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Charm and bottom baryons and mesons are studied within the framework of a relativistically covariant 3D
reduction of the Bethe-Salpeter equation. We carry out an analysis of semileptonic decays of heavy hadrons
within this framework using explicit oscillator-type wave functions where we calculate Isgur-Wise functions,
decay rates and asymmetry parameters. Within this model we also study the effect of interactions between the
light quarks inside the heavy baryon and how they affect the values of the computed heavy baryon observables.
We also elaborate on the role of relativistic effects in the calculation of the heavy baryon Isgur-Wise function.
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I. INTRODUCTION

There has been remarkable progress in the experime
study of hadrons containing a single heavy quark@1#. The
experimental progress calls for the development of theor
cal approaches that allow one to study bound systems
heavy quark and light quarks or antiquarks. This would
able one to analyze different weak decay processes~leptonic,
semileptonic and nonleptonic! of heavy baryons and heav
mesons on an equal footing. All information about hea
hadron decays is contained in a set of reduced form fac
which are governed by the dynamics of their light consti
ents. Since the momentum dependence of these reduced
factors cannot yet be determined from first principles
QCD one has to turn to QCD-inspired model studies of th
quantities. Such models should take into account the
content of the symmetries of the underlying strong inter
tion Lagrangian as e.g. the leading order spin-flavor sym
try of the heavy quark effective theory~HQET! Lagrangian
@2#.

Any model devised for the quantitative description
heavy hadron weak transitions should include relativistic
fects. First, the average momenta of light quarks inside
hadron are of the order of the constituent quark mass. A
result, there are large relativistic effects in the dynamics
heavy meson decays~see, e.g.@3,4#!. Moreover, a genera
model approach should also be applicable to the descrip
of those decays of heavy hadrons which are accompanie
a large momentum~energy! transfer. Thus, one needs
genuine relativistic treatment of the problem under stu
There exist various relativistic approaches which enable
0556-2821/99/59~7!/074016~14!/$15.00 59 0740
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to study heavy hadron weak transitions: QCD sum ru
@2,5,6#, QCD on the lattice@7–9#, relativistic quark models
@10–29# including the approaches based on the use of
Bethe-Salpeter~BS! equations@16–19,22–24,26–28#.

The BS formalism provides a systematic field-theoreti
basis for the treatment of bound-state to bound-state tra
tions in which the interaction operators between the const
ents can, in principle, be constructed from the underly
Lagrangian of the theory. The presence of confining inter
tions in the bound system precludes a straightforward us
perturbation theory for the calculation of the BS kernel. O
must necessarily make a nonperturbative model ansatz
the kernel. In particular, utilizing the skeleton expansion
the interquark kernel together with a plausible approximat
for the long-range behavior of the gluon propagator resp
sible for the confinement of quarks one can obtain a coup
set of Schwinger-Dyson and Bethe-Salpeter equations in
clidean space. This approach can be solved to compute
ronic observables such as masses, decay constants an
q2-behavior of various form factors@22,23#. The merit of
this explicitly covariant approach is that it takes into accou
the full content of global QCD symmetries from the ve
beginning.

In the present paper the treatment of the confining in
actions is based on the widely used instantaneous app
mation for the BS interaction kernel in the c.m. frame of t
hadron. This approach, though fully relativistic, shares m
of the simplicity and transparency of the nonrelativis
model approaches. One may even calculate the correct
due to the noninstantaneous character of the kernel using
quasipotential method@30–32#. Explicit forms of instanta-
©1999 The American Physical Society16-1
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neousqq̄ and 3q kernels are beginning to emerge from la
tice simulations@33# and from QCD-based calculations
the continuum limit@34,35#. In order to test the kernels it i
important to carry out a systematic quantitative analysis
both the heavy meson and heavy baryon transitions in
instantaneous picture. Although the effect of the global Q
symmetries can be consistently embedded in the th
dimensional~3D! approach@24#, we do not deal with a such
an extension of the model at the present stage. We res
ourselves to the standard relativistic constituent quark mo
where the~momentum independent! mass of the constituen
quark is the input parameter of the theory, rather than th
emerges through the solution of the quark Schwinger-Dy
equation.

Most of the recent studies on the BS approach have
cused on systematic investigations of heavy meson w
transitions@16–19#. The calculations in@18,19# are done in
the heavy quark limit, while 1/mQ effects are studied in Refs
@16,17#. In the baryon sector there has been less activity
the context of the BS approach. The reason for this lies in
complexity of the three-body problem both technically a
conceptually. Some authors have circumvented the diffic
ties of the three-body problem by invoking the quark-diqua
picture for the heavy baryons which effectively reduces
three-quark system to a two-body bound-state prob
@20,25#. Summarily one may say that there is ample roo
left for systematic studies of heavy baryons as genuine th
body bound states within the quantum field-theoretical
approach.

In most of the BS studies of bound state transition am
tudes the so-called two-tier scheme is used@26–28# when the
instantaneous approximation for the BS kernel is employ
In the two-tier scheme one connects 3D and 4D hadron w
functions according to the following sequence of steps. F
one reduces the BS equation in the instantaneous approx
tion to a 3D equation for the equal-time wave functions a
then one solves the BS equation. Further, in order to be
to apply the Mandelstam formalism for the calculation
matrix elements, one has to ‘‘reconstruct’’ the 4D BS wa
function from the equal-time wave function through the B
equation. The 4D wave function is then substituted in
resulting expression for the hadronic matrix elements. T
two-tier scheme is well suited for the solution of the tw
particle bound state problem. For the three-particle bo
state problem, however, problems arise due to thediscon-
nectednessof the three-particle interaction kernel and t
choice of the form of the instantaneous interaction in th
disconnected terms. As a result the final 4D wave funct
has a rather unusual structure, containing the square ro
the Diracd-function. In our approach such ill-defined stru
tures do not appear.

The aim of the present paper is to calculate the he
baryon observables in the covariant instantaneous app
mation for the pair-wise kernel of the BS equation. To th
end we develop a framework where the abovementio
problem related to the ill-definedness of the BS baryon w
function is avoided. This is achieved by abandoning the tw
tier scheme and expressing the matrix elements directl
terms of the equal-time wave functions following the ide
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of the covariant quasipotential approach@36#. Within our ap-
proach we also calculate the characteristics of heavy me
decays, using the same set of parameters as in baryon se

As a first approximation to the full complexity of the spin
spin interactions we work in the well-known spectator p
ture @10,27,28,37,38# which provides a well-established se
ting to include the dynamical effects of relativity. We sha
start, however, from the complete bound-state amplitude
outline the approximations which finally lead to the specta
picture. In brief, our approximation consists in expanding
Lorentz-spinor factors in the BS equation and matrix e

ments in powers ofupW u/m and in retaining only the leading

order term in this expansion~hereupW u denotes the magnitud
of the relative three-momentum of the quark in the c.
frame of the baryon andm stands for its constituent mass!. It
is obvious that this approximation differs somewhat from t
‘‘static’’ approximation of Ref.@37# which consists in setting
all four components of the quark relative four-momen
equal to zero. We mention, though, that the two approac
lead to identical results in the analysis of the spin structure
hadron transition matrix elements. It should be emphasi
that the spectator quark model has been extremely succ
in the description of heavy meson and heavy baryon w
transitions@10,37,38#. A comprehensive analysis of semilep
tonic and nonleptonic decay data has been carried out in
model in terms of a few fit parameters related to the over
integrals of the radial part of meson and baryon 4D BS wa
functions. To our knowledge the overlap integrals appear
in the spectator model have not been calculated yet ex
the preliminary calculations carried out within the so-call
Lagrangian spectator model@14,15#. One of the aims of our
paper consists in establishing a clear and unambiguous
nection of the BS approach in the baryon sector to the sp
tator quark model. Such an approach will provide a tool
the microscopic calculation of the spectator model para
eters as well as for a study of new effects beyond the sp
tator approximation in the heavy hadron weak transitions

