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Proof of factorization for deeply virtual Compton scattering in QCD

John C. Collins and Andreas Freund
Department of Physics, Penn State University, 104 Davey Laboratory, University Park, Pennsylvania 16802

~Received 6 July 1998; published 26 February 1999!

We show that factorization holds for the deeply virtual Compton scattering amplitude in QCD, up to power
suppressed terms, to all orders in perturbation theory. The theorem applies to the production of off-shell
photons as well as real photons. We give a detailed treatment of the situation where one of the two partons
joining the parton density to the hard scattering has zero longitudinal momentum.@S0556-2821~99!01207-2#

PACS number~s!: 13.60.Fz, 11.10.Jj, 12.38.Aw, 12.38.Bx
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I. INTRODUCTION

In this paper, we prove factorization for the deeply virtu
Compton scattering~DVCS! amplitude in QCD up to powe
suppressed terms, to all orders in perturbation theory. T
proof is important because of the recent great interes
DVCS @1–10#. One important use of DVCS is as a probe
off-forward ~or nondiagonal! distributions @1,3,11–13#.
These differ from the usual parton distributions probed
inclusive reactions by having a non-zero momentum tran
between the proton in the initial and final state.

A related process which is also used to probe off-diago
parton densities is exclusive meson production in de
inelastic scattering@14,15#, for which a proof of factorization
was given in@12#. Compared with this process, DVCS
simpler because the composite meson in the final stat
replaced by an elementary particle, the photon, and t
there is no meson wave function in the factorization formu

In the case of a scalar field theory, Anikin and Zavial
@16# proved a non-local operator product expansion, fr
which follows the factorization theorem for DVCS, as show
by Müller et al. @17#. From the point of view of these paper
the new results in the present paper consist of an extensio
the results to QCD. However, we do not derive an expl
form of an R-operation for the coefficient functions, unlik
Anikin and Zavialov.

In a separate line of development, Ji@1# and Radyushkin
@2# provided key insights that indicate that a factorizati
theorem is valid for DVCS, and then Radyushkin provid
an all-orders proof in@3#. In this paper we provide an alter
native proof, and give a new treatment of some problems
were treated in Ref.@3# but that were perhaps not full
solved. The primary technical difference between Radyu
kin’s derivations and ours is that he uses thea-parametric
representation for Feynman graphs, whereas we use the
mentum representation, which we consider to be more dir
Our proof follows the general lines of proofs of factorizatio
for other processes given in@18,19#, and the most notewor
thy feature is that, particularly for the case of production
off-shell photons, the proof is simpler than for any oth
process. Even for ordinary deep-inelastic scattering
needs to discuss the cancellation of soft gluon exchanges
of final-state interactions, whereas these complications
not present in the leading power for DVCS.

The paper is organized in the following way: After statin
the theorem in Sec. II, we show in Sec. III how the pro
0556-2821/99/59~7!/074009~7!/$15.00 59 0740
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given in Ref.@12# is readily adapted to DVCS. The compl
cations mentioned above concern the situation when on
the two lines connecting the parton density to the hard s
tering carries zero longitudinal momentum, and these
given a detailed treatment in Sec. III H.

II. FACTORIZATION THEOREM

The process under consideration is DVCS which is
elastic scattering of virtual photons:

g* ~q!1P~p!→g (* )~q8!1P8~p2D! ~1!

where the diffracted protonP8 may also be replaced by
low-mass excited state and the final-state photon can be
ther real or time-like. This process is the hadronic part
ep→egp8 for a real photon or ofep→em1m2p8 for a
time-like photon.

It is convenient to use light-cone coordinates with resp
to the collision axis.1 The momenta in the process then ta
the form

pm5S p1,
m2

2p1 ,0'D ,

qm.S 2xp1,
Q2

2xp1 ,0'D ,

q8m.S xp1
D'

2 1aQ2

Q2 ,
Q2

2xp1 ,D'D ,

Dm.S x~11a!p1,

2
D'

2 1m2~11a!x

2~12x2ax!p1 ,D'D . ~2!

