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Charm and bottom baryons and mesons are studied within the framework of a relativistically covariant 3D
reduction of the Bethe-Salpeter equation. We carry out an analysis of semileptonic decays of heavy hadrons
within this framework using explicit oscillator-type wave functions where we calculate Isgur-Wise functions,
decay rates and asymmetry parameters. Within this model we also study the effect of interactions between the
light quarks inside the heavy baryon and how they affect the values of the computed heavy baryon observables.
We also elaborate on the role of relativistic effects in the calculation of the heavy baryon Isgur-Wise function.
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[. INTRODUCTION to study heavy hadron weak transitions: QCD sum rules
[2,5,6], QCD on the latticd 79|, relativistic quark models
There has been remarkable progress in the experimentfl0—29 including the approaches based on the use of the
study of hadrons containing a single heavy quigtk The  Bethe-Salpete(BS) equationd16-19,22-24,26-28
experimental progress calls for the development of theoreti- The BS formalism provides a systematic field-theoretical
cal approaches that allow one to study bound systems of basis for the treatment of bound-state to bound-state transi-
heavy quark and light quarks or antiquarks. This would en+ions in which the interaction operators between the constitu-
able one to analyze different weak decay proceflspsonic, ents can, in principle, be constructed from the underlying
semileptonic and nonleptoniof heavy baryons and heavy Lagrangian of the theory. The presence of confining interac-
mesons on an equal footing. All information about heavytions in the bound system precludes a straightforward use of
hadron decays is contained in a set of reduced form factorgerturbation theory for the calculation of the BS kernel. One
which are governed by the dynamics of their light constitu-must necessarily make a nonperturbative model ansatz for
ents. Since the momentum dependence of these reduced fothe kernel. In particular, utilizing the skeleton expansion of
factors cannot yet be determined from first principles inthe interquark kernel together with a plausible approximation
QCD one has to turn to QCD-inspired model studies of theséor the long-range behavior of the gluon propagator respon-
guantities. Such models should take into account the fulkible for the confinement of quarks one can obtain a coupled
content of the symmetries of the underlying strong interacset of Schwinger-Dyson and Bethe-Salpeter equations in Eu-
tion Lagrangian as e.g. the leading order spin-flavor symmeelidean space. This approach can be solved to compute had-
try of the heavy quark effective theoHQET) Lagrangian ronic observables such as masses, decay constants and the
[2]. g?-behavior of various form factorf22,23. The merit of
Any model devised for the quantitative description of this explicitly covariant approach is that it takes into account
heavy hadron weak transitions should include relativistic efthe full content of global QCD symmetries from the very
fects. First, the average momenta of light quarks inside théeginning.
hadron are of the order of the constituent quark mass. As a In the present paper the treatment of the confining inter-
result, there are large relativistic effects in the dynamics ofactions is based on the widely used instantaneous approxi-
heavy meson decaysee, e.g[3,4]). Moreover, a general mation for the BS interaction kernel in the c.m. frame of the
model approach should also be applicable to the descriptiohadron. This approach, though fully relativistic, shares most
of those decays of heavy hadrons which are accompanied lf the simplicity and transparency of the nonrelativistic
a large momentumenergy transfer. Thus, one needs a model approaches. One may even calculate the corrections
genuine relativistic treatment of the problem under studydue to the noninstantaneous character of the kernel using the
There exist various relativistic approaches which enable onguasipotential metho30—32. Explicit forms of instanta-
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neousqq and 3y kernels are beginning to emerge from lat- Of the covariant quasipotential approd@e]. Within our ap-

tice simulations[33] and from QCD-based calculations in proach we also calculate the characteristics of heavy meson
the continuum limif34,35. In order to test the kernels it is decays, using the same set of parameters as in baryon sector.
important to carry out a systematic quantitative analysis of As a first approximation to the full complexity of the spin-
both the heavy meson and heavy baryon transitions in thepin interactions we work in the well-known spectator pic-
instantaneous picture. Although the effect of the global QCDture [10,27,28,37,3Bwhich provides a well-established set-
symmetries can be consistently embedded in the threding to include the dynamical effects of relativity. We shall
dimensional3D) approacH 24], we do not deal with a such start, however, from the complete bound-state amplitude and
an extension of the model at the present stage. We restrioutline the approximations which finally lead to the spectator
ourselves to the standard relativistic constituent quark modelicture. In brief, our approximation consists in expanding the
where the(momentum independenmass of the constituent [ orentz-spinor factors in the BS equation and matrix ele-

quark is the input parameter of the theory, rather than that ifnents in powers o|f5|/m and in retaining only the leading-
emerges through the solution of the quark Schwinger-Dyson