We attempt to remain close to the conventional nonre
tivistic treatment of the bound state problem in terms of
equal-time wave functions, the advantage being that th
have a clear physical interpretation. The merit of such
approach as ours lies in added transparency, and in the
sibility of controlling the magnitude of new relativistic ef
fects. This can be achieved by restricting the zeroth com
nents of the individual quark momenta in the baryon equ
time wave functions to their mass shell values as has b
done in most of the studies@16–19# in the meson sector. The
expressions obtained for the matrix elements then hav
very simple form and can be readily interpreted in terms
quantum mechanical overlap integrals of 3D wave functio

In the present paper we employ the BS framework
heavy-to-heavy transitions both in the heavy meson
heavy baryon sectors. Using harmonic oscillator wave fu
tions, we calculate heavy meson and heavy baryon IW fu
tions, their decay rates and asymmetry parameters. Wi
the oscillator model for heavy baryons we also study an
ternative approach where the interactions between the
light quarks in the heavy baryons are switched off. Also,
6-2
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study relativistic effects in the heavy baryon IW function.
The layout of our paper is as follows: In Sec. II w

present the BS formalism for baryons where we discus
some detail how the instantaneous approximation can
adapted to the description of heavy baryons. We disc
problems related to the disconnectedness of the three-pa
BS kernel. In Sec. III we construct the matrix element of t
weak current in terms of heavy baryon equal-time wa
functions. In Sec. IV we present the calculation of mes
and baryon observables in the harmonic oscillator poten
model. Section V contains our conclusions.

II. BS APPROACH TO BARYONS AS A BOUND STATE
SYSTEM OF THREE QUARKS

In this section we shall derive the general BS equat
with an instantaneous kernel for the equal-time baryon w
functions. By taking the limitupW u/m→0 in the spinor part we
show that the solutions of the baryonic BS equation red
to the well-known spectator model wave functions. We a
derive the normalization condition for the equal-time bary
wave function. The aim of this section is to provide equ
time baryon wave functions which can be employed in
calculation of heavy baryon weak transition matrix elemen
A second aim is to establish the connection with the qu
spectator model wave functions.

A. Bound-state equation

Let Cabg(p1p2p3) denote the 4D BS wave function o
the baryon. We shall express the individual quark mome
pi through the total four-momentum of the baryon~P! and
the relative Jacobi momenta (q1 ,q23) according to~the mi
stand for the constituent quark masses!

p15
m1

m11m21m3
P2

1

3
q1

p25
m2

m11m21m3
P1

1

3

m2

m21m3
q12

1

2A3
q23

~1!

p35
m3

m11m21m3
P1

1

3

m3

m21m3
q11

1

2A3
q23.

The BS equation for the baryon wave function reads

„S~1!~p1!…21
^ „S~2!~p2!…21

^ ~S~3!~p3!!21C~p1p2p3!

5E d4k1

~2p!4

d4k2

~2p!4

d4k3

~2p!4
V~p1p2p3 ;k1k2k3!C~k1k2k3!

~2!

whereS( i )(pi)5 i (mi2p” i)
21 denotes the propagator of th

i-th quark with momentumpi . Assuming pair-wise interac
tions between quarks, the kernelV(p1p2p3 ;k1k2k3) in Eq.
~2! can be written in the following form:
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3

pi2(
i 51

3

ki D (
cycl~ i jn !

~2p!4

3d~4!~pi2ki !„S
~ i !~pi !…

21
^ V~ jn !~Pjn ;qjn ,l jn!. ~3!

Here V( jn)(Pjn ;qjn ,l jn) is the two-body potential of the
( jn)th pair andl i , l jn denote the relative momenta for th
system of quarks with individual momentak1 , k2 , k3 , de-
fined similar to Eq.~1!, andPjn5pj1pn5kj1kn .

Next we discuss the choice of the form of the instan
neous kernel in the three-particle BS equation. For the m
sonic two-particle case there exists a well-established
scription how to obtain the instantaneous kernel. O
constrains the zeroth components of the relative fo
momenta of quarks in the c.m. frame of the meson by
conditionq05 l 050 which leads to an instantaneous kern
that depends only on the three-momenta of the quarks.

This procedure cannot be directly generalized to the d
connected three-particle kernel@Eq. ~3!# due to the singular
character of thed-functions d (4)(pi2ki) corresponding to
the four-momentum conservation of the spectator quark
the literature one finds different prescriptions for the defi
tion of the baryonic instantaneous kernel@26–28,39#. The
definition of the instantaneous kernel given in Ref.@39#,
though natural in view of its nonrelativistic counterpar
does not possess a natural connection to its relativistic co
terpart given by Eq.~3!. There does not exist a simple pre
scription to smoothly extrapolate from kernel~3! to the in-
stantaneous limit given in Ref.@39#. For this reason we adop
an alternative definition which was also used in Refs.@26–
28#. According to this definition, only pair-wise interactio
kernelsV( jn) undergo a~well-defined! modification in the
instantaneous limit. In the c.m. frame of the baryon the p
scription is analogous to that for the two-particle case. If
instantaneous kernels are assumed to be local, the pres
tion reads

V~ jn !~Pjn ;qjn ,l jn!→(
G

OG
~ j !

^ OG
~n!VG

~ jn !S 2
qW jn2 lW jn

2A3
D ,

~4!

where the matricesOG describe the spin structure of th
potential~scalar, vector . . .!. In an arbitrary reference fram
the three-vectors are replaced by the covariant express
qW jn→qjn

T , lW jn→ l jn
T , where pm

T5pm2vm(v•p) and pi

5(v•p) etc. ~here vm stands for the four-velocity of the
baryon!. These substitutions define the transformation rule
the baryon wave function from the rest frame to an arbitr
frame, providing explicit Lorentz-covariance of the forma
ism.

Having chosen the form of the instantaneous interacti
we turn to the derivation of the bound-state equation wh
we shall follow the proposals of Refs.@26–28#. We define
the equal-time bound-state wave function according to
conventional prescription@26#. In the c.m. frame of the
baryon this definition reads
6-3
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C̃abg~pW 1pW 2pW 3!5E
2`

`

)
i 51

3 dpi
0

2p i

3dS MB2(
r 51

3

pr
0DCabg~p1p2p3! ~5!

whereMB denotes the baryon mass. As mentioned before
covariant generalization of the above expression is strai
forward: pW i is replaced bypi

T andpi
0 by pi

i .
Next, one substitutes the instantaneous kernel define

Eqs.~3! and~4! into the BS equation~2! and integrates ove
relative energy variables. The integral overqjn

0 can be easily
done with the help of the Cauchy’s theorem. The remain
integral overqi

0 , however, can not be evaluated by Cauch
theorem since both the propagators and the wave func
depend onqi

0 . In order to proceed one replaces 1/3qi
0 in the

propagators by its mass-shell value@26#

1/3qi
0→m iMB2wi , m i5S (

r 51

3

mr D 21

mi . ~6!

