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Implications of color gauge symmetry for nucleon spin structure
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We study the chromodynamical gauge symmetry in relation to the internal spin structure of the nucleon. We
show that~1! even in the helicity eigenstates the gauge-dependent spin and orbital angular momentum opera-
tors do not have gauge-independent matrix element,~2! the evolution equations for the gluon spin take very
different forms in the Feynman and axial gauges, but yield the same leading behavior in the asymptotic limit,
and ~3! the complete evolution of the gauge-dependent orbital angular momenta appears intractable in the
light-cone gauge. We define a new gluon orbital angular momentum distributionLg(x) which is an experi-
mental observable and has a simple scale evolution. However, its physical interpretation makes sense only in
the light-cone gauge just like the gluon helicity distributionDg(x). @S0556-2821~99!02207-9#

PACS number~s!: 12.38.Aw, 14.20.Dh
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The spin structure of the nucleon has been a subjec
intense debate for about ten years. Much progress has
made on both experimental and theoretical frontiers@1#.
However, some of the fundamental theoretical issues rem
unsettled, as exemplified by a number of recent works in
literature. In particular, in analyzing the spin structure of t
nucleon, color gauge invariance is still the cause of so
confusion. In this paper, we intend to explore several imp
tant and relevant issues in detail.

To set the stage, let us briefly recall the forms of angu
momentum operator in quantum chromodynamics~QCD!. In
Ref. @2#, a natural gauge-invariant expression is introduce

JWQCD5JWq1JWg , ~1!

where

JWq5E d3xFc†
SW

2
c1c†xW3 iDW cG ,

JWg5E d3xxW3~EW 3BW !. ~2!

The quark contributionJWq contains two terms. The first term
is obviously the quark spin asSW 5diag(sW ,sW ) is the four-
dimensional generalization of the familiar Pauli spin ma
ces. The second term is the quarkkinetic ~or mechanical!
orbital angular momentum, in which the covariant derivat
DW 52¹W 1 igAW originates from the quark kinetic momentu
@3#. We recall that in a gauge theory the kinetic moment
appears to be more physical than the dynamical~or canoni-
cal! one, the latter corresponding to a partial derivative2 i¹W
in quantum mechanics@3#. The gluon contribution to the
angular momentumJWg contains the well-known Poynting
vector,EW 3BW , the momentum density of the radiation fiel
Some recent studies in terms of the above form of ang
momentum operators can be found in Refs.@4–6#.
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The same QCD angular momentum can be written in
‘‘interaction-independent’’ form1

JW5E d3xF1

2
c̄gW g5c1c†xW3~2 i¹W !c

1EW 3AW 1Ei~xW3¹W !Ai G . ~3!

Because some terms contain explicitly partial derivatives
gauge potentials, the above expression is notmanifestly
gauge invariant. Nonetheless, the physical meaning of e
term appears to be clear. The first term is the quark spin,
second the dynamical~canonical! quark orbital angular mo-
mentum, the third the gluon ‘‘spin,’’ and the last term th
gluon ‘‘orbital’’ angular momentum.

According to the above decomposition, one can wr
down a sum rule for the nucleon spin@7#

1

2
5

1

2
DS~Q2!1Lq8~Q2!1Dg~Q2!1Lg8~Q2!. ~4!

Here the matrix elements of the individual operators are
fined in a nucleon state withpm5(E,0,0,p) and helicity 1/2,
e.g.,

Dg~Q2!5 K pm
1

2U E d3xW~EW 3AW !zUpm
1

2L . ~5!

The Q2 dependence results from the renormalization of
composite operators. One expects thatLq8 , Dg and Lg8 are
gauge as well as frame dependent. The purpose of this p
is to study how the gauge dependence affects the phys

1Of course, it is not really interaction-free because the color e
tric field still depends on the coupling constantg,

EW a52¹W A0a2
]AW

]t
2gfabcAW bA0c.
©1999 The American Physical Society10-1
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significance of the individual terms in the above sum rule.
the following we will work in the infinite momentum fram
in which the angular momentum operators are defined fr
the angular momentum density*d3xM1 i j . In particular, the
color electric fieldEi is now Fi 1.

In a recent paper by Chen and Wang@8#, it was claimed
that although the individual operators in Eq.~3! are gauge
invariant, they have gauge-independent matrix element
the nucleon helicity eigenstates. In other words,Lq8 , Dg, and
Lg8 were said to be gauge invariant. If correct, the theor
would have warranted a fresh look at the physical sign
cance ofLq8 , Dg, andLg8 .

We find that the theorem seems to be in contradict
with the following explicit calculation. Consider an ‘‘on
shell’’ quark in the state of momentumpm and helicity 1/2.
We calculate the matrix element of the gluon spin opera
Sg

z5*d3x(EW 3AW )z in perturbation theory. Choosing th
light-coneA150, we find at one-loop level

Dg5
3

2
CF

as

2p
lnS Q2

m2 D , ~6!

where CF5(Nc
221)/(2Nc) with Nc the number of colors,

Q2 and m2 are the ultraviolet and infrared cutoffs, respe
tively. On the other hand, in the covariant gauge we hav

Dg5CF

as

2p
lnS Q2

m2 D . ~7!

