide
with one of the two solutionsf i

( l 50) ,f i
( l 51) modulo 2p.

Furthermore, while the first solutionfu,d
( l 50) defines the loca-

tion of the global minimum of the effective potential, th
additional solutionfu,d

( l 51) is the saddle point; see Fig. 1 fo
the form of the effective potential atu50 for Nf52 andq
51. Such a saddle point of the effective chiral potential m
be of importance for cosmology and/or the physics of hea
ion collisions. We will not discuss these issues in this pap
but hope to return to them elsewhere.

We have checked numerically that in the caseq51, Nf
53 with physical values of the quark masses we stay w
one physical vacuum at all values ofu. In particular, no
~stable or metastable! vacua appear atu5p. Thus, for q
51 the counting of vacua in our approach agrees with tha
Ref. @6#. On the other hand, when Dashen’s constraint@32#

mumd.msumd2muu ~43!

FIG. 1. Two flavor effective potential forq51. Indicated points
are ~a! minimum and~b! saddle point.
3-11
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is satisfied, metastable vacua appear in the vicinity of
point u5p. In particular, in theSU(2) limit mu5mdÞms
the metastable vacuum exists in a very narrow region n
u5p. Whenu becomes exactly equalp, the two vacua are
exactly degenerate. This agrees with the picture of Ref.@6#.

Finally, we consider the caseq51 with Nf53 light fla-
vors of equal masses. In this case, the metastable vacua
in the extended region ofu from p/2 to 3p/2, analogously
to what was recently found by Smilga@19# for the VVW
potential in the same limit. The resulting picture of theu
dependence of the vacuum energy is shown in Fig. 2.

Let us now consider the caseqÞ1. For the simplest situ-
ation of isospin SU(Nf) symmetry with massesmi5m
!LQCD , the lowest energy state is described by

f i
~ l 50!5

u

Nf
,

Evac~u!52E2MNfcosS u

Nf
D

1O~mq
2!, u<

p

q
; ~44!

f i
~ l 51!5

u

Nf
2

2p

qNf
,

Evac~u!52E2MNfcosS u

Nf
2

2p

qNf
D1O~mq

2!,

p

q
<u<

3p

q
, ~45!

etc. Thus, the solution~44! coincides with the one obtaine
by VVW @6# at smallu,p/q up toO(mq

2) terms. However,
at larger values ofu the true vacuum switches from Eqs.~44!
to Eqs.~45! with a cusp singularity developing atu5p/q.
Here we remind the reader that the ‘‘standard’’ location
the first critical pointu5p corresponds to the particular ca
q51 in our general formulas. On the contrary, in the s

FIG. 2. Vacuum energy as a function of vacuum angleu for the
caseq51 with Nf53 light flavors of equal masses. The solid a
dashed lines represent minima and the dotted line is the interm
ate saddle point.
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nario @6# the solution remains, ifqÞ1, analytic at this point,
and for p/q<u<3p/q has an energy larger than in Eq
~45!. On the other hand, ifq51, the picture of Ref.@6# is
reproduced. Moreover, the number of different solutio
~which may or may not be metastable vacua, depending
the signs of second derivatives of the potential! is precisely
Nf ~or qNf if qÞ1) as the phases are defined modulo 2p,
and thus only the firstNf (qNf) terms in the series~44!,~45!
become operative.

The interesting feature of the caseqÞ1 is that the
vacuum doubling at the points

uk5~2k11!
p

q
, k50,1, . . . ,p21, ~46!

holds irrespective of the values of the light quark mass
This can be seen from the fact that the equations of mo
for any two branches withl 5k and l 5k11 from the set
~37! are related by the shiftu→u22p/q. Thus, the extreme
sensitivity of the theory to the values of the light qua
masses in the vicinity of the critical point inu is avoided in
our scenario ifqÞ1, while the location of the critical poin
is given byuc5p/q instead of the ‘‘standard’’uc5p. ~A
similar situation was argued to hold in 2D CPN models on
the lattice in the weak coupling limit@29#.! Another interest-
ing feature of the scenarioqÞ1 is the appearance of meta
stable vacua which exist for any value ofu, including u
50. For the physical values of the quark masses, we
q21 additional local minima of the effective chiral poten
tial, which are separated by barriers from the true phys
vacuum of lowest energy. For the illustrative purpose,
present in Fig. 3 the effective potential atu50 for q
52,Nf52.

The existence of additional local minima of an effecti
potential for the caseqÞ1 leads to the well-known phenom
enon of the false vacuum decay@33#. For the effective chiral

di-

FIG. 3. Effective potential forq52 andNf52. The point indi-
cated as~a! is the global minimum. The two points indicated as~b!
are identified.
3-12
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DOMAIN WALLS AND THETA DEPENDENCE IN QCD . . . PHYSICAL REVIEW D59 074023
potential~34! this effect and its possible consequences in
context of axion physics were briefly discussed in@34#. Be-
low we present a somewhat more detailed discussion of
issue.