After integrating over the relative energy variables with t
use of the substitution~6! one can rewrite the BS equatio
~2! to obtain

C̃~pW 1pW 2pW 3!5(
i 51

3 S L1
~ j !~pW j ! ^ L1

~n!~pW n!

wj1wn1wi2MB2 i0

1
L2

~ j !~pW j ! ^ L2
~n!~pW n!

wj1wn2wi1MB2 i0
D Î ~ i !C̃ ~7!

where

L6
~ i !~pW i !5

wi6ĥi~pW i !

2wi
, ĥi~pW i !5g0

~ i !mi1g0
~ i !gW ~ i !pW i ,

wi5~mi
21pW i

2!1/2 ~8!

and

Î ~ i !C̃5
1

~2A3!3
i E d3 lW jn

~2p!3(G ~g0
~ j !OG

~ j !! ^ ~g0
~n!OG

~n!!

3VG
~ jn !S 2

qW jn2 lW jn

2A3
D C̃~P;qW i , lW jn!. ~9!

Equation~7! gives a complete set of 3D equations for t
equal-time baryon wave function components, without
need to use a Gordon on-mass-shell expansion as empl
in Refs.@26–28#. The components of the equal-time bary
wave function are defined asC̃s1s2s35Ls1

(1)Ls2

(2)Ls3

(3)C̃,

with s1 ,s2 ,s351,2. Note that Eq.~7! differs from the
corresponding equation obtained from the instantaneous
nel used in Ref.@39#. Namely, adopting the kernel given i
Ref. @39#, it is easy to demonstrate that only the compone
07401
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C̃111 andC̃222 are nonzero whereas the ‘‘mixed’’ com
ponents present in Eq.~7! vanish identically.

In the limit upW u/m→0 only theC̃111-component of the
baryon wave function survives. In this limit Eq.~7! reads

S (
i 51

3

wi2MBD C̃1115L1
~1!L1

~2!L1
~3!(

i 51

3

Î ~ i !C̃111.

~10!

Note that the istantaneous kernels of Refs.@39# and@26–28#
yield the same equation~10! if the baryon wave function is
restricted to the subspace of (111)-components. Conse
quently, the difference of our approach to the prescriptio
from Refs.@39# and@26–28# reveals itself in the way which
the (111)-component couples to the negative-frequen
components.

B. Wave function

In the limit upW u/m→0 the projectorsL6
( i ) in Eq. ~8! sim-

plify to L6
( i )→ 1

2 (11g0)( i ) in the c.m. frame of the baryon

or to L6
( i )→ 1

2 (11v” )( i ) in the general frame. In theupW u/m
→0 limit Eq. ~10! is solved by the following ansatz for th
wave function:

C̃abg~p1
Tp2

Tp3
T!5uabg~v !f~p1

Tp2
Tp3

T! ~11!

where uabg(v) obeys the following matrix equation fo
( i , j ,n)5cycl (1,2,3)

1

2
~11v” !a1b1

1

2
~11v” !a2b2

1

2
~11v” !a3b3

3db id i
~v”OG!b jd j

~v”OG!bndn
ud1d2d3

5cGua1a2a3
. ~12!

The coefficientscG are the eigenvalues of the matrix equ
tion ~12!. Note that we have written (g0

( j )OG) ^ (g0
(n)OG) in

its covariant form (v” ( j )OG) ^ (v” (n)OG). Note also that in the
limit upW u/m→0 only the scalar and zeroth component of ve
tor interactions survive:OG51,v” .

In the c.m. frame the radial wave function can be seen
satisfy the following equation:

S (
r 51

3

wr2MBDf~pW 1pW 2pW 3!52
1

~2A3!3(i 51

3 E d3 lW jn

~2p!3
u~ jn !

3S 2
qW jn2 lW jn

2A3
D f~P;qW i lW jn!

~13!

whereu( jn)52 i (GcGVG
( jn) .

The usual ground state baryon spin wave functions can
seen to satisfy Eq.~12! with an eigenvaluecG51. Adding
the flavor degree of freedom and putting in the appropri
spin-flavor symmetries one has~see@27,37,38#!
6-4
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JP51/21uABC~v !5@~v”11!g5C#bgua~v !Ba[bc]

1cycl ~aa,bb,cg!

JP53/21uABC~v !5@~v”11!gnC#bgua
n ~v !B$abc%

1cycl ~aa,bb,cg! ~14!

whereBa[bc] andB$abc% stand for the flavor wave function
with a mixed and full symmetry. The index pairsA
5(aa), B5(b,b), C5(cg) collect the isospin and Dirac
indices. Details of the construction of flavor wave functio
can be found in Ref.@40#.

As a next step one has to specify the pair-wise interac
kernelsu( jn). In the present paper we shall assume that
pair-wise interactions are of the harmonic oscillator typ
One has

u~ jn !~qW 2 lW !5E d3rWe2 i ~qW 2 lW !rWS 1

2
m jn

2 v0
2rW21u0

jnD ,

m jn5
mjmn

mj1mn
. ~15!

Choosing a nonrelativistic form for the quark kinetic ener
we obtain oscillator wave functions after substituting E
~15! into Eq. ~13!. We present these functions in the c.m
frame of the baryon (pW 11pW 21pW 350). We distinguish be-
tween the following cases:

~1! Light baryons containing two quarks of equal ma
m25m35m,m1Þm

f~pW 1pW 2pW 3!5C expF2
1

4mv0
S ~m11m!1/2~m112m!1/2

m

3~pW 21pW 3!21
~m11m!1/2

A2~2m11m!1/2

3~pW 22pW 3!2D G . ~16!

~2! Heavy-light baryons:m1→`

f~pW 1pW 2pW 3!5C expF2
1

2~m21m3!v0

3S ~pW 21pW 3!21
~m3pW 22m2pW 3!2

A2m2m3
D G . ~17!

~3! Model of noninteracting light quarks:u(23)50,
m1→`. The wave function of such a system is remarka
simple since it factorizes in the variablespW 2 andpW 3

f~pW 1pW 2pW 3!5C expF2
pW 2

2

2m2v0
GexpF2

pW 3
2

2m3v0
G . ~18!

The constantC in Eqs.~16!–~18! can be determined from th
normalization condition for the wave function~see below!.
07401
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The three cases~16!, ~17! and~18! cover all cases of interes
inasmuch we shall always assumemu5md . As has been
discussed before, moving frame wave functions are obtai
by the substitutionpW 2→2(pT)2.

