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Proof of factorization for deeply virtual Compton scattering in QCD
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We show that factorization holds for the deeply virtual Compton scattering amplitude in QCD, up to power
suppressed terms, to all orders in perturbation theory. The theorem applies to the production of off-shell
photons as well as real photons. We give a detailed treatment of the situation where one of the two partons
joining the parton density to the hard scattering has zero longitudinal momef$0&66-282(199)01207-3

PACS numbeps): 13.60.Fz, 11.10.Jj, 12.38.Aw, 12.38.Bx

I. INTRODUCTION given in Ref.[12] is readily adapted to DVCS. The compli-
cations mentioned above concern the situation when one of
In this paper, we prove factorization for the deeply virtualthe two lines connecting the parton density to the hard scat-
Compton scatteringDVCS) amplitude in QCD up to power tering carries zero longitudinal momentum, and these are
suppressed terms, to all orders in perturbation theory. Thigiven a detailed treatment in Sec. IIl H.
proof is important because of the recent great interest in
DVCS[1-10. One important use of DVCS is as a probe of [l. FACTORIZATION THEOREM
off-forward (or nondiagonal distributions [1,3,11-13. . L L
These differ from the ugsual parton distributions probed in Th_e process under conS|derat|o.n is DVCS which is the
inclusive reactions by having a non-zero momentum transfe?lasnc scattering of virtual photons:
between the proton in the initial and final state. * ™ P
A related process which is also used to probe off-diagonal YH(@FP(p)=yTHA) P (p=4) @
parton densities is exclusive meson production in deepwhere the diffracted proto’ may also be replaced by a
inelastic scatteringl4,19, for which a proof of factorization |ow-mass excited state and the final-state photon can be ei-
was given in[12]. Compared with this process, DVCS is ther real or time-like. This process is the hadronic part of

simpler because the composite meson in the final state isp_.eyp’ for a real photon or ofep—eu*u~p’ for a
replaced by an elementary particle, the photon, and thugme-like photon.

there is no meson wave function in the factorization formula. |t js convenient to use light-cone coordinates with respect
In the case of a scalar field theory, Anikin and Zavialovtg the collision axis. The momenta in the process then take

[16] proved a non-local operator product expansion, fromhe form

which follows the factorization theorem for DVCS, as shown

by Muller et al.[17]. From the point of view of these papers, N m?
the new results in the present paper consist of an extension of pr=ip, F-OL) '
the results to QCD. However, we do not derive an explicit
form of an R-operation for the coefficient functions, unlike Q?
Anikin and Zavialov. q”“z( —xp+,2X—+,0l>,
In a separate line of development,[1] and Radyushkin P
[2] provided key insights that indicate that a factorization A?+aQ? Q2
theorem is valid for DVCS, and then Radyushkin provided q’“2<xp+L—2, —+,A¢>,
an all-orders proof if3]. In this paper we provide an alter- Q 2xp
native proof, and give a new treatment of some problems that
were treated in Ref[3] but that were perhaps not fully . +
solved. The primary technical difference between Radyush- A=\ x(1+a)p",
kin's derivations and ours is that he uses th@arametric 5
representation for Feynman graphs, whereas we use the mo- A?+m?(1+a)x
mentum representation, which we consider to be more direct. - 2(1-x—ax)p™ 7t/ @

Our proof follows the general lines of proofs of factorization
for other processes given [18,19, and the most notewor- Here,x is the Bjorken scaling variabl€? is the virtuality of
thy feature is that, particularly for the case of production ofthe initial photon,m? is the proton masg,=A? is the mo-
off-shell photons, the proof is simpler than for any othermentum transfer squared, ands a parameter that specifies
process. Even for ordinary deep-inelastic scattering one
needs to discuss the cancellation of soft gluon exchanges amd———
of final-statg interactiops, whereas these complications aréy . define a vector in light cone coordinates by
not present in the leading power for DVCS. . 5