Here,x is the Bjorken scaling variable,Q2 is the virtuality of
the initial photon,m2 is the proton mass,t5D2 is the mo-
mentum transfer squared, anda is a parameter that specifie

1We define a vector in light cone coordinates by

Vm5~V1,V2,V'!5SV01V3

&
,
V02V3

&
,V1,2D .
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JOHN C. COLLINS AND ANDREAS FREUND PHYSICAL REVIEW D59 074009
the virtuality of the outgoing photon:q825aQ2. Thus, a
50 for a real photon anda.0 for a time-like photon. Fi-
nally, . means ‘‘equality up to power suppressed terms.

The theorem to be proved is that the amplitude for
process~1! is

T5(
i
E

211x

1

dx1f i /p~x1 ,x2 ,t,m!Hi~x1 /x,x2 /x,m!

1power-suppressed corrections, ~3!

where f i /p is a nondiagonal parton distribution andHi is the
hard-scattering coefficient for scattering off a parton of ty
i . We let x1 be the momentum fraction of partoni coming
from the proton, so thatx25x12x(11a) is the momentum
fraction which is returned to the proton by the other par
line joining the parton distribution and the hard scatterin
There is implicit polarization dependence in the amplitudem
is the usual renormalization or factorization scale, wh
should be of orderQ to allow calculations of the hard sca
tering coefficients within finite-order perturbation theor
The m dependence off i /p is given by equations of the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ~DGLAP! and
Brodsky-Lepage kind@1–3,11,14,12,13#. The parton distri-
butions in Eq.~3!, together with their evolution equation
are defined using the conventions of@12,13#. They may eas-
ily be transformed into those given in@1–3# by a change of
normalization and of kinematic variables.

III. PROOF OF THEOREM

The proof of our theorem Eq.~3! can be summarized a
follows:2

Establish the non-ultra-violet regions in the space of lo
momenta contributing to the amplitude.

Establish and prove a power counting formula for the
regions.

Determine the leading regions of the amplitude.
Define the necessary subtractions in the amplitude

avoid double counting.
Taylor expand the amplitude to obtain a factorized for
Show that the part containing the long-distance inform

tion can be expressed through matrix elements of renorm
ized, bi-local, gauge invariant operators of twist-2.

A. Regions

First let us establish the regions in the space of loop m
menta contributing to the asymptotics of the amplitude, i
the generalized reduced graphs. The steps leading to the
eralized reduced graphs are identical to the steps 1–3 in
IV of Ref. @12#, i.e., scale all momenta by a factorQ/m, use
the Coleman-Norton theorem to locate all pinch-singular s
faces in the space of loop momenta~in the zero-mass limit!,
and finally identify the relevant regions of integration
neighborhoods of these pinch-singular surfaces.

2For a very detailed account of the basic steps and potential p
lems see Ref.@12#.
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The results are the two kinds of reduced graph shown
Fig. 1. There,A andB denote collinear graphs with one larg
momentum component in the1 and 2 direction respec-
tively, H denotes the hard scattering graph, andS denotes a
graph with all of its lines soft, i.e., in the center-of-ma
frame all the components of the momenta inS are much
smaller thanQ. Note that, of the external momenta,p andp8
belong toA, q8 belongs toB or H, andq belongs toH.

When the two external photons have comparably la
virtualities, the only reduced graphs are of the first kind, F
1~a!, where the out-going photon couples directly to the ha
scattering. But when the out-going photon has much low
virtuality than the incoming photon, for example, when it
real, we can also have the second kind of reduced graph,
1~b!, where the out-going photon couples to aB subgraph.
As we will see later, power counting will show that the se
ond kind of reduced graph, Fig. 1~b!, is power suppressed
compared to the first kind, with a direct photon couplin
This implies that we will avoid all the complications whic
were encountered in@12# that are associated with the meso
wave function.

B. Power counting

Each reduced graph codes a region of loop-momen
space, a neighborhood of the surfacep of a pinch singularity
in the zero-mass limit. The contribution to the amplitu
from a neighborhood ofp behaves likeQp(p), modulo loga-
rithms, in the large-Q limit, with the power given by

p~p!542n~H !2#~quarks from S to A,B!

23#~quarks from S to H !

