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Domain walls and theta dependence in QCD with an effective Lagrangian approach
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We suggest an anomalous effective Lagrangian which reproduces the anomalous conformal and chiral Ward
identities and topological charge quantization in QCD. It is shown that the M¢dgi Vecchia—Veneziano—
Witten effective chiral Lagrangian is locally recovered from our results, along with tbrrections, after
integrating out the heavy “glueball” fields. All dimensionful parameters in our scheme are fixed in terms of
the quark and gluon condensates and quark masses. We argue that for a certain range of parameters, metastable
vacua appear which are separated from the true vacuum of lowest energy by domain walls. The surface tension
of the wall is estimated, and the dynamics of the wall is discussedUTti¢ problem and the physics of the
pseudo Goldstone bosons at differénangles are addressed within the effective Lagrangian approach. Impli-
cations for axion physics, heavy ion collisions and the development of the early Universe during the QCD
epoch are discusseff50556-282199)00109-3

PACS numbdps): 12.38.Aw, 11.15.Tk

[. INTRODUCTION scribed in[3]. It was obtained as a generalization of an
anomalous effective Lagrangian for pure Yang-MiléM)
The effective Lagrangian techniques have proved to be ¢heory which was proposed earlier [id]. The constructions
powerful tool in quantum field theory. Generally, there existof [4] and[3] can be viewed as non-supersymmetric coun-
two different definitions of an effective Lagrangian. One of terparts of the Veneziano-Yankielowi¢¥'Y) effective po-
them is the Wilsonian effective Lagrangian describing thetential[1] for SUSY YM theory and the Taylor-Veneziano-
low energy dynamics of the lightest particles in the theory. InYankielowicz (TVY) effective potential for SQCD,
QCD, this is implemented by effective chiral Lagrangiansrespectively. The results obtained[# 3] reveal some strik-
(ECL’s) for the pseudoscalar mesons, which are essentialling similarities between the supersymmetric and non-
constrained by the global non-anomalouSU(N;) supersymmetric effective potentials and the physics that fol-
X SU(N;) and (for large N.) anomaloudJ(1) chiral sym- lows. Notably, the effective potentials for QCD and
metries. Another type of effective Lagrangiéaction is de-  gluodynamics are holomorphic functions of their fields,
fined as the Legendre transform of the generating functionanalogously to the SUSY ca$eMoreover, they have both
for connected Green functions. This object is relevant for‘dynamical” and “topological” parts—a structure which is
addressing the vacuum properties of the theory in terms ofimilar to that of the(amended5]) VY effective potential
vacuum expectation valué¥EV'’s) of composite operators, [1]. As will be discussed in detail below, this “topological”
as they should minimize the effective action. Such an appart of the effective potential turns out to be crucial for the
proach is suitable for the study of the dependence of thanalysis of the physica# dependence in QCD.
QCD vacuum on external parameters, such as the light quark The interest in such an effective Lagrangian for anoma-
masses or the vacuum angle The lowest dimensional con- lously broken conformal and chird)(1) symmetries is

densateg ¥¥),(G?),(GG), which are the most essential Several-fold. First, it provides a generalization of the large
for the QCD vacuum structure, are related to the anomaNc Di Vecchia—Veneziano—WittertVVW) ECL [6] (see
lously and explicitly broken conformal and chiral symme- @lso[7]) for the case of arbitraril. after integrating out the
tries of QCD. Thus, one can study the vacuum of QCD withmassive “glueball” fields. At this stage, no holomorphy is
an effective Lagrangian realizing at the tree level anomalougresent in the resulting effective chiral potential. In this way
conformal and chiral Ward identities of the theory. The util- we arrive at a Wilsonian effective Lagrangian for the light
ity of such an approach to gauge theories was recognize@egrees of freedom consistent with the Ward identities of the
long ago for supersymmetriSUSY) models, where anoma- theory and a built-in quantization of the topological charge
lous effective Lagrangians were found for both the pure(see below. One may note that in principle such a Wilsonian
gauge casgl] and super-QCOSQCD [2].
The purpose of this paper is a detailed analysis of the
anomalous effective Lagrangian for QCD withy light fla- 1t should be noted that the status of holomorphy in SUSY and
vors andN, colors (more precisely, of its potential part ordinary QCD is different. In supersymmetric theories, holomorphy
which was suggested recently by two of us, and briefly deis a consequence of supersymmetry and, moreover, holomorphic
combinationsG2+iGG are determined by the structure of the
anomaly supermultiplet. On the contrary, holomorphy in the ordi-

*Email address: fugle@physics.ubc.ca nary YM theory (in a special sensefollows provided we make
"Email address: higor@physics.ubc.ca some plausible assumptions which are shown to be self-consistent
*Email address: arz@physics.ubc.ca posteriori see Sec. Il.
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effective Lagrangian satisfying all general requirements othat enter our results. A particular method suggestdd 0

the theory could also be written down without constructingto fix these numbers in the context of pure YM theory is
first a more complicated anomalous effective potential infresented in an appendix in a form adopted for the case of
cluding also the “glueball” degrees of freedom. The result-full QCD. In Sec. IV we show how the heavy “glueball”
ing effective potential is found to contain a sine-Gordon termdegrees of freedom in our effective potential can be inte-
whose largeN, expansion reproduces the VWW effective grated out, thus yielding an effective chiral potential for the
potential in the vicinity of the global minimum, along with light degrees of freedom. A correspondence with the VWW
1/N,, corrections. The presence of such term in the effectivdCL [6] is established. In Sec. V we discuss the vacuum
potential implies that the theory sustains the domain walproperties,f# dependence and domain wall solutions in the
excitations. This observation may be important in the confesulting effective theory. Section VI is devoted to an analy-
texts of cosmology and heavy ion collisions. Furthermoresis of theU(1) problem and properties of the pseudo Gold-
our two-step approach to the derivation of the effective chiratone bosons at zero and non-zéroSection VII deals with
Lagrangian has an additional merit in that all dimensionfulthe implications of our results for the properties of the axion
parameters in our scheme are fixed in terms of the gluon anand a possible study of the dependence and new axion
guark condensates and quark masddhe only entries search experiment at the BNL Relativistic Heavy lon Col-
which are not fixed in our scheme are two dimensionlesdider (RHIC). We also discuss the possibility of baryogenesis
integer-valued parameters related to the vacuum structug the QCD scale, which seems suggestive in view of our
and 0 dependence of the theory. As their values are still aesults.

subject of some controversigee Sec. I, in most of the

paper we will keep them as free parametgfhie absence of || ANOMALOUS EFFECTIVE LAGRANGIAN FOR QCD

free dimensionful parameters helps to better understand the

origin of the ' mass[the famousU(1) probleni. In par- We start with recalling the constructi¢d] of the anoma-
ticular, it yields a new mass formula for thg for finite N, lous effective potential for pure YM theorfgluodynamics

in terms of quark and gluon condensates in Q@Pe Eq. It is _defmed as the Legendre transfor_m of the_ generating
(57) below]. Second, it allows one to address related quesfunctlonal for zero mgmentum correlation functions of the
tions of the phenomenology of pseudoscalar mesons, such asarginal operator§ ,,G,,, andG,,G,,, which are fixed by
w%-5-n" or »-5' mixing, with no further phenomenological the conformal anomaly in terms of the gluon condensate
input. Third, such an effective Lagrangian allows one to ad{11,12. The effective potential is a function of effective zero
dress the problem of dependence in QCD. In contrast with momentum field$,h which describe the VEV’s of the com-
th.e apprqach of_Re[B] which deals from the very pggmnmg posite complex field$t,H:

with the light chiral degrees of freedom and explicitly incor-

porates thdJ (1) anomaly without restriction of the topo- _ )

logical charge to integer values, in our method both the f dx h=<f dx H>, fdx h=<fdx H>, (N
U(1) anomaly and topological charge quantization are in-
cluded in the effective Lagrangian framework. After the

“glueball” fields are integrated out, the topological charge here

quantization still shows up in the limi—c via the pres- 1/ B(ay) 1w .

ence of certain cusps in the effective potential, which are not H= 5( 2 24 Zo 4—GG),

present in the larghl, ECL of Ref.[6]. Analogous “glued” s YMm AT

effective potentials containing cusp singularities arise in su-

persymmetridN=1 theories when quantization of the topo- H= E( Plas) G2—j i &G'G) 2
logical charge is imposefb,8,9. As will be discussed be- 2\ 4as Eym 4 '

low, these modifications are not essential for the local
properties of the effective chiral potential in the vicinity of and B(as) = —byyad/(2m)+0(ad), byy=(11/3)N, is
the global minimum. In this case, the results of Héf.are  the Gell-Mann—Lowg function for YM theory? and &y is
reproduced along with calculableN/ corrections. On the a generally unknown parameter which parametrizes the cor-
other hand, for large values éfand/or¢; our results deviate relation function of the topological density:
from those of[6]. Last but not least, the problem of tie
dependence in QCD is directly relevant for the construction _ i Qs _~  Os _~
of a realistic axion potential that would be compatible with I'mo'f dx éqx< OT(@GG(X)%GG(O)] ’O>
the Ward identities of QCD. This is because an axion poten- -
tial V(a) can be obtained, provided the functional form of , [ Blas)
the vacuum energy in QCIE,..(6), is known, by the for- =&vm\ 74, ©
mal substitutiond— a(x)/f,. s YM

Our presentation is organized as follows. In Sec. Il we
describe the approach of Refd] and[ 3] to the construction
of an anomalous effective Lagrangian for pure YM theory 2in what follows we will work with the one-loog3 function.
and QCD, respectively. Section Il discusses different pro-However, most of the discussion below can also be formulated with
posals to find the dimensionless integer-valued parametefsrmally keeping the fullg function.