The paper is organized in the following way: After stating VE—(V* V)= VoV VOV

1,2
the theorem in Sec. Il, we show in Sec. Ill how the proof V2 V2 '
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the virtuality of the outgoing photorg’?=aQ?. Thus, a

=0 for a real photon and&>0 for a time-like photon. Fi-

nally, = means “equality up to power suppressed terms.”
The theorem to be proved is that the amplitude for the

procesq1) is

1
T:El f 14 dxlfi/p(xl1X21t!M)Hi(Xl/X1X2/X1M)
—14x

+ power-suppressed corrections, (3

wheref,, is a nondiagonal parton distribution akt] is the FIG. 1. (8) Reduced graph for DVCS with direct coupling for
hard-scattering coefficient for scattering off a parton of typethe out-going photon to hard subgraph) The same without a

i. We letx, be the momentum fraction of partoncoming ~ A"ect like coupling for the out-going photon.

from the proton, so that,=x;—Xx(1+ «) is the momentum ) i
fraction which is returned to the proton by the other parton_ The results are the two kinds of reduced graph shown in
line joining the parton distribution and the hard scattering.Fi9- 1. ThereA andB denote collinear graphs with one large
There is implicit polarization dependence in the amplityde. MOmentum component in the- and — direction respec-

is the usual renormalization or factorization scale, whichtively, H denotes the hard scattering graph, &hdenotes a
should be of ordef to allow calculations of the hard scat- 9raph with all of its lines soft, i.e., in the center-of-mass
tering coefficients within finite-order perturbation theory. frame all the components of the momentaSnare mu?h
The » dependence of,, is given by equations of the smaller thar). Note that, of the external momenfaandp
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) and  Pelong toA, q’ belongs toB or H, andq belongs toH.
Brodsky-Lepage kind1-3,11,14,12,1B The parton distri- ~ When the two external photons have comparably large
butions in Eq.(3), together with their evolution equations, virtualities, the only re_duced graphs are of 'ghe first kind, Fig.
are defined using the conventions[®®,13. They may eas- 1(a), where the out-going photon couples directly to the hard
ily be transformed into those given [d—3] by a change of ~Scattering. But when the out-going photon has much lower

normalization and of kinematic variables. virtuality than the incoming photon, for example, when it is
real, we can also have the second kind of reduced graph, Fig.
lIl. PROOE OF THEOREM 1(b), where the out-going photon couples tdasubgraph.

As we will see later, power counting will show that the sec-
The proof of our theorem Ed3) can be summarized as ond kind of reduced graph, Fig(d), is power suppressed

follows:? compared to the first kind, with a direct photon coupling.
Establish the non-ultra-violet regions in the space of loopThis implies that we will avoid all the complications which

momenta contributing to the amplitude. were encountered ifil2] that are associated with the meson
Establish and prove a power counting formula for thesewvave function.

regions.
Determine the leading regions of the amplitude. B. Power counting

Define the necessary subtractions in the amplitude to .
avoid double counting. Each red_uced graph codes a region c_)f Ioop-mom_entum
Taylor expand the amplitude to obtain a factorized form.SPace, a ne|ghborhpo_d of the surfa_cef_a pinch smgularl_ty
Show that the part containing the long-distance informa-" the Zero-mass limit. The contrllbutlon to the amplitude
tion can be expressed through matrix elements of renormaffom & neighborhood ofr behaves likeQ™, modulo loga-

ized, bi-local, gauge invariant operators of twist-2. rithms, in the largeR limit, with the power given by

p(7)=4—n(H)—#(quarks fromS to A,B)
A. Regions
First let us establish the regions in the space of loop mo- ~3#(quarks fromS to H)
menta contributing to the asymptotics of the amplitude, i.e., —2#(gluons from S to H), (4)
the generalized reduced graphs. The steps leading to the gen-