C. Normalization condition

In this section we derive the general normalization con
tion for the equal-time BS baryon wave function as given
Eq. ~7!. As usual, we start from the 4D BS equation for t
six-particle Green’s functionG with the instantaneous kerne
defined by Eqs.~3! and ~4!. Using Eq.~6!, the BS equation
can be reduced to the following 3D equation for the two-tim
Green’s functionG̃

G̃52 i g̃0PG01 i g̃0(
i 51

3

Û ~ i !~MB!G̃

52 i g̃0PG01 i g̃0Û~MB!G̃ ~19!

whereG05g0
(1)

^ g0
(2)

^ g0
(3) and

P5L1
~1!L1

~2!L1
~3!1L2

~1!L2
~2!L2

~3! ,

g̃05@MB2ĥ1~pW 1!2ĥ2~pW 2!2ĥ3~pW 3!#21

Û ~ i !~MB!G̃5g̃0
21S L1

~ j !L1
~n!

wj1wn1wi2MB2 i0

1
L2

~ j !L2
~n!

wj1wn2wi1MB2 i0D Î ~ i !G̃ ~20!

with the operatorÎ ( i ) given by Eq. ~9!. From Eq. ~19! it
immediately follows that

G̃G0P@ g̃0
212 iÛ ~MB!#G̃G0PG052 iG̃G0PG0. ~21!

Extracting the bound-state pole in the functionG̃, one ob-
tains

^C̃̄uG0P@ g̃0
212 iÛ ~MB!#uC̃&52~P22MB

2 ! ~22!

K C̃̄UG0PF12 i
]

]MB
Û~MB!GUC̃ L 522MB ~23!

where C! denotes the conjugate wave function. Again t
generalization of the above formulas to an arbitrary refere
frame is straightforward.

Equation~23! gives the general normalization conditio
in the instantaneous approximation for the baryon equal-t
wave function given by Eq.~7!. Note that there is an impor
tant difference of the normalization condition~23! for the
three-particlewave function as compared to its two-partic
counterpart~see, e.g.@41#!. In the latter case the left-han
side ~LHS! of the normalization condition does not depe
on the bound-state energyMB if the static kernel is energy
independent~a commonly accepted approximation!. On the
other hand the normalization condition for the three-parti
6-5
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wave function is nonlinear inMB irrespective of the form of
the potential. This energy dependence arises from the en
denominators in Eq.~20!.

The normalization condition considerably simplifies in t
spectator approximation. All energy-dependent terms with
least one projectorL2

( i ) drop out in this limit. With the help
of Eq. ~11!, one concludes from Eq.~23! that

NC! ūu
1

~6A3!3E d3qW 1

~2p!3

d3qW 23

~2p!3
f2~qW 1qW 23!52MB ~24!

where the factorNC! 53! arises from the sum over~implicit!
color indices and

ūu5 ūabguabg , ūabg5ua8b8g8
!

~g0!a8a~g0!b8b~g0!g8g .
~25!

Using Eq.~24! and the explicit expressions for the oscillat
wave functions, Eqs.~16!–~18! it is then a simple task to
calculate the normalization factorC. One has:

~1! Light baryons containing two quarks of equal ma
m25m35m,m1Þm

C5213/8p3/2S MB

NC! ūum3v0
3D 1/2S m11m

m1
D 3/4S 2m114m

2m11m D 3/8

.

~26!

~2! Heavy-light baryons:m1→`

C5213/8p3/2S MB

NC! ūu~m2m3!3/2v0
3D 1/2

. ~27!

~3! Two noninteracting light quarks

C54p3/2S MB

NC! ūu~m2m3!3/2v0
3D 1/2

~28!

III. MATRIX ELEMENTS OF HEAVY BARYON
TRANSITIONS

Below we give the expression of the matrix element of
weak currentQ̄8(0)WmQ(0) with Wm5gm(11g5) between
heavy baryon states. In the derivation we follow the ideas
the covariant quasipotential approach@36#. However, there is
a difference between our approach and the commonly u
quasipotential approaches related to the treatment of
negative-frequency components of the baryon wave funct
As is well known for the case of spin-1

2 constituents, neithe
the free nor the full equal-time Green’s function can be
verted. In the quasipotential method the free Green’s fu
tion is modified such that it can be inverted. The requis
modifications are by no means unique and differ by how
negative-frequency components of the wave function
treated. In general this may lead to different results for he
baryon transition matrix elements. In our approach there
no need for such a modification and one can retain the
content of the equal-time BS wave function frequency co
ponents in the matrix elements.
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After these introductory remarks we turn to the derivati
of the matrix elements in the BS approach within the sp
tator model approximation. We denote the heavy quark (c or
b) in the baryon by the label 1(18), while labels 2 and 3
correspond to the light quark constituents. For the time be
we keep the mass of the heavy quark finite. LetRm denote
the Green’s function for theQqq→Q8qq transition induced
by the weak current. In the lowest-order approximationRm

reads

Rm5S~18!~p1!WmS~1!~k1! ^ ~2p!4d~4!~p22k2!S~2!~p2!

^ ~2p!4d~4!~p32k3!S~3!~p3!.

The two-time operatorR̃m is defined by

R̃m~v8,v !5E
2`

`

)
i 51

3
dai

2p i

dbi

2p i
2p idS MB82(

r 51

3

ar D
32p idS MB2(

s51

3

bsDRm~p1p2p3 ;k1k2k3!

ai5~v8•pi !, bi5~v•ki ! ~29!

wherev(v8) andMB(MB8 ) denote the velocity and the mas
of the initial ~final! baryon.

In the conventional relativistic impulse approximation o
takes the lowest-order result~29! and neglects the interactio
terms 2 iÛ in Eq. ~22!. Extracting the double pole inRm

with the use of Eqs.~22! and~23! one obtains the following
expression for the matrix element of the weak current

^P8uQ̄8~0!WmQ~0!uP&

52^C! v8uG0~v !P~v8!g̃0
21~v8!R̃m~v8,v !G0~v8!

3P~v !g̃0
21~v !uC̃v& ~30!

where all internal integrations are three-dimensional. In
spectator approximation the general structure of the tra
tion matrix element~30! can be seen to further simplify. Th
details of the derivation can be found in the Appendix. T
final result reads

^P8uQ̄8~0!WmQ~0!uP&

52~MBMB8 !1/2~ ūu!21ū~v8!Wmu~v ! f ~v•v8! ~31!

with

f ~v•v8!5
NC! ūu

2~MBMB8 !1/2

1

~6A3!8

3E d4q1

~2p!4

d4q23

~2p!4

d4l 1

~2p!4

d4l 23

~2p!4
~2p!4d~4!~D2!

3~2p!4d~4!~D3!F~qW 1qW 23!S̄H
~18!~p18

0!

3S̄H
~1!~k18

0!F~ lW1 lW23!S̄L
~2!~p28!S̄L

~3!~p38! ~32!
6-6
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where F(pW 1pW 23)5(L̄2w22w3)f(pW 1pW 23),MB5m11L̄

1O(m1
21) and MB85m181L̄1O(m18

21). The four-vectors
pi8 ,ki8 are defined by Eq.~A3! in Appendix. The propagator
in the spectator approximation are given by the followi
expressions:

S̄H~p0!5
1

2L̄1m21m32p02 i0
for heavy quarks

S̄L
~ i !~p!5

1

wi82mi2p02 i0
for light quarks. ~33!