YM

)
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The two-point function3) and other zero momentum corre-

lation functions ofaG2,aGG are defined via the Wick lim iJ dxe®(0|T{H(x)H(0)}[0) = — 4(H),

type T-product by the nonperturbative part of the partition -0
function lodZ(6)/Zpt] (Zpt stands for a perturbatively de-
fined partition function which does not depend @ where lim if dxeP(0|T{H(x)H(0)}|0)=0. (7)
—0
Z(6)=Zprexp ~ IVE,(0)} i
Blay) These relations are obtained by taking linear combinations of
:ZPTeXp{ — iV< ol g2 0> ] (4) Eqg. (3) with the anomalous conformal Ward identitié¥|1's)
16as P of Ref. [11] for zero-momentum correlation functions in-

. o ) ) volving the operatorGMGM.3 It can be seen that the
by éj|fferent|at|on with respect to the bare coupling constanty_point zero momentum correlation function of the operator
1/g5 and 6. In Eq. (4) we used the fact that the vacuum H equals (4)" (H). Multi-point correlation functions of

energy is defined_relative to its value in perturbation theoryy, operatorH are analogously expressed in terms of its
by a nonperturbative part of the conformal anomaly, for any

9. When the VEV in EqJ4) is defined in this way, its de- vacuum expectation vaIu(éT). At the same time, it is easy

ba 4
< - —SGZ> =consiX
8

pendence on gﬁ is fixed by the dimensional transmutation to check that the decoupling of the fieldlsandH holds for
holomorphy of an effective Lagrangian for YM theory,
872 which codes information on all anomalous WI's.
Mgexp — b_92 5 One should note that the right hand side of the last equa-
0
Here My, is the ultraviolet cutoff mass, and the one-logp portional to regular powers afs. However, _they are irr_el-
function is used. It is important to stress that different regu-evarlt for our purposes, as we are only interested in the
constant in Eq(5) but, once specified, the VEY5) deter- bativeO(e‘”“s) effects. Holomorphy of an effe(_:tive poten-
mines all zero momentum correlation functions of tial for YM theory has the same status. Thus, in contrast to
B(ay)/(4a)G? with perturbative tails subtracted. A@  the supersymmetric case where holomorphy is an exact prop-

formula arbitrary n-point functions ofH, H. This is the origin of
tion in Eqgs.(7) does contain perturbative contributions pro-

larization schemes generally lead to different values of thélecoupling of the field$i andH at the level of nonpertur-

=0, Eq.(3) follows from Eq.(4) using the general relation €'Y of the effective superpotential, in the present case it only

[4] refers to a “nonperturbative” effective potential which does
not include perturbative effects to any finite orderin. We
Blas) Blas) assume that perturbative and nonperturbative effects can be
Ao = 4—G f(0), separated, at least in principle and/or by some suitable con-
s 0 s 0 vention[12,4]. As a result, a perturbatively defined partition
f(0)=1—2£2 62+ O(6%) ©) function Zp bearing a non-holomorphic dependencegﬁn

decouples in zero momentum correlation functions. On the

The strong assumption made[#] was that Eq(3) is actu- othgr hand, the& dependence appears o_nly in the nonpertur-
ally covariant ind, i.e. remains valid for anyat least, smajl ~ Pative part oiZ,. Thus, thenonperturbativevacuum energy
value of @. The assumption of covariance dhis reproduced ~depends 0n|2y on a single complex combinatior 1/g;

a posteriorifrom the effective Lagrangian, and is thus self- +10ba/(327°p) [12,10. Indeed, arguments based on renor-
consistent. We note that covariance of E8j.in 6 follows  Malizability, analogous to those used in Ref1] (see also
automatically within the approach suggestedig]. In fact, ~ Se€c. 1), imply the relation

it is this conjectured covariance of E@) in 6 that underlies

the holomorphic structure of the resulting effective potential _ _s,Gz> — consi ReMSexp( _
0

[see Eq(9) below]. Thus, we are not able at the moment to 8 bg? ~ p

proveholomorphy, but instead argue that it is there based on

(i) self-consistency of this propos@ee Sec. I, and(ii) the 4 3272

possibility of comparing our final formulas with the known =conskReMgexp — b "

results(such as the larghl, effective chiral Lagrangian and

anomalous Ward identities in QCD; see Sec),l8nd the [This expression coincides with the result obtained4h

experience from the known models. directly from the effective Lagrangia(®).] This is exactly
The advantage of using the combinatioi® is in the  the origin of the relationg7) which are obtained by differ-

holomorphic structure of zero momentum correlation func-entiation of logZ,/Zp1) with respect to the holomorphic

tions of operator&2,GG written in terms of theH ,H fields

3272 )

®

[4,10]:
31t should be noted that the relatiofig) imply a particular regu-
lim if dxéqX<O|T{H(X)H(O)}|O>= _4<|-|>, larization schemdsee the discussion belopvand thus cannot be
q—0 viewed as the scheme independent WI's of the theory.
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sourcesr, 7. Thus, once an assumption of the separation ofvas cured by Kovner and Shifman 6] by a similar pre-

perturbative and nonperturbative contributions in E.is

scription of summation over all branches of the multi-valued

made, a new complex structure emerges due to the nonpe_Y—Y superpotential. Moreover, the whole structure of E3).

turbative origin of thed parameter which combines with
another parameterg@ into the unique complex combination
T.

The final answer for the improved effective potential
W(h,h) [here “improved” refers to the necessity of summa-
tion over the integers,k in Eq. (9); see belovj reads[4]

A iv h — h
e VWhh= exp — —| hLog=—+h Log=—
n=—x k=0 4 CYM CYM
Y k+q 0+2mn\h—nh 9
' 0 27 | 2 |’ ©

where the constant€y ,EYM can be taken to be real and

is rather similar to that of théamendedl VY effective po-
tential. Namely, it contains both the “dynamical” and “to-
pological” parts(the first and the second terms in the expo-
nent, respectively The “dynamical” part of the effective
potential(9) is similar to the VY[1] potential~ Slog(FA)Ne
(hereSis an anomaly superfieldwhile the “topological”
part is akin to the improvemefb] of the VY effective po-
tential. Similarly to the supersymmetric case, the infinite sum
over n reflects the summation over all integer topological
charges in the original YM theory. The difference of our case
from that of supersymmetric YM theory is that an effective
potential of the form (M)¢ log(¢/A)N, as in the SUSY
case, implies a simpler form of the “topological” term
~2min/N(¢— ¢) with only one “topological number’n
which specifies the particular branch of the multi-valued
logarithm. In our case, we allow for a more general situation

expressed in terms of the vacuum energy in YM theoryVhen the parameteX is a rational numbeN=p/q. In this

at =0, Cyy=Cyy=—2eE"™(0)=—2e(—byyas/
(32m)G?), andV is the 4-volume. The integer numbegps
and g are relatively prime and related to the parameger
introduced in Eq(3) by q/p=2¢. Thus, we expect that the
paramete¥ defined in Eqs(2),(3) is a rational number. This
expectation is motivated by the fact that it turns out to be th
case in all existing proposals to fix the value &f to be

discussed in the next section, and by experience with supe

symmetric models(In all likelihood, irrational values o
would produce a non-differentiablé dependence for YM
theory) On general grounds, it follows thai=O(N,),q
=0(N?). The symbol “Log” in Eq.(9) stands for the prin-
cipal branch of the logarithm. The effective potentil pro-

case we have two integer valued “topological numbers”
andk, specifying the branches of the logarithm and rational
function, respectively. Our choice is related to the fact that
some proposals to fix the values pfq suggest thag+#1;

see Sec. lll[As follows from Eq.(8), the values op,q are
fixed if the # dependence is knowhOne may expect that the

(?ntegersp andq are related to a discrete symmetry surviving

the anomaly, which may not be directly visible in the origi-
hal fundamental Lagrangian.

It should be stressed that the improved effective potential
(9) contains more information in comparison to that present
in the anomalous Ward identities just due to the presence of
the “topological” part in Eqg.(9). Without this term Eq(9)
would merely be a kinematical reformulation of the content

duces an infinite series of anomalous WI's. By construction ¢ anomalous Ward identities for YM theory. The reason is

it is a periodic function of the vacuum angte* The effec-
tive potential(9) is suitable for a study of the YM vacuum as
described above.

The double sum over the integansk in Eq. (9) appears

that the latter refer, as usual, to the infinite volutteermo-
dynamig limit of the theory, where only one state of a low-
est energy(for 6 fixed) survives. This state corresponds to
one particular branch of the multi-valued effective potential

as a resolution of an ambiguity of the effective potential ag, Eq. (9). At the same time, the very fact of the multi-

defined from the relation&’) and their multi-point generali-
zations. As was discussed [i4], this ambiguity is due to the

fact that any particular branch of the multi-valued function

h log(h/c)P"9, corresponding to some fixed valuesmk, sat-

valuedness of the effective potential implies that there are
other vacua which should all be taken into consideration
when 6 is varied. When summing over the integer, we
keep track of allincluding excited vacua of the theory, and

isfies the anomalous WI's. However, without the summationgjmjtaneously solve the problems of the multi-vaiuedness

over the integers, k in Eq. (9), the effective potential would

and unboundedness from below of the “one-branch theory.”

be multi-valued and unbounded from below. An analogousrhe mest attractive feature of the proposed structure of the

problem arises with the original VY effective Lagrangian. It

“As was explained if4], 6 should appear in the effective La-
grangian in the combinatiof+ 27n, as this combination arises in
the original YM partition function when the topological charge

effective potential9) is that the same summation overk
reproduces the topological charge quantization andp2ri-
odicity in @ of the original YM theory.

We now proceed to the generalization of Ef) to the
case of full QCD withN; light flavors andN, colors. In the
effective Lagrangian approach, the light matter fields are de-

quantization is explicitly imposed. This prescription automatically scribed by the unitary matrixJ;; corresponding to theys

ensures periodicity ird with period 27. However, with an addi-
tional integerk in Eq. (9) and the above way of introducinginto
the effective potential, one more invariance under the sldiftsf

—2ml/q arises. As will be discussed in Sec. V in the context of

QCD, the choicegq#1 is not in contradiction with the known re-
sults concerning thé@ dependence for small values 6f

phases of the chiral condensate| W)= —|<\I_f,_\I’R>|Uij
with

ay a

A
e 27

2 7

+|__ ’
IN¢

uut=1, (10
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where\? are the Gell-Mann matrices &U(N;), =2 is the in accordance with6]. Further, it can be seen that the
pseudoscalar octet, arfd. =133 MeV. As is well known anomalous conformal WI's dfl1] for zero momentum cor-
[6], the effective potential for th& field (apart from the relation functions of operato®? in the chiral limit mg—0
mass termis uniquely determined by the chiral anomaly, are also satisfied with the above choice of conskarithis is

and amounts to the substitution obvious from Eq(14); see below. As another important ex-
_ ample, we calculate the topological susceptibility in QCD
60— 6—iTrlogU (1)) near the chiral limit from Eq(12). For simplicity, we con-

. ) ) . ) sider the limit of SU(N;) isospin symmetry withN; light
in the topolog!cal density term in the QCD Lagrangian. Thequarks, mj<Aqcp. For the vacuum energy for smadl
rule (11) is valid for anyN, . Note that for spatially indepen- < 7/q we obtain[see Eq.(44) below]
dent vacuum field$J, Eq. (11) results in the shift of by a

constant. This fact will be used below. Furthermore, in the — 0
sense of anomalous conformal Ward identifi$] QCD re- Evac(0)=—E+ m(‘I”I’)Nfcos(N—f
duces to pure YM theory when the quarks are “turned off”

with the simultaneous substitutiofG?)ocp—(G?)yy and  Differentiating this expression twice with respect dp we
b=bgcp—bym. Analogously, an effective Lagrangian for reproduce the result ¢fL4]:

