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Implications of color gauge symmetry for nucleon spin structure
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We study the chromodynamical gauge symmetry in relation to the internal spin structure of the nucleon. We
show that(1) even in the helicity eigenstates the gauge-dependent spin and orbital angular momentum opera-
tors do not have gauge-independent matrix elem@ptthe evolution equations for the gluon spin take very
different forms in the Feynman and axial gauges, but yield the same leading behavior in the asymptotic limit,
and (3) the complete evolution of the gauge-dependent orbital angular momenta appears intractable in the
light-cone gauge. We define a new gluon orbital angular momentum distribugior) which is an experi-
mental observable and has a simple scale evolution. However, its physical interpretation makes sense only in
the light-cone gauge just like the gluon helicity distributidg(x). [S0556-282099)02207-9

PACS numbds): 12.38.Aw, 14.20.Dh

The spin structure of the nucleon has been a subject of The same QCD angular momentum can be written in an
intense debate for about ten years. Much progress has be#mteraction-independent” forrh
made on both experimental and theoretical frontigt$
However, some of the fundamental theoretical issues remain - 3
unsettled, as exemplified by a number of recent works in the _f d°x
literature. In particular, in analyzing the spin structure of the
nucleon, color gauge invariance is still the cause of some
confusion. In this paper, we intend to explore several impor-
tant and relevant issues in detail.

To set the stage, let us briefly recall the forms of angulaBecause some terms contain explicitly partial derivatives and
momentum operator in quantum chromodynant@€ED). In gauge potentials, the above expression is manifestly
Ref. [2], a natural gauge-invariant expression is introduced gauge invariant. Nonetheless, the physical meaning of each

term appears to be clear. The first term is the quark spin, the
jQCD: jq + jg, (1) second the dynamic&tanoniceij q_ua,r,k orbital angular mo-
mentum, the third the gluon “spin,” and the last term the
gluon “orbital” angular momentum.
where According to the above decomposition, one can write
down a sum rule for the nucleon sdin]
Jo= f d3x

jg:f d3xXx (EXB). 2 Here the matrix elements of the individual operators are de-
fined in a nucleon state with*=(E,0,0p) and helicity 1/2,
e.g.,

The quark contributiorﬁq contains two terms. The first term

is obviously the quark spin a& =diag(,d) is the four- 2y _ ,LE

d . e A Co : Ag(Q9)={p
imensional generalization of the familiar Pauli spin matri- 2

ces. The second term is the quddketic (or mechanical

orbital angular momentum, in which the covariant derivativeThe Q2 dependence results from the renormalization of the

D=—V+igA originates from the quark kinetic momentum composite operators. One expects thgt Ag and L, are

[3]. We recall that in a gauge theory the kinetic momentumgauge as well as frame dependent. The purpose of this paper

appears to be more physical than the dynamjoalcanoni-  is to study how the gauge dependence affects the physical

cal) one, the latter corresponding to a partial derivativisV

in quantum mechanicg3]. The gluon contribution to the

angular momentumjg contains the well-known Poynting 10f course, it is not really interaction-free because the color elec-
vector,Ex B, the momentum density of the radiation field, "'c field still depends on the coupling constat

Some recent studies in terms of the above form of angular
momentum operators can be found in Ré¢fs-6].
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5= 5A3(Q)+Lg(Q%)+Ag(Q?) +Ly(Q%). (4

.. 1
f d3X(EXA)? p“§>. (5)

Ea= 7V‘A0a7 % —-g fabcAbAOc
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significance of the individual terms in the above sum rule. Inproof have been modified from its original version in light of
the following we will work in the infinite momentum frame the above examplg8], we still doubt the validity of the

in which the angular momentum operators are defined fronelaim.

the angular momentum dens_iﬁyj3xM+”. In particular, the Thus the concept of the gluon spin contribution to the
color electric fieldE' is nowF'*. nucleon spin is in general a gauge-dependent one. This fea-

In a recent paper by Chen and Wai], it was claimed ture is also reflected in the scale evolution d§. In the
that although the individual operators in E@) are gauge light-cone gaugeA® =0, it is well-known thatAg evolves
invariant, they have gauge-independent matrix elements iaccording to the Altarelli-Parisi equatid8],
the nucleon helicity eigenstates. In other World[§, Ag, and
L, were said to be gauge invariant. If correct, the theorem dAg(Q?) Qg Bo

g : ' e Az Y=o C AEJF—A@J(Q )| ()
would have warranted a fresh look at the physical signifi- dinQ? 2
cance ofLg, Ag, andL,.

