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We argue that the massive Yang-Mills model of Kunimasa and Goto, Slavnov, and Cornwall, in which
massive gauge vector bosons are introduced in a gauge-invariant way without resorting to the Higgs mecha-
nism, may be useful for studying diffractive scattering of strongly interacting particles. With this motivation,
we perform in this model explicit calculations 8fmatrix elements between quark states, at the tree level, one
loop, and two loops, and discuss issues of renormalizability and unitarity. In particular, it is shown that the
Smatrix element for quark scattering is renormalizable at one-loop order, and is only logarithmically non-
renormalizable at two loops. The discrepancies in the ultraviolet regime between the one-loop predictions of
this model and those of massless QCD are discussed in detail. In addition, some of the similarities and
differences between the massive Yang-Mills model and theories with a Higgs mechanism are analyzed at the
level of theS matrix. Finally, we briefly discuss the high-energy behavior of the leading order amplitude for
quark-quark elastic scattering in the diffractive region. The above analysis sets up the stage for carrying out a
systematic computation of the higher order corrections to the two-gluon exchange model of the Pomeron using
massive gluons inside quantum loopS0556-282(99)04305-2

PACS numbgs): 12.40.Yx, 11.10.Gh, 11.55.Bq

[. INTRODUCTION rying the quantum numbers of the vacuuisa box diagram
where two off-shell gluons are exchanged between incoming
The quantitative description of diffractive phenomenaand outgoing quarks, which scatter elastically. The perturba-
within the framework of QCD is a long-standing problem. In tive calculation of the above process gives rise to an infrared
part, the difficulty arises because diffractive processes insingularity att=0, whose origin is the fact that the bare
volve both hard and soft scales, resulting in a complicategyluon propagatod,(q?) diverges ag?=0. Specifically, the
interplay between perturbative and non-perturbative effectsamplitude obtained from such a diagram assumes the form
One way to tackle this problem is to attempt a description 52,7 — 2 : 2
. ) ! uy,u)(uy*u), where is iven b
using a “dressed” version of the perturbative degrees o?’BO( z’*‘ ) 72 2 2 .'30 g y Bo
o S L ~[dgT ad(q9)]%, andd(qg”) is the gluon propagator. The
freedom, where the “dressing” is meant to mimic the role of . . . N . .
introduction of a “massive” gluon propagator is the simplest

non-perturbative effects. Following Loyi] and Nussinov . s . '
[2], Landshoff and Nachtman(LN) [3] introduced a two- W& to obtain a finitg3g and the gluon mass is then fixed by

gluon exchange model of diffractive scattering, where the)ﬂata- )
assumed that the infrared behavior of tfAbelian) gluon It has been suggestéd] that the non-perturbative dynam-
propagator is modified by non-perturbative effects. Theircs of QCD lead to the generation of a dynamical gluon
success in reproducing several of the features of Pomerdias$ while the local gauge invariance of the theory remains
exchange suggests that such an attempt may not be totalijtact. This gluon “mass” is not a directly measurable quan-
futile, and makes the question of how to compute systematitity, but must be related to other physical parameters such as
cally higher order corrections within this model all the morethe string tension, glueball masses, or the QCD vacuum en-
interesting' ergy [7], and furnishes, at least in principle, a regulator for
In the LN picture of the Pomeron the need for modifying all infrared divergences of QCD. The above picture emerged
the gluon propagator arises as follows: The simplest Feynfrom the study of a gauge-invariant set of Schwinger-Dyson

man diagram which can model the Pomeferchange car- equationg8]. In addition, lattice computatior{9] reveal the
onset of non-perturbative effects which can be modelled by

means of effectively massive gluon propagators. Various in-

dependent field theoretical studies spanning almost two de-
IA different approach is provided by the Balitskii-Fadin-Kuraev- P P 9

Lipatov (BFKL) formalism[4], which is the most serious attempt at

a first principles QCD derivation of Pomeron exchange to date.

However, the perturbative nature of the BFKL approach often 2Dynamically generated masses depend non-trivially on the mo-
makes it unsuitable for the analysis of diffractive scattering, wherenentum; in particular, they vanish for large momenta. This property
both soft and hard momentum scales are in general relevant. is crucial for the renormalizability of the theofg].
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caded 10,11 also corroborate some type of mass generationleading order. The purpose of the present work is to provide
although no consensus about the exact nature of the mass-detailed analysis of various field-theoretical issues which
generating mechanism has been reached thuS|faerest- appear when one uses the MYM model for computing
ingly enough, the effective gluon propagator derived8h  Smatrix elementsinvolving quarks as external states. In
describes successfully nucleon-nucleon scattering when iraddition to the clarification of theoretical points, several of
serted, in a rather heuristic way, into the two-gluon exchangé¢he results presented in this paper constitute useful ingredi-
model [13]. Despite this phenomenological success, how-ents of the full calculation.
ever, it is not clear whether a dynamical gluon propagator More specifically, we discuss the following points:
may be used in calculations as if it were a tree-level propa- (i) We analyze in detail how the MYM and QCD differ
gator derived from Feynman rules. More importantly, it isalready at the tree level, and how this difference propagates
not known how to systematically improve upon such a calto higher orders. In particular we show using both unitarity
culation, i.e. how to compute higher order corrections. and analyticity arguments as well as explicit one-loop calcu-