equation. order term in this expansiothere|p| denotes the magnitude
Most of the recent studies on the BS approach have i0of the relative three-momentum of the qu_ark in the c.m.
cused on systematic investigations of heavy meson weafk@me of the baryon anth stands for its constituent mas
transitions[16—19. The calculations if18,19 are done in IS obvious that this approximation differs somewhat from the
the heavy quark limit, while b, effects are studied in Refs. “Static” approximation of Ref[37] which consists in setting
[16,17). In the baryon sector there has been less activity irfll four components of the quark relative four-momenta
the context of the BS approach. The reason for this lies in thequal to zero. We mention, though, that the two approaches
complexity of the three-body problem both technically andlead to identical results in the analysis of the spin structure of
conceptually. Some authors have circumvented the difficulhadron transition matrix elements. It should be emphasized
ties of the three-body problem by invoking the quark-diquarkthat the spectator quark model has been extremely succesful
picture for the heavy baryons which effectively reduces than the description of heavy meson and heavy baryon weak
three-quark system to a two-body bound-state problentransitiong10,37,38. A comprehensive analysis of semilep-
[20,25. Summarily one may say that there is ample roomtonic and nonleptonic decay data has been carried out in this
left for systematic studies of heavy baryons as genuine threenodel in terms of a few fit parameters related to the overlap
body bound states within the quantum field-theoretical BSntegrals of the radial part of meson and baryon 4D BS wave
approach. functions. To our knowledge the overlap integrals appearing
In most of the BS studies of bound state transition ampliin the spectator model have not been calculated yet except
tudes the so-called two-tier scheme is ug2@l-28 when the  the preliminary calculations carried out within the so-called
instantaneous approximation for the BS kernel is employed.agrangian spectator modgl4,15. One of the aims of our
In the two-tier scheme one connects 3D and 4D hadron wavpaper consists in establishing a clear and unambiguous con-
functions according to the following sequence of steps. Firstnection of the BS approach in the baryon sector to the spec-
one reduces the BS equation in the instantaneous approximtator quark model. Such an approach will provide a tool for
tion to a 3D equation for the equal-time wave functions andthe microscopic calculation of the spectator model param-
then one solves the BS equation. Further, in order to be ableters as well as for a study of new effects beyond the spec-
to apply the Mandelstam formalism for the calculation oftator approximation in the heavy hadron weak transitions.
matrix elements, one has to “reconstruct” the 4D BS wave We attempt to remain close to the conventional nonrela-
function from the equal-time wave function through the BStivistic treatment of the bound state problem in terms of 3D
equation. The 4D wave function is then substituted in theequal-time wave functions, the advantage being that these
resulting expression for the hadronic matrix elements. Thdéave a clear physical interpretation. The merit of such an
two-tier scheme is well suited for the solution of the two- approach as ours lies in added transparency, and in the pos-
particle bound state problem. For the three-particle boundibility of controlling the magnitude of new relativistic ef-
state problem, however, problems arise due todiseon- fects. This can be achieved by restricting the zeroth compo-
nectednes®f the three-particle interaction kernel and the nents of the individual quark momenta in the baryon equal-
choice of the form of the instantaneous interaction in theséime wave functions to their mass shell values as has been
disconnected terms. As a result the final 4D wave functiordone in most of the studig46—19 in the meson sector. The
has a rather unusual structure, containing the square root ekpressions obtained for the matrix elements then have a
the Dirac é-function. In our approach such ill-defined struc- very simple form and can be readily interpreted in terms of
tures do not appear. guantum mechanical overlap integrals of 3D wave functions.
The aim of the present paper is to calculate the heavy In the present paper we employ the BS framework for
baryon observables in the covariant instantaneous approxiteavy-to-heavy transitions both in the heavy meson and
mation for the pair-wise kernel of the BS equation. To thisheavy baryon sectors. Using harmonic oscillator wave func-
end we develop a framework where the abovementionetions, we calculate heavy meson and heavy baryon IW func-
problem related to the ill-definedness of the BS baryon waveions, their decay rates and asymmetry parameters. Within
function is avoided. This is achieved by abandoning the twothe oscillator model for heavy baryons we also study an al-
tier scheme and expressing the matrix elements directly iternative approach where the interactions between the two
terms of the equal-time wave functions following the ideaslight quarks in the heavy baryons are switched off. Also, we
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study relativistic effects in the heavy baryon IW function.
The layout of our paper is as follows: In Sec. Il we
present the BS formalism for baryons where we discuss in
some detail how the instantaneous approximation can be
adapted to the description of heavy baryons. We discuss
problems related to the disconnectedness of the three-particle
BS kernel. In Sec. Ill we construct the matrix element of theHere VU"(P;,;q;,.l;,) is the two-body potential of the
weak current in terms of heavy baryon equal-time wave(jn)th pair andl;, |;, denote the relative momenta for the
functions. In Sec. IV we present the calculation of mesorsystem of quarks with individual momerka, k,, ks, de-

>

cycl(ijn)

(2m)*

3 3
v=(2w)45<4>( Zl pi—Zl i

X 8 (pi—k)(SV(p) @ VUM (P, i djn ljn). (3)

and baryon observables in the harmonic oscillator potentigined similar to Eq(1), and Pin=p;+Pn=k;+Kp.

model. Section V contains our conclusions.

II. BS APPROACH TO BARYONS AS A BOUND STATE
SYSTEM OF THREE QUARKS

Next we discuss the choice of the form of the instanta-
neous kernel in the three-particle BS equation. For the me-
sonic two-particle case there exists a well-established pre-
scription how to obtain the instantaneous kernel. One
constrains the zeroth components of the relative four-

In this section we shall derive the general BS equatiormomenta of quarks in the c.m. frame of the meson by the
with an instantaneous kernel for the equal-time baryon waveondition q°=1°=0 which leads to an instantaneous kernel

functions. By taking the limitp|/m— 0 in the spinor part we

that depends only on the three-momenta of the quarks.

show that the solutions of the baryonic BS equation reduce This procedure cannot be directly generalized to the dis-
to the well-known spectator model wave functions. We alsaconnected three-particle kerréqg. (3)] due to the singular
derive the normalization condition for the equal-time baryoncharacter of thes-functions 8*)(p;—k;) corresponding to
wave function. The aim of this section is to provide equal-the four-momentum conservation of the spectator quark. In
time baryon wave functions which can be employed in thethe literature one finds different prescriptions for the defini-
calculation of heavy baryon weak transition matrix elementstion of the baryonic instantaneous kerrj@6—28,39. The

A second aim is to establish the connection with the quarldefinition of the instantaneous kernel given in RE39],

spectator model wave functions.

A. Bound-state equation

though natural in view of its nonrelativistic counterparts,
does not possess a natural connection to its relativistic coun-
terpart given by Eq(3). There does not exist a simple pre-
scription to smoothly extrapolate from kern@) to the in-

Let ¥ ,4,(P1P2P3) denote the 4D BS wave function of giantaneous limit given in Rdf9]. For this reason we adopt
the baryon. We shall express the individual quark momenta, giternative definition which was also used in RERS—

p; through the total four-momentum of the bary@) and
the relative Jacobi momentay{,q,3) according to(the m;
stand for the constituent quark masgses

my

-— ' p
P1 my;+ my,+ms

1
_§Q1

_ ms, P 1 my 1
T mptmy+mg §m2+m3q1 2\/§q23

P2
1)

M p t M 1
T mptmytmg 3m2+m3ql 2\/§QZ3'

P3

The BS equation for the baryon wave function reads
(SP(p1) *® (S (p2)) @ (S (p3)) ¥ (p1poPs)

~ f d%k;, d%k, d%s
(2m* (2m* (2m)*

V(p1p2P3;Kikoks) W (kikoKs)

2

where SO (p;)=i(m;—p;) "' denotes the propagator of the

i-th quark with momentunp; . Assuming pair-wise interac-
tions between quarks, the kerné(p,p,ps;kikoks) in Eqg.
(2) can be written in the following form;

28]. According to this definition, only pair-wise interaction
kernels VU™ undergo a(well-defined modification in the
instantaneous limit. In the c.m. frame of the baryon the pre-
scription is analogous to that for the two-particle case. If the
instantaneous kernels are assumed to be local, the prescrip-
tion reads

V(jn)(Pjn ;an vljn)H; Ogj)®o%n)vﬁjn)

where the matrice©r describe the spin structure of the
potential(scalar, vectn...). In an arbitrary reference frame
the three-vectors are replaced by the covariant expressions
Qjn—0jn ljn—1]n, where pi=p,~v,(v-p) and pl
=(v-p) etc. (herev, stands for the four-velocity of the
baryon. These substitutions define the transformation rule of
the baryon wave function from the rest frame to an arbitrary
frame, providing explicit Lorentz-covariance of the formal-
ism.

Having chosen the form of the instantaneous interaction,
we turn to the derivation of the bound-state equation where
we shall follow the proposals of Reff26—28. We define
the equal-time bound-state wave function according to the
conventional prescriptiof26]. In the c.m. frame of the
baryon this definition reads
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¥+t and¥ "~ are nonzero whereas the “mixed” com-
ponents present in Eq7) vanish identically.