QCD should transform to that of pure YM theory when the

+0(mj). (19

chiral fieldsU are “frozen.” Its form is thus suggested by . jqx Os _~ 05 ~
the above arguments and E¢8),(11): (:'Lno' dx &% 0T %GG(X)EGG(O) 0
+oo -1 e
. iv h  — h PE,.(6) 1 —
—iVW(h,U) _ o _ vac _ 2
e n;x kgo ex 7 (hLoggE+hLoggE) _—T—N—fm<\lﬂl’)+0(mq). (15
ciavl ke g 6—ilogDetU+2mn\h—h Other known anomalous WI's of QCD can be reproduced
p 2 2i from Eq. (12) in a similar way. Therefore, we see that Eq.
_ (12) reproduces the anomalous conformal and chiral Ward
r identities of QCD and gives the corre@tdependence for
* 2VTr(M U+ H'C')] ' (12 small values o, and in this sense passes the test for it to be

the effective anomalous potential for QCD. Further argu-
whereM:diag(mi|(\Pi\If‘)|) and the complex fields,h are ~ ments in favor of correctness of E(L2) will be given in
defined as in Eq.(2) with the substitution byy—b  Sec. IV, where we show that EqLl2) correctly reproduces
:(11/3)NC_(2/3)Nf . The integers p.q and parameter the VVW ECL [6] in the V|C|n|ty of the gIObal minimum in
£(g/p=2¢&) in Eq. (12) are in general different from those the largeN, limit after integrating out the heavy “glueball”
standing in Eq(9). Possible approaches to fix the values ofdegrees of freedom, and in addition yields an infinite series

parameterp andq in gluodynamics and QCD will be dis- ©Of 1/N. corrections. On the other hand, we will explain why
cussed in the next section. The constBrtan be related to Weé obtain a different behavior of the effective chiral poten-

the gluon condensate in QCE=(bas/(327)G?), as will  tial for large values of the chiral condensate phages
be clear below. We note that the “dynamical” part of the
anomalous effective potentidll2) can be written asi IIl. WHAT ARE THE VALUES OF PARAMETERS
+Wg where p AND q?
1lq h \PADetU| 1 In the previous section we have considered the anomalous
Wy(h,U)= 1 Bh log (ﬁ o | >TrMu, effective potentials for YM theory and QCD, which involve

(13) some integer numbens and g, with 2¢=q/p, which were
not specified so far. The purpose of this section is to describe
which is quite similar to the effective potentip] for  different proposals to fix the numbepsq, which exist in the
sQcCD? literature, and to make some comments on them. A related
Let us now check that the anomalous WI's in QCD arediscussion can be found in the Appendix.
reproduced from Eq(12). The anomalous chiral WI's are ~ Historically, the first suggestion to fix the proper holo-
automatically satisfied with the substituti¢hl) for any N, morphic combinations of the field3? and GG was formu-
lated in Ref.[11]. For the case of pure YM theory, the au-
thors proposed that fields of definite dualities dominate the
5¢ . . vacuum, and therefore the correct holomorphic combinations
or an early attempt to search for holomorphy in the effective

Lagrangian framework for QCD, sgé3]. The problem with the areGZi iGG. LeaVing aside the issue of jUStiﬁcation of this
approach of Ref[13] was that the resulting effective potential was hypothesis, it is of interest to discuss what values of the
multi-valued and unbounded from below. The prescription of sumparameterg andq are implied in this scenario. As was ar-
mation over all branches of the multi-valued action in E§%.(12) gued in[11], the § dependence of the vacuum energy is fixed
cures both problems. in this case by the renormalization group arguments, since
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for the VEV’s of interest the net effect of thieterm reduces while the latter are metastable states with brokda. The
to the redefinition of the coupling constant lifetime of the metastable states is large for snmajl, and
decreases am)y approaches\syy. When ¢ is varied, the
three states intertwine, thus restoring the physical ri-

1 1 i6 odicity in 6. This picture suggests the valugs=N., q
-5t 16 _4
9 9o 8w i

The problem with the above SUSY-motivated scenario is

that the genuine case of pure YM theory corresponds to the
which yields, for the vacuum energy for small valuesdpf  limit mg>A gy which is not controlled in this approach.
Moreover, the conformal anomaly in softly broken SUSY
gluodynamics is different from that of pure YM theory. On

) the other hand, it is clear from the above discussion that the

17 conformal anomaly and dimensional transmutation are very
essential for the analysis of tltedependence in gluodynam-

which corresponds ta/p=4/b; see Eq.8). Thus, we see ics. Perhaps, it is Worth_vvhile to mention that the vajue
that the self-duality hypothesis of RéfL1] implies the val- = 11N follows also within a non-standard non-soft SUSY
uesp=1IN.,q= 12, for generic odd values ®f.# 3k with ~ breaking suggested recenft}8] as a toy model to match the
some integek. As the value ofp determines the number of conformal anomaly of non-supersymmetric YM theory at the
different non-degenerate vacua in the thefgf we end up  effective Lagrangian level.

with 11N, vacua, which may look strange. This is in contrast With these reservations, it is nevertheless reasonable to
to the case of supersymmetric YM theory where the holo-€xpect that the above SUSY-motivated scenario is close to
morphic combinations arknownto be G2+iGG, but the What actually happens in the decoupling limiy>A sy .
number of vacua ifN, for any number of colors. This may Two different versions of this scenario may be expected.
be understood in terms of renormalization group argumentkirst, it may happen that all generic values of9 there
similar to Egs. (16),(17) (with the substitution (GZ> exists one true vacuum of lowest energy plps-(1) meta-
—(\\)) as a result of the interplay between the integer val-stableC P-violating vacua, which are separated by potential
uedp functionbgy = 3N., which is determined by the zero barriers and intertwine whe# evolves. Another possibility
modes alone and has a geometrical meaning, and the dimeis-that metastable vacua exist only in the vicinity of a level
siond=3 of the gluino condensate. It appears that this conerossing point ing, while for other values of they become
spiracy is very specific to supersymmetric theories. It is inthe saddle points or maxin|®,19). In one of these forms,
teresting to note in this reference that if for some reason On|guch a picture seems to be needed to match the Witten-
the zero mode contributiob=4N,, instead of the fullb  \/eneziano[20] resolution of theU(1) problem. The sce-
=(4—1/3)N;, were to be retained in thg function, EQ.  nario discussed ifi16] implies that the number of vacya
(17) would imply N, vacua. However, we are unable at the remajinsN, in the limit my>A sy, but it is conceivable that
moment to see any compelling reason why such a substituy, aqgitional level splitting occurs with passing the region
tion should be made. Thus, |~t remains unclear whether or n%gNASYM where SUSY methods become inapplicable. Ac-
the appealing choic&?+iGG, p=N, can be compatible tyally, the picture arising in our approach will be just in this
with the renormalization group and conformal anomaly forygip (see Sec. Y As will be discussed there, which of the

non-supersymmetric YM theory. above two versions is realized is mostly determined by the

Another approach to the problem of the number of vacug,) e of parameter. Wheng+ 1, metastable vacua exist for
anNd proper holomorphic combinations of the field$ and all values of#, as happens in the SUSY scenario. Further-
GG is based on the analysis of softly broken SUSY theoriegnore, it will be argued that large lifetimes of metastable
[15], W_hlch is under theoretical control as long as the gluinogiates, necessary for this scenario to work, are ensured
mass is much smaller than the dynamical mass seBje: parametrically—a fact which is not segb6] in the SUSY-
<Asym. A rather detailed discussion of this scenario hasmotivated picture.
been recently given by Shifmdd6] using supersymmetric  one more possible approach we wish to discuss is based
gluodynamics withN.=3 as an example. In the limit of on an idea formulated some time ago bytfuand Zakharov
small my the VEV of the holomorphic combinatio®®  (Kz) [21]. These authors have suggested that in QCD with
+iGG is proportional to the VEMng(A\) where the gluino  massless quarks nonperturbative matrix elements should be
condensaté\\) is to be calculated in the supersymmetric holomorphic in the Pauli-Villars fermion maséy. Assum-
limit my=0. The # dependence of the latter is knoWh7]: ing this kind of holomorphy, they have proposed to relate the

(AN )~exp(O/N.+2mkIN;), k=0,1, ... No—1, which corre-  proton matrix element of the topological densitp|GG|p),
sponds toN. degenerate vacua. Wheny#0, the vacuum  to the matrix elemen¢p|G2|p) which is fixed by the con-
degeneracy is lifted. Fdi.=3 and#=0, we have one state formal anomaly. However, it is not easy to separate pertur-
with negative energyE= —mgA‘;’,YM and two degenerate bative and nonperturbative contributions to the latter due to a
states with positive energ&=(1/2)mgA§YM. The formeris  non-trivial proton wave function. This may be a potentially
the true vacuum state of softly broken SUSY gluodynamicsproblematic point when the KZ holomorphy is considered

bas _, 4 327?46
— % G") =conskReMgexp — —— +i——
8w 0 bgp b
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for the matrix element$.0On the other hand, for vacuum ality. The latter[25] provides a continuum version of the
condensates and zero momentum correlation functions thgtrong coupling limit, with a fixed ultraviolet cutoff, for YM
nonperturbative contributions can be systematically singledheory withN,— o, g%MNC—mo. As was shown if24], in
out, at least formally12]. In this respect, the latter objects this regime thef dependence of the vacuum energy in YM
are simpler than the hadron matrix elements, and thus appetireory takes the form

preferable for testing the KZ holomorphy. This issue was )

addressed ifil2] where a method similar to that of R¢R1] E,ac(6)=C min(6+27k)?+O(1IN,), (18)
was used in the context of pure YM theory to relate the zero K

momentum two-point function o&G to that of G*. In this  \hereC is some constant. We would like to make two com-
approach, pure gluodynamics was considered as a low emnents on a comparison of our results with the picture advo-
ergy limit of a theory including a heavy quark, while holo- cated by Witten in the larghl,, limit. First, we note that the
morphy in thephysicalfermion massn—o was argued to structure of Eq(18) agrees with our modified definition of
hold based on decoupling arguments. Appealing to this hothe path integral including summation over all branches of a
lomorphy, it was suggested that for the case of pure YMmulti-valued(effective action. Indeed, Eq.18) suggests the
theory the parameters of interest gre-3byy=11IN, and  correspondence

g=28, for oddN,. Furthermore, as the anomalous conformal

WI's for the operatorG? [11] are covariant iné, one can . . 1
P [11] Cmin(6+2wk)?= lim ( — —) log

E e~ VC(o+ 2wk)1
K

conclude that the Kan-Zakharov holomorphy, if it holds, vl V

indeed implies covariance of E(B) in #, and thus leads to (19)

the holomorphic effective potential for gluodynamics, Eq.