22#~gluons from S to H !, ~4!

wheren(H) is the number of collinear quarks, transverse
polarized gluons, and external photons attaching to the h
subgraphH. Such results were obtained by Libby and Ste
man@20,21#. The particular form of Eq.~4! was given in@12#
together with a proof that applies without change to DVC

The well-known problem of gluons with scalar polariz
tion ~see, for example,@18,22,23#! will be dealt with later on.
Suffice it to say here that gluons with such a polarization c
be factorized into the parton distributions by using gau
invariance arguments.

b-

FIG. 1. ~a! Reduced graph for DVCS with direct coupling fo
the out-going photon to hard subgraph.~b! The same without a
direct like coupling for the out-going photon.
9-2
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PROOF OF FACTORIZATION FOR DEEPLY VIRTUAL . . . PHYSICAL REVIEW D 59 074009
C. Leading regions

The leading regions for the amplitude are those with
largest exponentp(p) in Eq. ~4!. It is easy to see that thes
correspond to the reduced graphs in Fig. 2, independent
whether the out-going photon is real or far off-shell. T
corresponding power isQ0. These reduced graphs have d
rect photon couplings to the hard subgraph, they have
actly two parton lines connecting the collinear subgraphA to
the hard subgraphH, and they have no soft lines connectin
to H. The two kinds of graph differ only by the absence
presence of a soft subgraph that connects toA alone.

Among the other reduced graphs, which are non-lead
for our process, are those of the type in Fig. 1~b!, which are
leading in the case of diffractive meson production, wh
the leading region givesQ21.

In the case of a photon that is off-shell by orderQ2, the
amplitude for production of the photon behaves likeQ0, the
same as for a real photon. However, the physically obser

FIG. 2. Those reduced graphs that contribute to the leading
gions in DVCS.
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process includes the decay of the time-like photon~to a
m1m2, for example!, which results in a power suppressio
of the observed cross section by 1/Q2 compared with the
cross section for making real photons.

D. Proof of absence of a soft part in leading regions

As mentioned in Sec. III C, there might, in principle, be
soft partS in the leading reduced graph connected solely
the A graph by gluons, as shown in Fig. 2~b!. Note that by
Eq. ~4!, quarks connectingS to A would lead to a power
suppression. We will now show that this soft partS is indeed
absent, and so we only need to consider regions of the f
of Fig. 2~a!.

We will first examine a simple one loop example, Fig.
The external quark is part of theA subgraph in Fig. 2~b!, and
the gluon is soft. So we parametrize the momenta by

kA5~x1p1,kA
2 ,kA,'!,

k5~k1,k2,k'!, ~5!

where thekA
1 is O(Q) and all the other components are

O(m) or smaller.
If we omit irrelevant factors in the numerator, the loo

integral takes the following form:

e-

FIG. 3. Soft gluon loop attaching to collinear line.
E
soft k

d4k
1

~k21 i e!@~kA2k!22m21 i e#
5E

soft k
d4k

1

~2k1k22k'
2 1 i e!@2~x1p12k1!~kA

22k2!2~kA,'2k'!22m21 i e#

.E
soft k

dk1

1

~2k1k22k'
2 1 i e!@2x1p1~kA

22k2!2~kA,'2k'!22m21 i e#
.

~6!
in
the

-
ular
are
on

tic
As before,. stands for ‘‘equality up to power suppress
terms.’’ As one can see, there is nok1-pole in the second
part of the denominator and we can freely deform the c
tour in k1 to avoid the pole in the soft gluon propagato
This takes us out of the soft region fork.

In the general situation, Fig. 2~b!, we can use a version o
the arguments in Refs.@12,24# to show that the soft moment
ki

1 can be rerouted in such a way as to exhibit a lack o
pinch singularity. The essential idea is that one can fin
path backwards or forward from one external line ofS to
another external line ofS. The loop is completed along line
of A, all of which have much larger1 momenta than what is
typical of soft momenta, and hence there is no pinch.
-

a
a

E. Subtractions

The subtractions necessary to avoid double counting
the amplitude are treated in exactly the same fashion as
ones in Sec. VI of Ref.@12#, since the distributional argu
ments to construct the subtraction terms on a pinch-sing
surfacep presented there are very general in nature and
not limited to the case of diffractive vector meson producti
that was considered in@12#.