In the limit |p|/m—0 only the¥ * * *-component of the

3 o baryon wave function survives. In this limit E(G7) reads
X6 MB_Zl Pr |V ap,(P1P2P3) 5
- 3 3
o Pttt ADAR)AB T +++
whereMg denotes the baryon mass. As mentioned before the 21 Wi MB) v ATALTAY ,21 e :

covariant generalization of the above expression is straight-

forward: p; is replaced byp! andp? by p!.

(10

Next, one substitutes the instantaneous kernel defined biyote that the istantaneous kernels of RE&8] and[26-2§
Egs.(3) and(4) into the BS equatioi2) and integrates over vyield the same equatiofi0) if the baryon wave function is
relative energy variables. The integral o‘qf?,q can be easily restricted to the subspace of-{ +)-components. Conse-
done with the help of the Cauchy’s theorem. The remainingjuently, the difference of our approach to the prescriptions
integral overg’, however, can not be evaluated by Cauchy’sfrom Refs.[39] and[26—2§ reveals itself in the way which
theorem since both the propagators and the wave functiothe (+-+ +)-component couples to the negative-frequency

depend orq?. In order to proceed one replacesq,93n the
propagators by its mass-shell vallg&6]

30— uiMg—w;,  ui=

3 -1
21 mr) m; . (6)

components.

B. Wave function

In the limit |p|/m—0 the projectors\? in Eq. (8) sim-
plify to AV —2(1+ y)® in the c.m. frame of the baryon,

After integrating over the relative energy variables with the® 10 AY—3(1+4)® in the general frame. In thip|/m
use of the substitutio6) one can rewrite the BS equation —0 limit Eq. (10) is solved by the following ansatz for the

(2) to obtain

AV (ppeA P (p,y)
Wj+W,+w;—Mg—i0

3
@(515253) = Z

i=1

AVPpeAT (P .~
(i)
JrWj+w,1—wi+MB—i0 I ™

where
W R G . .
Ag)(pi):#' hi(pi) = vo'mi+ ¥4 yVp;
I
w;=(m+p?)*? (8)
and

o 1 [ dl o
0% | B (rope o)

“23)P ] (27
x vin ——ai”_ri“)fl‘f(P'd- lin) (9)
T 2\/§ Mistjn/:

Equation(7) gives a complete set of 3D equations for the
equal-time baryon wave function components, without the
need to use a Gordon on-mass-shell expansion as employed
in Refs.[26—28. The components of the equal-time baryon

wave function are defined a¥ “1727s=AARADT,
with ¢4,0,,03=+,—. Note that Eq.(7) differs from the

wave function:

T oy (P1PIP3) = Oa,(V) H(P1PIPY) (12)

V\_/h.ere 0.5,(v) Obeys the following matrix equation for
(i,j,n)=cycl (1,2,3)

1 1 1
E(l—’_w)alﬁlz(1+¢)a2ﬁ2§(l+w)a3,33

X 5B| gi(lb OF),BJ' 5j(16 OF)Bn5n0515253: CF 0“1“2“3' (12)
The coefficientsc are the eigenvalues of the matrix equa-
tion (12). Note that we have Writtenyg)or)®(yg”)or) in
its covariant form ¢ VO)® (¥MOy). Note also that in the
limit |p|/m— 0 only the scalar and zeroth component of vec-
tor interactions surviveOr=14.

In the c.m. frame the radial wave function can be seen to
satisfy the following equation:

3

|3 e o = s [ Sl
=1 r B 1M2M3 (2\/5)?":1 (271_)3
ajn_rjn > -

L “a: |

X( 203 )¢(P,Q. in)

(13

whereu(M=—izc VM.
The usual ground state baryon spin wave functions can be

corresponding equation obtained from the instantaneous keseen to satisfy Eq(12) with an eigenvaluer=1. Adding
nel used in Ref[39]. Namely, adopting the kernel given in the flavor degree of freedom and putting in the appropriate
Ref.[39], it is easy to demonstrate that only the componentspin-flavor symmetries one hésee[27,37,39)
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IP=1/2" Oppc(v) =[(6+1)¥°Clg,Ua(v)Bappg
+cycl (aa,bp,cy)

IP=312" Oppc(v)=[($+1) ¥,ClpyUa(v)Biang

+cycl (aa,bB,cy) (14

whereBgjpg andBy,pg stand for the flavor wave functions
with a mixed and full symmetry. The index pair&
=(aa), B=(b,B), C=(cy) collect the isospin and Dirac
indices. Details of the construction of flavor wave functions

can be found in Refl40].

As a next step one has to specify the pair-wise interactio
kernelsuU™. In the present paper we shall assume that th
pair-wise interactions are of the harmonic oscillator type.

One has

L L1 o
u“”)(q—l)=f d3re'(q')r(§ﬁt,-2nw3r2+%”

m] mg

fin=— (15

m;+m,

Choosing a nonrelativistic form for the quark kinetic energy
we obtain oscillator wave functions after substituting Eq.
(15) into Eq. (13). We present these functions in the c.m.

frame of the baryon ({;+ p,+ps=0). We distinguish be-

tween the following cases:

(1) Light baryons containing two quarks of equal mass:

m2:m3:m,m17&m

1 /(ml+ m) ¥4 m;+2m)*?
4mao| m

$(p1p2P3)=C EXF{ -

(m;+m)*?

X (Ppp+p3)it ——
(P2t P3) J2(2my+ m) 12

X(ﬁz_ﬁs)zﬂ- (16)

(2) Heavy-light baryonsm; — oo

1
B 2(m2+ m3)w0

$(P1P2Ps)=C eXF{

X| (pot+p3)?+

V2m,mg

(3) Model of noninteracting light quarksu®=0,

n ~
@reen’s functionG

> 22
(m3py—myp3) )l 17
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The three cased6), (17) and(18) cover all cases of interest
inasmuch we shall always assumg=my. As has been
discussed before, moving frame wave functions are obtained

by the substitutiop?— — (pT)2.

C. Normalization condition

In this section we derive the general normalization condi-
tion for the equal-time BS baryon wave function as given in
Eq. (7). As usual, we start from the 4D BS equation for the
six-particle Green’s functios with the instantaneous kernel
defined by Eqs(3) and(4). Using Eq.(6), the BS equation
can be reduced to the following 3D equation for the two-time

3
G=—igolITy+igo>, 0V(Mg)G
i=1
=—igolllo+igoU(Mg)G (19
wherel'y=y{M® y@ o (> and
M=APAPAP+ADADAG)
Go=[Mg—h1(p1)—ha(p,) —ha(pa)]

ADAD
Wj+W,+w;—Mg—i0

00(Mg)G=1,*

ADA®
+ -
Wj+Ww,—w;+Mg—i0

i0G (20

with the operatori @) given by Eq.(9). From Eq.(19) it
immediately follows that

GIolI[gy =10 (Mg)1GT Il g= —iGT Il ,. (21)

Extracting the bound-state pole in the functi@n one ob-
tains

(W|ToI[gy*~i0(Mp)]|T)=—(P?~M3) (22

<‘17‘F0H

9 . -

1_IWBU(MB) ‘*I' —2Mg (23
where ¥ denotes the conjugate wave function. Again the
generalization of the above formulas to an arbitrary reference
frame is straightforward.