9). using the definition of the vacuum energy through the ther-

An inverse route was undertaken[it0]. In this paper, the  modynamic limit of the path integral. With this definition,
starting point was the holomorphic effective potent®Iifor  \which prescribes the way the volunveappears in the for-
pure YM theory, with unspecified parameterandg. Again,  muyla for the vacuum energy, the corresponde(k® ap-
the idea was that the meaning of this holomorphy can b@ears to be the only possible one. On the other hand, the
clarified by coupling pure YM theory to a very heavy fer- |atter expression has exactly the structure that arises with our
mion with massn— e, while the values of parametepsand  definition of the improved effective potentiéd). Therefore,

g would be fixed in this case by some kind of consistencyour prescription of the summation over all branches of a
conditions. In contrast to the previous approach, it was sugmulti-valued (effective action seems to be consistent with
gested in[10] to introduce a heavy fermion directly at the the picture developed by Witten using an approach based on
effective Lagrangian level by using the “integrating in” pro- the AdS-CFT correspondence. In particular, our picture of
cedure familiar in the context of SUSY theori€82,23.  pubbles of metastable vacua bounded by domain walls con-
Thus, the “integrating in” method is used here to constructsidered in the context of QCD in Sec. V is in qualitative
an effective Lagrangian for the system (YM agreement with that suggested by Witf@] for the pure
+heavy fermion) from the effective Lagrangian for pure yM case.

YM theory. The consistency condition suggested 10] is Second, one may wonder whether the approach of Ref.
that the holomorphic structure of the latter should arise fronT24] can provide an alternative way to fix the parametercs

the holomorphic structure of the former, assuming the stanof interest. We note that E§18) indicates a non-analyticity
dard form of the fermion mass term. Then, the “integratingat the valuesf,= (mod 2r) only, whereCP is broken

in” method and the above consistency condition are found t&pontaneously. If the technique based on the AdS-CFT dual-
select the only possible valugs=3byy=1IN. andq=8. ity could be smoothly continued to the weak coupling regime
These results coincide with the ones obtained with the apof non-supersymmetric YM theory, this would result in the
proach of[12]. Thus, the “integrating in” method seems to yaluesq=1,p~N,. However, the possibility of such an ex-
suggest the effective Lagrangian realization of thehiu  trapolation is unclear, as for small=g2,,N, the back-
Zakharov holomorphy. The agreement of these two lines ofj;ound geometry develops a singular behavior and the super-
reasoning is encouraging, and shows that different assUMigravity approach breaks down. There might well be a phase
tions made if12] and[10] are at least consistent with each .o n«ition [26] when the effective YM couplingg%MNc is
othe_r. . reduced. That such a phase transition should occur in the

Finally, we would like to comment on another related supergravity approach to three-dimensional QCD (QCD
development. Very recently, Wittdi24] has shown how the a5 arqued iff27]. Other reservations about the use of the

qualitative fe_atures of thed dependen_ce_ N NoON- g hergravity approach to the non-supersymmetric YM theory
supersymme_trlc YM theory—_such as a multiplicity of vacuaj, p=4 have been expressed|i28] where no perturbative
~N,, the existence of domain walls and exact vacuum dous, gication was found for a decoupling of unwanted massive
bling at some special values 6t—can be understood using y5,,7a-Klein states of string theory. On the other hand, there
the anti-de Sitter and conformal field thed”AdS-CFT) du-  eists some evidence from lattice simulations that a critical
value of # moves fromé.= 7 in the strong coupling regime
to 6.<ar in the weak coupling regimg29]. In terms of the

bv. I. Zakharov(private communication parameterp,q, such a case correspondsgté 1. Therefore,
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we conclude that if no phase transition existed in the supemake two observations. First, the mass term in#8g) does

gravity approach, the results of Refd.2,10 would be in  not couple to the “glueball” fields, and is thus unessential
conflict with the latter which would implyp=0O(N.), q  for integrating them out. To simplify the subsequent formu-
=1. In this case, the assumptions madeg12,10 would las, in this section we will omit the mass term, and add it at
have to be reconsidered. Alternatively, there might be ndhe end of calculation. Second, the only remaining effect of

conflict between the two approaches if such a phase transihe light matter fielddJ,U is formally reduced, as was dis-
tion does occur. cussed in Sec. Il, to the redefinitigishift) (11) of the 6

To summarize, at the qualitative level we expect aparameter, and the changes of the numerical parameters in
vacuum structure similar to that suggested by the SUSY scehe effective potential9) for pure YM theory. Therefore, for
nario. As for the quantitative results for the paramepeasid space-time independent fielts U we can integrate out the
g, different lines of reasoning lead to generally different an-, . —. .
swers. The self-duality hypothesis, Ku+Zakharov-type ar- glueball” fields h.h in Eq. (12) in the same way as the
guments and on-standard SUSY breaking toy model af SREKIE 2 TR SO A 0B P I8 B o
suggesp=3byy = 11N, with g=8 or 12 for the pure YM will be repeated below for the present case of QCD. As

. g . . 2
ia.se; The; compz_itlblhty of tr:jeb ar;]pealllr(]g Cho'? K before, we will keep the total space-time 4-volume finite,
*1GG, p=N., q=1, suggested by the soft SUSY break- i 4 transition to the thermodynamic limit—co will be
ing scenario, with the renormalization group and Conformalperformed at the very end.

anomaly for non-supersymmetric YM theory remains un-" \ya start with introducing the “physical” real fields, o
clear. It is conceivable that our current understanding of th%efined by the relations '

effective Lagrangian is incomplete, and a more careful
analysis—perhaps along the lines of Ref&5,24—will h=2E @*i® h=2Eei© 20
solve the puzzldif it is a puzzle of the “extra 1/3,” thus ' ' 20
favoring the SUSY-type scenario. Alternatively, the numberg This definition implies W(w+27)=W(w). As will be
p=1IN;, q=8 (for odd N) suggested by the methods of seen, this condition of the single-valuedness ofdhfeld is

[10,13 may be the correct answer, though perhaps somesatisfied with the substitutiot20).] Then, for the “dynami-
what “counter-intuitive.” For these reasons, below we will ca|” part of Eq.(12) we obtain

keep the general notatignq, while a separate analysis will

be given in cases when the concrete valueg,gfare essen- iV h _ h
tial. The reader is referred to the Appendix for the details of~ - h Logﬁ+ h LOQEE
the “integrating in” method of{10] adopted to the case of

fBHZN?C;)’: 8\{vhich suggests the valuep=3b=11IN, — —iVE &[(p—1)cosw— o sin]. 21)

The summation over the integemsin Eq. (12) enforces the

quantization rule due to the Poisson formula
IV. EFFECTIVE CHIRAL LAGRANGIAN FOR FINITE N¢

The anomalous effective potentidl2) contains both light > exp( omin gvh—ﬂ -y 5(9VEe"sinw— n)
chiral fieldsU and heavy “glueball” fieldsh,h, and is thus n 4i no\p ’
not an effective potential in the Wilsonian sense. On the (22

other hand, only light degrees of freedom, described by the . — . .
fields U, are relevant for low energy physics. An effective which reflects quantization of the topological charge in the

— iginal th . Theref hen th traf@p) is im-
potential for theU,U fields can be obtained by integrating onginal theory erefore, when the constrai) is im

- posed, Eq(21) can be written as
out theh,h fields in Eq.(12). It corresponds to a potential
part of a low energy Wilsonian effective Lagrangian for en- iV h h
ergies less than the glueball mas&@he transition from the - Z( h LOgﬁJr h Logﬁ)
effective potential(12) for the U,h fields to a Wilsonian
effective potential for th&J fields by integrating out thi,h
fields is analogous to the transiti¢82] from the TVY ef-
fective Lagrangia2] for SUSY QCD to the Affleck-Dine-
Seiberg[30] low energy effective Lagrangian. The purpose Using Egs.(22),(23), we put Eq.(12) (with the mass term
of this section is to obtain such an effective potential for theomitted in the form

light U,U fields by integrating out thh,h fields in Eq.(12). oo

=—iVEe”(p—1)COSw+ingw. (23

_ q-1
To find this effective potential for the light,U fields, we e VW= 5(VE9ePsinw— n)
n=-o k=0 p
. (=P
’Such an object is not precisely Wilsonian effective action in the xexg —iVE &(p—1)cosw+in| 6+ aw
usual sense as it does not involve e.g. the vegtermesons whose
masses are compatible with that of thé. (24
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where we denoted out the “glueball” fieldsp,w, along with the auxiliary field
0 ®. To this end, the functiohV should be minimized in re-
o P spect to the three variablgs » and ®, with U fixed. In
6= 0~1logDetU + 27Tq k. (25) spite of the frightening form of this function, its extrema can
o be readily found using the following simple trick. As at the
To resolve the constraint imposed by the presence obthe extremal points all partial derivatives of the functignvan-
function in Egs.(22),(24), we introduce the new field by  jsh, we first consider their linear combination in which the

the formula sum ovemn,k cancels out. We thus arrive at the equations
a . . . P
1) VEEePsmw—n x | D®ex |(I>VEe"S|nw—|(I)an . OW
(26) %=Eep(p003w—d> sinw)=0
Going over to Euclidean space by the substitutivn-V,
we obtain, from Eqs(24),(26), IW  IW
—+—=—E€&’(psino+® cosw)=0, (30
W(U,p,0,®) dow 9P
1 M b ; 2. p2 [ ;
-—— o exd —VEe!(p—1)cos which is equivalent tp~+ ®“=0. [We do not consider here
\ g[ n:z—oc kgo F{ {(p=1)cosw the casep— — which would also solve Eqs30); see
[10].] Therefore, these equations have the only solution
—® sinw}+in| #—ilogDetU +2wk§+ gw—g<b
(p)=0, (®)=0, (31)
n2
—e5= } . (27 _ o o _
VE while the minimum value of the angular fietd is left arbi-

trary by them. The latter can now be found from either of the

Here we |rr1]trc_)duced tf_lreh ""‘I‘r‘"t term (t)o r_ﬁ%ulanze_ t:e Infinitec o nstraintssW/dw =0 or 3W/9® =0, which become iden-
sum over the integers The limit.— 0 will be carried outat caifor ()= ()= 0. The resulting equation reads

the end, but before taking the thermodynamic liviits .
Note that Eq. (27) satisfies the conditionW(w+2)

=W!(w) which should hold as long as is an angle variable. teoa-l _ p p
We also note that the periodicity iA with period 27 is Z_w I(ZO 6—ilog DetU+27Tka—27Tn+ q*
explicit in Eq. (27). n=me ks
To discuss the thermodynamic limit—o we use the VE
identity +2e—sinw |exp VE cosw— . 0—ilog DetU
3 e G+ ho-em] |
03(v,X)= — expg — +27k=—+—-w—2mn| =0, 32
3( ) mkzﬂi X v q qw w ( )
+ o0
= > exd — 1272+ 2il vr] (28)  in which we have to take the limi—O0 at a fixed 4-volume

V. One can see that non-trivial solutions of E§2) at

and transform Eq(27) into its dual form —0 are given by

W(U,p,w,D)