The above statement leads to the following asympto
form of the amplitude:

AsyT5SGAsyG5A3H, ~7!

whereG stands for a possible graph for the amplitudeT.
9-3
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JOHN C. COLLINS AND ANDREAS FREUND PHYSICAL REVIEW D59 074009
F. Taylor expansion

We now obtain the leading term in the hard subgra
when it is expanded in powers of the small momenta. T
arguments used are exactly analogous to the ones use
Sec. VII of Ref.@12# except that we do not have to deal wi
a B subgraph as was the case in@12#. So we have

A3H.E dkA
1H„q,q8,~kA

1,0,0'!,~D12kA
1,0,0'!…

3E dkA
2d2kA,'A~kA ,D2kA!, ~8!

wherekA is the loop momentum joining theA and H sub-
graphs, and again. means equality up to power-suppress
corrections. Equation~8! has already a factorized form
However we still have to deal with the extra scalar gluo
that may be exchanged between the subgraphsA andH; this
will be done in the next subsection.

Equation~8! can be written in the following way:

A3H.S iE dk1Ci~q,q8,k1!Oi~p,p8,k1!, ~9!

where theCi are the short distance coefficient functions a
the Oi are the matrix elements of renormalized light-co
operators.
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G. Gauge invariance

In order to identify theOi with the parton distributions as
defined in@12# ~for example!, it is necessary to show that a
gluons with scalar polarization attaching to the hard gra
can be combined into a path-ordered exponential. Figur
shows the example of one scalar gluon. This was show
@18,22,23#. Another version of a proof was given in Se
VII D of Ref. @12#, which relies on very general results re
cently obtained by Collins@25#. In this way we obtain ex-
actly the same parton distributions as in@12#: namely,

FIG. 4. ~a! A scalar gluon attaching the collinear subgraph to t
hard subgraphH in the unfactorized form.~b! Factorized form after
application of gauge invariance and Ward identities. The dou
line represents the eikonal line to which the scalar gluon attach
f q/p5E
2`

` dy2

4p
e2 ix2p1y2

^puTc̄~0,y2,0'!g1Pc~0!up8&,

f g/p52E
2`

` dy2

2p

1

x1x2p1 e2 ix2p1y2
^puTGn

1~0,y2,0'!PGn1~0!up8&. ~10!
by
lly
-

e

.

Here,P represents a path-ordered exponential of the gl
field that makes the operators gauge invariant. The varia
x2 is the same as in Eq.~3!. The evolution equations are th
same as in@2,3# and @12#.

H. Partons with k150: Breakpoints and endpoints

In the factorization theorem Eq.~3!, the integral over the
fractional momenta includes the pointsx150 andx250. At
these points, the hard scattering coefficient for DVCS ha
pole, and so we appear to get a logarithmic contribution
the cross section from a region in which one of the lin
joining the parton density to the hard scattering subgraph
soft instead of collinear. This apparently contradicts o
power-counting result that such a region gives a non-lead
power. This phenomenon was investigated by Radyush
@3#. In this section, we will use momentum-space method
give a general demonstration that the region in question d
not give a problem.
n
le

a
o
s
is
r
g
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o
es

First, let us observe that the region of integration overx1
in the factorization formula Eq.~3! is 211x<x1<1. This is
proved by the methods of light-front perturbation theory,
requiring that the intermediate states in Fig. 2 be physica
allowed. See Refs.@3,13# for detailed derivations and discus
sions. The pointsx150 and x250 at which the potential
problem arises are what we will call ‘‘breakpoints,’’ sinc

FIG. 5. Particular example of potentially problematic diagram
9-4
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they occur in the middle of the range of integration whe
one of the two lines changes direction.

We continue by examining a particular case, illustrated
Fig. 5, and showing how the argument generalizes. To s
plify the example, let us restrict our attention to regio
where the subgraphA and the lower three lines (p, p8 and
k2p8) have their momenta collinear to the proton. We w
io

B,

t

n

g
rs

-

a

07400
n
-

also require the two quark lines,k1p2p8 and k, on the
sides of the ladder to have their momenta either collinea
the proton or soft. The example is very similar to one trea
by Radyushkin in Ref.@3#.

We will also only need the case of the production of a r
photon,q8250, since this is where the problem arises.

The top loop of the graph has the form
r

iate

s.
er
r region
t

U5E d4k
numerator factors

~k22m21 i e!@~k2p8!22m21 i e#@~k1p2p8!22m21 i e#@~k1q8!22m21 i e#
. ~11!