We discuss the problem in a simplified setting by cons
ering the isospinSU(Nf) limit with equal ~and small! fer-
mion masses and taking all chiral phasesf i equal,f i5f,
i.e. restricting our analysis to the ‘‘radial’’ motion in thef
space. In this setting, the problem becomes tractable in
spirit of Ref. @33#. In what follows, we only consider trans
tions between a metastable state of lowest energy and
vacuum. To calculate the wall surface tensions, it is con-
venient to shift the vacuum energy by an overall const
such that the metastable state has zero energy, and to re
and shift the chiral fieldf→(2/ f pANf)f2p/(qNf) in or-
der to have the standard normalization of the kinetic te
and symmetrized form of the potential. With these conv
tions, the effective potential foru50 becomes

W~f!

55 EF12cosS 2qANf

p fp
f2

p

p D G2M f ~f! if f>0

EF12cosS 2qANf

p fp
f1

p

p D G2M f ~f! if f<0

f ~f!5NfFcosS 2

f pANf

f2
p

qNf
D 2cosS 2p

qNf
D G . ~47!

The effective potential~47! has a global minimum atf
5p f p /(2qANf) and a local minimum at f
52p f p /(2qANf), with a cusp singularity between them
~see Fig. 4!. We note that analogous ‘‘glued’’ potentials we
discussed for SUSY models in a similar context@5,8,9#.

A few comments on the above effective potential are
order. First, we note that the potential barrier is hi
(;^G2&) and wide, while the energy splitting foru50,

FIG. 4. Effective potential atu50 for equal chiral phasesf
5fu5fd5fs .
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DE5mqNf u^C̄C&uS 12cos
2p

qNf
D1O~mq

2!, ~48!

is numerically small in comparison to the leading term p
portional to the gluon condensate. Therefore, the thin w
approximation of Ref.@33# is justified for the physical values
of the parameters that enter the effective potential. Indee
is easy to check that the necessary condition@33# 3sm
@DE @wheres is the wall surface tension given by Eq.~51!
below, andm is the width of the wall# is satisfied to a good
accuracy for both alternative choicesp511Nc22Nf
527, q58 or p5Nc53, q51. ~In the latter case, a meta
stable state does not exist forNf53 andu50, but is pos-
sible for, say,Nf55.) Second, we would like to comment o
the meaning of the cusp singularity of the effective poten
~47!. As was mentioned earlier, the cusp arises as a resu
integrating out the ‘‘glueball’’ degrees of freedom, whic
were carrying information on the topological charge quan
zation. For an analogous situation in the supersymme
case, it was argued@9# that the cusp, where the adiabat
approximation breaks down, provides a leading contribut
to the wall surface tension. In our case, we expect the dif
ence of the surface tensions for the potential~47! and a po-
tential where the cusp is smoothed to be down by power
Nc . The reason is that the domain wall to be discussed
low is in fact theh8 wall, while, on the other hand, a cou
pling of the h8 to the glueball fields near the cusp wou
yield the above suppression.

Explicitly, the domain wall solution corresponding to th
effective potential~47! is

f~x!5
p fp

2qANf
F2

p

p
14 arctanH tanS p

4pD
3exp@m~x2x0!#J G , x,x0 ,

f~x!5
p fp

2qANf
Fpp 24 arctanH tanS p

4pD
3exp@2m~x2x0!#J G , x.x0 , ~49!

wherex0 is the position of the center of the domain wall an

m[
2qANfAE

p fp
~50!

is the width of the wall, which turns out to be exactly equ
to theh8 mass in the chiral limit; see Eq.~57! below. This
suggests an interpretation of the domain wall~49! as theh8
domain wall. The solution~49! as a function ofx2x0 is
shown in Fig. 5. Its first derivative is continuous atx5x0 ,
but the second derivative exhibits a jump.
3-13
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The wall surface tension can be easily calculated from
~47!. For u50 it is

s5
4p

qANf

f pAK bas

32p
G2L S 12cos

p

2pD1O~mqf p
2 !.

~51!

Equation~51! should be compared with the formula

s53A2S 12
p

3A3
D mp f p

2 ~52!

found by Smilga@19# for the the wall surface tension atu
.p for the VVW potential@6# with Nf53 with equal fer-
mion masses. A distinct difference between these two ca
is the absence of the chiral suppression;mq in Eq. ~51!,
which apparently would make penetration through the bar
even more difficult in comparison to the VVW potentia
Another difference is the largeNc behavior of Eqs.~51! and
~52!. For fixedmqÞ0, the surface tension scales asO(Nc)
for both cases, while in the limitmq→0 first and thenNc
→` the surface tension vanishes for Eq.~52! and scales as
Nc

1/2 for Eq. ~51!.
The quasiclassical formula for the decay rate per unit ti

per unit volume is@33#

G}expS 2
27p2s4

2~DE!3D [exp~2S4!. ~53!

Using Eq.~52!, one finds that in the VVW scenario the life

FIG. 5. Domain wall profile.
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time of the metastable state at zero temperature is m
larger than the age of the Universe@19#. In our case, we find
a very different result8

S45
333273p2p4

q4Nf
5

f p
4 E2

M3

S 12cos
p

2pD 4

S 12cos
2p

qNf
D 3

.
27

256

p4q2Nf

p4

f p
4 K bas

32p
G2L 2

mq
3u^C̄C&u3

. ~54!