3 (9-i10gDetu) + 271+ 2
e g1 (w)= p( i log DetU) o s

1
=— —Iog[ > > ex;{ —-VEe{(p—1)cosw
\ n=-o k=0
I=0,1,...p—1, r=0,x1,.... 33
' VE[ 0 p (33
- sinw}— . 6—ilog DetU + Zwka
Equation(33) shows thatp physically distinct solutions of
} the equation of motion for the field, while the series over

(29 the integers in Eq. (33) simply reflects the angular character
of the w variable, and is thus irrelevant. Substituting E2B)

where we have omitted an irrelevant infinite factes ~¥2in  back to Eq.(29) and restoring the mass term for thlefield,
front of the sum. Equatiof29) is the final form of the im- We obtain the effective potential for the light chiral fields

proved effective potentidlv, which is suitable for integrating U U [3]:

2
+Bw— E(I)—an)
q q
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1 p-1 Expanding the cosinéhis corresponds to the expansion in
Wei(U,UT)=— lim vlog[ > ex;{VE cos( - = g/p~1/N.), we recover exactly the ECL di6] at lowest
Voo 1=0 order in 1N, (but only for smallé—i log DetU < /q), to-
20 gether  with  the “cosmological” term -—E
X (6—ilogDetU)+ ?I) =—(bas/(32m)G?) required by the conformal anomaly:
1 W=y u+ ——E—<V2>YM 0—i log DetU)?
+SVTI(MU+MTUT) |1 (34) ert (U, UT)= 5 ( og De
Equation(34) is the final form of the effective potential for —%Tr(MU +MTUD+---, (36

the chiral field which is valid for any value of. As was
mentioned in the beginning of this section, this form of the
effective potential34) could be read off the formuld] for ~ where we used the fact that, according to E3), at large
the vacuum energy as a function 6fin pure YM theory, N¢, E(a/p)?=—(v%)yy where(»?)yy<O0 is the topologi-
with the substitution of the parametgrsy by their values in ~ cal susceptibility in pure YM theory. Corrections inNy/
QCD, adding the mass term for the chiral field, and makingstemming from Eq(35) constitute a new result. Thus, in the
the shift(11) of the # parameter. The meaning of the result- large N limit the effective chiral potential34) coincides
ing expression is different, however. What was the vacuunwith that of[6] in the vicinity of the global minimum. At the
energy as a function of describingp different vacua in YM ~ same time, terms with#0 in Eq. (34) result in different
theory becomes the effective potential for the light chiralglobal properties of the effective chiral potential in both
fields. At first sight, it could be expected that the resultingcasesj=1 andq+ 1 in comparison with the one of RéE];
effective chiral Lagrangian has the same nunybef differ- see below.
ent vacua. It turns out that this naive expectation is wrong:
the number of different vacua in QCD is determined by the v THETA DEPENDENCE, METASTABLE VACUA
number of flavorsNs, at least as long ad;<N,. The rea- AND DOMAIN WALLS
son why the number of vacua differs from the number of
branches of the effective potential is the angular character of In this section we analyze the picture of the physigal
the corresponding chiral degrees of freedom. We hope th&tependence and vacuum structure stemming from the effec-
the last sentence will become clearer in the next sectioive potential (34). This is where we encounter the main
when we consider the concrete examples. difference of our results from the scenario[61. The origin
The peculiarity of the resulting effective potenti@¥) is  ©f this difference is the branch structure of the effective po-
that it is impossible to represent it by a single analytic func-tential (34), with the prescription of summation over all
tion by directly performing the limiV— in Eq.(34). In the pranches. As we have mentioned eaylier, this effective poten-
thermodynamic limitV—co the only surviving term in the tial has cusp singularities at certain values of the fields,
sum in Eq.(34) is the one maximizing the cosine function. Whose origin is the topological charge quantization in the
Thus, the thermodynamic limit selects, for a given value ofeffective Lagrangian framework. It is therefore clear that
6—i log DetU, a corresponding value ofi.e. one particular these cusp singularities cannot be seen in the usual treatment
branch in Eq.(34). The branch structure of E¢34) shows Of the effective chiral Lagrangian, which deals from the very
up in the limitV— oo by the presence of cusp singularities at Peginning with quark degrees of freedom only without im-
certain values of—i log DetU. These cusp singularities are POSINg quantization of the topological charge. Thus, the dif-
analogous to the ones arising in the case of pure g|uodymﬂrﬁerent global form of the effective chiral potentlgl as a func-
ics [4] for the vacuum energy as function 6f showing the tion of the chiral condensate phases;, with cusp
non-analyticity of theg dependence at certain valueséofin ~ Singularities at certain values of the phasgs is the first
the present case, the effective potential for the light chira@Ssential difference of our picture from that of Ri]. An-
fields analogously becomes non-analytic at some values éther important difference appears wheg# 1. In this case,
the fields. The origin of this non-analyticity is the same as inWe Will find metastable vacua, separated by the barriers from
the pure YM case—it appears when the topological chargéh€ true physical vacuum of lowest energy, in the whole
quantization is imposed explicitly at the effective Lagrangianf@nge of variation off. The properties of these metastable
level. vacua will be discussed below. Furthermore, for the same
The general analysis of the effective potent@d) will be ~ caseq#1 we will argue that the vacuum doubling at the
given in the next section, while here we consider the cas®0ints 6=(2k+1)m/q occurs irrespective of the particular
when the combinatio®— i log DetU is small, and thus the Values of the light quark mass@so Dashen’s constraint; see

term with1=0 dominates. We obtain, for this case, below. _ _ _ _ _
It is convenient to describe the non-analytic effective chi-

ral potential (34) by a set of analytic functions defined on
different intervals of the combinatiod—i log DetU. Thus,
according to Eq(34), the infinite volume limit of the effec-
tive potential for the field&) = diag(expi ¢,) is dominated by
its Ith branch:

(e (VAVASE —Eco{ - %(6—i log DetU)
1
—5THMU+M*U™), (35)
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q g 2
W“)———Ecos<——6+— di+—I
eff p pz i p

— > Micos¢;, 1=01,...p—1, (37

(2|—1)g<9—2 ¢i<(2|+1)g. (39) West

This can be viewed as the set op™ different effective
potentials describing different branches in Etp). The pe-
riodicity in 6 is realized on the set of potential37) as a
whole, precisely as it occurs in the pure gauge ¢dsehere
different branches undergo a cyclic permutation under the
shift 6—60—2. As seen from Eq(37), the shift 6— 0

— 24 transforms the branch with=k into the branch with
I=k+q. In addition, as long ag+# 1, there exists another
series of cyclic permutations correspondingltek and |
=k+1 in the above set, which are related to each other b%r
the shift 6— 8—27/q. If the numberg wereq=1, the two
series would be, of course, the same. As was mentioned in

FIG. 1. Two flavor effective potential fay=1. Indicated points
e (@ minimum and(b) saddle point.

Sec. Il, a valueg# 1 thus implies some discrete symmetry sin¢g':°)= mySin 6 +0(gy,8q)
arising at the quantum levelAlthough the periodicity ind [ M2+ m3+ 2m,mycosf]*? e
with period 27/q, g#1, rather than 2z, may look surpris-

ing, it is not the first time we encounter such a situation. We  sing{="=0(e,,q). (41)

would like to note inN=2 Seiberg-Witten theories with

quarks thed dependence foN.=2 has periodsr, and not  Thus, the solution for the=0 branch coincides with the one
the “standard” 27 [31]. A similar behavior was argued to Of Ref.[6] to leading order ir,,£4. Let us now concentrate
hold in some 2D models on the lattif29].) In what follows  on the caseg=1. For the next =1 branch we obtain, in-

we will discuss both cases=1 andq+#1. stead of Eq(40),
Consider the equation of motion for the lowest brahch #01-1_0
=0: s 9
M, "V + p=V=9-27,
sin(ga—gz ¢i>=EE'sin¢i, i=1,... N;, :
P q (39 eysing=YV=gysing| =Y. (42)

with the constrain(38) with | =0. At lowest order in I,  ©One can easily see that the solutipfi~ " of these le_quations
this equation coincides with that [8]. For general values of Can be obtained from the previous omgf; ;= (3% — 7.

|\/|i /E, it is not possib|e to solve E(ﬁ39) ana|ytica||y_ How- ObViOUS'y, solutions for branches with>1 will coincide
ever, in the realistic cases,,eq<l,ec~1 where ¢  With one of the two solutionsp{ =%, ¢{'=" modulo 2.
=(p/q)M,/E, the approximate solution can be found. Ne- Furthermore, while the first solutioqaﬂ’jo) defines the loca-
glecting theO(g,,e4) terms in the phase#; (in this ap- tion of the global minimum of the effective potential, the

proximation we deal with the cadé;=2), we obtain additional solutioncz)ﬂvjl) is the saddle point; see Fig. 1 for
the form of the effective potential &=0 for N;=2 andq
d’(sl:O):O! =1. Such a saddle point of the effective chiral potential may
be of importance for cosmology and/or the physics of heavy
d1=V+ ¢ =0=p, ion collisions. We will not discuss these issues in this paper,
but hope to return to them elsewhere.
eysing! =0 =gysing{=?. (40) We have checked numerically that in the casel, N;

=3 with physical values of the quark masses we stay with
One sees that the constrai®8) is automatically satisfied. one physical vacuum at all values @éf In particular, no

The solution of Eqs(40) reads (stable or metastablevacua appear a#= . Thus, forq
=1 the counting of vacua in our approach agrees with that of
=0y mysin @ Ref. [6]. On the other hand, when Dashen’s constrfd2i
sing, = > > 1/2+O(8u,8d),
[m§+mg+2mymgcosé] myMg>mg|my—my| (43)
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FIG. 3. Effective potential fog=2 andN¢=2. The point indi-

the metastable vacuum exists in a very narrow region neatated a<a) is the global minimum. The two points indicated (a$
0= . When 6§ becomes exactly equat, the two vacua are are identified.

exactly degenerate. This agrees with the picture of F&f.
Finally, we consider the casp=1 with N;=3 light fla-

nario[6] the solution remains, ifj # 1, analytic at this point,

vors of equal masses. In this case, the metastable vacua ex@td for w/q< #<3x/q has an energy larger than in Egs.

in the extended region of from 7r/2 to 37/2, analogously
to what was recently found by Smildd9] for the VVW
potential in the same limit. The resulting picture of the
dependence of the vacuum energy is shown in Fig. 2.
Let us now consider the caset 1. For the simplest situ-
ation of isospin SU(N;) symmetry with massesn,=m
<Aqcp, the lowest energy state is described by

0

== — |
i Ny

0
E,ac(0)=—E—M Nfcos< —)
N¢

2 a
O(my), 6= T (44)
i=y_0 27
! Ni  gN¢’
E, (6 E—MN o +0(m?
UaC( ) - fCO Nf Nf (m)
3
zses—w, (45
q q

etc. Thus, the solutiofd4) coincides with the one obtained
by VVW [6] at smallé<=/qg up to O(mg) terms. However,
at larger values of the true vacuum switches from Ed44)

to Eqgs.(45) with a cusp singularity developing &= 7/q.
Here we remind the reader that the “standard”

location of

(45). On the other hand, ifj=1, the picture of Ref[6] is
reproduced. Moreover, the number of different solutions
(which may or may not be metastable vacua, depending on
the signs of second derivatives of the potentialprecisely
N; (or gN; if g#1) as the phases are defined module, 2
and thus only the fird; (qN;) terms in the serie&44),(45)
become operative.