eralized reduced graphs are identical to the steps 1-3in S€gneren(H) is the number of collinear quarks, transversely
IV of Ref. [12], i.e., scale all momenta by a factQm, use  ,q\arized gluons, and external photons attaching to the hard
the Co_leman—Norton theorem to locate all pmch-smgL_JIa_r SUrsubgraphH. Such results were obtained by Libby and Ster-
faces in the space of loop momerita the zero-mass limit 43120 21]. The particular form of Eq(4) was given i 12]
and finally identify the relevant regions of integration as,yether with a proof that applies without change to DVCS.
neighborhoods of these pinch-singular surfaces. The well-known problem of gluons with scalar polariza-
tion (see, for exampld18,22,23) will be dealt with later on.
Suffice it to say here that gluons with such a polarization can
2For a very detailed account of the basic steps and potential prodee factorized into the parton distributions by using gauge-
lems see Ref(12]. invariance arguments.
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FIG. 3. Soft gluon loop attaching to collinear line.

process includes the decay of the time-like phottm a
utu, for example, which results in a power suppression
of the observed cross section byQ®/ compared with the

(a)
) ) cross section for making real photons.
FIG. 2. Those reduced graphs that contribute to the leading re-

gions in DVCS.

D. Proof of absence of a soft part in leading regions

C. Leading regions As mentioned in Sec. Il C, there might, in principle, be a
. soft partS in the leading reduced graph connected solely to
Ghe A graph by gluons, as shown in Fig(k2. Note that by
0I%q. (4), quarks connecting to A would lead to a power
suppression. We will now show that this soft p&iis indeed

largest exponemp( ) in Eq. (4). It is easy to see that these
correspond to the reduced graphs in Fig. 2, independently

whether the out-going photon is real or far off-shell. The . X
. . 0 .~ absent, and so we only need to consider regions of the form
corresponding power iQ". These reduced graphs have di- of Fig. 2a)

;ectt:;[ %?v%togrfgﬁﬁgggscé?]rfggtizariglégﬁirﬁg:r’ stzsyrggl\t;e €% We will first examine a simple one loop example, Fig. 3.
y P g 9 The external quark is part of the subgraph in Fig. @), and

the hard subgrapHl, and they have no soft lines connecting . :
to H. The two kinds of graph differ only by the absence orthe gluon is soft. So we parametrize the momenta by

presence of a soft subgraph that connecta t@lone. ka=(x1p" Kn Ka 1),
Among the other reduced graphs, which are non-leading ’
for our process, are those of the type in Figh)1which are k=(k* k™ ,k,), (5)
leading in the case of diffractive meson production, where
the leading region give® 1. where thek, is O(Q) and all the other components are of
In the case of a photon that is off-shell by or@®@¥, the  O(m) or smaller.
amplitude for production of the photon behaves @& the If we omit irrelevant factors in the numerator, the loop

same as for a real photon. However, the physically observeitegral takes the following form:

1 1
4 — 4
Loﬁ P vy Rl SR k(2k+k-—kf+ie)[z(xlp+—k+)(k;—k-)—(kA,L—kL)2—m2+ie]

1
:J;oft kdk+(2k+ki_ki+iE)[2X1p+(k;_k7)_(kAvl_kl)z_mz'f'i6] ’
(6)

As before,= stands for “equality up to power suppressed E. Subtractions

terms.” As one can see, there is ko-pole in the second The subtractions necessary to avoid double counting in

part of the denominator and we can freely deform the conthe amplitude are treated in exactly the same fashion as the

tour in k™ to avoid the pole in the soft gluon propagator. ones in Sec. VI of Ref[12], since the distributional argu-

This takes us out of the soft region flr ments to construct the subtraction terms on a pinch-singular
In the general situation, Fig(l®, we can use a version of surfacew presented there are very general in nature and are

the arguments in Reff12,24] to show that the soft momenta not limited to the case of diffractive vector meson production

k" can be rerouted in such a way as to exhibit a lack of ghat was considered ifi2].