Equation ~54! shows that the false vacuum decay is su
pressed parametrically by a factor;(LQCD /mq)3, which
should be compared to a factor;(LSY M/mg)3 in the soft
SUSY breaking scheme@8,16#. While the latter ceases to
yield a suppression with approaching the decoupling lim
mg@LSY M, the former is a real suppression factor for QC
As should be expected, it tends to infinity~i.e. vacua become
stable! when mq goes to zero. On the other hand, Eq.~54!
shows that the parametric suppression of the decay is lar
overcome due to a numerical enhancement. The latter
pends crucially on the particular values of the integersp,q.
In particular, for our favorite choicep511Nc22Nf , q
58, Eq. ~54! yields a factor.10, while for p5Nc , q51
~as motivated by SUSY; see Sec. III! it is approximately two
orders of magnitude larger, but still much smaller than
estimate of@19# for the VVW potential. For a discussion o
these results, see@34#.

To conclude this section, we would like to note that the
also exist other domain walls interpolating between differ
local minima of the effective potential~34!. The surface ten-
sion s and decay rateG for these walls strongly depend o
the vacuum states connected by the wall.

VI. PSEUDO GOLDSTONE BOSONS AT DIFFERENT u
ANGLES

In this section we address a few related questions. F
we discuss the calculation of theh8 mass from the effective
chiral Lagrangian~34! and show that the main contributio
to mh8 is given by the conformal anomaly. We also calcula
the u dependence of theh8 mass. Furthermore, it will be
shown that for non-zero values ofu, the pseudo Goldstone

8The Nc dependence displayed in Eq.~54! may look suspect as it
apparently indicates thatG5O(e21/Nc) asNc→`. Such a conclu-
sion would be wrong, as in Eq.~51! we have neglected the secon
term in the effective potential~47! in comparison to the first one
However, from the point of view of theNc counting, the second
term in Eq. ~47! is just the leading one. Therefore, it would b
erroneous to extrapolate Eq.~54! to the limit of very largeNc . One
can easily check that in the limitNc→` with mqÞ0 fixed, the
lifetime of a metastable vacuum goes to infinity, in agreement w
the picture of Witten@24# for the case of pure gluodynamics.
3-14



it

on

ve

a
e

-

-

d

a-

ial

g

DOMAIN WALLS AND THETA DEPENDENCE IN QCD . . . PHYSICAL REVIEW D59 074023
bosons cease to be the pure pseudoscalars, but in add
acquire scalar components.

To study the properties of the pseudo Goldstone bos
we parametrize the chiral matrix~10! in the form

U5U0expF iA2
pala

f p
1 i

2

ANf

h8

f h8
G , ~55!

whereU0 solves the minimization equations for the effecti
potential ~34!, and the fieldspa,h8 all have vanishing
vacuum expectation values. A simple calculation of the m
trix of second derivatives yields the following result for th
mass matrix for an arbitrary value ofu:

m33
2 5

2

f p
2 ~Mucosfu1Mdcosfd! ~56!

m88
2 5

2

3 f p
2 ~Mucosfu1Mdcosfd14Mscosfs!

m11
2 54S q

pD 2 E

f h8
2 NfcosS 2

q

p
u1

q

p( f i1
2p l

p D
1

4

Nf

1

f h8
2 (

i 5u,d,s
M icosf i

m38
2 5m83

2 5
2

A3 f p
2 ~Mucosfu2Mdcosfd!

m31
2 5m13

2 52A 2

Nf

1

f p f h8

~Mucosfu2Mdcosfd!
l

07402
ion

s,

-

m81
2 5m18

2 52A 2

3Nf

1

f p f h8

3~Mucosfu1Mdcosfd22Mscosfs!,

wheref i are solutions of the minimization equation stem
ming from Eq. ~37!. They depend onu as well as other
parameters of the effective Lagrangian. Ifp0-h-h8 mixing is
neglected,m11 coincides with the physical mass of theh8.
For u50 and the particular choicep53b,q58, we repro-
duce in this limit the relation given in@3#:

f h8
2 mh8

2
5

8

9b
Nf K as

p
G2L 2

4

Nf
(

u,d,s
mi^C̄ iC i&1O~mq

2!.

~57!

~The choicep5Nc , q51 would produce a numerically
close result.! This mass relation for theh8 appears reason
able phenomenologically. Note that, according to Eq.~57!,
the strange quark contributes 30–40 % of theh8 mass. This
may lead us to expect that chiral correctionsO(ms

2) could be
quite sizable. We also note that in the formal limitNc
→`, mq→0, Eq. ~57! coincides with the relation obtaine
in @12#. In this limit mh8

2 scales asNf /Nc , in agreement with
Ref. @20#. In the different limit whenNc goes to infinity at
fixed non-zeromq , the result ismh8

2
5O(mqNc

0), as for or-
dinary pseudo Goldstone bosons. As for theu dependence of
the h8 mass in the same limit, it is given by the third equ
tion of Eqs.~56! where the phasesf i implicitly depend onu
through the minimization equation for the effective potent
~34!.