The interesting feature of the casprl is that the
vacuum doubling at the points

0= (2k+ 1)%, k=01,...p—1, (46)
holds irrespective of the values of the light quark masses.
This can be seen from the fact that the equations of motion
for any two branches with=k andl=k+1 from the set
(37) are related by the shifi— 6—27/q. Thus, the extreme
sensitivity of the theory to the values of the light quark
masses in the vicinity of the critical point ifiis avoided in
our scenario ifg# 1, while the location of the critical point
is given by 6.= w/q instead of the “standard"d.= 7. (A
similar situation was argued to hold in 2D Emodels on
the lattice in the weak coupling limj29].) Another interest-
ing feature of the scenarig#1 is the appearance of meta-
stable vacua which exist for any value éf including 6
=0. For the physical values of the quark masses, we find
g—1 additional local minima of the effective chiral poten-
tial, which are separated by barriers from the true physical
vacuum of lowest energy. For the illustrative purpose, we
present in Fig. 3 the effective potential #=0 for q
:2,Nf:2.

The existence of additional local minima of an effective

the first critical pointd= 7 corresponds to the particular case potential for the casq# 1 leads to the well-known phenom-
g=1 in our general formulas. On the contrary, in the sce-enon of the false vacuum decE383]. For the effective chiral
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We +0O(m3), (49

— 2
AE=quf|(\If\If)|(1—cosW

is numerically small in comparison to the leading term pro-

portional to the gluon condensate. Therefore, the thin wall

approximation of Ref{33] is justified for the physical values

of the parameters that enter the effective potential. Indeed, it

is easy to check that the necessary conditi8B8] 3o u

> AE [wherec is the wall surface tension given by E&.l)

below, andu is the width of the wall is satisfied to a good

T accuracy for both alternative choicep=11N.—2N;

. A o =27,9=8 or p=N.=3, g=1. (In the latter case, a meta-

-y \/ stable state does not exist fib;=3 and =0, but is pos-

29 VN sible for, sayN;=5.) Second, we would like to comment on

) , ) the meaning of the cusp singularity of the effective potential
FIG. 4. Effective potential ab=0 for equal chiral phase$  (47). As was mentioned earlier, the cusp arises as a result of

= ¢u=ba= bs- integrating out the “glueball” degrees of freedom, which

were carrying information on the topological charge quanti-

potential(34) this effect and its possible consequences in theation. For an analogous situation in the supersymmetric

context of axion physics were briefly discussed34]. Be-  case, it was arguefP] that the cusp, where the adiabatic

low we present a somewhat more detailed discussion of thigpproximation breaks down, provides a leading contribution

Issue. to the wall surface tension. In our case, we expect the differ-
We discuss the problem ina Slmp“fled setting by COﬂSid-ence of the surface tensions for the poter(t@) and a po-

ering the isospirSU(Ny) limit with equal (and small fer-  tential where the cusp is smoothed to be down by powers of

mion masses and taking all chiral phasksequal,¢;=¢,  N_. The reason is that the domain wall to be discussed be-

i.e. restricting our analysis to the “radial” motion in th®  |ow is in fact thes’ wall, while, on the other hand, a cou-

space. In this setting, the problem becomes tractable in thgling of the 7’ to the glueball fields near the cusp would

spirit of Ref.[33]. In what follows, we only consider transi- yjeld the above suppression.

tions between a metastable state of lowest energy and the Explicitly, the domain wall solution corresponding to the

vacuum. To calculate the wall surface tensionit is con-  effective potential47) is

venient to shift the vacuum energy by an overall constant

such that the metastable state has zero energy, and to rescale

and shift the chiral field¢>—>(2/fw\/_N—f)lgb—Tr/(q Ny) in or- of [ = -
der to have the standard normalization of the kinetic term d(x)= — —+4 arctanta Ty
and symmetrized form of the potential. With these conven- 20Ny
tions, the effective potential fof=0 becomes
Xexp[,u(x—xo)]] . X<Xg,
W(¢)
gl el e )
E[1-co ——||—-Mf if ¢=0 X) = — —4 arctag tan —
_ 5( of. * b (@) o) 20N P 4p
20Ny m L
E 1‘005( of, S+ o) M@ T é=0 XeXF{—u(X—Xo)]] L XX, (49
f(¢)=N 2 b i 5(277) (47)  wherexg is the position of the center of the domain wall and
=N¢| co§ ——=—=¢———|—cog —| |.
' f.UNg ANt aNy °
_2q\N(E 0
The effective potentiak47) has a global minimum atp m= ot

=7f_/(2qyN;) and a local minimum at ¢
=—mf_/(29yN;), with a cusp singularity between them is the width of the wall, which turns out to be exactly equal
(see Fig. 4. We note that analogous “glued” potentials were to the ' mass in the chiral limit; see E¢57) below. This
discussed for SUSY models in a similar contgx8,9]. suggests an interpretation of the domain w4éB) as then’

A few comments on the above effective potential are indomain wall. The solution49) as a function ofx—xg is
order. First, we note that the potential barrier is highshown in Fig. 5. Its first derivative is continuous>at X,
(~(G?)) and wide, while the energy splitting fa=0, but the second derivative exhibits a jump.
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0 time of the metastable state at zero temperature is much
; larger than the age of the UnivergE9]. In our case, we find
Tln a very different resuft
2qN;
1 ™\
o _Fx2xapt feg2 | 17 C0%,
4= q4Nf5 VE ( 277)3
l1-cos—
X aN
2
¢4 bag G2
27 w*q?N¢ 7\ 327 54
256 p*  mi(wW)]*
-nfy
29N Equation (54) shows that the false vacuum decay is sup-
pressed parametrically by a facter(AQCD/mq)3, which
FIG. 5. Domain wall profile. should be compared to a factevr(ASYM/mg)3 in the soft

SUSY breaking schemf8,16]. While the latter ceases to

The wall surface tension can be easily calculated from Egyi€ld a suppression with approaching the decoupling limit
(47). For 6=0 it is my>A gy, the former is a real suppression factor for QCD.

As should be expected, it tends to infinitye. vacua become
stable whenm, goes to zero. On the other hand, E§4)
shows that the parametric suppression of the decay is largely
4p bag ) T 5 overcome due to a numerical enhancement. The latter de-
o= \/N—fw V32,6 1—00% +0(mgf7). pends crucially on the particular values of the integeis.
AVl (51) In particular, for our favorite choicgp=1IN.—2N;, g
=8, Eq.(54) yields a factor=10, while forp=N;, q=1
(as motivated by SUSY; see Sec)litlis approximately two
orders of magnitude larger, but still much smaller than the
Equation(51) should be compared with the formula estimate of19] for the VVW potential. For a discussion of
these results, s4&4].
To conclude this section, we would like to note that there
also exist other domain walls interpolating between different
T ) local minima of the effective potenti@B4). The surface ten-
o=32( 1~ ﬁ m. % (52 sion o and decay rat&' for these walls strongly depend on
the vacuum states connected by the wall.

VI. PSEUDO GOLDSTONE BOSONS AT DIFFERENT @

found by Smilga[19] for the the wall surface tension dt ANGLES

=1 for the VVW potential[6] with N;=3 with equal fer-
mion masses. A distinct difference between these two cases In this section we address a few related questions. First
is the absence of the chiral suppressiem, in Eq. (51),  we discuss the calculation of thg mass from the effective
which apparently would make penetration through the barriethiral Lagrangian34) and show that the main contribution
even more difficult in comparison to the VVW potential. tom,, is given by the conformal anomaly. We also calculate
Another difference is the largd, behavior of Eqs(51) and  the # dependence of they’ mass. Furthermore, it will be
(52). For fixedmg# 0, the surface tension scales@éN;)  shown that for non-zero values @f the pseudo Goldstone
for both cases, while in the limitn,—0 first and thenN,
— oo the surface tension vanishes for Ef2) and scales as
N2 for Eq. (52).

The quasiclassical formula for the decay rate per unit time,
per unit volume i§33]

8The N, dependence displayed in E&4) may look suspect as it
pparently indicates thdt=0(e™N¢) asN,—=. Such a conclu-
sion would be wrong, as in E451) we have neglected the second
term in the effective potentiad7) in comparison to the first one.
2724 However, from the point of view of th&l, counting, the second
Focex;{ _2lm%o )EeXF(—S4)- (53) term in Eq.(47) is just the leading one. Therefore, it would be
2(AE)3 erroneous to extrapolate E¢p4) to the limit of very largeN.. One
can easily check that in the limM —o with my#0 fixed, the
lifetime of a metastable vacuum goes to infinity, in agreement with
Using Eq.(52), one finds that in the VVW scenario the life- the picture of Witter{24] for the case of pure gluodynamics.
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bosons cease to be the pure pseudoscalars, but in addition 2 1
acquire scalar components. m3=mig=2/ N
To study the properties of the pseudo Goldstone bosons, taf,

we parametrize the chiral matrig0) in the form X (M 4COS¢h, + M 4COShy— 2M COSh,)
u u S S/

f, \/N—f £ ' (55 ming from Eq.(37). They depend or9 as well as other

parameters of the effective Lagrangiansft-»-7’ mixing is

whereU,, solves the minimization equations for the effective Neglectedms, coincides with the physical mass of thg.

potential (34), and the fields#® 5’ all have vanishing FOr #=0 and the particular choice=3b,q=8, we repro-

vacuum expectation values. A simple calculation of the maduce in this limit the relation given ifg]:

=T\ 2 g where ¢; are solutions of the minimization equation stem-
U=Ugqex |\/§ +i—=—

trix of second derivatives yields the following result for the , 8 as 4 _
mass matrix for an arbitrary value &f fn,mn,=%Nf<?Gz> - N—Ed: mi<\1fillfi)+0(m§).
fu,d,s
(57)
2 (The choicep=N;, g=1 would produce a numerically
2 _ [oR]
m33_f_2(MUCOS¢U+MdC°S¢’d) (56)  close resul). This mass relation for they’ appears reason-

g able phenomenologically. Note that, according to Ey),
the strange quark contributes 30—40 % of #flemass. This
5 may lead us to expect that chiral correctic@n@ni) could be
2 _ uite sizable. We also note that in the formal linN
Meg= ~ 7 (MCOShy T MCOShq + 4M<COSh) q_mo, m,— 0, Eq.(57) coincides with the relation ob?z:{itrcwed
in [12]. In this limit m?, scales ad; /N, in agreement with
) q\? q q 2l Ref.[20]. In the different limit whenN; goes to infinity at
my;=4 o fTNfCO - 59+ 52 o+ Iy fixed non-zerom,, the result ism?,=0(myN2), as for or-
’ . 7
dinary pseudo Goldstone bosons. As for théependence of
4 1 the »' mass in the same limit, it is given by the third equa-
— = M;cosd; tion of Eqgs.(56) where the phaseg; implicitly depend ond
i=u.d, through the minimization equation for the effective potential
(34).
’ ) 2 The mass matriX56) can be used to study the mixing
M3g= mBSZW(MuCOS‘ﬁu_ M qCOS¢q) between pseudo Goldstone bosgimeluding also itsd de-
& pendencg Let us consider the simplest caserpfy’ mixing
5 1 which d_ecou;:ies fro_m ther® in the isospin limitm,=my
m3,= m§3=2\/:—(Mucos¢u— M 4COS¢hg) =m, (dd)=(uu)={(qq). For the case#=0, it is easy to
Nef.f, verify that the mixing matrix

w

—i(2m<§s,>+m_>) 42 'ss)—m(qc
372 (2Ms (aq Jﬁfwfnr(ms<ss> m(qd))