A similar discrepancy was found upon calculating the ma
element of the same operator in an ‘‘on-shell’’ gluon sta
Although Chen and Wang’s statement of the theorem
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proof have been modified from its original version in light
the above example@8#, we still doubt the validity of the
claim.

Thus the concept of the gluon spin contribution to t
nucleon spin is in general a gauge-dependent one. This
ture is also reflected in the scale evolution ofDg. In the
light-cone gaugeA150, it is well-known thatDg evolves
according to the Altarelli-Parisi equation@9#,

dDg~Q2!

d ln Q2 y5
as

2p S 3

2
CFDS1

b0

2
Dg~Q2! D , ~8!

where b051122nf /3 with nf the number of active quark
flavors. In the asymptotic limitQ2→`, the gluon spin grows
logarithmically,

Dg~Q2!uaxial gauge→ ln Q2, ~9!

where the coefficient of proportionality is fixed by nonpe
turbative physics.

In the Feynman gauge, the evolution equation becom
much more complicated. In fact, the following gauge-varia
operators come to mix with the gluon spin

O152E d3x¹W Aa
13AW a , ~10!

O252E d3xg fabcA1cAW b3AW a. ~11!

~There is no ghost operator here because the ghosts do
carry spin.! Denote the matrix elements of the above ope
tors in the nucleon helicity states asa1 and a2 . A lengthy
calculation yields the following evolution equation:
~12!
o

t, it
be

ble
eri-
trix
where CA5Nc . Thus to evolve the gluon spin to a ne
perturbative scale, one needs not only the gluon spin at
starting scale but also the matrix elements ofO1 andO2 . To
find out the asymptotic behavior asQ2→`, we diagonalize
the upper 333 mixing matrix. The three eigenvalues a
l15(11/6)CA2nf /35b0/2, l25(17/24)CA2nf /3, and fi-
nally l35(11/24)CA2nf /3. From these, we found out tha
the leading asymptotic behavior of the gluon spin in t
Feynman gauge is the same as that in the light-cone ga
he

e,

Dg~Q2!uFeynman gauge→ ln Q2. ~13!

Of course, the coefficients of proportionality in the tw
gauges are different.

Given that the gluon spin is a gauge-dependent concep
is remarkable that its value in the light-cone gauge can
extracted from the gluon polarization distribution measura
in high-energy scattering. What one extracts in those exp
ments is of course gauge-invariant and is in fact the ma
0-2
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element of the following gauge-invariant non-local opera
@10#:

Og5E
2`

`

dx
n2

2 E
2`

` dl

2p
eilxF1a~ln!e2 ig*0

ldyn•A~yn!F̃a
1~0!.

~14!

However, the physical interpretation of this operator is
general not obvious. Interestingly, in the light-cone gau
A150, the above operator reduces to the gluon spin oper
Sg

z . This relationship says nothing about the gauge trans
mation property of the gluon spin; it merely means that
gluon spin in the axial gauge can be obtained from the ma
element of a gauge-invariant operator. In other words,
gauge-invariant extensionof the gluon spin in light-cone
gauge can be measured.~This situation is similar in spirit to
the following example of length in special relativity. Th
proper length of a pencil is clearly frame independent. Wh
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we say the length of a house in the framev50.9999c is the
same as the proper length of the pencil, we are not say
that the length of the house is frame-independent. Rather
are saying that the length of the house in a special frame
be known from measuring a frame-independent quanti!
Note that one can easily find gauge-invariant extensions
the gluon spin in other gauges. But we may not always fi
an experimental observable which reduces to the gluon
in these gauges. As far as the nucleon spin structure is
cerned, however, the gluon spin in the covariant gauge i
interesting as its counterpart in the light-cone gauge.

Finally, we turn to the orbital angular momentum oper
tors in Eq.~3!. The role of the orbital angular momentum
parton splitting processes was first studied by Ratcliffe@11#.
In @12#, Tang and two of us worked out the leadin
logarithmic scale dependence of the orbital angular mome
in the light-cone gauge,
~15!
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The first term on the right-hand side exhibits the effects
self-generation of the orbital angular momenta. The sec
represents the generation of orbital angular momenta f
the quark and gluon spin. The above equation leads to s
interesting results about the spin structure of the nucleo
the asymptotic limit. As we are going to show below, ho
ever, the actual operator mixing is more complicated th
what is shown in the above equations although the resu
the asymptotic limit remains intact.

We note that in general there is an additional opera
which mixes with the quark and gluon orbital angular m
mentum operators,

DL5E d3xc†
„xW3~2gAW !…zc. ~16!