Given this lack of a computational scheme originatinglations how the tree-level discrepancy affects the one-loop
from a “first principles” QCD treatment, we propose instead beta function, i.e. how it alters the high energy behavior of
to resort to a field theory which is formally close to QCD andthe theory.
contains at the same time the feature which appears to be (ii) We verify explicitly in the context of a specific ex-
phenomenologically useful, namely a gluon mass. To thaample that theSmatrix contains no unphysical poles. The
end we revisit a model introduced independently by Kuni-cancellation of such poles, which is expected from formal
masa and Gotfl4], Slavnov[15], and Cornwal[16], which  considerations, provides a non-trivial consistency check of
provides a generalization to a non-Abelian context of thethe model, and can serve as a guiding principle when carry-
work of Stueckelberd17]. This model accommodates mas- ing out lengthy calculations.
sive vector bosonwithoutcompromising local gauge invari- (iii) We demonstrate that at the one-loop level the scatter-
ance andvithoutintroducing a Higgs sector. In what follows ing amplitude of interest is renormalizable, and that one can
we will refer to it as the massive Yang-Milld1YM) model.  construct a gauge-invariant running couplingffective

In the MYM model, a mass term is added directly to thechargé just as in QCD. This leads to the definition of a
Yang-Mills (YM) Lagrangian and gauge invariance is pre-gauge-invariant gluon propagator, generalizing Cornwall's
served with the help of auxiliary scalar fields. Unlike the construction for the standard QCD case. A detailed compari-
usual Higgs mechanisifil2], however, there are no addi- son of our result with the QCD one is performed.
tional physical particles appearing in the spectitnm Higgs (iv) We show that the non-renormalizable contribution
boson$. The price one pays is that perturbative renormaliz-arising at the two-loop level depends only logarithmically on
ability is lost. In particular, the one-loof-matrix element the cutoff. This result is new, to the best of our knowledge;
for gluon elastic scatteringgg—gg is known to be non- its derivation relies crucially on extensive cancellations
renormalizable[18]; its renormalizability can be restored which take place at the level of tHematrix after the judi-
only with the introduction of Higgs boson in the spectrum cious exploitation of the tree-level Ward identities of the
[19-21]. This fact renders the MYM non-renormalizable at MYM.
one loop. However, the introduction of a Higgs bosomas The paper is organized as follows: In Sec. Il we briefly
necessary for the renormalizability of the one-ld®matrix  review the MYM formalism, and establish connections
of the processesig—qq which is relevant for diffractive Which will be useful for the calculations which will follow.
scattering. As we will see in detail, the first time this latter In Sec. Ill we analyzejg annihilation into two gluons at the
process receivegogarithmically) non-renormalizable contri- tree level within the MYM model, and compare with the
butions is at two loops. In addition, the model has beerresult in standard YM. In Sec. IV we study the one-loop
shown to be unitary, in the sense of the optical theorem, t@ontributions toqq— qg and show in detail how the MYM

all orders in perturbation theofL5]. Several formal proper-  model gives rise to renormalizable and unit&natrix ele-
ties of this model have been extensively studied in the literaments. In Sec. V we turn to the two-loop contribution to

ture cited above and are well understood.
Our main phenomenological motivation for turning to the
MYM model is to carry out the next-to-leading order correc-

tions to the two-gluon exchange processdar—qq, in the
context of a concrete field theory, where the effects originat
ing from the presence of a gluon mass can be studied sys-, ] ) ) . )
tematically. Clearly, before attempting such a complex cal-_ BY Working directly with Smatrix elements one has the addi-
culation it is necessary to develop some familiarity with thetlonal advantage of avoiding pathologies which affect individual,

predictions of the MYM model at leading and next-to- unphysical Green’s functions. In fact, because of several cancella-
tions taking place at the level &matrix elements, the final answer

often has better properties than those of the Green’s functions in-
volved in the calculation. A typical example of this situation arises
30f course, the introduction of a gluon mass the at tree leveWwhen using the unitary gauges for the electroweak model; in these
through the usual Higgs mechanigii?] is excluded, as it would gauges, Green’s functions are non-renormalizable, whieatrix
introduce extrgunwanted scalar particles in the physical spectrum. elements ar¢22].