The mass matrix~56! can be used to study the mixin
between pseudo Goldstone bosons~including also itsu de-
pendence!. Let us consider the simplest case ofh-h8 mixing
which decouples from thep0 in the isospin limitmu5md

5m, ^d̄d&5^ūu&5^q̄q&. For the caseu50, it is easy to
verify that the mixing matrix
mh2h8
2

5S 2
4

3 f p
2 ~2ms^s̄s&1m^q̄q&!

4A2

A3 f p f h8

~ms^s̄s&2m^q̄q&!

4A2

A3 f p f h8

~ms^s̄s&2m^q̄q&! 2
4

3 f h8
2 ( mi^C̄ iC i&1

Nfb

8 S q

pD 2 ^~as /p!G2&

f h8
2

D ~58!
-
in

e

coincides within an accuracy ofO(mq
2) with the matrix given

by Veneziano@20#:

mh2h8
2

5S 1

3
~4mK

2 2mp
2 ! 2

2A2

3
~mK

2 2mp
2 !

2
2A2

3
~mK

2 2mp
2 !

2

3
mK

2 1
1

3
mp

2 1
x

Nc

D
~59!

with the only ~but important! difference that the topologica
susceptibility;x in pure YM theory in the latter is substi
tuted by the term proportional to the gluon condensate
real QCD in the former. For the particular valuesp53b
511Nc22Nf , q58, we may write down a QCD analogu
of the Witten-Veneziano formula:

K as

p
G2L 5

3b

8
f h8

2
~mh8

2
1mh

222mK
2 !1O~mq

2!. ~60!

This relation generalizes Eq.~57! as it now includesh-h8
mixing.
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Equations~56! can also be used to study other proble
related to the physics of the pseudo Goldstone bosons
particular, we may find the mixing angles in the syste
p0-h-h8 at zero and non-zero anglesu. Instead of discussing
these more phenomenological issues, we here would lik
address another interesting aspect of the corresponding p
ics. Namely, we would like to show that the neutral pseu
Goldstone bosons in theu vacuum cease to be pure pseud
scalars, but instead become mixtures of the scalar and p
doscalar states.9 To show this, we note that the result foun
for the quark condensates in theu vacuum,

^C̄Li8 CR j8 &u[^C̄LiCR j&u50eif i, ~61!

can be represented as a chiral rotation of the usualu50
vacuum:

F85URFUL
1 , F i j 5^C̄LiCR j&u50 . ~62!

Under such a rotation, the quark fields transform as

CRi8 5~UR! ikCRk , CL j
185CLk

1 ~U1!k j . ~63!

In the ‘‘rotated’’ basis, the spin content of the pseudo Go
stone bosons is the standard one. However, relations~63!
imply that it will generally have a different form in terms o
the original unrotated fields. From Eqs.~61!,~62! we obtain

~URUL
1! i i 5eif i~no sum over i !⇒~UR! ik

5d ikeif i /2, ~UL
1!k j5dk je

if i /2. ~64!

Let us consider e.g. thep0 field in the u vacuum. In the
‘‘rotated’’ basis, it has the usual spin content. Using the c
respondence~63!,~64!, we obtain

up0&;uū8ig5u82d̄8ig5d8&

5cosfuuūig5u&2sinfuuūu&2~u↔d!. ~65!

Equation~65! illustrates the phenomenon announced in
beginning of this section: In the presence of a non-zero an
u, the pseudo Goldstone bosons cease to be pure pseud
lars, but in addition acquire scalar components. Although
reality u is extremely close to zero, this observation is n
only of academic interest. The point is that in heavy i
collisions one can effectively create, in principle, an arbitra
value ofu @34#. In these circumstances, the scalar admixt
in the pseudo Goldstone bosons would be quite large,
probably could play an important role in dynamics.

VII. FURTHER APPLICATIONS AND SPECULATIONS

A. Axion potential from effective Lagrangian

One of the interesting implications of the present effect
Lagrangian approach concerns the possibility to constru
realistic axion potential@34# consistent with the known Ward

9This fact was previously noted in the literature@35#.
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identities of QCD.10 This may be achieved due to the on
to-one correspondence between the form of the axion po
tial V(a) and the vacuum energyEvac(u) as a function of
the fundamental QCD parameteru. Indeed, the axion solu
tion of the strongCP problem suggests~see e.g.@36#! that
theu parameter in QCD is promoted to the dynamical axi
field u→a(x)/ f a , and the QCD vacuum energyEvac(u) be-
comes the axion potentialV(a). Therefore, the problem o
analyzingV(a) amounts to the study ofEvac(u) in QCD
without the axion, which is exactly the problem address
above in the present paper.

Both the local and global properties of the axion poten
can be analyzed with this approach. As for the former,
note that, as all dimensionful parameters in our effective
grangian are fixed in terms of the QCD quark and glu
condensate, the temperature dependence of the axion
~and of the entire axion potential! can be related to that of th
QCD condensates whose temperature dependence is u
stood~from lattice or model calculations!.