Equation(23) gives the general normalization condition
in the instantaneous approximation for the baryon equal-time

my—c. The wave function of such a system is remarkablyyyaye function given by Eq(7). Note that there is an impor-

simple since it factorizes in the variabl§§ and 53

tant difference of the normalization conditid@3) for the
three-particlewave function as compared to its two-particle

N 53 5% counterpart(see, e.g[41]). In the latter case the left-hand
$(P1P2Ps)=Cexp — 5 ool P T 2maw)” (18 side (LHS) of the normalization condition does not depend

on the bound-state enerdy if the static kernel is energy-
The constan€ in Egs.(16)—(18) can be determined from the independenta commonly accepted approximatjoi©n the
normalization condition for the wave functidisee below. other hand the normalization condition for the three-particle

074016-5



IVANOV, KORNER, LYUBOVITSKIJ, AND RUSETSKY PHYSICAL REVIEW D59 074016

wave function is nonlinear iM g irrespective of the form of After these introductory remarks we turn to the derivation

the potential. This energy dependence arises from the energf the matrix elements in the BS approach within the spec-
denominators in Eq(20). tator model approximation. We denote the heavy quarér(
The normalization condition considerably simplifies in theb) in the baryon by the label 1(}, while labels 2 and 3

spectator approximation. All energy-dependent terms with atorrespond to the light quark constituents. For the time being
least one projectoA ") drop out in this limit. With the help we keep the mass of the heavy quark finite. Rét denote
of Eg. (11), one concludes from Eq23) that the Green'’s function for th® gg— Q’qq transition induced
by the weak current. In the lowest-order approximatith

202 = reads
¢°(01029) =2Mp (24)

— 1 d3qy d3ps
Nc! 06
“"@J (2m)° (2m)° RE= SV (p) WS (ky) @ (27)*69 (p— ko) SP(py)

where the factoN¢! = 3! arises from the sum ovéimplicit) ®(27)46 (ps—ks) S (pa).
color indices and 3713 3

_ _ . The two-time operatoR* is defined by
aﬁyaaﬁy ' 001B7: ea’/g’ y’( 70)(1’(1( ’YO)B'B( 70)7’(35)

00=

3
- = > da db
R“(v’,v)=f 11 R P

—wjz1 2 2

3
. .. . . Mé_z ar)
Using Eq.(24) and the explicit expressions for the oscillator r=1
wave functions, Eqs(16)—(18) it is then a simple task to
calculate the normalization fact@. One has:

(1) Light baryons containing two quarks of equal mass:
m2:m3:m,m17&m

M 5 1/2
Nc! 06me3

3

X 27 5( MB—SZ:l bs | R“(p1p2P3;Kikaks)

e ai=@'-pi), bi=(v-kj (29
C=2138_312 m, +m

34 2m;+4m
2m;+m

wherev(v') andMg(Mg) denote the velocity and the mass
of the initial (final) baryon.

(26) In the conventional relativistic impulse approximation one
(2) Heavy-light baryonsm, — o takes theJowest-order resy9) and neglects the interaction

terms —iU in Eq. (22). Extracting the double pole iR*
12 with the use of Eqs(22) and(23) one obtains the following
253 (27)  expression for the matrix element of the weak current
0

(P'|Q"(0)WHQ(0)|P)

my

Mg

Nc! 86(m,m;

C= 213/877_3/2(

(3) Two noninteracting light quarks
Mo )1/2 = = (¥} |To(v)I(0")Go (v )R (0" 0)To(v)

C=47%2 (28) RETENE
xT1(v)go ~(v)[V,) (30

Nclge( m2m3)3/2w(3)

where all internal integrations are three-dimensional. In the

spectator approximation the general structure of the transi-

tion matrix elemen{30) can be seen to further simplify. The
Below we give the expression of the matrix element of theQetaiIs of the derivation can be found in the Appendix. The

weak curren’ (0)WQ(0) with W= y#(1+ %) between final result reads

heavy baryon states. In the derivation we follow the ideas of _, =

the Zz)/vari;/nt guasipotential approd&6]. However, there is (P'IQ"(O)W*Q(0)|P)

a difference between our approach and the commonly used

Ill. MATRIX ELEMENTS OF HEAVY BARYON
TRANSITIONS

_ 1\1/2 -1 YV '
qguasipotential approaches related to the treatment of the =2(MgMg)™(66) "6(v )W 6(v)T(v-v") @D
negative-frequency components of the baryon wave functionyith
As is well known for the case of spih-constituents, neither
the free nor the full equal-time Green’s function can be in- Nc! 66 1
verted. In the quasipotential method the free Green’s func-f(v-v')= T 5
tion is modified such that it can be inverted. The requisite 2(MgMg)*2 (64/3)
modifications are by no means unique and differ by how the d*a. d* . d
negative-frequency components of the wave function are Xf 91 @2 1 z (2m)*8P(A,)
treated. In general this may lead to different results for heavy 2m* (2m)* (2m)* (27)*

baryon transition matrix elements. In our approach there is

no need for such a modification and one can retain the full X(2m)* 6 (A3)F (010298 (P10
content of the equal-time BS wave function frequency com- . N , ,
ponents in the matrix elements. XS (K OF(T1129S (p5) S (p3) (32
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where  F(p1p2e) =(A—W,—W3)(p1poa),Mg=m;+A  hormalization condition for the baryon wave functi@),
+0(m; 1) and Mj= m1+x+ o(m,~1). The four-vectors one can check that normalization conditibfl)=1 is satis-
pi .k{ are defined by EqA3) in Appendix. The propagators fied.

in the spectator approximation are given by the followin In order to proceed further in the calculation of the heavy
expressirc))nS' PP g y gbaryon weak semileptonic transition matrix element given by

Egs. (31) and (32), we choose a particular reference frame
wherev#=(1,0,0,0) and'“=(®,0,0,(w?—1)*?). After in-

§H(DO): _ 1 for heavy quarks tegrating over the variabldg andl,; the arguments of the
—A+my+mz—p°—i0 initial wave function andv;, w, become dependent on the
relative energy variableq? and qgg. Cauchy’s theorem can
_ therefore not be used in the evaluation of the integrals over
§L')(p)= - forlight quarks. (33) g9 andqg2,;. As mentioned before this is similar to that hap-

w —m;—p°— pens in the mesonic case. Also this dependence gives rise to
a spurious imaginary part in the functidiw) at w#1. A
simple way to remedy this difficulty is to fix the relative

oo .. energies on mass shfthe same, at the poles of the denomi-

AP=m;(v'%= 0% +p/% %+ p/v’ —k %°—k/v nator in the Eq(32)] in the wave functions and in the quan-

tities wy, w, such that one has

For the light quarksi(=2,3) one has

Ri=mi(v" =v)+p{+p{%" +(v'°+1) " *(p/v")v’ , ,
R R I L oW W Mo 1 5 MpWz—mgw,
— ki +k/ %+ %+ 1) X(k/v)v. (34) gImWerWem MM, 5 2™ T,

. (38
The Lorentz structure of the current matrix element Eq.