When bothk and k1p2p8 are collinear toA, the top line is off-shell byO(Q2), and it is correct to use the collinea
approximation

1

~k1q8!22m21 i e
→

1

x2Q2/x1 i e
, ~12!

wherex25k1/p1. A corresponding replacement is also to be made in the numerator inU. The right-hand side of Eq.~12!
exhibits the afore-mentioned pole atx250. The result of applying the collinear approximation is to give the appropr
contribution to the factorization formula Eq.~3!.

The collinear approximation becomes invalid whenk becomes soft, i.e., whenx2→0. We must now demonstrate two fact
The first is that, whenk is in a neighborhood of the soft region, the collinear approximation is valid after integration ovk.
The second fact is that the use of the collinear approximation does not give an important contribution from some othe
of k which is absent in the original, unapproximated graph. We now examine the integralU in the neighborhood of the sof
region fork. It has the following form:

Usoft k.E
soft k

d4k
numerator factors

@2k1k22k'
2 2m21 i e#@2p81~p822k2!2~p82k!'

2 2m21 i e#

3
1

@2~p12p81!~p22p821k2!2~p2p81k!'
2 2m21 i e#S k1Q2

xp1 2k'
2 2m21 i e D , ~13!
f

p-

on

ken

id-

ce

ral,

ted
ies
real
where we have neglectedk1 in the collinear-to-A lines, k2

in the collinear-to-B line andxÞx1 . We have also ignored
the numerator factors, which are an irrelevant complicat
for our purposes.

According to the power-counting results of Sec. III
which are obtained from@24#, the soft region fork gives a
power-suppressed contribution. This estimate assumes
all components ofk are comparable~in the Breit frame!, and
is obtained as follows. Let the magnitude of the compone
of k bem. Then the order of magnitude of the soft part ofU
is a product of factors 1/(m5Q3) from the denominators,m4

from the phase space, andQ2m2 from the numerator, for an
overall powerm/Q. This result can be obtained by writin
down the largest components in the trace and propagato
Fig. 5 and Eq.~13!. Moreover in this region it is correct to
replace the fourth propagator in Eq.~13! by its collinear
approximation Eq.~12!, so that we do not lose the factoriza
tion theorem.

However, if the components ofk are asymmetric, this
estimate no longer holds. In particular if the longitudin
components ofk are of orderk6;m2/Q while the transverse
n

hat

ts

of

l

components remain of orderm, then we get contributions o
order 1/m8 from the denominators,m6/Q2 from the phase
space, andQ2m2 from the numerators, for a total ofm0Q0.
This shows that the contribution from this region is unsu
pressed for largeQ.

At this point we must appeal to the contour deformati
arguments of Ref.@24#. It is only when the integration overk
is pinched in the region in question that it needs to be ta
into account. In the dangerous region we havek1k2!k'

2 ,
so that the onlyk1 dependence in Eq.~13! is the pole in the
fourth denominator. We can therefore deformk1 into the
complex plane a long way out of the region we are cons
ering, indeed all the way to the collinear-to-A region. Then
the collinear approximation is valid so that we can repla
the graph by its contribution to the factorization formula.

This contour deformation argument is completely gene
as explained in Sec. III E of Ref.@24#. Whenever we have a
soft momentum withk1k2!k'

2 , the contour ofk1 can be
deformed away from poles in the jet subgraph associa
with the produced photon. Since all the relevant singularit
are in the final state, they are all on the same side of the
axis.
9-5
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JOHN C. COLLINS AND ANDREAS FREUND PHYSICAL REVIEW D59 074009
Now that we have established in more detail that the o
leading regions are those symbolized in Fig. 2~a!, we can
apply the collinear approximation as described earlier,
hence we obtain the factorization theorem.

But we still see the following problem. In the factoriza
tion theorem, Eq.~3!, the parton densities are non-analytic
the breakpointsx150 and x250, whereas the coefficien
function has a pole at each of these points. Again cons
the collinear approximation to Fig. 5 in the region we we
considering. The parton density is non-analytic whenx2
50, while the coefficient function has a pole there, as is s
from the right-hand-side of Eq.~12!. So we cannot literally
apply the contour deformation argument.

What we will show is that the parton density
continuous3 at the breakpoint, so that it can be written as t
sum of a function that is analytic atx250 and a function that
has a zero atx250. The only potential leading twist contri
bution near the breakpoint is associated with the non-z
analytic term to which the contour deformation argume
applies.