qg—qg, and demonstrate the emergence of logarithmically
divergent non-renormalizabl&matrix elements. In Sec. VI
we investigate quantitatively the connection of the MYM to
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field theories where the gauge bosons acquire masses liyus transforms asBle=UB#U*l under a simultaneous
means of the usual Higgs mechanigh2]. In particular, we  gauge transformation of th&, andV fields; so one can add
show how the presence of a Higgs boson cancels the logae the Yang-Mills action the following gauge-invariant term:
rithmically non-renormalizable contributions found in the
previous section. Throughout Secs. IlI-VI we use the pinch
technique(PT) rearrangement of th&matrix [23,8] in order

to make several cancellations manifest. We hasten to empha- L ) ) .
size, however, that the PT only serves as a convenient inteMore explicitly, gauge invariance of the above quantity can
mediate step, helping to expose the unitarity and renormak€ written as
ization properties of theSmatrix, but none of the final

results reported here depends on the use of this method. In

Sec. VII we take a first look at a possible phenomenologicaheca”ing Egs(2.3 and(2.5), it is clear thatS,, generates a
application of the MYM model, namely, quark-quark elastic mass term for the gluon fieI:él a kinetic term for the field
scattering in the diffractive region. Finally, in Sec. VIl we \, 44 an interaction term bgt\,/veen tAeand V fields.
summarize our results and discuss possible future applica-’ Finally, we can write down the gauge-invariant action

tions. functional for the MYM theory:

sM[A,V]zmzf d*xTrB,B*. (2.6)

Su[AY,VY]=Sy[A,V]. (2.7

II. THE MASSIVE YANG-MILLS MODEL SuvymlAV]=Syu[A]+ SulA,V]. (2.8

In this section we first review briefly how local gauge We write now the path integral for such a theory. Gauge
invariance and massive gauge bosons can be reconciled ifivariance ofSy,y, implies that a gauge-fixing prescription
the MYM. Next we show that the MYM is physically is needed to quantize the theory. The Faddeev-Popov proce-
equivalent to a field theory where the gauge bosons havéure can be carried out as in standard YM theory, leading to
been endowed with a mass “naively,” i.e. by adding a mass
term at the tree level without preserving gauge invariance.

In order to introduce the MYM mod¢ll5,16], let us start
from the standard YM action for th8U(3) gauge group:

Z= f DVDAESMYMAVIATATS(g[A]). (2.9

Here the gauge-fixing condition gf A]=0 andA[A] is the
1 corresponding Faddeev-Popov determinant . In order to
SymlA]=— ff d*x Tr(F,,, F*") (2.)  make the theory amenable to a perturbative treatment one
could rewrite Sy[A,V] as a power series in the coupling

where ,,(x) = 3,A,(0) — 3,A ,(x) +ig[A,(x),A,(x)] and constantg. This is obtained by writing

AM(x)zAi(x)Ta, with. T, the SU(3) generators in the fun- ' V(x)=expig 3 (x) Ty), (2.10
damental representation. For the purpose of the present dis-
cussion, matter fields can be ignored. Under a gauge tranand inserting the power expansion f@rinto Eq. (2.6). The
formation, parametrized by(x),A#—>Al‘j where resulting expression contains interaction vertices with an in-
creasing number of scalat fields and zero or one gauge
U 4 i 4 field A,. Then, using standard techniques, Feynman rules
AL(X)=U)AL U (x) — aU(X)%U (). can be derived15]. However, as long as one is only inter-
(2.2  ested in gauge-invariant calculations, a considerable simpli-
fication of the Feynman rules can be achieved. To see this,
The requirement of gauge invariance for the action forbids det us consider the calculation of the vacuum expectation
naive mass term for the gluon. However, by introducingvalue of a generic gauge-invariant opera@jrA:
SU(3)-valued fieldsV(x), one can define

1 )
i <o>zz,f DVDAESMYMAVIATA]S(g[A])O[A].
C(x)=— aV(x)&MV*(x). (2.3 (2.11)
_ u  We perform a change of integration variable in A inte-
Under a gauge transformation one postulates thatV gral; i.e., we rewrite it in terms of a new fiell),, defined

=UV. As a consequence,(x) has the same gauge trans- through the following identity:
formation properties as the gauge fiéld, i.e.