In particular, the axion mass, which is defined as the q
dratic coefficient in the expansion of the functionEvac(u) at
small u, is proportional to the chiral condensate:ma

2(T)

;mq^0uC̄Cu0&T / f a
2 . Therefore,ma

2(T) is known as long as

^0uC̄Cu0&T is known. This statement is exact up to th
higher order corrections inmq . We neglect these higher or
der corrections everywhere forT<Tc (Tc.200 MeV is the
critical temperature!, where the chiral condensate is nonze
and gives the most important contribution toma . For the
particular caseNf52 one expects a second order phase tr
sition and, therefore,ma

2;(mq / f a
2)^0uC̄Cu0&;uTc2Tub for

T nearTc.200 MeV. This is exactly where the axion ma
does ‘‘turn on.’’ The critical exponent in this caseb
.0.38; see e.g. recent reviews@37# for a general discussion
of the QCD phase transitions.

The global~topological! structure of the axion potentia
appears to be rather complicated, in contrast to what coul
expected according to simple model potentials such
V(a)5ma

2a2/2 or V(a);cos(a/fa). In particular, it admits
the appearance of additional local minima of an effect
potential. Thus, the axion potential may become a mu
valued function; i.e., there would be two different values
the axion potentialV1,2(u5a/ f a) for a fixedu, which differ
by the phase of the chiral field. For the VWW potential, th
happens only atu;p for a small isospin breaking, while fo
the effective potential~34! with qÞ1 metastable vacua exis
for any u, similarly to the case of a softly broken SUSY
Interpolating between two minima is the domain wall th
was described in Sec. V. We stress that it isnot an axion
domain wall, as the value ofu does not change in this tran
sition. Similar domain walls which separate vacua with d
ferent phases of the gluino condensate have been rec
discussed@8,9# for SUSY models. The appearance of such

10Perhaps, one should note that some popularAnsätze for the ax-
ion potential—such asV(a)5ma

2a2/2 or V(a);cos(a/fa)—are at
variance with the Ward identities of QCD.
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domain wall implies an interesting dynamics which develo
at temperaturesbelow the chiral phase transition, which sti
has to be explored.

B. Axially disoriented chiral condensate and axion
search at RHIC

Another interesting phenomenon amenable to an ana
within the effective Lagrangian framework is the possibil
of the production of finite regions ofuÞ0 vacua in heavy
ion collisions @34#, where the chiral fields are misaligne
from the true vacuum in the axialUA(1) direction. This is
somewhat analogous to the production of a disoriented ch
condensate~DCC! with a ‘‘wrong’’ isospin direction ~see
e.g. @38# for a review!.

Let us briefly recall the reason as to why the DCC co
be produced and observed in heavy ion collisions. The
ergy density of the DCC is determined by the mass term

Ef52
1

2
Tr~MU1M 1U1!522mu^C̄C&ucos~f!

~66!

where we putmu5md5m for simplicity, andf stands for
the misalignment angle. Thus, the energy difference betw
the misaligned state and true vacuum withf50 is small and
proportional tomq . Therefore, the probability to create
state with an arbitraryf at high temperatureT;Tc is pro-
portional to exp@2V(Ef2E0)/T# and depends onf only very
weakly; i.e.,f is a quasi-flat direction. Just after the pha
transition when̂ C̄C& becomes nonzero, the pion field b
gins to roll towardf50, and of course overshootsf50.
Thereafter,f oscillates. One should expect coherent osci
tions of the p meson field which would correspond to
zero-momentum condensate of pions. Eventually, these c
sical oscillations produce the realp mesons which hopefully
can be observed at RHIC.

We now wish to generalize this line of reasoning to t
case when the chiral phases are misaligned in theUA(1)
direction as well. For arbitrary phasesf i the energy of a
misaligned state differs by a huge amount;E from the
vacuum energy. Therefore, apparently there are no quas
misalignedUA(1) directions amongf i coordinates, which
would lead to long wavelength oscillations with the produ
tion of a large size domain. However, when the relev
combination (( if i2u) from Eq.~34! is close by an amoun
;O(mq) to its vacuum value, a Boltzmann suppression d
to the term;E is absent, and an arbitrary misaligneduu&
state can be formed. In this case for anyu the difference in
energy between the trueuu& vacuum and a misaligneduu&
state@when thef i fields are not yet in their final position
f i(u)# is proportional tomq and very small in close analog
to the DCC case.

Once formed, such a domain withuÞ0 could serve as a
source of axions, thus suggesting a new possible strateg
the axion search. Below we would like to sketch this id
referring the interested reader to Ref.@34# for more details.

It is well known thatu is a world constant in the usua
infinite volume equilibrium formulation of a field theory
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The superselection rule ensures that the only way to cha
u under these conditions is to have an axion in the theo
However, as a result of the fact that we do not expect
create an equilibrium state with an infinite correlation leng
in heavy ion collisions, the decay of auu& state will also
occur due to the GoldstoneU fields with specificCP-odd
correlations.11 Therefore, two mechanisms of the relaxatio
of a uu& state to the vacuum would compete: the axion o
and the standard decay to the Goldstone bosons. In the l
volume limit, if a reasonably good equilibrium state with
large correlation length is created, the axion mechan
would win; otherwise, the Goldstone mechanism would w
In any case, the result of the decay of auu& state would be
very different depending on the presence or absence of
axion field in nature.12 Provided the axion production i
strong enough, the axion could be detected by using t
property of conversion into photons in an external magne
field @41#. Thus, heavy ion collisions may provide us with
way to finally catch the so far elusive axion.