For the light quarks (i 52,3) one has

D i
05mi~v802v0!1pi8

0v801pW i8vW 82ki8
0v02kW i8vW

DW i5mi~vW 82vW !1pW i81pi8
0vW 81~v8011!21~pW i8vW 8!vW 8

2kW i81ki8
0vW 1~v011!21~kW i8vW !vW . ~34!

The Lorentz structure of the current matrix element E
~31! is determined by the spectator model fac
ū(v8)Wmu(v). It is well known that in the heavy quark limi
baryonic ground-state to ground-state transitions are de
mined by three independent form factor functio
z(v),j1(v) and j2(v) which depend on the momentum
transfer variablev5v•v8 @42#. In the spectator model thes
three functions become related and are given in terms
single universal form factor functionf (v) @10#. One has

z~v!5j1~v!5j2~v!~v11!5 f ~v!
v11

2
, f ~1!51.

~35!

This result coincides with the prediction of large-Nc QCD
@43#.

In order to determine the reduced form factor functi
f (v), it is sufficient to consider only one particular trans
tion. For example, take theLb→Lc transition. Using the
known spectator model wave functions Eq.~14!, one obtains

ūLc
~v8!WmuLb

~v !5
1

2
ūLc

uLb
~11v!ū~v8!Wmu~v !.

~36!

Then from Eqs.~31! and ~36! one immediately conclude
that

^LcuQ̄8~0!WmQ~0!uLb&

52~MLc
MLb

!1/2ū~v8!gm~11g5!u~v !
v11

2
f ~v!.

~37!

From Eq.~37! it is seen that the universal functionf (v) in
Eq. ~35! coincides with the one given by Eq.~32!. Using the
07401
.
r

r-

a

normalization condition for the baryon wave function~24!,
one can check that normalization conditionf (1)51 is satis-
fied.

In order to proceed further in the calculation of the hea
baryon weak semileptonic transition matrix element given
Eqs. ~31! and ~32!, we choose a particular reference fram
wherevm5(1,0,0,0) andv8m5(v,0,0,(v221)1/2). After in-
tegrating over the variablesl 1 and l 23 the arguments of the
initial wave function andw1 , w2 become dependent on th
relative energy variablesq1

0 andq23
0 . Cauchy’s theorem can

therefore not be used in the evaluation of the integrals o
q1

0 andq23
0 . As mentioned before this is similar to that ha

pens in the mesonic case. Also this dependence gives ris
a spurious imaginary part in the functionf (v) at vÞ1. A
simple way to remedy this difficulty is to fix the relativ
energies on mass shell@the same, at the poles of the denom
nator in the Eq.~32!# in the wave functions and in the quan
tities w1 , w2 such that one has

1

3
q1

05w281w382m22m3 ,
1

2A3
q23

0 5
m2w382m3w28

m21m3
.

~38!

The Cauchy integration over the energy denominators
then easily be performed. The factor (L̄2w22w3)(L̄2w28
2w38) in the numerator is cancelled upon integration and
are left with the simple result

f ~v!5
NC! ūu

2~MBMB8 !1/2

1

~6A3!3

3E d3qW 1

~2p!3

d3qW 23

~2p!3
f~qW 1qW 23!f~ lW1 lW23! ~39!

where

l 1
353~v221!1/2~w281w38!1vq1

3 ,

l 23
3 5vq23

3 1~v221!1/22A3
m2w382m3w28

m21m3
, lW1

'5qW 1
'.

~40!

The physical meaning of the result is transparent. Equa
~39! corresponds to the quantum-mechanical overlap of
baryon wave functions. The initial wave function is eval
ated in the rest frame of the initial baryon and the final wa
function in the frame moving with the velocityv8 along the
third axis. The arguments of the final wave function are L
entz boosted where the energies of the light quarks are fi
by their mass shell values. Obviously, the same result ca
obtained from the general expression~30!, e.g., in the rest
frame of the final baryon. In this case the initial wave fun
tion in Eq. ~39! is substituted by the final wave function an
vice versa. Since in the heavy quark limit the wave functio
do not depend on heavy flavor, one ends up with the sa
heavy baryon IW function in both frames.

The calculation of the heavy meson IW function procee
along similar lines but will not be presented in this pap
6-7
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We only give the final result obtained with the same assum
tions as for the case of baryons. For the reduced form fa
function one obtains

j~v!5E d3qW

~2p!3
fM~qW !fM~ lW !, lW'5qW',

l 35vq31~v221!1/2~m21qW 2!1/2 ~41!

where the ET meson wave functionfM(qW ) is normalized to
unity, i.e., one has the normalizationj(1)51.

It is interesting to note that in the approximation of no
interacting light quarks within the heavy baryon the mes
and baryon IW functions become related if one assumes
the interaction potentials between the heavy quark and
light quark-antiquark are the same@47#. Let z(v) be the IW
function describing the transitionLb→Lc andj(v) the me-
sonic IW function. Using Eq.~39! one then obtains

z~v!5
1

2
~v11! f ~v!5

1

2
~v11!j2~v!. ~42!

The two light quarks in the heavy baryon move indepe
dently in the mean field produced by the heavy quark wh
the heavy quark is fixed in the center of mass of the he
baryon. Such a physical picture is quite attractive since
can relate the heavy baryon form factors to the heavy me
form factors~to be more precise, to the would-be heavy m
son form factors, in which the interquark interaction pote
tial coincides, by definition, with the potential acting b
tween the heavy and light quarks in the heavy baryon!.
Anyway, the model of noninteracting light quarks enab
one to effectively reduce the calculation of heavy bary
observables to the two-body case and thus enormously
plifies the treatment of the problem under study.

The assumption of noninteracting light quarks has t
aspects which one may refer to as ‘‘kinematical’’ and ‘‘d
namical’’ aspects. Let us elaborate on these two aspects.
kinematical aspect deals with the spins of the quarks
manifests itself in the relativistic factor12 (v11) in e.g. Eq.
~42!. We would like to emphasize that the kinematical asp
of the noninteracting light quark model is already implicit
the spectator model wave functions which are derived fr
the equal-velocity assumption~all quarks being on mas
shell and propagating freely!. Not surprisingly, the overlap
integral of the baryon wave functions contains the fac
1
2 (v11) explicitly @see e.g. Eq.~36!#. The physical origin of
this factor can be seen by considering the transition am
tude in the crossed channel, corresponding to the produc
of the heavy baryon-heavy antibaryon pair by the virtu
photon born in thee1e2 annihilation process.

Let us first consider the physical picture where both lig
quarks are produced independently from the vacuum thro
the exchange of many soft gluons with the total quant
numbersJP501 @Fig. 1~a!#. The intrinsic parity of the

( 1
2

1 1
2

1̄) pair is negative and, consequently, (LSJ)5(110)

for this transition. Thus one has a threshold factor ofupW u for
each of the twoP-wave quark-antiquark pairs, i.e. in tota
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one has aupW u2 threshold factor whereupW u is the magnitude of
the c.m. relative three-momentum of the quark pair.

As opposed to this, let us consider the situation when t
light quarks inside the heavy baryon are tightly bound in
diquark with the quantum numbersJP501 @Fig. 1~b!#. Then
the amplitude for the transition 01→01101̄ is an S-wave
transition without any threshold factor.