[ Y
[ A=V AVTI——Vvy Vi=A | (2.12
u_ - - " "
C,=uc,u - gYduY L (2.9 9 #
In other wordsA,, andA;L are related by the gauge transfor-
The quantity mation generated by. Thus,DA=DA’. Also, gauge invari-
ance implies thatSyy[A]l=Sym[A'],O[A]=0[A’] and
B.LAV](X)=A,(x)—C,(x) (2.5  A[A]=A[A’]. Strictly speaking, the last equality holds only
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if one neglects the issue of Gribov copies. This is correct for a(o1) g(k1), p,a
the purpose of a perturbative treatment. ——(oTo> — N
The crucial observation is that because of Eg<3), (2.4) q zzzsi >/rrcu\§\
and (2.5 one has P Y o
y — d(p2) g{ks), v, b
B.[AV]=B,[A WV]=V AV} (2.13

(a) (b) (©)

hence, we can write _ o )
FIG. 1. Diagrams contributing t@%, .

—_ N2 4 N . . . . .
SulAV]I=M j d™TrA,A & (2.1 We have seen that gauge invariance can be maintained in
a theory of massive gluons without introducing additional
The path integra(2.11) can then be rewritten as particles into the spectrum. However, as we will discuss

later, and as noted by oth€i$8], the resulting theory is no
longer renormalizable.

1 ’
<O>E§f DV DA’expi| Sym[A' ]+ sz d4xTrAl’LA")

, ' , Il. TREE-LEVEL ANALYSIS
XA[A"] &(g[A *]) O[A"]. (215

In this section we will study in detail the tree-level cross
Notice that in the above expression all the dependence on tigection for quark-antiquark annihilation into two massive
Vfields is carried by thé-function. The integration onthé  qyons, i.e.qg—gg, within the framework of the MYM
fields yields a factor W[A'], which cancels the Faddeev- model. The reason is three-fold: First we want to gain some
Popov determinant arising from the gauge-fixing proceduregamiliarity with the formalism, second we want to study the

The final path integral can be written as difference between the MYM model and standard QCD at
the level of physical amplitudes, and third, in conjunction
(0)= Ej DA with the results of the next section, we will check explicitly
Z that the MYM model produces unitarg-matrix elements.

Throughout this section we use the methodology and nota-

Sym[A]+ sz d?x TrAMAM> O[A]. tion first introduced ir{24].
Let us consider the quantity,
(2.1

1 — —

The above manipulations show that, as long as the operator A= EJ d(PS*)(qq|T|gg)(gglTIqa)", 3.1
of interest is gauge invariant in the usual massless QCD
sense, the model defined by EQ.9) is equivalent to the \;nere
simpler massive vector theory defined by EJ.16. The
latter is obviously much easier to handle in perturbative cal-
culations. f d(PS?) =

It is important to emphasize that the models are not
equivalent at the level ofgauge dependentGreen’s func-
tions of the gluon field. In particular, let us compare the
tree-level expressions for the gluon propagator in the twaq , ) ,
models. From Eq(2.9) one obtaingin the Landau gauge is 'ghe phgse space mtegral for two particles with equal mass

M in the final state, withs, (k*— M?)= 0(k°) 5(k*—M?). In
K Kk Eqg. (3.1), the factor 1/2 is statistical, arising from the fact
gﬂy—%) : (2.17  that the final on-shell gluons should be considered as identi-
k cal particles in the total rated is the contribution to the

imaginary part of the amplitude foqg— qq which arises
from a gluon loop. We first focus on the tree-level amplitude

TE(qH|T|gg>. Diagrammatically, the amplitud@ consists
. (2.18 of two distinct partst- andu-channel graphs that contain an
internal quark propagato’r’z,’tf;b as shown in Figs. (&4),1(b)

v
. ab . .
The former expression corresponds to a gluon with two pof"md ans-ch_annell, amp‘llltlideTsﬂv, as shown in Fig. ©).

Qe subscripts 8” and “t” refer to the corresponding Man-

larization states, as in the massless case, while the latter hé ) L 5 5 e
three polarization states, as expected for a massive vect P'St";‘m vanablezs, Les=(pytP2)”= (ki +kz)” andt=(p,
boson. Of course the number of degrees of freedom in the K1) =(p_2—k2) ; . .

two models has to match. In fact, the third polarization state €t Us first define the following quantities:

of Eq. (2.18 corresponds to the massless scalar fig(") . —

which appears in the MYM model. V5 (P1,P2)=gv(p2) T¢¥, u(pa),

X expi

1
(2m)?
X3, (kK5=M?) 8 (q—ki—ko) (3.2

f d“klf d*k, 8, (ki—M?)