C. Early Universe during the QCD epoch

As was discussed in Sec. V, the effective Lagrangian
proach developed in this paper predicts the existence of
main wall excitations in QCD at zero temperature. One m
expect that these domain walls appear also for non-zero t
peraturesT,Tc where Tc is the temperature of the chira
phase transition. If so, it would be very interesting to stu
this dynamics in the cosmological context. Here we on
mention that the walls discussed above are harmless cos
logically as they decay in a proper time@34#. On the other
hand, as was noted in@34#, the dynamics of the decayin
domain walls is an out-of-equilibrium process with 100
violation of CP invariance. This is because the phase of
chiral condensate in the metastable vacuum is nonzero an
order 1, which leads to violation ofCP even if u50. ~This
is not at variance with the Vafa-Witten theorem@42# which
refers to the lowest energy state only.! It was speculated in
@34# that such effects could lead to a new mechanism
baryogenesis at the QCD scale. Indeed, it appears tha
three famous Sakharov criteria@43# could be satisfied in the
decay of a metastable state discussed above:

~1! Such a metastable state is clearly out of thermal eq
librium.

~2! CP violation is unsuppressed and proportional
mumdmsūe f f , ūe f f;1. As is known, this is the most diffi-
cult part to satisfy in the scenario of baryogenesis at
electroweak scale within the standard model forCP viola-
tion.

~3! The third Sakharov criterion is a violation of th
baryon~B! number. Of course, the correspondingU(1) is an

11A similar phenomenon has been recently discussed in Ref.@39#
where the possibility of spontaneous parity breaking in QCD aT
.Tc was studied using the largeNc Di Vecchia–Veneziano–
Witten effective chiral Lagrangian.

12The possibility of the production of axions in heavy ion col
sions was independently discussed by Melissinos@40#.
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exact global symmetry of QCD. However, a ‘‘spontaneou
baryon number non-conservation could arise in this dyna
ics as a result of interactions of fermions with the dom
wall. In this case, baryogenesis at the QCD scale is feas
One possible scenario@44# of such a ‘‘spontaneous’’ baryo
genesis with zero net baryon asymmetry is a mechan
based on a charge separation, when the anti-baryon char
concentrated on the surface of balls of the metasta
vacuum produced in the evolution of domain walls (B
shells!. Rough estimates@44# show that the observed rati
(nB2nB̄)/s;1029 can be easily reproduced in this scenar
Surprisingly, the energy densityV B̄ associated with theseB
shells can be close to unity. Therefore, they can be con
ered as candidates for dark matter. We would like to emp
size that each step in such a scenario for baryogenesis a
QCD scale could be, in principle, experimentally tested
RHIC.
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APPENDIX: FIXING p/q BY ‘‘INTEGRATING IN’’

The purpose of this appendix is to suggest a met
which allows one to fix the numberp/q that appears in the
effective potential~12!, provided two plausible assumption
are made. One of them is insisting on the standard form
the fermion mass term in the effective potential, while t
other one is the hypothesis of preserving the holomorp
properties when a heavy fermion is integrated in or out;
below. The approach developed below closely follows
method of@10# where a similar problem was addressed
the effective Lagrangian@4# for pure YM theory. The es-
sence of this method is to consider QCD with light fermio
as a low energy limit of a theory including in addition
heavy fermion, and to construct an effective Lagrangian
the latter theory starting from the effective Lagrangian~12!.
As will be shown below, a relation between the holomorp
and ‘‘topological’’ properties of two Lagrangians is non
trivial, and allows one to fix the crucial parameterj
5q/(2p) entering Eq.~12!.

The task of constructing such an effective Lagrangian
the theory with a heavy fermion is achieved by using
‘‘integrating in’’ technique, developed in the context o
SUSY theories in Ref.@22# and reviewed by Intriligator and
Seiberg@23#. The integrating in procedure can be viewed
a method of introducing an auxiliary field into the effectiv
Lagrangian for QCD with light flavors. Using the renorma
ization group properties of the QCD effective Lagrangian
the chiral limit mq→0, the latter is extended to include th
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auxiliary field T, which will be later on identified with the
chiral combinationQ̄LQR of a heavy fermion.

To conform with the notation and terminology of Re
@22#, we will call QCD with light quarks and the theory with
a heavy fermion the d-theory~from ‘‘downstairs’’! and the
u-theory ~from ‘‘upstairs’’!, respectively. The effective po
tential of the d-theory is thenWd1Wd

1 with @see Eq.~13!#

Wd~h,U !5
1

4

q

p
h logF S h

cLQCD
4 D p/q

DetU

e2 iu G2
1

2
Tr MU

~A1!