In the equal-velocity approximation the magnitude of t
c.m. relative three-momentum can be expressed in term
the velocity transfer variablev5(v•v8)5MB

22(p1•p2)
wherep1 andp2 are the momenta of baryon and antibary
produced in thee1e2 annihilation. It is a simple task to

deriveupW u/m5uvW 8u5„

1
2 (v21)…1/2. In the direct channelv is

replaced by2v and thus the threshold factorupW u2 turns into
1
2 (v11) present in Eq.~36!.

The dynamical aspect of the noninteracting light qua
model consists in the assumption of the factorization
baryon radial wave function with regard to variablespW 1 and
pW 2 . This can be achieved by setting the interaction poten
between the light quarks to zero. From a rigorous point
view, one should then also replace the interaction betw
the heavy and light quarks in the heavy baryon by so
effective ‘‘mean field’’ interaction. Below we shall presen
the results of numerical calculations which demonstrate
effect of the noninteracting light quark approximation
heavy baryon observables.

IV. RESULTS

In this section we present our numerical results both
heavy meson and heavy baryon sectors. We use oscil
wave functions as given by Eqs.~16!–~18! for baryons and
corresponding oscillator wave functions for mesons. Osci
tor wave functions are known to provide a good basis of t
wave functions in the variational solution of the bound-st
equation@32,50#.

We would like to emphasize that in the present paper
have not attempted to obtain a precise description of me
and baryon data by the fine tuning of a large number
model parameters. Rather, we want to demonstrate tha
the framework considered in the present paper, one achi
a reasonably good description of experimental numbers b

FIG. 1. Heavy baryon–heavy antibaryon pair production in
e1e2 annihilation: ~a! Light quarks are produced independent
from the vacuum by soft gluon exchanges in theJP501 channel;
~b! tightly bound light diquark is produced from the vacuum.
6-8
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in the meson and baryon sector with only a few paramet
We have also checked that the dependence of our nume
results on these parameters is rather moderate.

In order to reduce the number of free parameters as m
as possible we do not distinguish between the masses o
light quarks and setmu5md5ms5m. It is known that the
effect of thems2mu mass difference in the baryon wav
functions is rather small and we neglect it in the pres
treatment.

First we turn to the calculation of the heavy meson le
tonic decay constants defined by

iPm f P52 iNCE d3pW

~2p!3
Tr@ x̃~P;pW !gmg5# ~43!

wherex̃(P;pW ) denotes the equal-time meson wave funct
in the c.m. frame. In an arbitrary reference frame the he
meson wave function is given by~see e.g.@38#!

x̃~P;pT!5cMg5~12v” !Ma
bfM@2~pT!2#. ~44!

Here Ma
b denotes the meson flavor matrix andcM is the

normalization constant. Using the BS normalization con
tion and assuming the radial part of the meson wave func
to be of the oscillator typefM;exp@(pT)2/L2#, it is a
straightforward task to obtain

f P5S 2NCL3

p3/2M P
D 1/2

~45!

whereM P denotes the meson mass. As can be seen from
~45! the calculated leptonic decay constant exibits the w
known M P

21/2 scaling behavior.
Next we turn to the calculation of the heavy meson Isg

Wise ~IW! function according to Eq.~41!. The IW function
depends only on the ratiom/L wherem is the light quark
mass. In order to fix this ratio we calculate the slope para
eter of the heavy meson’s IW wave function using ag
oscillator wave functions for the heavy meson. One obta

TABLE I. Heavy meson leptonic decay constants.

Process Quantity Our Lattice@7#

D→ ln l f D (MeV) 226 200630
B→ ln l f B (MeV) 134 180640

TABLE II. Slope of the heavy meson IW function.

r2 Approach

1.00 ~input! Our
0.920.320.2

10.210.4 Lattice @44#

0.8460.02 QCD sum rules@45#

0.7060.25 QCD sum rules@46#

0.4220.92 Quark Confinement Model@29#

1.02 Quasipotential@17#
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r25
3

4
1

m2

L2
. ~46!

We further use the calculated values of leptonic decay c
stants in Eq.~45! to provide absolute values form and L.
Most of the present theoretical investigations of the slo
parameter converge around the valuer2'1. With r251 as
input one obtainsL52m from Eq. ~46!. Further, taking the
valuem5250 MeV for the constituent quark mass and, r
spectively,L5500 MeV for the wave function range pa
rameter, we obtain a reasonable fit to the experimental
tonic decay constants as shown in Table I. For comparis
we have also listed the results of the recent lattice calc
tions of the same quantities in Table I. In Table II we gi
some recent results on the heavy meson IW function sl
parameter. Note that the functional dependence of the he
meson IW function in our approach is well approximated
the formula

j~v!5S 2

v11D 2r2

~47!

in our approach where, as was mentioned above, we
r251 as input.

With the above two parameter values we present our
sults of the calculation of the decay observables inB-meson
semileptonic transitions in Table III. We give the branchi
ratios for the weak semileptonic decaysB→D, B→D! and
values for the polarization-type observabl
apol , a8, AFB and AFB

T @2,51# in these decays. As can b
seen from Table III, the agreement of the calculated qua
ties with existing experimental data is satisfactory.

Next we present our results in the baryon sector. We
the same values for the two model parameters as in the
son sector. To begin with we discuss the model of nonin
acting light quarks with the additional assumption that t
interaction between the heavy and light quarks in the he
baryon is the same as the interaction between the he
quark and light antiquark in the heavy meson@47#. With this
assumption the range parameter in the heavy baryon eq
time wave function defined byLB52mv0 turns out to be
the same as the parameterL in the meson wave function
Consequently, the heavy baryon IW function can be a
parametrized by the ansatz~47! but with

TABLE III. Experimental and theoretical values for the branc
ing ratios ~in %! and asymmetry parameters in the decayB

→D(D* )en̄.

Theory Experiment

Br(B→D) 2.05 uVbc/0.04u2 1.660.7 @1#, 1.960.5 @1#

Br(B→D* ) 5.35 uVbc/0.04u2 6.662.2 @1#, 4.460.4 @1#

apol 1.71 1.160.460.2 @48#

a8 0.63
AFB 0.083 0.2060.0860.06 @49#

AFB
T 0.20
6-9
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rB
2511 (

l ight
S mlight

L D 2

52r22
1

2
~48!

such that rB
251.5 in the model of noninteracting ligh

quarks.
When we present our results in the following on the fun

tional dependence of the heavy baryon IW functionz(v) we
shall always compare the two cases where the interac
between the light quarks is switched either on or off. T
results of our calculation are given in Fig. 2. As can be s
from Fig. 2 the IW function is substantially flatter~with the
same set of model parametersm/L50.5) when the interac-
tions in the light diquark are taken into account. At ma
mum recoil the difference between the values of the funct
z(v) calculated in the full~interacting! model and in the
noninteracting light quark model amounts up to 30%. T
function z(v) in the full model is well approximated by th
functional dependence

z~v!5S 2

v11D a1b/v

~49!