1
tree —
RV

while Eq. (2.16 yields

k

Kk

t —
D,Utee(k)_ g,U.V M2

14

kZ_MZ
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R2%(p1,p2,a)=gfDo(q)VE(P1.p2), (3.9
where
Do(a)= 5~z (3.9
The amplitude is given by
T =T+ T3, (3.5
with
T =R T},(d,— kg, — ko), (3.6
where
F)\,u,u(q!_kli_kZ) = (q+kl)vg)\,u+(k2_kl))\g,uv
_(q+k2)p,g)\v (37)
is the usual three-gluon vertex and
T80 =—i9%(p2)
x| Ty Toyt+ Toyh ®Ju(py).
1~ R 17 R2
(3.8

Notice that in Eq(3.6) only the “g#"” part of the tree-level

PHYSICAL REVIEW D 59 074008

is the polarization tensor of the massive gluon. On shell, i.e.
k?=M?, we have thak”“Q,,,(k)=0. This fact motivates the
standard PT decomposition of the three-gluon vefsi:

[y u(d, =Ky, — k)= Fxﬂy(q,_kl,_kz)

+I7,(0,— ki, —k) (312
where
xw(q, k1, —ka)=(Ka—=K1)\0,u,t 20,09\ .~ 20,09,
)\;w(qa_ v —K2) =K1, 90— K290, - (3.13
The terml’"  vanishes when it hits the polarization tensors,

puy

and Eq.(3.10 becomes

A= f [Te"+ Tn QM (k) Q™ (ko)
X[ T2+ T3V 1d(PS?), (3.14
where
T 2P=R2TT . (3.1

To evaluate further the expression on the right-hand side
(RHS) of Eq. (3.14 and establish its connection to massless
QCD we proceed to determine the action of the longitudinal

momenta coming fronQ“?(k,) andQ"*(k,) on Tsl'ifb and

massive gluon propagator appears, since any longitudinatab .

part vanishes due to current conservation when it hits the

v

external on-shell quarks. The three-gluon vertex satisfies the k,uTF BT (ky—Ky) Ko — M2, , TR 2P~ D5 H(q)R 2P,

fundamental Ward identity
KT ) 0(d — K1, — ko) =[dg (ko) —dg (@) ]Gy,
+ [q)\qu_ k2)\k21/:|
=[Dg (k) ~Dg ()19,
+ [q)\qv_ k2)\k2v]

(and cyclic permutationswhered, Y@)=0g? The form of

(3.9

(3.16

K5 T o 2P =[ (K1 —Ko)\Ky, + M2, IR 2%+ Do (@) R 2,
(3.17)
KT 32 =Dg ()R 2P, (3.18
KsT:3%=—Dgo MR 2. (3.19

the Ward identity in the massive theory is therefore identicaiThe terms proportlonal t®, *(q) cancel when forming the

to that of the massless theory.
We then have

f QH(ky) Q" (kp) T20Td(PS 2)

1
=3 f [Tt T ] Q"7 (k) Q™ (kp)
X[ Ton + Tign 1d(PS?), (3.10

where

k#k”
M2

Q*¥(k) =—g"+ (3.11

sumkf] 720+ 7,30

Sy -], giving rise to

KL T 20+ T30 1 =[ (ks — ko) *ka, — M2G TR 2P,
ke[ T 22+ T3] =[ (K1 — ko) Ky, + M2gL TR 3.

S’” (3.20

Such a cancellation is instrumental for the good high-energy
behavior of the resulting amplitudes. Using the longitudinal
momenta inside the polarization tensors to trigger the iden-
tities listed above, we can decompaddnto three parts:

A:A1+A2+A3 (321)

where
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1 7
A1=§J [TETE*—Rﬂ[ykl—kzw(kl—kz)v

+2Mzg’”} RI}d(PSz), (3.22
1 T + 2

do=5 [ @I TET) AP, (323
1

Ag= EJ T,TId(PS?). (3.29

A; contains the purely propagator-likeelf-energy contri-
butions, A, contains the vertex-like contributions ands

PHYSICAL REVIEW B9 074008

11 1\ 1Mm?
3 2 2

g‘”} &

(3.29

with ag=g?/(47). The reason why we write the coefficient
2 as the deviation from on the second line of Eq3.29
will become clear in what follows.

It is instructive to repeat the same calculation for the case
of massless QCD, in order to examine the physical difference
between the two theories at the tree lef@4]. The crucial
modification, in the case of QCD, is that in E@.10 the
polarization tensor®,,, corresponding to the massive glu-
ons, are replaced by the polarization tens&$”(k,7),
given by

a
=Dé<q>vz{§ch2A<q2>

contains the box-like contributions. We see that all terms

proportional toM ~2 or M ~# have disappeare@herefore, at

this point, it is clear that at the one-loop level the MYM

model gives rise to a renormalizable S-matrix for-¢qg,
provided that we assume unitarity and analyticftye. dis-

7K, + 17,K, 2 K.k,
7K (mk)?’
(3.30

P,u,v(kl 77) = _g,uv+

persion relations In the next section we shall check this Which are appropriate for massless spin-1 gauge bosons. As

conclusion by an explicit one-loop calculation.
We now focus on the propagator-like past;. Current
conservation allows us to make the replacement

FEWFE'W - 8ngp)\+4(kl_k2)p(kl_k2))\'
(3.25
Then Eq.(3.22 becomes
A= gchDé(q)VZU [(4q2—l\/l2)g“”

9
+§(k1_k2)”(k1_k2)y

d(PSZ)]vg, (3.26)

before we have that, for massless on-shell gludkis?,,,
=0. All other expressions can be obtained directly from the
MYM expressions simply by settiny12=0. In particular,
both the derivation and the final form of the Ward identities
of Eq. (3.20 are identical24,24.