~here c is a dimensionless numerical coefficient!, and the
summation over all branches of the logarithm in the partit
function is implied. In this section Eq.~A1! will be under-
stood as representing a branch~section! of the multi-valued
effective potential, which corresponds to a lowest ene
state for smallu!p. As was shown in@4,10#, this section
corresponds to the principal branch of the rational function
the logarithm in Eq.~A1!.

We now want to relate@17,22# the dimensional transmu
tation parameterLQCD of the d-theory to the scale paramet
LQCD11 of the u-theory including a heavy quark of ma
m@LQCD ,LQCD11 . We assume both parameters to be d
fined in the modified minimal subtraction (MS̄) scheme, in
which no threshold factors arise in corresponding match
conditions. The matching condition then follows from th
standard one-loop relations

LQCD5M0expS 2
8p2

bQCDg2~M0!
D ,

bQCD[b5
11

3
Nc2

2

3
Nf ,

LQCD115M0expS 2
8p2

bQCD11g2~M0!
D ,

bQCD115
11

3
Nc2

2

3
~Nf11!, ~A2!

and the requirement that the coupling constants of the d-
u-theories coincide at the decoupling scaleM05m. We ob-
tain

LQCD
4 5LQCD11

4 S m2

LQCD11
2 D 4/~3b!

. ~A3!

As was explained in Refs.@17,22,23#, Eq. ~A3! reflects the
fact that, for fixedLQCD11 , the scale parameterLQCD char-
acterizes the low energy theory surviving below the scalem,
and thus depends onm. In this sense, the constant in th
logarithm in Eq.~A1! also depends onm:

~cLQCD
4 !p/q5~cLQCD11

4 !p/qS m

LQCD11
D 8p/~3bq!

. ~A4!
3-18
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Following Ref. @22#, we now wish to consider~a particular
branch of! the effective potential~A1! as the result of inte-
grating out the auxiliary fieldT in the new effective potentia
W[Wu2mT which corresponds to the u-theory:Wd(h,m)
5W(h,m,^T&) or

Wd5@Wu2mT#^T& , ~A5!

where^T& is a solution of the classical equation of motio
for the auxiliary fieldT:

]Wu

]T
2m50. ~A6!

Let us note that, according to Eq.~A5!, Wd should depend
holomorphically on̂ T&. Our assumption is that this is onl
possible if an effective potentialW of the u-theory is itself
holomorphic in the fieldT. Furthermore, one can see th
Eqs. ~A5!,~A6! actually define the potentialWd as the Leg-
endre transform ofWu . Therefore we can find the unknow
function Wu from the known potentialWd by the inverse
Legendre transform:

Wu5@Wd1mT#^m& , ~A7!

where^m& solves the equation

]

]m
~Wd1mT!50. ~A8!

Equation~A8! can be considered as an equation of mot
for the auxiliary ‘‘field’’ m. It is important to note that Eqs
~A5!–~A8! imply that m should be treated as a complex p
rameter to preserve the holomorphic structure of Eq.~A1!.
When substituted into Eq.~A7!, a solution^m& of Eq. ~A8!
defines the potentialWu(h,T,^m&). When this function is
found, the effective potentialW of the u-theory is defined by
the relation

W~h,T,m!5Wu~h,T,^m&!2mT, ~A9!

in accordance with Eq.~A5!.
The solution of Eq.~A8! is easy to find using Eqs.~A1!,

~A4!:

^m&5
2

3b

h

T
. ~A10!

Thus, Eq.~A7! yields

Wu52
1

4

q

p
h logF S cLQCD11

4

h D p/q

3S 2

3b

h

LQCD11TD 8p/~3bq! e2 iu

DetUG1
2

3b
h.

~A11!

Finally, Eq. ~A9! results in the effective potential of th
u-theory:
07402
n

W5
1

4

q

p
h logF S h

cLQCD11
4 D ~128/3b!p/q

3S 3b

2

T

cLQCD11
3 D 8p/~3bq!

DetU

e2 iu G1
2

3b
h2mT.

~A12!

We expect this effective Lagrangian to describe QCD w
light quarks and the additional heavy quark, correspondin
the fieldT, such that integrating outT brings us back to the
effective Lagrangian~A1! for QCD. Indeed the equation o
motion for the fieldT stemming from the effective potentia
~A12! reads

m^T&5
2

3b
h. ~A13!

Inserting this classical VEV back to Eq.~A12! ~i.e. integrat-
ing out the fieldT), we reproduce the effective potential o
the d-theory, Eq.~A1!. Note that as Eq.~A13! should pre-
serve the Nc counting rule, we obtain ^h&;Nc

2 , b
;Nc , ^T&;Nc . TheNc dependence of the VEV̂T& is con-
sistent with the identification̂T&;^Q̄LQR& which will be
suggested below.