2 w
My = 2 2 (58)
442 — — 4 — Nfb/q ((aglm)G*)
R S - - AT, 2
@fﬂfn,(ms<ss> m(qa)) 3@2 M)+ 5| 5 7

coincides within an accuracy ﬁi(mé) with the matrix given  susceptibility~ x in pure YM theory in the latter is substi-

by Veneziand 20]: tuted by the term proportional to the gluon condensate in
real QCD in the former. For the particular valugs=3b
1 22 =1IN.—2N;, g=8, we may write down a QCD analogue
~(4mz—m2) - == (mZ-m?) - -
, 3 VKT 3 kT e of the Witten-Veneziano formula:
m._ =
=7 2\2 2 1 X as 3b, 2 2 2
Sl g g - <?Gz> =g Ly (M, 2mg) +O(mg). (60
(59

This relation generalizes E@57) as it now includesy-»’
with the only (but important difference that the topological mixing.
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Equations(56) can also be used to study other problemsidentities of QCD'° This may be achieved due to the one-
related to the physics of the pseudo Goldstone bosons. lw-one correspondence between the form of the axion poten-
particular, we may find the mixing angles in the systemtial VV(a) and the vacuum energ§,..(6) as a function of
w°-n-n' at zero and non-zero anglésinstead of discussing the fundamental QCD parametér Indeed, the axion solu-
these more phenomenological issues, we here would like tgon of the strongCP problem suggest&see e.g[36]) that
address another interesting aspect of the corresponding phyige g parameter in QCD is promoted to the dynamical axion

ics. Namely, we would like to show that the neutral pseudogyg|q 9—a(x)/f,, and the QCD vacuum enerdy..(6) be-
Goldstone bosons in the vacuum cease to be pure pseudo-.,mes the axion potential(a). Therefore, the problem of

scalars, but instead become mixtures of the scalar and pselr ; ;
’ : nalyzingV(a) amounts to the study dE, ,.(6) in QCD
doscalar statesTo show this, we note that the result found without the axion, which is exactly the problem addressed

for the quark condensates in tidevacuum, above in the present paper.

T A\ T i i Both the local and global properties of the axion potential
(V[ Wro=(¥1iVr))s-0e'”, ©®D  can be analyzed with this approach. As for the former, we
can be represented as a chiral rotation of the ugsa0  note that, as all dimensionful parameters in our effective La-
vacuum: grangian are fixed in terms of the QCD quark and gluon
condensate, the temperature dependence of the axion mass
' =UpdU,  ®yj=(¥;¥r;)p=o- (62)  (and of the entire axion potentjatan be related to that of the
QCD condensates whose temperature dependence is under-
Under such a rotation, the quark fields transform as stood(from lattice or model calculations
, In particular, the axion mass, which is defined as the qua-
Vri=(UpiPric P =P (U")y. (63)  dratic coefficient in the expansion of the functiip,.(6) at
In the “rotated” basis, the spin content of the pseudo Gold-small 6,_1s propo;tlonal fo the 2ch|ra_l condensaneg(T)
stone bosons is the standard one. However, relat{68s ij<o|qnp|o>T/fa' Thereforem;(T) is known as long as
imply that it will generally have a different form in terms of (0|WW|0); is known. This statement is exact up to the
the original unrotated fields. From Eq§1),(62 we obtain  higher order corrections im,. We neglect these higher or-
_ der corrections everywhere for<T. (T.=200 MeV is the
(URU))ii=€'%(no sum overi)=(Ug)iy critical temperaturg where the chiral condensate is nonzero
and gives the most important contribution t@,. For the
particular cas&;=2 one expects a second order phase tran-

Let us consider e.g. the® field in the & vacuum. In the Sition and, thereforanZ~(mq/f3)(0| W ¥|0)~| T —T|* for
“rotated” basis, it has the usual spin content. Using the cor-T n€arTc=200 MeV. This is exactly where the axion mass

=5x€' %2, (U )y= 6" 9" (64)

respondencé63),(64), we obtain does “turn on.” The critical exponent in this casg
=(0.38; see e.g. recent revieZW&7] for a general discussion
|70 ~[u’iysu’ —d’iysd’) of the QCD phase transitions.

. . The global(topologica) structure of the axion potential
=C0S¢,|Ui ysu)—sing,Juu)—(u—d). (65 appears to be rather complicated, in contrast to what could be
expected according to simple model potentials such as
Equation(65) illustrates the phenomenon announced in the\/(a)=m§a2/2 or V(a)~cos@/f,). In particular, it admits
beginning of this section: In the presence of a non-zero anglghe appearance of additional local minima of an effective
0, the pseudo Goldstone bosons cease to be pure pseudosggtential. Thus, the axion potential may become a multi-
lars, but in addition acquire scalar components. Although injajued function; i.e., there would be two different values of
reality 6 is extremely close to zero, this observation is notthe axion potentiaV,  6=a/f,) for a fixed 8, which differ
only of academic interest. The point is that in heavy ionpy the phase of the chiral field. For the VWW potential, this
collisions one can effectively create, in principle, an arbitraryhappens on|y af~ 7 for a small isospin breaking’ while for
value of ¢ [34]. In these circumstances, the scalar admixturehe effective potential34) with q# 1 metastable vacua exist
in the pseudo Goldstone bosons would be quite large, angyy any 9, similarly to the case of a softly broken SUSY.

probably could play an important role in dynamics. Interpolating between two minima is the domain wall that
was described in Sec. V. We stress that ih@t an axion
VIl. FURTHER APPLICATIONS AND SPECULATIONS domain wall, as the value af does not change in this tran-

sition. Similar domain walls which separate vacua with dif-

ferent phases of the gluino condensate have been recently
One of the interesting implications of the present effectivediscussed8,9] for SUSY models. The appearance of such a

Lagrangian approach concerns the possibility to construct a

realistic axion potentidl34] consistent with the known Ward

A. Axion potential from effective Lagrangian

%erhaps, one should note that some popéitasaze for the ax-
ion potential—such aS/(a)zmiaZIZ or V(a)~cosg@/f,)—are at
9This fact was previously noted in the literaty@5]. variance with the Ward identities of QCD.
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domain wall implies an interesting dynamics which developsThe superselection rule ensures that the only way to change
at temperaturebelowthe chiral phase transition, which still # under these conditions is to have an axion in the theory.

has to be explored. However, as a result of the fact that we do not expect to
create an equilibrium state with an infinite correlation length
B. Axially disoriented chiral condensate and axion in heavy ion collisions, the decay of |#) state will also
search at RHIC occur due to the Goldstond fields with specificCP-odd

. . correlations'! Therefore, two mechanisms of the relaxation
Another interesting phenomenon amenable to an analysis

o ; . : .2 ~0f a|6) state to the vacuum would compete: the axion one
within the effective Lagrangian framework is the possibility
) 2 : . and the standard decay to the Goldstone bosons. In the large
of the production of finite regions of#0 vacua in heavy

ion collisions[34], where the chiral fields are misaligned volume limit, if a reasonably good equilibrium state with a
' . : N 19T large correlation length is created, the axion mechanism
from the true vacuum in the axi&) (1) direction. This is

\ C . would win; otherwise, the Goldstone mechanism would win.

somewhat analogous to the production of a disoriented chlra}ln any case, the result of the decay of@ state would be

gon?gg]s?;f(gfgiewh a “wrong” isospin direction (see very different depending on the presence or absence of the
-9 ' axion field in naturé? Provided the axion production is

Let us briefly recall the reason as to why the DCC could , : .
be produced and observed in heavy ion collisions. The engtrong enough, the axion could be detected by using their

: ) . .~ property of conversion into photons in an external magnetic
ergy density of the DCC is determined by the mass term: field [41]. Thus, heavy ion collisions may provide us with a

way to finally catch the so far elusive axion.

1 —
Eg=— ETr(MUJr M*UT)=—2m|(¥T)|cog ¢)
(66) C. Early Universe during the QCD epoch

As was discussed in Sec. V, the effective Lagrangian ap-
where we putm,=my=m for simplicity, and¢ stands for  proach developed in this paper predicts the existence of do-
the misalignment angle. Thus, the energy difference betweemain wall excitations in QCD at zero temperature. One may
the misaligned state and true vacuum with- 0 is small and  expect that these domain walls appear also for non-zero tem-
proportional tom,. Therefore, the probability to create a peraturesT<T, where T, is the temperature of the chiral
state with an arbitraryp at high temperaturd~T, is pro-  phase transition. If so, it would be very interesting to study
portional to exp—V(E,—E)/T] and depends ot only very  this dynamics in the cosmological context. Here we only
weakly; i.e.,¢ is a quasi-flat direction. Just after the phasemention that the walls discussed above are harmless cosmo-
transition when(W¥') becomes nonzero, the pion field be- logically as they decay in a proper tinj@4]. On the other
gins to roll toward¢=0, and of course overshoots=0. hand, as was noted iB4], the dynamics of the decaying
Thereafter ¢ oscillates. One should expect coherent oscilla-domain walls is an out-of-equilibrium process with 100%
tions of the # meson field which would correspond to a violation of CP invariance. This is because the phase of the
zero-momentum condensate of pions. Eventually, these claghiral condensate in the metastable vacuum is nonzero and of
sical oscillations produce the realmesons which hopefully —order 1, which leads to violation &P even if =0. (This
can be observed at RHIC. is not at variance with the Vafa-Witten theorgd®] which

We now wish to generalize this line of reasoning to therefers to the lowest energy state onlit. was speculated in
case when the chiral phases are misaligned inUhé1)  [34] that such effects could lead to a new mechanism for
direction as well. For arbitrary phasef the energy of a baryogenesis at the QCD scale. Indeed, it appears that all
misaligned state differs by a huge amounE from the three famous Sakharov critefid3] could be satisfied in the
vacuum energy. Therefore, apparently there are no quasi-fléecay of a metastable state discussed above:
misalignedU (1) directions amongp; coordinates, which (1) Such a metastable state is clearly out of thermal equi-
would lead to long wavelength oscillations with the produc-librium.
tion of a large size domain. However, when the relevant (2) CP violation is unsuppressed and proportional to
combination g;¢;— 6) from Eq.(34) is close by an amount mymymg6f.¢;, O.1i~1. As is known, this is the most diffi-
~0(mg) to its vacuum value, a Boltzmann suppression duecult part to satisfy in the scenario of baryogenesis at the
to the term~E is absent, and an arbitrary misaligng) electroweak scale within the standard model @ viola-
state can be formed. In this case for atyhe difference in  tion.
energy between the tru@) vacuum and a misaligned) (3) The third Sakharov criterion is a violation of the
state[when theg; fields are not yet in their final positions baryon(B) number. Of course, the correspondidgl) is an

#i(0)]is proportional tam, and very small in close analogy
to the DCC case.