pinch singularity. The essential idea is that one can find a The above statement leads to the following asymptotic

path backwards or forward from one external line®to  form of the amplitude:

another external line db. The loop is completed along lines _ _

of A, all of which have much larget momenta than what is ASyT=2rAsyl'=AxH, ™

typical of soft momenta, and hence there is no pinch. wherel" stands for a possible graph for the amplituide
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F. Taylor expansion Jj
We now obtain the leading term in the hard subgraph, o b

when it is expanded in powers of the small momenta. The 7 {

arguments used are exactly analogous to the ones used in ‘

a B subgraph as was the case[2]. So we have

Sec. VII of Ref.[12] except that we do not have to deal with ——
5
2

> 1
AXHzJdeH(q,q’,(kX,O,OQ,(A*—kA*,O,OL)) (@) (b)
FIG. 4. (a) A scalar gluon attaching the collinear subgraph to the
- hard subgraph in the unfactorized form(b) Factorized form after
X 2 -
J dka dka, Alka A= ka), ® application of gauge invariance and Ward identities. The double

] o line represents the eikonal line to which the scalar gluon attaches.
wherek, is the loop momentum joining th& andH sub-

graphs, and agair means equality up to power-suppressed
corrections. Equation(8) has already a factorized form.
However we still have to deal with the extra scalar gluons
that may be exchanged between the subgrépasdH; this
will be done in the next subsection.

Equation(8) can be written in the following way:

G. Gauge invariance

In order to identify theO; with the parton distributions as
defined in[12] (for example, it is necessary to show that alll
gluons with scalar polarization attaching to the hard graph
can be combined into a path-ordered exponential. Figure 4
shows the example of one scalar gluon. This was shown in
[18,22,23. Another version of a proof was given in Sec.
VII D of Ref. [12], which relies on very general results re-
where theC; are the short distance coefficient functions andcently obtained by Colling25]. In this way we obtain ex-

OperatOI’S.

AXH:EiJdk+Ci(q'q’1k+)oi(p!p,!k+)1 (9)

f _ o0 dy7 —ix2p+y’ T_o _ 0 + 0 '
q/p— _mﬁe <p| ‘ﬂ( 1y 'L)’)’ P‘ﬂ( )|p >’

f= | e Y (pITGL 0y~ 0)PG (O)lp) 10
alp e 27 XyXoP v .

Here, P represents a path-ordered exponential of the gluon First, let us observe that the region of integration over

field that makes the operators gauge invariant. The variablm the factorization formula Eq3) is —1+x<x;<1. Thisis

X, is the same as in E@3). The evolution equations are the proved by the methods of light-front perturbation theory, by

same as i12,3] and[12]. requiring that the intermediate states in Fig. 2 be physically
allowed. See Ref$3,13] for detailed derivations and discus-
sions. The pointx;=0 andx,=0 at which the potential

H. Partons with k*=0: Breakpoints and endpoints problem arises are what we will call “breakpoints,” since
In the factorization theorem E@3), the integral over the
fractional momenta includes the pointg=0 andx,=0. At qL]L‘ k+q’ f; ¢
these points, the hard scattering coefficient for DVCS has a 7
pole, and so we appear to get a logarithmic contribution to Kep-p’ X
the cross section from a region in which one of the lines
joining the parton density to the hard scattering subgraphs is K’
soft instead of collinear. This apparently contradicts our p P
power-counting result that such a region gives a non-leading
power. This phenomenon was investigated by Radyushkin P A P
[3]. In this section, we will use momentum-space methods to
give a general demonstration that the region in question does
not give a problem. FIG. 5. Particular example of potentially problematic diagram.
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they occur in the middle of the range of integration wherealso require the two quark lineg+p—p’ andk, on the

one of the two lines changes direction. sides of the ladder to have their momenta either collinear to
We continue by examining a particular case, illustrated inthe proton or soft. The example is very similar to one treated

Fig. 5, and showing how the argument generalizes. To simby Radyushkin in Ref{3].