We find that the theorem seems to be in contradlctloﬁ"’here:30_11 2n¢/3 with ny the number of active quark
with the following explicit calculation. Consider an “on- flavors. In the asymptotic limiQ°— <, the gluon spin grows
shell” quark in the state of momentupt* and helicity 1/2.  logarithmically,
We calculate the matrix element of the gluon spin operator 2 2

2= [d3x(ExA)? in perturbation theory. Choosing the AG(Q" el gauge1n Q. ©
I|ght -coneA" =0, we find at one-loop level where the coefficient of proportionality is fixed by nonper-
turbative physics.
Q? In the Feynman gauge, the evolution equation becomes
Ag= 2 CF 2 In( ) (6) much more complicated. In fact, the following gauge-variant
operators come to mix with the gluon spin

where Ce=(N2—1)/(2N,) with N, the number of colors, e
Q? and u? are the ultraviolet and infrared cutoffs, respec- 0,= _f d°xVA; XAq, (10
tively. On the other hand, in the covariant gauge we have

Q2 =- J d3xgfabearcAbx A2, (11)
Ag=Cr— 5 In( ) (7)

(There is no ghost operator here because the ghosts do not
A similar discrepancy was found upon calculating the matrixcarry spin) Denote the matrix elements of the above opera-
element of the same operator in an “on-shell” gluon state.tors in the nucleon helicity states ag anda,. A lengthy
Although Chen and Wang's statement of the theorem andalculation yields the following evolution equation:

Ag\ %CF— %L %CA %C’A Cr Ag
d a s, BCy HCa—-% —-3Cs iCr a1
da@| 7| L3, -3¢, Lo,-n o a | (12
AZ} \ 0 0 0 0 } \AZ)

where Co=N.. Thus to evolve the gluon spin to a new Ag(Q2)|Feynman gauge* N Q2 (13)
perturbative scale one needs not only the gluon spin at the

starting scale but also the matrix element©gfandO,. To  Of course, the coefficients of proportionality in the two
find out the asymptotic behavior §°—«, we diagonalize gauges are different.

the upper X3 mixing matrix. The three eigenvalues are  Given that the gluon spin is a gauge-dependent concept, it
N1=(11/6)Car—n¢/3=Bo/2,\,=(17/24)Cp—n¢/3, and fi- is remarkable that its value in the light-cone gauge can be
nally A3=(11/24)C,—n;/3. From these, we found out that extracted from the gluon polarization distribution measurable
the leading asymptotic behavior of the gluon spin in thein high-energy scattering. What one extracts in those experi-
Feynman gauge is the same as that in the light-cone gaugeyents is of course gauge-invariant and is in fact the matrix

074010-2



IMPLICATIONS OF COLOR GAUGE SYMMETRY F® ... PHYSICAL REVIEW D 59 074010

element of the following gauge-invariant non-local operatorwe say the length of a house in the frame 0.999%2 is the
[10]: same as the proper length of the pencil, we are not saying
e T . ~ that the'length of the house is frame—ind_ependen_t. Rather, we
Og4= f dX7f Z—eMXF+a(xn)e*'Gfody”'A(YmF;(o), are saying that the length of the house in a special frame can
- —weT be known from measuring a frame-independent quajtity.
(14 Note that one can easily find gauge-invariant extensions of

However, the physical interpretation of this operator is inth€ gluon spin in other gauges. But we may not always find
general not obvious. Interestingly, in the light-cone gauge®" experimental observable which reduceg to the gluqn spin
A* =0, the above operator reduces to the gluon spin operatd these gauges. As far as the nucleon spin structure is con-
St. This relationship says nothing about the gauge transfor¢é/ned, however, the gluon spin in the covariant gauge is as
mation property of the gluon spin; it merely means that thelnteresting as its counterpart in the light-cone gauge.