(31) is determined by the spectator model factorThe Cauchy integration over the energy denominators can

6(v")WH6(v). Itis well known that in the heavy quark limit then easily be performed. The factok { w,—wsz) (A —w;
baryonic ground-state to ground-state transitions are deter-wsj) in the numerator is cancelled upon integration and we
mined by three independent form factor functionsare left with the simple result

{(w),&1(w) and &(w) which depend on the momentum

transfer variablev=v-v' [42]. In the spectator model these NC!F@ 1
three functions become related and are given in terms of a flw)= 2(MM%)Y2 (643)3
single universal form factor functiof{w) [10]. One has BY'B
dq, dPqps . . oo
o+l X f — 4 39
{(0)=E1(0) = 0) 0+ D=f(w) 2=, (D)=L (27 (2my MNPl (39
(35 where

E’4h3:]s result coincides with the prediction of large-QCD If=3(w2—1)1’2(W§+W§)+wqf,

In order to determine the reduced form factor function MW — MW
f(w), it is sufficient to consider only one particular transi- 13— yg3,+ (02— 1)¥23 —> 2 [L=gt.
tion. For example, take thd,— A. transition. Using the my+m;
known spectator model wave functions Efj4), one obtains (40

1 The physical meaning of the result is transparent. Equation
0, (U’)WﬂaAb(U):EHA gAb(1+w)u(v’)WMu(v)_ (39) corresponds to the quantum-mechanical overlap of two
¢ ¢ baryon wave functions. The initial wave function is evalu-
(36  ated in the rest frame of the initial baryon and the final wave
function in the frame moving with the velocity’ along the

Then from Egs.(31) and (36) one immediately concludes third axis. The arguments of the final wave function are Lor-

that entz boosted where the energies of the light quarks are fixed
— by their mass shell values. Obviously, the same result can be
(A|Q"(0)WHQ(0)|Ap) obtained from the general expressit80), e.g., in the rest
frame of the final baryon. In this case the initial wave func-
— +1 tion in Eq. (39) is substituted by the final wave function and

— 1/2, ’ 5
=2(My My )" u(’) y*(1+ »?)u(v) f(). vice versa. Since in the heavy quark limit the wave functions

(37) do not depend on heavy flavor, one ends up with the same
heavy baryon IW function in both frames.
From Eq.(37) it is seen that the universal functidifw) in The calculation of the heavy meson IW function proceeds
Eq. (35) coincides with the one given by E(32). Using the  along similar lines but will not be presented in this paper.

w
2
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We only give the final result obtained with the same assump- 1* ¥
tions as for the case of baryons. For the reduced form factor
function one obtains

0+ 0

+

1
2
1
2
1+
2

d3q R L.
f(w>=f 9 (@), =g,

(2m)®
|3: wq3+ (wz_ 1)1/2( m2+ a2)1/2 (41) ' |
where the ET meson wave functiamﬂ((i) is normalized to a b

unity, i.e., one has the normalizatigig1l)=1. _ . S
i . : ; : _ FIG. 1. Heavy baryon—heavy antibaryon pair production in the
Itis interesting to note that in the approximation of non e"e” annihilation: (@) Light quarks are produced independently

interacting light quar_ks within the heavy _baryon the MeSON om the vacuum by soft gluon exchanges in tife=0* channel;
and baryon IW functions become related if one assumes th ) tightly bound light diquark is produced from the vacuum.

the interaction potentials between the heavy quark and th
light quark-antiquark are the sarf#7]. Let {(w) be the IW
function describing the transitioh,— A andé(w) the me-
sonic IW function. Using Eq(39) one then obtains

one has 4p|? threshold factor wherp| is the magnitude of
the c.m. relative three-momentum of the quark pair.
As opposed to this, let us consider the situation when two
1 1 light quarks inside the heavy baryon are tightly bound in a
{(w)=5(o+Df(0)=5(w+ 1)é(w). (42)  diquark with the quantum numbed§=0" [Fig. 1(b)]. Then
the amplitude for the transition'0—~0"+0" is an Swave
The two light quarks in the heavy baryon move indepen-ransition without any threshold factor.
dently in the mean field produced by the heavy quark where In the equal-velocity approximation the magnitude of the
the heavy quark is fixed in the center of mass of the heavg.m. relative three-momentum can be expressed in terms of
baryon. Such a physical picture is quite attractive since onéhe velocity transfer variablew=(v-v')=Mg%(p;-p,)
can relate the heavy baryon form factors to the heavy mesowherep, andp, are the momenta of baryon and antibaryon
form factors(to be more precise, to the would-be heavy me-produced in thee*e™ annihilation. It is a simple task to
son form factors, in which the interquark interaction pOte”'derive||5|/m= |5/|:(%(w_ 1))Y2. In the direct channeb is
tial coincides, by definition, with the potential acting be- ) .
tween the heavy and light quarks in the heavy baryons rleplaced by~ and thus the threshold factfp]” turns into
Anyway, the model of noninteracting light quarks enablesi(“”Ll) present in Eq(36). . : .
one to effectively reduce the calculation of heavy baryon The dy”a_m'ca_' aspect of the_nonlnteractmg I|ght _quark
observables to the two-body case and thus enormously sirﬁ"—mdel consists in the assumption of the factogzatlon of
p||f|eS the treatment of the prob|em under Study_ Earyon radial wave function with regard to Variabh.ﬁsand
The assumption of noninteracting light quarks has twop,. This can be achieved by setting the interaction potential
aspects which one may refer to as “kinematical” and “dy- between the light quarks to zero. From a rigorous point of
namical” aspects. Let us elaborate on these two aspects. Thew, one should then also replace the interaction between
kinematical aspect deals with the spins of the quarks anthe heavy and light quarks in the heavy baryon by some
manifests itself in the relativistic factd(w+1) in e.g. Eq.  effective “mean field” interaction. Below we shall present
(42). We would like to emphasize that the kinematical aspecthe results of numerical calculations which demonstrate the
of the noninteracting light quark model is already implicit in effect of the noninteracting light quark approximation in
the spectator model wave functions which are derived fronheavy baryon observables.
the equal-velocity assumptiofall quarks being on mass