Therefore, we proceed to calculate the matrix elemen
*d3xc†

„xW3(2 i )¹W …zc in an ‘‘on-shell’’ quark-gluon-quark
state. At the leading-logarithmic order, it contains the f
lowing scale-dependent term

as

2p
ln Q2ū~x2p!Xn”gs'1

1

x12x2
ln~x2 /x1!

3~x1n”g'gs1x2n”gsg'!Cu~x1p!es* . ~17!

This result indicates that the operator that mixes withLq8 and
Lg8 is in fact more complicated than the simple guessDL.
The most general form is the following non-local operato
f
d

m
e

in

n
in

r
-

f

-

E d3xxW3 f ~n•]c ,n•]c†!c†gW A” n”c1H.c. ~18!

where]c and]c† are derivatives acting onc andc† respec-
tively, and f (x,y) is a functionx and y and takes different
forms at different orders of perturbation theory. Therefo
we conclude that to evolve the matrix elements of the gau
variant orbital angular momentum operators is extrem
complicated in the light-cone gauge.2 The same statemen
applies to the orbital angular momentum distributions d
fined in Refs.@14,15#.

The evolution in the Feynman gauge is again differe
Here we do not have the problem of mixing with infinite
many operators. Apart from the quark and gluon orbital a
gular momentum operators andDL, the ghost field also car
ries the orbital angular momentumLv . Thus, a complete
evolution equation will contain at least the mixing ofLq8 ,
Lg8 , Lv , DL among themselves and withDg, DS, a1 and
a2 . Because of its limited use, we have not calculated

2Note that the light-cone gauge calculations must be sup
mented with some prescriptions for the light-cone singularities~ad-
ditional gauge fixing!. In our calculation, we have used a prescri
tion such that the regularization is independent of the min
component of the momenta flowing through the gluon propagat
In other regularizations, such as the Mandelstam-Leibbrandt
scription, the result can be different@13#. Of course, for studying
truly gauge-invariant quantities, all prescriptions are equivalent
0-3
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full mixing matrix. However, we did perform a few calcula
tions just to explore some of differences. We find that
first entry in the evolution matrix in Eq.~15! changes from
2(4/3)CF in the light-cone gauge to2CF/3 in the Feynman
gauge. The evolution ofLq8 does depend onDL

dLq8

dt
5

as

2p F S 2
1

3
CF1

1

8
CADDL2

1

3
CFLq81¯ G . ~19!

Conversely, the evolution ofDL also depends on the othe
matrix elements

dDL

dt
5

as

2p F2S CF1
1

8
CADDL2CFLq81¯ G . ~20!

These equations would be interesting only if we could fi
ways to calculate these nonperturbative matrix element
the Feynman gauge.

If the evolution of the gauge-dependent orbital angu
momentum is complicated, how about their experimen
measurement? Is it possible, for instance, to have a ga
invariant extension of the quark orbital angular moment
measurable in high-energy scattering similar to the glu
spin? A gauge-invariant operator that reduces to the qu
orbital angular momentum in the light-cone gauge has b
discussed recently in Ref.@16#. We note, however, that non
local operators with dependence on spatial coordinates h
not been seen in factorization of hard forward scattering p
cesses. In particular, inclusive deep-inelastic scattering d
not depend on these types of operators.

Given the difficulty of evolving and measuring gaug
dependent orbital angular momenta, a question arises n
rally as how to incorporate the polarized gluon distributi
Dg(x) in unravelling the spin structure of the nucleon, pa
ticularly since several experiments have been propose
measureDg(x) in high-energy processes. A satisfactory s
lution can be found by following the approach outlined
Ref. @17# and taking seriously the suggestion in Ref.@2#.
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From the off-forward gluon distributions defined from th
twist-two gluon operators, one can introduce the gluon an
lar momentum distribution@17#

Jg~x!5
1

2
x„g~x!1Eg~x!…, ~21!

whereg(x) is the unpolarized gluon distribution andEg(x)
is the forward limit of an off-forward gluon distribution@18#.
Jg(x) is gauge invariant, evolves like the twist-two gluo
distribution, and is accessible experimentally. From this a
the gluon helicity distributionDg(x), we can define the
gluon orbital angular momentum distribution

Lg~x!5Jg~x!2Dg~x!. ~22!

Lg(x) is experimentally measurable becauseJg(x) and
Dg(x) are. The evolution equation forLg(x) is straightfor-
ward

d

d ln Q2 Lgn5ggg~n11!Lgn1ggq~n11!Lqn

1„ggg~n11!2Dggg~n!…Dgn

1S 1

2
ggq~n11!2Dggg~n! DDSn , ~23!

where g i j and Dg i j are the anomalous dimensions for th
spin-independent and spin-dependent twist-two opera
@9#. However, the catch here is thatLg(x) can be interpreted
as the gluon orbital angular momentum distribution only
the light-cone gauge. If one studies the gluon orbital angu
momentum, say in a covariant gauge,Lg(x) would not be
sufficient.
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