gluon spin in the axial gauge can be obtained from the matrix Finally, we turn to the orbital angular momentum opera-
element of a gauge-invariant operator. In other words, théors in Eq.(3). The role of the orbital angular momentum in
gauge-invariant extensionf the gluon spin in light-cone parton splitting processes was first studied by Ratcliffg].
gauge can be measurdd@his situation is similar in spirit to In [12], Tang and two of us worked out the leading-
the following example of length in special relativity. The logarithmic scale dependence of the orbital angular momenta
proper length of a pencil is clearly frame independent. Whenn the light-cone gauge,

o

d (L) _ea(@) =30 F|[Li], @) |-5CF F|[AZ
dln Q? T 2r n T o 5 11 - @9
n L; %CF ——3L L’ —ECF -5 Ag

The first term on the right-hand side exhibits the effects of
self-generation of the orbital angular momenta. The second f d3xxxf(n-d,,n-d,0) ¢ yARY+H.c. (18
represents the generation of orbital angular momenta from
the quark and gluon spin. The above equation leads to some o ]
interesting results about the spin structure of the nucleon iMhered, andd, are derivatives acting ofr and y respec-
the asymptotic limit. As we are going to show below, how-tively, andf(x,y) is a functionx andy and takes different
ever, the actual operator mixing is more complicated thaforms at different orders of perturbauon theory. Therefore,
what is shown in the above equations although the result i/e¢ conclude that to evolve the matrix elements of the gauge-
the asymptotic limit remains intact. variant orbital angular momentum operators is extremely
We note that in general there is an additional operatofomplicated in the light-cone gaugeThe same statement
Wh|Ch mixes W|th the quark and g'uon Orbita' angu'ar mo_applies to the orbital angular momentum distributions de-
mentum OperatorS, fined in Refs[14,15|
The evolution in the Feynman gauge is again different.
B 3o 1t .. Here we do not have the problem of mixing with infinitely
AL—f d*Xg (XX (=gA)) . (180 many operators. Apart from the quark and gluon orbital an-
gular momentum operators aid_, the ghost field also car-
Therefore, we proceed to calculate the matrix element ofies the orbital angular momentuln,. Thus, a complete
T3yt (XX (=) V)% in an “on-shell” quark-gluon-quark €volution equation will contain at least the mixing bf,
state. At the leading-logarithmic order, it contains the foI-Lé, L,,AL among themselves and withg, A, a; and
lowing scale-dependent term a,. Because of its limited use, we have not calculated the

za—;_ln QZU(xzp)(tflg"%L IN(Xp/Xy)

X1~ Xz ’Note that the light-cone gauge calculations must be supple-
mented with some prescriptions for the light-cone singulariges
X (X Ayt yT+ Xzﬁ)/”f))u(xlp)ef, . (17 ditional gauge fixing In our calculation, we have used a presctrip-
tion such that the regularization is independent of the minus
) o ) ) component of the momenta flowing through the gluon propagators.
This result indicates that the operator that mixes Wifrand |y other regularizations, such as the Mandelstam-Leibbrandt pre-
Ly is in fact more complicated than the simple guéds.  scription, the result can be differeft3]. Of course, for studying

The most general form is the following non-local operator truly gauge-invariant quantities, all prescriptions are equivalent.
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full mixing matrix. However, we did perform a few calcula-
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From the off-forward gluon distributions defined from the

tions just to explore some of differences. We find that thetwist-two gluon operators, one can introduce the gluon angu-

first entry in the evolution matrix in Eq15) changes from
—(4/3)Cg in the light-cone gauge te- C¢/3 in the Feynman
gauge. The evolution dI,’1 does depend oAL

|

Conversely, the evolution ckL also depends on the other
matrix elements

1

3

d Lé ag

= AL !
G 2 "3

1

Crlgt-+

1

8

dAL _as

dt 2=

—Cet (20)

CA>AL_CFL’;+"‘ .