plify the example, let us restrict our attention to regions We will also only need the case of the production of a real

where the subgrapA and the lower three linesp( p’ and  photon,q’?=0, since this is where the problem arises.

k—p’) have their momenta collinear to the proton. We will  The top loop of the graph has the form

U_j ¢k numerator factors
- (K—m’+ie)[(k—p)?—m’+ie][(k+p—p")°—m’+ie][(k+q )2 —m’+ie]

11
When bothk andk+p—p’ are collinear toA, the top line is off-shell byO(Q?), and it is correct to use the collinear
approximation

1 1
(k+9)2—m?+ie  X,Q%x+ie’

(12

wherex,=k*/p*. A corresponding replacement is also to be made in the numeratdr Fhe right-hand side of Eq12)
exhibits the afore-mentioned pole ®f=0. The result of applying the collinear approximation is to give the appropriate
contribution to the factorization formula E¢B3).
The collinear approximation becomes invalid whebecomes soft, i.e., whep— 0. We must now demonstrate two facts.
The first is that, wherk is in a neighborhood of the soft region, the collinear approximation is valid after integratiork over
The second fact is that the use of the collinear approximation does not give an important contribution from some other region
of k which is absent in the original, unapproximated graph. We now examine the intégnathe neighborhood of the soft
region fork. It has the following form:

U ~f d%k numerator factors
P ek 2Kk K [2p T (p k)~ (p k)T —mPtie]

1
X k+ 2 ’ (13)
[2(p"=p ") (p~—p' " +k7)—(p—p'+k)Z—m’+ie] T K2 —m2+ie
|
where we have neglectdd in the collinear-toA lines, k™ components remain of ordem, then we get contributions of

in the collinear-toB line andx#Xx;. We have also ignored order 1fn® from the denominatorsn®/Q? from the phase

the numerator factors, which are an irrelevant complicatiorfpace, an@Q“m* from the numerators, for a total of"Q".

for our purposes. This shows that the contribution from this region is unsup-
According to the power-counting results of Sec. 11 B, Pressed for larg®. _

which are obtained frorfi24], the soft region foik gives a At this point we must appeal to the contour deformation

: oo . . arguments of Ref.24]. It is only when the integration ovér
power-suppressed contribution. T.hls estlm_ate assumes th%Epinched in the region in question that it needs to be taken
all components ok are comparablén the Breit frame, and

. . . into account. In the dangerous region we héveé <k?,
is obtained as follows. Let the magnitude of the componentg i o the onlk* dependence in Eq13) is the pole in the

of k bem. Then the order of magnitude of the soft parlbf o th denominator. We can therefore defokm into the
is a product of factors 1#°Q®) from the denominatorsn®  complex plane a long way out of the region we are consid-
from the phase space, a@fm? from the numerator, for an ering, indeed all the way to the collinearfofegion. Then
overall powerm/Q. This result can be obtained by writing the collinear approximation is valid so that we can replace
down the largest components in the trace and propagators tie graph by its contribution to the factorization formula.
Fig. 5 and Eq.(13). Moreover in this region it is correct to This contour deformation argument is completely general,
replace the fourth propagator in E¢L3) by its collinear as explained in Sec. Il E of Ref24]. Whenever we have a
approximation Eq(12), so that we do not lose the factoriza- soft momentum witfk*k*<kf , the contour ofk* can be
tion theorem. deformed away from poles in the jet subgraph associated
However, if the components df are asymmetric, this with the produced photon. Since all the relevant singularities
estimate no longer holds. In particular if the longitudinal are in the final state, they are all on the same side of the real
components ok are of ordek™ ~m?/Q while the transverse axis.
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pinched for finitek™ or when a singularity coincides with the
endpoint of the integration & =o. A pinch never occurs;
in the general case this is a consequence of the Landau rules.

But endpoint singularities occur, and these are precisely at
the breakpoints.