with a51.23 andb50.4. This corresponds to a slope para
eter ofrB

250.81 which is much lower than the slope para
eterrB

251.5 in the noninteracting light quark model.
In our simplified approach the heavy baryon IW functi

depends only on the ratiom/LB . Fixing m at m
5250 MeV we have evaluated the IW function for two d
ferent values ofLB . In Fig. 2 we present our results for th
valueLB5L/A25355 MeV, corresponding to the popula
one half rule for baryons~see e.g.@50#!. According to this
rule which is strongly supported by phenomenology, the

FIG. 2. The heavy baryon IW functionz(v) in the noninteract-
ing light quark model and in the full model for the different valu
of the wave function range parameterLB : full model with LB

5500 MeV ~solid line!; noninteracting light quark model with
LB5500 MeV ~long-dashed line!; full model with LB

5355 MeV ~short-dashed line!.
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teractions between quarks in the baryon are down by
factor 1

2 as compared to the interactions between the qu
and antiquark in the meson. From Fig. 2 one observes
even for such a substantial change of the value of the par
eterLB the IW function is only sligthly modified. In particu
lar the difference between the noninteracting and full cal
lation persists. At maximum velocity transfer the IW
functions calculated in the full model with these two valu
of LB differ only by about 5%. The functional dependen
of the IW function withLB5355 MeV can again be wel
approximated by the representation~49! but now with a
51.54,b50.4;rB

250.97.
To summarize our results on the functional dependenc

the Isgur-Wise function one finds that the model of nonint
acting light quarks can be clearly distinguished from the f
model, at least within the spectator picture. There is no t
oretical reason to prefer one to the other. The issue whic
the two ansa¨tze has to be preferred has to be settled by
periments. An attractive feature of our approach, apart fr
its simplicity, consists in the weak dependence of the pred
tions on the precise values of the model parameters wh
helps in distinguishing between various models.

In Table IV we present the calculated total widths of bo
tom baryon weak semileptonic transitions calculated in
full model with LB5500 MeV, column ~1!, and L
5355 MeV, column~2!. For comparison we also list result
from other model approaches. We see that the overall ag
ment of our results with results from other models discus
in the literature is reasonable. In the absence of experime
data, however, one can not fix the precise value of the w
function range parameterLB owing to the weak dependenc
of the results on this parameter.

In Table V we give values for the asymmetry paramet
in the Lb baryon semileptonic transitions@11,52#. Rows~1!
and ~2! are for LB5500 MeV andLB5355 MeV as in
Table IV. For comparison, we again list the results obtain
within different approaches. As can be seen from Table

TABLE IV. Exclusive decay rates of bottom baryons~in
1010 sec21) for uVbcu50.04.

Process @53# @54# @10# @11# Our ~1! Our ~2!

Lb
0→Lc

1 5.9 5.1 5.14 5.39 6.52 6.09
Jb

0→Jc
1 7.2 5.3 5.21 5.27 6.83 6.42

Sb
1→Sc

11 4.3 2.23 1.90 1.65
Vb

2→Vc
0 5.4 2.3 1.52 1.87 2.05 1.81

Sb
1→Sc*

11 4.56 4.17 3.75
Vb

2→Vc*
0 3.41 4.01 4.55 4.13

TABLE V. Asymmetry parameters forLb decay.

a a8 a9 g aP gP

Our ~1! -0.78 -0.11 -0.55 0.54 0.41 -0.15
Our ~2! -0.78 -0.11 -0.55 0.54 0.41 -0.16
@11# -0.76 -0.12 -0.53 0.56 0.39 -0.17
@13# -0.74 -0.12 -0.46 0.61 0.33 -0.19
6-10
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the asymmetry parameters are rather insensitive to the
ticular model in which they are calculated.

Last but not least, we shall discuss the nonrelativistic lim
of our approach where the crucial role of the factor1

2 (v
11) will become transparent. First, note that forvm

5(1,0W )v5v805A11vW 82'1 up to the terms of order o

vW 82. Thus this factor drops in the nonrelativistic limit. Fu
ther, from Eq.~40! one obtains

lW15qW 116mvW 8, lW235qW 23 ~50!

in this limit which coincides with the formulas presented
Refs. @53,54#. From Eqs.~50! one immediately obtains th
nonrelativistic~NR! result for the Isgur-Wise function

zNR~v!5 f NR~v!5expF2
m2

L2
~v221!G ~51!

with rB,NR
2 50.5. In Fig. 3 we have plotted the function

f (v) and z(v) in the full model in the relativistic case a
well as the functionzNR(v) given by Eq.~51!. It is interest-
ing to note that although there exists a large relativistic
namical effect sincezNR(v) and f (v) are significantly dif-
ferent, the absence of the relativistic factor1

2 (v11) in the
nonrelativistic case compensates for this. In the heavy me
case where such a factor is absent the slope parameterr2 of
the IW function is grossly underestimated in the nonrela
istic treatment@3,4#. In our opinion our results unambigou
osly indicate the importance of including relativistic effec
when studying heavy baryon transitions.

FIG. 3. Relativistic effect in the heavy baryon IW function
full model with LB5500 MeV: the functionz(v); relativistic case
~solid line!; the universal form factor functionf (v); relativistic
case~long-dashed line!; the functionzNR(v); nonrelativistic case
~short-dashed line!.
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V. SUMMARY AND OUTLOOK

We have presented a simple calculation of the heavy
son and heavy baryon semileptonic decay observables
the use of the field-theoretical BS approach where b
heavy mesons and heavy baryons are treated on the s
footing. While widely in use in the calculation of meson
two-body bound-state observables, the BS approach has
known to encounter conceptual difficulties when applied
the baryonic three-body case. In the present paper we h
explicitly demonstrated that the treatment of the three-bo
bound state systems can proceed along similar lines as in
two-body case when the constituents interact via insta
neous kernels.

Up to this point our investigation of the three-body pro
lem has been restricted to the so-called ‘‘spectator pictu
which provides a powerful tool for the study of heavy bary
weak interactions. In the spectator approximation the s
structure of the baryon wave functions and decay matrix
ements is remarkably simple, and model-independent r
tions emerge between various decay amplitudes in this lim
This has been demonstrated by a systematic and compre
sive analysis of the heavy baryon weak nonleptonic deca
carried out in papers@37,38#. Further improvements on thes
ideas were given in Refs.@14,15#, where the so-called La
grangian spectator model has been proposed. The Lagr
ian spectator model allows for the microscopic evaluation
the various ‘‘overlap integrals’’~the reduced matrix ele
ments, from the group-theoretical point of view!, and thus
allows one to compute a large number of experimental
servables in heavy baryon decays: rates, asymmetry pa
eters, etc.