The QCD expression corresponding to E}26) is given
by [24]

A?CD=chAdS<q>vz[ f [4G%g#"+ (ky— ko) *(ky
— ko) ¥]d( PSZ)} % (3.31)

and, after carrying out the phase space integration for the two

wherec, is the Casimir eigenvalue in the adjoint represen-final (masslessgluons, we obtain the QCD analogue of Eq.
tation. The final step is to use the following results for the(3.29:

phase space integrals:

f d(PSZ)=8% 6(0°) 6(q*—4M?)A(g?),
J’ d(PS?)(ky—K2) u(k1—k2),

1

- 0 2_ 2\~N2A 3/ N2

= 24776(q )0(q°—4M“)q°A°(9°) 9,
(3.27

where

(3.28

) 4M?
A(g9)= 1—?-

We obtain

A;=Dj(q)V5, Ve,

s o) |29 1Mm%)
> Cad (99) §+§?9

ag( 11
AT =V, dS(@[f(g) chzg””] Vi. (332

Notice that the factofs in Eq. (3.32 is the characteristic
coefficient of the one-loog function of quarkless QCD.
Obviously, if we setM?=0 in Egs.(3.26 and(3.29 we
do not recover the massless QCD result, ig(M?=0)
# ALP. In that limit the two answers differ by the amount
2 this descrepancy heralds the difference in the leading
logarithmic behavior of the two theories, which we will es-
tablish in the next section. On the other hand, it is clear that
A;(M2=0)=ARCP for i=2,3. Evidently, even though the
two theories satisfy the same type of tree-level Ward identi-
ties, the fact that we have to use different polarization tensors
for massive and massless gluons gives rise to different
Smatrix elements, and this difference persists even in the
limit M—0. As explained by SlavnoM 5], the physical rea-
son why the limitM—0 of the MYM model does not re-
cover the massless Yang-Mills model is that one cannot con-
tinuously go from three polarization states to two. It is
interesting to notice that after the PT rearrangement the dis-
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crepancy between the two theoriesMs—0 has been iso-

k+gq
lated in the universal, process-independent, propagator-like G%%y k+g
piece, A, . 4 9, M m
° v
41 p2
IV. ONE-LOOP ANALYSIS
- k+q
k

In this section we turn to the issue of unitarity and renor-
malizability at one loop. To begin with, we show using a
one-loop calculation that all unphysical poles introduced by
the gauge-fixing choice cancel in &matrix element. This ?3
cancellation is a necessary condition for proving the unitarity ;}
of the resulting expressions; indeed, if expressions contain-
ing mixed poles had survived, they would give rise to un- ()
physical thresholds. Next, by comparing the results of this
section with those of the previous one, we will be able to
establish explicitly the validity of the generalized optical
theorem to lowest order and hence have an explicit demon- MW
stration of unitarity at one loop. Finally, we show that the
resulting expressions can be made finite by the usual mass )
and wave-function renormalization. Throughout this section
we employ the PT, which makes cancellations particularly FIG. 2. One loop diagrams.
easy to track down.

We study the one-loop amplitudeyt= (qq|T|qq), for  and the auxiliary expressions containing mixed poles,

the processqq—>qq, using the Feynman rules derived by

Slavnov[15]: the massive gluon propagator in the Landau 1
gaugé is given by, lola0= K2(k+q)? '
D (K K.k,
v = v ) 1
M kZ_MZ g,u k2 Il(q’k)E y
kK2(k?=M?)[(k+a)*~M?]
=Dy(K)t,,, 4.0

1
the ghosts are massless and only appear inside closed loops 1,(qg,k)=

(with a statistical factor- 1/2), and the three- and four-gluon k?(k+@)2(k*=M?)[(k+q)*—M?]

vertices are those known from massless QCD. Note that we

do not include quark loops since they are trivially related to 1

the equivalent QCD diagrams and, as such, need not be con- Ji(K)= oo, 4.3
sidered when investigating the new features of the MYM k“(k*=M?)

model. We will show explicitly that all unphysical polése.