§he|l and propagating freglyNot su.rprisingly, Fhe overlap IV. RESULTS
integral of the baryon wave functions contains the factor
1(w+1) explicitly [see e.g. EQ36)]. The physical origin of In this section we present our numerical results both for

this factor can be seen by considering the transition ampliheavy meson and heavy baryon sectors. We use oscillator
tude in the crossed channel, corresponding to the productioffave functions as given by Eq&l6)—(18) for baryons and
of the heavy baryon-heavy antibaryon pair by the virtualcorresponding oscillator wave functions for mesons. Oscilla-
photon born in the™ e~ annihilation process. tor wave functions are known to provide a good basis of trial
Let us first consider the physica| picture where both |ightW&V€ functions in the variational solution of the bound-state
quarks are produced independently from the vacuum througgduation[32,50.
the exchange of many soft gluons with the total quantum We would like to emphasize that in the present paper we
numbersJ®=0* [Fig. 1(a@)]. The intrinsic parity of the have not attempted to obtain a precise description of meson
1114 o . and baryon data by the fine tuning of a large number of
(3727) pair is negative and, consequentl},§J)=(110)  model parameters. Rather, we want to demonstrate that, in
for this transition. Thus one has a threshold factofpdffor ~ the framework considered in the present paper, one achieves
each of the twoP-wave quark-antiquark pairs, i.e. in total a reasonably good description of experimental numbers both
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TABLE I. Heavy meson leptonic decay constants. TABLE IIl. Experimental and theoretical values for the branch-

ing ratios (in %) and asymmetry parameters in the deddy

Process Quantity Our Lattid&] —D(D*)ev.

D—ly fo (MeV) 226 200+ 30 Theory Experiment

B—ly fg (MeV) 134 180-40
Br(B—D) 2.05|V,/0.04%  1.6+0.7[1], 1.9+ 0.5[1]
Br(B—D*) 5.35|Vp/0.04%  6.6+2.2[1], 4.4+0.4[1]

in the meson and baryon sector with only a few parameters, 1.71 1.10.4+0.2[48]

We have also checked that the dependence of our numericg 0.63

results on these parameters is rather moderate. Ars 0.083 0.20-0.08+ 0.06[49]

In order to reduce the number of free parameters as mucRT 0.20

as possible we do not distinguish between the masses of th&®
light quarks and setn,=my=mg=m. It is known that the
effect of them;—m, mass difference in the baryon wave

2
functions is rather small and we neglect it in the present 2=§ m
p + . (46)
treatment. 4 A2
First we turn to the calculation of the heavy meson lep-
tonic decay constants defined by We further use the calculated values of leptonic decay con-

stants in Eq(45) to provide absolute values fon and A.
) . p ~ - 5 Most of the present theoretical investigations of the slope
iP,fp= _'NCJ (ZT)aTr[X(P'p)Vﬂ ] (43 parameter converge around the vafife=1. With p?=1 as

input one obtains\ =2m from Eq. (46). Further, taking the
valuem=250 MeV for the constituent quark mass and, re-
pectively, A=500 MeV for the wave function range pa-
ameter, we obtain a reasonable fit to the experimental lep-
tonic decay constants as shown in Table |. For comparison,
we have also listed the results of the recent lattice calcula-
tions of the same quantities in Table I. In Table Il we give
some recent results on the heavy meson IW function slope
parameter. Note that the functional dependence of the heavy
meson IW function in our approach is well approximated by
the formula

3>

where}(P;ﬁ) denotes the equal-time meson wave function
in the c.m. frame. In an arbitrary reference frame the heav
meson wave function is given Kgee e.g[38])

X(P;pD=cuy (1-6)M3pu[—(pN?]. (44

Here M2 denotes the meson flavor matrix awg) is the
normalization constant. Using the BS normalization condi-
tion and assuming the radial part of the meson wave functio
to be of the oscillator typedy~exd(p")¥A?], it is a

straightforward task to obtain 22

wt+1l

12 w)= (47)

(49)

2NcA3

’773/2M b

p=

in our approach where, as was mentioned above, we take

2_ .
whereMp denotes the meson mass. As can be seen from Eéf. =1 as input.

(45) the calculated leptonic decay constant exibits the well- With the above t.WO parameter values we pres_ent ourre-
Kknown M - 2 scaling behavior sults of the calculation of the decay observable8imeson
P .

. semileptonic transitions in Table Ill. We give the branchin
Next we turn to the calculation of the heavy meson Isgur b 9 9

. : . : ratios for the weak semileptonic deca§s+D, B—D* and
LN'S’er(ll(;N) er]JIncUr?r][hacc;o:idlr/]% t\(/)thqr(Ara 'iT?ﬁ IYiV I]Ltht'OrT( values for the polarization-type observables
epends only on the ratioy. erem 1s the gt qua apol, ', Apg and AEB [2,5]] in these decays. As can be
mass. In order to fix this ratio we calculate the slope param- P .

seen from Table Ill, the agreement of the calculated quanti-

eter of the heavy meson's IW wave function using agalN; o5 with existing experimental data is satisfactory.

oscillator wave functions for the heavy meson. One obtains X

Next we present our results in the baryon sector. We use
the same values for the two model parameters as in the me-
son sector. To begin with we discuss the model of noninter-
acting light quarks with the additional assumption that the

TABLE Il. Slope of the heavy meson IW function.

p? Approach . . . .
interaction between the heavy and light quarks in the heavy

1.00 (input) Our baryon is the same as the interaction between the heavy
0.9753"54 Lattice [44] quark and light antiquark in the heavy megd]. With this
0.84+0.02 QCD sum rule§45] assumption the range parameter in the heavy baryon equal-
0.70+0.25 QCD sum rule§46] time wave function defined by\z=2mw, turns out to be
0.42-0.92 Quark Confinement Modg29] the same as the parametgrin the meson wave function.
1.02 Quasipotentigl17] Consequently, the heavy baryon IW function can be also

parametrized by the ansat47) but with
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1.00 — TABLE IV. Exclusive decay rates of bottom baryor(i
10 10 sec’!) for |Vp=0.04.
] AR
0.90 3 \\ Process [53] [54] [10] [11] Our(1) Our(2
] N
1 N ) A=A 59 51 514 539 652 6.09
] AN 205! 72 53 521 527 683 6.42
0.80 3 AN Tl PINGEES 4.3 223 1.90 1.65
3 : R IR Q, —0° 54 23 152 1.87 205 1.81
> ] NN . DRGNS 456  4.17 3.75
N 070 N ) Q; —Q*O 341 401 455 413
3 N
3 ~N
060_5 - teractions between quarks in the baryon are down by the
R RS factor 3 as compared to the interactions between the quark
1 and antiquark in the meson. From Fig. 2 one observes that
1 even for such a substantial change of the value of the param-
0.50 Jrrrrrrrrr e e S T ion i i ifi icu-
35 ARPS T30 T30 AP eterAg the IW function is only shgthly mod!fled. In particu
W lar the difference between the noninteracting and full calcu-

lation persists. At maximum velocity transfer the IW
FIG. 2. The heavy baryon IW functiof( ) in the noninteract- functions calculated in the full model with these two values
ing light quark model and in the full model for the different values of A differ only by about 5%. The functional dependence
of the wave function range parametdsi: full model with Az of the IW function withAgz=355 MeV can again be well
=500 MeV (solid ling); noninteracting light quark model with approximated by the representatiof9) but now with a