To identify the fieldT of the effective theory with a cor-
responding operator of the fundamental theory, we note
following. As is seen from Eq.~A13!, T has dimension 3,
and thus should describe the VEV of an operator bilinea
the heavy quark fields. Furthermore, as long asm is effec-
tively considered as a complex parameter, this operator
only beQ̄LQR or Q̄RQL , in accordance with the structure o
the mass term in the underlying fundamental theory. Co
paring Eq.~A13! with the relation13 between the VEV’s in
the underlying theory,

^mQ̄LQR&5
as

24pS 2G21 i
3

2
GG̃D , ~A14!

and recalling the definition of the fieldsh,H, we conclude
that

j5
4

3b
,

q

p
5

8

3b
, ^T&5^Q̄LQR&. ~A15!

We thus see that introduction of the heavy quark into
effective theory fixes the parameterj which enters the effec-
tive Lagrangian~A1! for QCD. This has been obtained b
matching the local holomorphic properties of the d- a
u-theories within the integrating in the procedure. As w
shown in@10#, the matching of the two theories can also
considered at the level of global quantization rules for
h,h̄ fields which, for general values ofp/q, are different for

13Equation ~A14! follows from the operator product expan

sions ^mQ̄Q&52^as /(12p)G2&1O(1/m2), ^mQ̄ig5Q&5^as /

(8p)GG̃&1O(1/m2).
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the theories described by Eqs.~A1! and ~A12!. This match-
ing agrees with the result~A15!, and provides a self-
consistency check of the whole procedure of using the in
grating in procedure to fix the parameterq/p52j which
enters the effective potential~12!. Finally, we note that the
correspondence
s

v

07402
-

mT⇔mQ̄LQR , m̄T̄⇔mQ̄RQL ~A16!

between the operators of the effective and underlying th
ries has the same meaning as Eqs.~1!; i.e., the classical field
T describes the VEV of the chiral combinationQ̄LQR of the
full ~QCD 11! theory.
. B

og.
t

.

tt.

y,
@1# G. Veneziano and S. Yankielowicz, Phys. Lett.113B, 231
~1982!.

@2# T. Taylor, G. Veneziano, and S. Yankielowicz, Nucl. Phy
B218, 439 ~1983!.

@3# I. Halperin and A. Zhitnitsky, Phys. Rev. Lett.81, 4071
~1998!.

@4# I. Halperin and A. Zhitnitsky, Phys. Rev. D58, 054016~1998!.
@5# A. Kovner and M. Shifman, Phys. Rev. D56, 2396~1997!.
@6# E. Witten, Ann. Phys.~N.Y.! 128, 363 ~1980!; P. Di Vecchia

and G. Veneziano, Nucl. Phys.B171, 253 ~1980!.
@7# C. Rosenzweig, J. Schechter, and G. Trahern, Phys. Rev. D21,

3388 ~1980!; P. Nath and A. Arnowitt,ibid. 23, 473 ~1981!.
@8# A. Kovner, M. Shifman, and A. Smilga, Phys. Rev. D56, 7978

~1997!.
@9# I. Kogan, A. Kovner, and M. Shifman, Phys. Rev. D57, 5195

~1998!.
@10# I. Halperin and A. Zhitnitsky, Nucl. Phys.B539, 166 ~1999!.
@11# V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I.

Zakharov, Nucl. Phys.B191, 301 ~1981!.
@12# I. Halperin and A. Zhitnitsky, Mod. Phys. Lett. A13, 1955

~1998!.
@13# H. Gomm, P. Jain, R. Johnson, and J. Schechter, Phys. Re

33, 801 ~1986!.
@14# R. J. Crewther, Phys. Lett.70B, 349 ~1977!; M. A. Shifman,

A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys.B166, 493
~1980!.

@15# A. Masiero and G. Veneziano, Nucl. Phys.B249, 593 ~1985!.
@16# M. Shifman, hep-ph/9704114.
@17# M. A. Shifman and A. I. Vainshtein, Nucl. Phys.B296, 445

~1988!.
@18# F. Sannino and J. Schechter, Phys. Rev. D57, 170 ~1998!.
@19# A. V. Smilga, Prog. Part. Nucl. Phys.39, 1 ~1997!.
@20# E. Witten, Nucl. Phys.B156, 269 ~1979!; G. Veneziano,ibid.

B159, 213 ~1979!.
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@37# T. Schäfer and E. V. Shuryak, Rev. Mod. Phys.70, 323
~1998!; A. Smilga, Phys. Rep.291, 1 ~1997!.

@38# K. Rajagopal, hep-ph/9504310.
@39# D. Kharzeev, R. Pisarski, and M. Tytgat, Phys. Rev. Lett.81,

512 ~1998!; hep-ph/9808366.
@40# A. C. Melissinos, hep-ph/9805507.
@41# P. Sikivie, Phys. Rev. Lett.51, 1415 ~1983!; 52, 695 ~1984!;

G. Rafelt and L. Stodolsky, Phys. Rev. D37, 1237~1988!.
@42# C. Vafa and E. Witten, Phys. Rev. Lett.53, 535 ~1984!.
@43# A. D. Sakharov, Pis’ma Zh. Eksp. Teor. Fiz5, 32 ~1967!

@JETP Lett.5, 24 ~1967!#.
@44# R. Brandenberger, I. Halperin, and A. Zhitnitsk

hep-ph/9808471.
3-20