massless p0|es in the Landau ga;u'gﬂuced by the |ongitu_ which appear |n intermedigte steps but vanish in the final
dinal part ofD,,, and by the massless ghosts vanish in theanswer. In addition, we define

one-loop amplitudeM. Moreover, all contributions contain-

ing unphysical poles are propagator-like, in the sense defined U, (k)=Dg'(k)g,,— kK, (4.9
by the PT re-arrangement of the amplit&s,8].
First we define We consider the diagrams of Fig. 2 individually. The expres-
sions for all non-propagator-like contributions are the same
1 as the corresponding contributions of the regular QCD
I(q,k)= C—MP[(k+q)—M7]’ graphs in the Feynman-"t Hooft gauge, with the only differ-

ence that the internal gluon propagators Brgrather than
do. These results emerge at the end of a gauge-invariant
I(K)= 1 4.2) calculation and are not linked to any particular gauge choice.
Consequently we turn our attention to the propagator-like
contributions.
For each diagram of Fig. 2 we write the associated ampli-

tude as a sum of propagator-like) and non-propagator-like
5Slavnov’s choice of the Landau gauge was motivated by the fac‘tN P) pieces: bropag ke) bropag
that it leads to a reduction in the number of interaction vertices. O P

course, for computations &matrix elements any other choice of 0 (i) 0
the gauge fixing parameter will lead to the same final answer. MP=Mp'+ Myp, (4.9
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wherei labels which diagram is being considered. Of course

M@=M =M {L=0. For the propagator-like piece it is
convenient to write

n
MW =g2c, D32 V”V”f . 4.6
P g Ca o(Q) cYce |(27T)n iz ( )
For graph 2a) one finds that
n&=1g),+11§), 4.7
where
(a) 1 po
HO,W:_El(%k)rﬂpo(qyk,_k_Q)FV (q,k,_k—Q)
(4.8
and
I, = —11(9,K)[Dg X(@)g,.,— 2D¢ (U , (k+0)

-1 -1
+U,,(k+qUi (k+a)]

+%l2<q,k>[Da"‘<q>+2M2Dal<q>+M“]k,LkV.
(4.9

1Y is the part of Fig. 2a) which arises due to thg”*g”
part oft”*t?” and contains only the physicahassive poles.
The unwanted mixed poles residelH® . We note that the
term in parentheses accompanying thdactor of Eq.(4.9)

is equal tog*. We choose not to simplify this expression
since the terms proportional to inverse powersDgf are

going to cancel against similar contributions from vertex and

box graphs; retaining them explicitly will make the mecha-
nism of the cancellation more transparent.

We next turn to the vertex graph of Fig(k2 (and its
mirror image. We write

b b
ng,+ng),.

(4.10

The contribution which arises from theg*g®”” term in

b) _
Hj”)_

PHYSICAL REVIEW B9 074008

_ 1
I17)= =D A)11(6.K)g,.,+ 5D A1 o(a.k0K,K,

(4.13
and for the remaining graphs:
1) =Dg () 31(K) Gy (4.14
I = k21 ()t (K), (4.19
1
M0 == 51o(a.kk,kK, . (4.16

Notice that, at this point, all terms containing massless
propagators are multiplied by inverse powersnf(q). If
we now add these contributions, all terms proportional to
inverse powers oDy(q), and therefore all terms containing
massless poles, cancel against each other. In order for this
cancellation to go through it is crucial that the ghost diagram
has a statistical factor of{1/2), rather than the-1 of
massless QCD. It is also interesting to observe that the afore-
mentioned cancellations take place algebraically before any
of the integrations over the virtual momerktare carried out.
In particular, we have not resorted to the use of dimensional
regularization results such gs"k/k?>=0 or fd"k/k*=0.

Our final result for the propagator-like part of the one-
loop amplitude is thus

(a)

B 1
H,u.V:HO,,uV—’_I(qak) 2DO l(q)g,u,v_ Ek,ukv) .

(4.17

Notice that the last term in the above equation could be
interpreted as a contribution from massive ghosts. This term
has emerged naturally from our calculation, even though we
started out with massless ghosts.

As we have already mentioned, in the linht—0, the
box-like and vertex-like parts of the MYN-matrix element
exactly reproduce their massless QCD counterparts. The
propagator-like piece is, as expected from the work of the

the product of the two gluon polarization tensors is equal tgrevious section, different. Defining the effective gluon self-
the usual QCD vertex graph in the Feynman-"t Hooft 9aug&nergy . via
with massive, instead of massless, internal gluon propaga- Y
tors. This term can still give a propagator-like contribution

—_ N2 -
due to the pinching of the fermion propagator triggered by MP—DO(q)V{jH(qz)VMC (418
the three-gluon vertej23]. This contribution is ) ) )
a straightforward calculation yields
Mg, =21(d,k) Do(a) ™" gy, (4.1
b - - - (2 — 2 29, 1 ., € 5 2
The I1{”) term contains the remaining parts of the polariza- I1(q?)=g?Cat | 5 d*+ 5 M2+ 5 (q?—4M?)
. S 8 2 24
tion tensor product and the pinching of the quark propagator
is triggered by the momenta therein; xf n ko (5 11€)f d"k W
M, =2Dg ()1 1(q,K[Dg {(A)g,,— U (k+a)] i2mn T\ 12) ) Gy
—Do H(@)I2(a,K[Dg ) +M?Tk kK, . (4.12 (4.19