To prove this property of the parton density at a bre
point, consider a general graph for the parton density,
shown in Fig. 6. We have found it convenient to change
labeling of the momentum compared with the previous fi
ure. As always, thek2 and k' components ofk have been
short circuited and are integrated over. Thek-line gives a
pole at k25(k'

2 1m22 i e)/2k15(k'
2 1m22 i e)/2x1P1,

while the k1q82q-line gives a pole atk25@(k1q2q8)'
2

1m22 i e# / 2(k12jP1)5@(k1q2q8)'
2 1m22 i e# /2x2P1.

Here, j is the fractional longitudinal momentum transfer
2P81/P1. In addition there are poles from the collinear-t
A lines in the blob. For example if the blob consists of
single line, we have a pole atk25P22(k21m'

2 2 i e)/2(1
2x1)P1 or at k252P821@(k1P8)21m'

2 2 i e)/2(12j
1x1)P1.

As we varyx1 , thek2 contour can generally be deforme
to avoid the poles, so that we have analytic dependenc
x1 . The possible exceptions occur when thek2 contour is

3Radyushkin indicated briefly in Ref.@3# how such a property is to
be proved from thea representation for his double distributions.

FIG. 6. Parton distribution amplitude.
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pinched for finitek2 or when a singularity coincides with th
endpoint of the integration atk25`. A pinch never occurs;
in the general case this is a consequence of the Landau r
But endpoint singularities occur, and these are precisel
the breakpoints.

For example ifk1→0, then k1 can approach 0 from
above and below. The pole giving us trouble stems from
k-line, all other propagators are unproblematic in this ca
since their poles are at finitek2. The pole ink2 approaches
1`2 i e as one approaches 01 and 2`1 i e as one ap-
proaches 02. This means that thek2 pole crosses the rea
axis at infinity. Hence the parton distribution is non-analy
there. Since the singularity is atuk2u5` the other propaga-
tors have large denominators, and hence we get a zero fo
non-analytic part of integral at the breakpoint. Thus the p
ton density is continuous at the breakpoint, as claimed. T
result enables the factorization formula to be valid in t
neighborhoods of the breakpoints. Since the other pole
the k2 integral are on opposite sides of the real axis,
parton distribution is non-zero at the breakpoints.

Effectively the crossover of the pole occurs whenk is in a
collinear-to-B region, which we know is power suppresse
This indicates that the argument we have just given gene
izes to all graphs.

We also remark on the behavior at the end points. Let
look at the casek1→p1. We find that another of the pole
pole runs off to2` this time and crosses the real axis the
But now all the other poles are on a single side of the r
axis, so that the sole contribution to the parton density com
from the pole at infinity, and hence there is a zero of t
parton density at the end point.

I. Completion of proof

Using the definitions of the parton distributions and t
hard scattering coefficients we finally obtain Eq.~3!. Note
that the theorem is valid for the production of a real phot
which directly goes into the final state and for the product
of a time-like photons that decays into a lepton pair.

IV. CONCLUSION

We have proved the factorization theorem for deeply v
tual Compton scattering up to power suppressed terms to
orders in perturbation theory. The form of the theorem
independent of the virtuality of the produced photon.

After this work was complete, we learned from Ji that
and Osborne have also constructed a proof of factoriza
for DVCS @26#.
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Geyer, and D. Robaschik,ibid. 406, 161 ~1997!.

@12# J. C. Collins, L. Frankfurt, and M. Strikman, Phys. Rev. D56,
2982 ~1997!.
07400
@13# L. L. Frankfurt, A. Freund, V. Guzey, and M. Strikman, Phy
Lett. B 418, 345 ~1998!.

@14# S. J. Brodsky, L. L. Frankfurt, J. F. Gunion, A. H. Mueller, an
M. Strikman, Phys. Rev. D50, 3134~1994!.

@15# M. G. Ryskin, Z. Phys. C57, 89 ~1993!.
@16# S. A. Anikin and O. I. Zavialov, Ann. Phys.~N.Y.! 116, 135

~1978!.
@17# D. Müller, D. Robaschik, B. Geyer, F.-M. Dittes, and J. Horˇe-
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