Once formed, such a domain with#0 could serve as a  11a similar phenomenon has been recently discussed in[B8F.
source of axions, thus suggesting a new possible strategy f@fhere the possibility of spontaneous parity breaking in QCIF at
the axion search. Below we would like to sketch this idea,:TC was studied using the larghl, Di Vecchia—Veneziano—
referring the interested reader to RES4] for more details.  Witten effective chiral Lagrangian.

It is well known thaté is a world constant in the usual *The possibility of the production of axions in heavy ion colli-
infinite volume equilibrium formulation of a field theory. sions was independently discussed by Melissiads.
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exact global symmetry of QCD. However, a “spontaneous” auxiliary field T, which will be later on identified with the
baryon number non-conservation could arise in this dynamehijral combinationQ, Qg of a heavy fermion.
ics as a result of interactions of fermions with the domain  To conform with the notation and terminology of Ref.

wall. In th[s case, baryogenesis at the QCD scale is feasibl¢p2], we will call QCD with light quarks and the theory with
One possible scenar{d4] of such a “spontaneous” baryo- 3 heavy fermion the d-theorfrom “downstairs”) and the
genesis with zero net baryon asymmetry is a mechanisn-theory (from “upstairs”), respectively. The effective po-

based on a charge separation, when the anti-baryon chargeitial of the d-theory is theWy+ W, with [see Eq(13)]
concentrated on the surface of balls of the metastable

vacuum produced in the evolution of domain wallB ( 1q h Minatu] 1
shelly. Rough estimate§44] show that the observed ratio Wy(h,U)= Z_h log 2 | ETrMU
(ng—ng)/s~10"° can be easily reproduced in this scenario. P ¢Aqeo e

Surprisingly, the energy densifyg associated with thes@ (A1)
shells can be_ close to unity. Therefore, they can be ConS'd(herec is a dimensionless numerical coefficignand the
ered as candidates for dark matter. We would like to empha: . X . .

. . . : ummation over all branches of the logarithm in the partition
size that each step in such a scenario for baryogenesis at the

: h . unction is implied. In this section EA1) will be under-
SISI% scale could be, in principle, experimentally tested atstood as representing a bran@ection of the multi-valued

effective potential, which corresponds to a lowest energy
state for smalld<7. As was shown if4,10], this section
corresponds to the principal branch of the rational function in

Some parts of this work have been presented at the Axiofe logarithm in Eq(Al). . .
workshop and the conferences “Continuous advances in We now want to relat¢17,22 the dimensional transmu-
QCD” and “Lattice-98" (Boulded. We are grateful to the tation parameteA o of the d-theory to the scale parameter
participants of these meetings. In particular, we have benAqcp+1 Of the u-theory including a heavy quark of mass
efited from discussions with R. Brandenberger, D. Kharzeevin>Aqcp.Aqcp+1- We assume both parameters to be de-
J. Kim, I. Kogan, A. Kovner, A. Melissinos, E. Mottola, R. fined in the modified minimal subtraction (NMScheme, in
Peccei, R. Pisarski, M. Shifman, E. Shuryak, P. Sikivie, A.which no threshold factors arise in corresponding matching
Smilga, M. Stephanov, M. Strassler, B. Svetitsky, A. Vain-conditions. The matching condition then follows from the

ACKNOWLEDGMENTS

shtein, L. Yaffe, V. Zakharov and K. Zarembo. standard one-loop relations
8?2
APPENDIX: FIXING p/q BY “INTEGRATING IN” Aqcp=Meexp — —————|,
. o bocog®(Mo)

The purpose of this appendix is to suggest a method
which allows one to fix the numbea/q that appears in the 11 2
effective potential12), provided two plausible assumptions boco=b= ch— §Nf-
are made. One of them is insisting on the standard form of
the fermion mass term in the effective potential, while the 872

. . . . aw

other one is the hypothesis of preserving the holomorphic AQCD+1=MoeXP( EE—
properties when a heavy fermion is integrated in or out; see bQCDHgZ(MO)
below. The approach developed below closely follows the
method of[10] where a similar problem was addressed for 11 2
the effective Lagrangiaf4] for pure YM theory. The es- bQCD+1:§NC_ §(Nf+1)v (A2)

sence of this method is to consider QCD with light fermions

as a low energy limit of a theory including in addition a and the requirement that the coupling constants of the d- and

heavy fermion, and to construct an effective Lagrangian for-theories coincide at the decoupling scilg=m. We ob-
the latter theory starting from the effective Lagrangiag). tain
As will be shown below, a relation between the holomorphic

and “topological” properties of two Lagrangians is non- m2 | e
trivial, and allows one to fix the crucial parameter Adeo=Abepril = (A3)
=q/(2p) entering Eq(12). AQepra

The task of constructing such an effective Lagrangian for , )
the theory with a heavy fermion is achieved by using the*S Was explained in Ref$17,22,23, Eq. (A3) reflects the
“integrating in” technique, developed in the context of fact that, for fixedAgcp. 1, the scale parametédocp char-
SUSY theories in Ref22] and reviewed by Intriligator and  2Cterizes the low energy theory surviving below the saale
Seiberg[23]. The integrating in procedure can be viewed as2d thus depends om. In this sense, the constant in the
a method of introducing an auxiliary field into the effective 109arithm in Eq.(A1) also depends om:
Lagrangian for QCD with light flavors. Using the renormal-
ization group properties of the QCD effective Lagrangian in (CAéco)p/q=(CA4Qco+1)p/q(
the chiral limitm,— 0, the latter is extended to include the

m 8p/(3bq)
) . (A4)

Agcp+1
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Following Ref.[22], we now wish to considefa particular 1q h (1-8/30)p/q
branch of the effective potentialAl) as the result of inte- W= - —hlog (4—
grating out the auxiliary field in the new effective potential 4p CAgep+1
W=W,—mT which corresponds to the u-theory/;(h,m) 8p/(3bq)
=W(h,m,(T)) or % b T DetU +£h—mT
3 —i6 3b )
z CAqep+1 €

Wy=[W,—mT]p, (A5)
d u (M (A12)
where(T) is a solution of the classical equation of motion

for the auxiliary fieldT: We expect this effective Lagrangian to describe QCD with

light quarks and the additional heavy quark, corresponding to
IW, the field T, such that integrating ouft brings us back to the

-m=0. (A6)  effective LagrangiarfAl) for QCD. Indeed the equation of
JaT motion for the fieldT stemming from the effective potential
(Al12) reads

Let us note that, according to EGA5), Wy should depend
holomorphically on{T). Our assumption is that this is only 2
possible if an effective potentialV of the u-theory is itself m(T)= %h. (A13)
holomorphic in the fieldT. Furthermore, one can see that

Egs. (A5),(A6) actually define the potentialy as the Leg-  |nserting this classical VEV back to EA12) (i.e. integrat-
endre transform oV, . Therefore we can find the unknown jng out the fieldT), we reproduce the effective potential of
function W, from the known potentiaWy by the inverse ihe d-theory, Eq(A1). Note that as Eq(A13) should pre-
Legendre transform: serve the N, counting rule, we obtain(h)~N2, b
W= [ Wy mT] . a7y N, (T).~ Ne. The N.C'dep.)endence_of the VEVF) is. con-
sistent with the identificatiofT)~(Q_ Qg) which will be
where(m) solves the equation suggested below. - _ _
To identify the fieldT of the effective theory with a cor-
9 responding operator of the fundamental theory, we note the
7 (Wa+mT)=0. (A8)  following. As is seen from Eq(A13), T has dimension 3,
and thus should describe the VEV of an operator bilinear in
Equation(A8) can be considered as an equation of motiont® heavy quark fields. Furthermore, as longnags effec-
for the auxiliary “field” m. It is important to note that Eqs. tively considered as a complex parameter, this operator can
(A5)—(A8) imply thatm should be treated as a complex pa-only beQ, Qg or QrQ, , in accordance with the structure of
rameter to preserve the holomorphic structure of @4). the mass term in the underlying fundamental theory. Com-
When substituted into EqA7), a solution(m) of Eq. (A8)  paring Eq.(A13) with the relation® between the VEV's in
defines the potential,(h,T,(m)). When this function is the underlying theory,
found, the effective potentiaV of the u-theory is defined by

; — o 3 -
the relation (MQ Qgr)= ﬁ( —G%+i EGG)7 (A14)
W(h, T,m)=W,(h,T,{(m))—mT, (A9)
and recalling the definition of the fieldsH, we conclude
in accordance with EqA5). that
The solution of Eq(A8) is easy to find using EqgAl),
(A4): o] A15
2 h
(m)= BT (A10)  we thus see that introduction of the heavy quark into the
effective theory fixes the paramet&mhich enters the effec-
Thus, Eq.(A7) yields tive Lagrangian(Al) for QCD. This has been obtained by
matching the local holomorphic properties of the d- and
1q CAgcml P/g u-theories within the integrating in the procedure. As was
W,=- 1 Bh log (T) shown in[10], the matching of the two theories can also be
considered at the level of global quantization rules for the
2 h 8p/(3bQ) =10 ] 2 h,h fields which, for general values @f g, are different for
*|3p AQCDHT) Detu| " 30"
(A11)

13Equatiol (A14) follows from the operator _product expan-
Finally, Eq. (A9) results in the effective potential of the sions (mQQ)=—(as/(12m)G?)+0(1m?), (MQiysQ)=(as/
u-theory: (8m)GG)+0(1/m?).
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the theories described by Eq#\1) and(A12). This match-
ing agrees with the resul{Al5), and provides a self-

PHYSICAL REVIEW D59 074023

mT<mQrQL

mTemQ Q. (A16)

consistency check of the whole procedure of using the intebetween the operators of the effective and underlying theo-

grating in procedure to fix the parametgfp=2¢ which
enters the effective potenti@l2). Finally, we note that the
correspondence

ries has the same meaning as (s, i.e., the classical field

T describes the VEV of the chiral combinatiﬁQR of the
full (QCD +1) theory.
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