These equations would be interesting only if we could find
ways to calculate these nonperturbative matrix elements i

lar momentum distributiofl17]

1
J4(%) = 5xX(@(X) +Eg(x), (21)
whereg(x) is the unpolarized gluon distribution arfg},(x)
is the forward limit of an off-forward gluon distributidri8].
Jy¢(X) is gauge invariant, evolves like the twist-two gluon
distribution, and is accessible experimentally. From this and
the gluon helicity distributionAg(x), we can define the
gluon orbital angular momentum distribution

Lg(X)=Jg(X) —Ag(X).

Ly(x) is experimentally measurable becaudgx) and
ég(x) are. The evolution equation fdry(x) is straightfor-
ward

(22

the Feynman gauge.
If the evolution of the gauge-dependent orbital angular
momentum is complicated, how about their experimental
measurement? Is it possible, for instance, to have a gauge-
invariant extension of the quark orbital angular momentum
measurable in high-energy scattering similar to the gluon
spin? A gauge-invariant operator that reduces to the quark
orbital angular momentum in the light-cone gauge has been
discussed recently in Rdf16]. We note, however, that non- where v, and Ay; are the anomalous dimensions for the

local operators.with de.pen.dence on spatial coordina.tes ha\é@pin—independent and spin-dependent twist-two operators
not been seen in factorization of hard forward scattering pro 9]. However, the catch here is thag(x) can be interpreted
cesses. In particular, inclusive deep-inelastic scattering do€g; i1 gluon orbital angular momentum distribution only in
not depend on these types of operators. the light-cone gauge. If one studies the gluon orbital angular

Given the d_|ff|culty of evolving and measuring gauge- ;,omentum, say in a covariant gaude,(x) would not be
dependent orbital angular momenta, a question arises natlz fricient

rally as how to incorporate the polarized gluon distribution

Ag(x) in unravelling the spin structure of the nucleon, par- P.H. thanks the Fulbright Foundation for sponsoring his
ticularly since several experiments have been proposed tasit to the University of Maryland. This work is supported
measureAg(x) in high-energy processes. A satisfactory so-in part by funds provided by the U.S. Department of Energy
lution can be found by following the approach outlined in (D.O.E) under cooperative agreement DOE-FG02-93ER-
Ref.[17] and taking seriously the suggestion in ReX]. 40762.

d

ml.gnz )/gg(n-f' l)Lgn+ )/gq(n+ l)an

+ ('}’gg(n'i_ 1)- A'}’gg(n))Agn

1
+ Eygq(n-i-l)—A'ygg(n) A, (23

[1] See, for example, H. Y. Cheng, Int. J. Mod. Phys1# 5109
(1996.

[2] X. Ji, Phys. Rev. Lett78, 610(1997).

[3] R. P. FeynmanThe Feynman Lectures on Physi@ddison-
Wesley, Reading, MA, 1965Vol. llI.

[4] 1. Balitsky and X. Ji, Phys. Rev. Let?9, 1225(1997%.

[5] V. Barone, T. Calarco, and A. Drago, Phys. Lett4B1, 405
(1998.

[6] D. Singleton and V. Dzhunushalev, hep-ph/9807239.

[11] P. G. Ratcliffe, Phys. Lett. B92 180(1987.

[12] X. Ji, J. Tang, and P. Hoodbhoy, Phys. Rev. L&&, 740
(1996.

[13] A. Bassetto, inQCD and QED in Higher OrderProceedings
of the Workshop, Rheomsberg, 1998ucl. Phys. B(Proc.
Suppl) 516, 281(1996], hep-ph/9605421.

[14] P. Hayler and A. Schier, Phys. Lett. B430, 179(1998.

[15] A. Harindranath and R. Kundu, hep-ph/9802406.

[16] S. V. Bashinskii and R. L. Jaffe, Nucl. Phy&536, 303

[7] R. L. Jaffe and A. Manohar, Nucl. PhyB337, 509(1990. (1998.
[8] X. Chen and F. Wang, hep-ph/9802346. [17] P. Hoodbhoy, X. Ji, and W. Lu, Phys. Rev. 59, 014013
[9] G. Altarelli and G. Paris, Nucl. Phy&126, 298 (1977). (1998.

[10] A. Manohar, Phys. Rev. Let66, 289 (199J). [18] X. Ji, Phys. Rev. b5, 7114(1997.

074010-4