Ag=500 MeV (Iong—dash_ed ling full model with Ag =1.54b=0.4: péZ 0.97.
=355 MeV (short-dashed line To summarize our results on the functional dependence of
) the Isgur-Wise function one finds that the model of noninter-
214 S (mlight) o 1 (ag  @cting light quarks can be clearly distinguished from the full
B ifgnt \ A 2 model, at least within the spectator picture. There is no the-

oretical reason to prefer one to the other. The issue which of

such thatp3=1.5 in the model of noninteracting light the two anstze has to be preferred has to be settled by ex-
quarks. periments. An attractive feature of our approach, apart from

When we present our results in the following on the func-its simplicity, consists in the weak dependence of the predic-
tional dependence of the heavy baryon IW functigm) we  tions on the precise values of the model parameters which
shall always compare the two cases where the interactioRelps in distinguishing between various models.
between the light quarks is switched either on or off. The In Table IV we present the calculated total widths of bot-
results of our calculation are given in Fig. 2. As can be seeifom baryon weak semileptonic transitions calculated in the
from Fig. 2 the IW function is substantially flattéwith the ~ full model with Ag=500 MeV, column (1), and A
same set of model parametet#A =0.5) when the interac- =355 MeV, column(2). For comparison we also list results
tions in the light diquark are taken into account. At maxi- from other model approaches. We see that the overall agree-
mum recoil the difference between the values of the functiorment of our results with results from other models discussed
{(w) calculated in the full(interacting model and in the in the literature is reasonable. In the absence of experimental
noninteracting light quark model amounts up to 30%. Thedata, however, one can not fix the precise value of the wave
function {(w) in the full model is well approximated by the function range parametetg owing to the weak dependence
functional dependence of the results on this parameter.

a+tblo

2
w+1

{(w)=

In Table V we give values for the asymmetry parameters
in the A, baryon semileptonic transitio41,57. Rows(1)
and (2) are for Ag=500 MeV andAg=355 MeV as in

Table IV. For comparison, we again list the results obtained
with a=1.23 ancb=0.4. This corresponds to a slope param-Within different approaches. As can be seen from Table V
eter ofp§=0.81 which is much lower than the slope param-

eterp3=1.5 in the noninteracting light quark model. TABLE V. Asymmetry parameters foh,, decay.

In our simplified approach the heavy baryon IW function

’

"

depends only on the ration/Ag. Fixing m at m “ “ * 14 @p P

=250 MeV we have evaluated the IW function for two dif- Our (1) -0.78 -0.11 -0.55 0.54 0.41 -0.15
ferent values ofAg. In Fig. 2 we present our results for the our (2) -0.78 -011 -055 054 041 -0.16
value Ag=A/\2=355 MeV, corresponding to the popular [11] -0.76 -012 -053 056 039 -0.17
one half rule for baryongsee e.g[50]). According to this [13] -0.74 -0.12 -0.46 0.61 0.33 -0.19

rule which is strongly supported by phenomenology, the in
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1.00 3= V. SUMMARY AND OUTLOOK

RN R RN

DN We have presented a simple calculation of the heavy me-
N son and heavy baryon semileptonic decay observables with
N e the use of the field-theoretical BS approach where both
N heavy mesons and heavy baryons are treated on the same
N ) footing. While widely in use in the calculation of mesonic
N two-body bound-state observables, the BS approach has been
~ R known to encounter conceptual difficulties when applied to
~ the baryonic three-body case. In the present paper we have
explicitly demonstrated that the treatment of the three-body
N bound state systems can proceed along similar lines as in the
~ two-body case when the constituents interact via instanta-
neous kernels.
Up to this point our investigation of the three-body prob-
lem has been restricted to the so-called “spectator picture”
050 T AT which provides a powerful tool for the study of heavy baryon
1.00 1.10 1.20 1.30 1.40 weak interactions. In the spectator approximation the spin
w structure of the baryon wave functions and decay matrix el-
FIG. 3. Relativistic effect in the heavy baryon IW function in €MeNts is remarkably simple, and model-independent rela-
full model with Ag=500 MeV: the functior!(w); relativistic case ~ tions emerge between various decay amplitudes in this limit.
(solid line); the universal form factor functiofi(w); relativistc ~ This has been demonstrated by a systematic and comprehen-
case(long-dashed ling the functionyr(w); nonrelativistic case ~ sive analysis of the heavy baryon weak nonleptonic decays,
(short-dashed line carried out in paperg37,38. Further improvements on these
ideas were given in Ref$14,15, where the so-called La-

the asymmetry parameters are rather insensitive to the pagfangian spectator model has been proposed. The Lagrang-
ticular model in which they are calculated. ian spectator model allows for the microscopic evaluation of

Last but not least, we shall discuss the nonrelativistic limitthe various “overlap integrals™(the reduced matrix ele-
of our approach where the crucial role of the faclqw  MeNts, from the group-theoretical point of vigvand thus
+1) will become transparent. First, note that for* allows one to compute a large number of experimental ob-

> = servables in heavy baryon decays: rates, asymmetry param-
_ _ . 10_ 12__ ’
=(1,0)w=v'"=V1+v'“~1 up to the terms of order of eters, etc.

1;,2. Thus this factor drops in the nonrelativistic limit. Fur- The spectator approximation is based upon a very simp|e
ther, from Eq.(40) one obtains and transparent physical picture: the internal motion of
quarks(both heavy and lightinside the hadron is very slow;
all quarks are assumed to be on mass shell and are assumed
to have the same velocity, which coincides with the velocity
of the hadron as a whole. All approximations which we have
in this limit which coincides with the formulas presented in used in the treatment of the heavy baryon weak transitions
Refs.[53,54. From Egs.(50) one immediately obtains the are in accordance with the above physical picture, and can be
nonrelativistic(NR) result for the Isgur-Wise function deduced from it. Indeed, in the present paper we have dem-
onstrated that the general BS approach to transition matrix
elements can be reduced, step-by-step, to the spectator model
_ _ 2 treatment of the weak transition matrix elements with the use
gNR(w)_fNR(w)_eXF{ - P(“’ _1)1 5D 4f the above approximations. We would like to emphasize
that the BS approach enables one to evaluate the full matrix
elements by expressing them in terms of the overlaps be-
with pg yg=0.5. In Fig. 3 we have plotted the functions tween equal-time BS wave functions. Note also, that even in
f(w) and {(w) in the full model in the relativistic case as the spectator limit our approach et reduced to a nonrela-
well as the function/yr(w) given by Eq.(51). It is interest- tivistic approach: only that part of motion which is related to
ing to note that although there exists a large relativistic dythe quark relative momenta is treated nonrelativistically,
namical effect since\r(w) and f(w) are significantly dif- whereas the c.m. motion of hadrons is taken into account in
ferent, the absence of the relativistic factdiw+1) in the  a completely relativistic fashion. Thus, even at this stage our
nonrelativistic case compensates for this. In the heavy mesamodel is not reducethnd differs significantlyfrom the non-
case where such a factor is absent the slope parapretsfr  relativistic baryon models which are used for the calculation
the IW function is grossly underestimated in the nonrelativ-of transition amplitude$53,54). Moreover, the necessity of
istic treatmen{3,4]. In our opinion our results unambigou- the inclusion of the relativistic effects is readily seen even
osly indicate the importance of including relativistic effects from the results of our calculations in the spectator picture.
when studying heavy baryon transitions. We would like to mention that the physical assumption of