The spectator approximation is based upon a very sim
and transparent physical picture: the internal motion
quarks~both heavy and light! inside the hadron is very slow
all quarks are assumed to be on mass shell and are ass
to have the same velocity, which coincides with the veloc
of the hadron as a whole. All approximations which we ha
used in the treatment of the heavy baryon weak transiti
are in accordance with the above physical picture, and ca
deduced from it. Indeed, in the present paper we have d
onstrated that the general BS approach to transition ma
elements can be reduced, step-by-step, to the spectator m
treatment of the weak transition matrix elements with the
of the above approximations. We would like to emphas
that the BS approach enables one to evaluate the full ma
elements by expressing them in terms of the overlaps
tween equal-time BS wave functions. Note also, that eve
the spectator limit our approach isnot reduced to a nonrela
tivistic approach: only that part of motion which is related
the quark relative momenta is treated nonrelativistica
whereas the c.m. motion of hadrons is taken into accoun
a completely relativistic fashion. Thus, even at this stage
model is not reduced~and differs significantly! from the non-
relativistic baryon models which are used for the calculat
of transition amplitudes@53,54#. Moreover, the necessity o
the inclusion of the relativistic effects is readily seen ev
from the results of our calculations in the spectator pictu

We would like to mention that the physical assumption
6-11
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‘‘slow’’ interquark motion for the light quarks~which lies at
the heart of the whole spectator picture! cannot be rigorously
justified from a theoretical point of view. According to com
mon belief one has the valueupW u/m;1 for light quarks in-
side the hadron. Since, the quark spin-spin interaction eff
are proportional to powers ofupW u/m they area priori ex-
pected to give a sizeable contribution to the calcula
baryon observables in contrast to the assumptions of
spectator model. Nevertheless, the present treatmen
heavy hadron transitions is based on a relativistically con
tent formulation of the spectator picture. It can be used a
stepping stone for the inclusion ofO(upW u/m) spin effects at a
later stage. We plan to address this problem in future pu
cations.

In addition, we plan to apply the present BS approach
its possible modification with the inclusion of the spin effec
to the more involved and interesting problems of heavy h
ron physics, such as nonleptonic, one-pion and radiative
cays of heavy baryons.

ACKNOWLEDGMENTS

M.A.I, V.E.L and A.G.R thank Mainz University for the
hospitality where a part of this work was completed. A.G
is thankful to Professor T. Kopaleishvili for the introductio
to the baryon BS equation. This work was supported in p
by the Heisenberg-Landau Program, by the Russian Fun
Basic Research~RFBR! under contract 96-02-17435-a an
by the BMBF ~Germany! under contract 06MZ566. V.E.L
thanks the Russian Federal Program ‘‘Integration of Edu
tion and Fundamental Science’’ for partial support.

APPENDIX A: MATRIX ELEMENTS IN THE SPECTATOR
APPROXIMATION

In this appendix we present details of how to evaluate
heavy baryon weak transition matrix elements in the spe
tor approximation. In particular, we shall demonstrate t
the spin structure of Eq.~30! considerably simplifies in the
spectator picture. First, note that the factorsG0 andP in Eq.
~30! can be dropped since they are reduced to an iden
operator when acting on the spectator model wave functio
Moreover,g̃0

21 is reduced to

g̃0
21~v8!→MB2(

i 51

3

„mi
22pi

21~pi•v8!2
…

1/2. ~A1!
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An analogous relation holds forg̃0
21(v).

In order to further simplify Eq.~30! we perform a change
of integration variables corresponding to Lorentz boo
which boost the initial and final baryon wave functions to t
rest frame. One has

q1
0→~q1•v8!, qW 1→qW 12q1

0vW 81~v8011!21~qW 1vW 8!vW 8

l 1
0→~ l 1•v !, lW1→ lW12 l 1

0vW 1~v011!21~ lW1vW !vW

q23
0 →~q23•v8!, qW 23→qW 232q23

0 vW 8

1~v8011!21~qW 23vW 8!vW 8

l 23
0 →~ l 23•v !, lW23→ lW232 l 23

0 vW 1~v011!21~ lW23vW !vW .
~A2!

Under this transformation the wave functions of the final a
initial baryon are transformed toCū(v8)f(qW 1qW 23) and
Cu(v)f( lW1 lW23), whereasg̃0

21(v8) and g̃0
21(v) transform to

MB82( i 51
3 wi8 andMB2( i 51

3 wi , respectively, with

wi85~mi
21pW i8

2!1/2, wi5~mi8
21kW i8

2!1/2

p1852
1

3
q1 ,

p285
m2

3~m21m3!
q12

1

2A3
q23,

p385
m3

3~m21m3!
q11

1

2A3
q23,

k1852
1

3
l 1 , k285

m2

3~m21m3!
l 12

1

2A3
l 23,

k385
m3

3~m21m3!
l 11

1

2A3
l 23. ~A3!

After the change of integration variables one has
S~ i 8!~pi !→
~m i8MB81pi8

0!v” 81wi82~mi81wi8!21pW i8
21~pW i8vW 8!~g01~v8011!21~gW vW 8!!2~gW pW i8!

wi8
22~m i8MB81pi8

0!22 i0
, ~A4!

S~ i !~ki !→
~m iMB1ki8

0!v”1wi2~mi1wi !
21kW i8

21~kW i8vW !~g01~v011!21~gW vW !!2~gW kW i8!

wi
22~m iMB1ki8

0!22 i0
. ~A5!
6-12
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In the spectator approximation one neglects the transfor
momentapW i8 ,kW i8 in the numerators of Eq.~A4!. Further, we
can setv”→1 and v” 8→1 in the numerators since they a
either on the final or initial spectator wave functions. As
result one obtains in the spectator approximation

S~ i 8!~pi !→
1

wi82m i8MB82pi8
02 i0

,

S~ i !~ki !→
1

wi2m iMB2ki8
02 i0

. ~A6!

Further, in the heavy quark limit one neglects terms of or
(2m1)21pW 18

2 and (2m18)
21kW18

2. One then obtains the fol
lowing effective propagators

S~18!~p1!→
1

2L̄1m21m32p18
02 i0

,

S~1!~k1!→
1

2L̄1m21m32k18
02 i0

,

S~ i !~pi !→
1

wi82mi2pi8
02 i0

,

S~ i !~ki !→
1

wi2mi2ki8
02 i0

, i 52,3.

~A7!

The factorsg̃0
21 turn into

g̃0
21~v8!→L̄2w282w38 , g̃0

21~v !→L̄2w22w3
~A8!

where all reference to the heavy quark mass has disappe
as it should indeed be. Further, substituting these express
in Eq. ~30!, one immediately arrives at the Eqs.~31! and
~32!.

It is interesting to note that one can write down ‘‘Fey
man rules’’ for the construction of the current matrix el
07401
ed

r

ed,
ns

ments in the spectator approximation which are remarka
simple since the vertices and propagators have a trivial id
tity structure in the space of Lorentz indices. As an exam
we evaluate the current-induced transition between he
baryons according to the diagram Fig. 4 where we ha
added the appropriate vertex and propagator structure.
spectator model Feynman rules for this transitions may
summarized as follows:

~1! A factor (L̄2( l ightwlight(pW ))f(pW 1pW 2pW 3) for each
heavy baryon vertex wheref(pW 1pW 2pW 3) denotes the radia
part of the heavy baryon equal-time BS wave function.

~2! The heavy quark propagator:

1

2L̄1 (
l ight

mlight2p802 i0

. ~A9!

~3! The light quark propagator:

1

wi82mi82pi8
02 i0

. ~A10!

~4! Dirac d-functions corresponding to the four
momentum conservation of light spectator quarks. All m
menta are boosted to the rest frame of either the final or
initial baryon.

~5! Integration over all relative four-momenta.
~6! The spin-flavor structure of matrix elements is giv

by spectator model wave function scalar products.

FIG. 4. ‘‘Feynman rules’’ in the spectator quark approximation
.
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