P iz i P’ For example ifk*—0, thenk* can approach O from
above and below. The pole giving us trouble stems from the
k-line, all other propagators are unproblematic in this case,

FIG. 6. Parton distribution amplitude. since their poles are at finite". The pole ink~ approaches

+x—ie as one approaches™0and —«+ie as one ap-

Now that we have established in more detail that the onlyProaches 0. This means that thk ~ pole crosses the real
leading regions are those symbolized in Figa)2we can axis at infinity. Hence the parton distribution is non-analytic

apply the collinear approximation as described earlier, anéhere. Since the singularity is fit"| = the other propaga-
hence we obtain the factorization theorem. ors have large denominators, and hence we get a zero for the

But we still see the following problem. In the factoriza- non-analytic part of integral at the breakpoint. Thus the par-

tion th Ea3). th ton densiti v tton density is continuous at the breakpoint, as claimed. This
lon theorem, q(3), the parton densities are hon-analic at .ag it enables the factorization formula to be valid in the
the breakpointsx;=0 and x,=0, whereas the coefficient

: . . .. heighborhoods of the breakpoints. Since the other poles in
function has a pole at each of these points. Again considef,e - integral are on opposite sides of the real axis, the

the collinear approximation to Fig. 5 in the region we wereparton distribution is non-zero at the breakpoints.
considering. The parton density is non-analytic when Effectively the crossover of the pole occurs wheis in a
=0, while the coefficient function has a pole there, as is see@ollinear-toB region, which we know is power suppressed.
from the right-hand-side of Eq12). So we cannot literally  This indicates that the argument we have just given general-
apply the contour deformation argument. izes to all graphs.

What we will show is that the parton density is We also remark on the behavior at the end points. Let us
continuous at the breakpoint, so that it can be written as thelook at the casé&*™—p*. We find that another of the poles
sum of a function that is analytic #=0 and a function that pole runs off to— o this time and crosses the real axis there.
has a zero ax,=0. The only potential leading twist contri- But now all the other poles are on a single side of the real
bution near the breakpoint is associated with the non-zeréxis, so that the sole contribution to the parton density comes
analytic term to which the contour deformation argumentfrom the pole at infinity, and hence there is a zero of the
applies. parton density at the end point.

To prove this property of the parton density at a break-
point, consider a general graph for the parton density, as
shown in Fig. 6. We have found it convenient to change the Using the definitions of the parton distributions and the
labeling of the momentum compared with the previous fig-hard scattering coefficients we finally obtain E§). Note
ure. As always, th&™ andk, components ok have been that the theorem is valid for the production of a real photon

short circuited and are integrated over. Thdine gives a which directly goes into the final state and for the production
pole at k™ =(k?+m2—ie)/2k’ =(k>+mP—ie)/2x,p*,  Of atime-like photons that decays into a lepton pair.

k k+q-q’

I. Completion of proof

while thek+q’ —g-line gives a pole ak~=[(k+q—q’)?

+ml—i 6] /2(k+ _ §P+):[(k+q_q/)i+ m2—i 6] /2X2P+. IV. CONCLUSION

Here, f is the fractional |0ngitudinal momentum transfer 1 We have proved the factorization theorem for deep|y Vir-

—P’*/P™. In addition there are poles from the collinear-to- tual Compton scattering up to power suppressed terms to all

A lines in the blob. For example if the blob consists of aorders in perturbation theory. The form of the theorem is

single line, we have a pole & =P~ —(k*+m’ —ie)/2(1  independent of the virtuality of the produced photon.

—x)PT or at kK =—P' +[(k+P')%+ mf— ie)/2(1-¢ After this work was complete, we learned from Ji that he

+x,)P*. and Osborne have also constructed a proof of factorization
As we varyx, , thek™ contour can generally be deformed for DVCS [26].

to avoid the poles, so that we have analytic dependence on

x;. The possible exceptions occur when the contour is ACKNOWLEDGMENTS
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