0.90

0.80

0.70

0.60

et b ev e e bvvr e b g g aadgg

[1=01+6mu’, [,3=0 (50

2
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“slow” interquark motion for the light quarkgwhich lies at  aAnp analogous relation holds f@al(v)

the heart of the whole spectator pictuoannot be rigorously In order to further simplify Eq(30) we perform a change
justified from a theoretical point of view. According to com- of integration variables corresponding to Lorentz boosts
mon belief one has the valdp|/m~1 for light quarks in-  which boost the initial and final baryon wave functions to the
side the hadron. Since, the quark spin-spin interaction effectest frame. One has

are proportional to powers dﬁ|/m they area priori ex-

pected to give a sizeable contribution to the calculated , - = g, .0 1
baryon observables in contrast to the assumptions of the 91 (10", Gi—=01=qgu’+ (v "+ 1) (a1
spectator model. Nevertheless, the present treatment of
heavy hadron transitions is based on a relativistically consis- 0
tent formulation of the spectator picture. It can be used asa 1

stepping stone for the inclusion Gf(|5|/m) spin effects at a

I(?;E(r)r?;z.;\ge. We plan to address this problem in future publi- q23—>(q23~v’),
In addition, we plan to apply the present BS approach and +(v'%+ 1)—1(623;')5'

its possible modification with the inclusion of the spin effects

to the more involved and interesting problems of heavy had-

ron physics, such as nonleptonic, one-pion and radiative de- 19, (1,5-v), 13— 13— 190 + v+ 1) X(T,)v.

cays of heavy baryons. (A2)

—(10), =T —1%+w+1)"YTw)o

R R 0~
O23— 23— Qo3

Under this transformation the wave functions of the final and
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p2 3(m2+m3) Qa1 2\/§q23!

APPENDIX A: MATRIX ELEMENTS IN THE SPECTATOR
APPROXIMATION
ms 1

r_ + ,
P3 3(m2+m3)Q1 2\/§Q23

In this appendix we present details of how to evaluate the
heavy baryon weak transition matrix elements in the specta-
tor approximation. In particular, we shall demonstrate that
the spin structure of Eq.30) considerably simplifies in the 1 m, 1
spectator picture. First, note that the factbgsandII in Eq. ki=—3l1, ké=3(m m )|1— \/—|23,
(30) can be dropped since they are reduced to an identity 2 s 23
operator when acting on the spectator model wave functions.

Moreover,g, * is reduced to M 1
) k3 3(m2+m3)|1+ 2\/§I23. (A3)
=1, Ma— mZ_ 2+ AV 1/2. Al
9o (v7)—Ms ;1( PR (A1) After the change of integration variables one has
' ’ 10N/ 1 r_ i ! —-1-12 -)_I >y 10 -1/ "_’_r
S(i’)(pi)H(MiMB_I_pi )6+ — (M +wi) " Tp S (p{ v ) (vt (v T+ 1) T (v ) (yp,)1 (Ad)

w/2—(u{Mg+p/%?-i0

Si(k))— (Mg +k ¥ +Wi_(mi+Wi)_1IZi/2+(|Zi’l;)(7-O+(UO+ 1)_1(;’5))—(‘;42{). (A5)
wi = (uiMg+ki’9)?=i0
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In the spectator approximation one neglects the transformed

momentap; ,k/ in the numerators of EqA4). Further, we
can sety—1 andd’—1 in the numerators since they act
either on the final or initial spectator wave functions. As a

result one obtains in the spectator approximation /— e ——_— m
P ; P’
SP(p)—> /k 1 J\
W, —uiMg—p/"—i0 . wf—mg—p}7—i0 .
$(llas)(A — w2 — ws) (A — wh — w)$(G1d2s)
S(i)(k-)—> 1 (AB) FIG. 4. “Feynman rules” in the spectator quark approximation.
|

Wi_,LLiMB_ki,O_iO.

ments in the spectator approximation which are remarkably
Further, in the heavy quark limit one neglects terms of ordesimple since the vertices and propagators have a trivial iden-
(2m;)~1p,’2 and (2m})~'k,’2. One then obtains the fol- tity structure in the space of Lorentz indices. As an example

lowing effective propagators we evaluate the current-induced transition between heavy
baryons according to the diagram Fig. 4 where we have
) 1 added the appropriate vertex and propagator structure. The
S(py)— A+ 0 A spectator model Feynman rules for this transitions may be
- my+mz—p; —i0 : .
summarized as follows:
1 (1) A factor (A—ZjigniWiight(P)) ¢(p1p2p3) for each
SV(ky)— —— TR heavy baryon vertex where(p;p,ps) denotes the radial
—A+my+mg—k;"—i0 part of the heavy baryon equal-time BS wave function.
(2) The heavy quark propagator:
S(l)(pl)*> , , PR
wi —m;—p{°=i0 1 (A9)
. 1 —-A+ E m”ght—p'o—iO
SO(k)—» ——————, i=23. light
w;—m;—k{°—i0
(A7) (3) The light quark propagator:
The factorsg, * turn into 1
(A10)

~ e ~ — r_ I _ A0’
U0l )= A—wWh—wh,  GoH(v)—A—wWo—ws w{ —m{ —p/°=i0

(A8) (4) Dirac é-functions corresponding to the four-
where all reference to the heavy quark mass has disappearedpmentum conservation of light spectator quarks. All mo-
as it should indeed be. Further, substituting these expressiomsenta are boosted to the rest frame of either the final or the
in Eq. (30), one immediately arrives at the Eq81) and initial baryon.

(32). (5) Integration over all relative four-momenta.
It is interesting to note that one can write down “Feyn-  (6) The spin-flavor structure of matrix elements is given
man rules” for the construction of the current matrix ele- by spectator model wave function scalar products.
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