For the box graph of Fig. ) (along with the crossed wheree=4—n. SettingM?=0, and using/d"k/k?=0, the
box), above expression reduces to
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H(q2)|M=o:920A qz

§+i)f—dnk 1o(q.K)
8 24 i(z,n_)n o(d,K).
(4.20

PHYSICAL REVIEW D 59 074008

andA(qg?) was defined in Eq(3.29 [27]. Note that only the

self-energy contributioI(g?) needs to be renormalized:;
indeed, after the PT rearrangement the resulting expressions
for the verticesand boxegsare ultra-violet finite, exactly as

The corresponding gauge-invariant effective self-energy fohappens in normal QCIER23]. As a result, the gluon wave-

d"k

massless QCD, first given ii25], reads
10(q,k).
(20" 0(a,k)

11 €
?*Jf
(4.21)

Notice that the above result can be obtained from Ed.7)
by taking theM?—0 limit and, at the same time, changing
by hand the coefficient in front of the ghost term from
(—=1/2) to (—1).

ﬁQCD(q2)=gchq2(

function renormalization consta#}, and the gauge coupling
renormalization constard, are related by the QED-like re-
lation Z,=Z}*[23-25.

In the limit g?>>M?, the leading(logarithmid contribu-

tion to ITr(g?) is given by

~ aal 29
IR(9?) = S—A(g ?In(@¥p?)+---  (4.27

41

To establish contact with the previous section, we need t¥/here the ellipsis denotes subleading contributions sarisl

compute the imaginary part 0¥1p. Using
f d"k
m
i(2m)"

1 ! 2_ (2 _
6772|m {jo dxIn[M“—qg“x(1 x)]]

I(q,k)]

_ 0(g°—4M?)

1
o A(qz)zzfd(PSZ), (4.22

it is straightforward to check that unitarity holds, i.e.

21m Mp:Al. (4.23

an arbitrary reference momentum. Instead, the corresponding
limit for QCD is given by

f[QCD( 2 _aSCA 1

1
Q =73 a’In(Q*u®)+---. (4.29

It is also interesting to compare the qualitative features of the

MYM self-energyﬁ with Cornwall’s massive propagatf]
which has been used successfully for fitting ddtal; it has
the forn? (for Euclideang?)

Similarly, one can demonstrate the unitarity of the vertex-

and box-like contributions.

We next proceed to renormalize the expression for

ﬁ(qz); we carry out the two subractior{sorresponding to
mass and wave-function renormalizaticat g?=M?2 (“on-
shell” schemé) i.e.

M (g?)

ﬁR<q2>=ﬁ<q2>—ﬁ<MZ)—<q2—M%T

qZ:MZ

(4.24)

and so the renormalized self-enerﬁy{(qz) becomes

- aga[(29 , 1
Ha&rigﬂ«gq+§Mﬂum%—uMa>

—%(QZ—MZ)@—ZL(MZ))] (4.29
where
i M&Hw
L(q%)=A(q )In(—A(qz)_1 (4.26

8Any other subtraction point? would work equally well.

_ g°+4m?(g?)
dcl(q2)=[q2+m2(q2)]bgzln{T
(4.29
with
2, 4] 121
|n q—
A2
m2(g?)=m? T : (4.30
'”(?

whereA is the QCD mass. Bottz X(g2) andI1(g?) display
the correct threshold behavigre. they turn imaginary for

—g?=4m?). In addition[and in contrast tcﬁ(qz)],dgl(qz)
has the correct asymptotic limit faf?> A2, since the coef-
ficient multiplying the leading logarithm is 11f3nstead of

29/8 in the case dfl(g?)], thus capturing the one-loop QCD
running coupling. Notice also the non-trivial dependence of
the massn(g?) on the momentum.

Finally, it is straightforward to check that if one inserts

the expression for Il (g2) obtained from the tree-level cal-

"The functional form fordgl(qz) given in Eq.(4.29 represents
an excellent, physically motivated fit to the numerical solution of a
Schwinger-Dyson equation for the gauge-independent QCD gluon
self-energy.
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culation of the previous section into a twice-subtracted dis-
persion relation, then one obtains the real part of the right
hand side of Eq(4.25), i.e.

Reﬁ r(S)=

J. R. FORSHAW, J. PAPAVASSILIOU, AND C. PARRINELLO PHYSICAL REVIEW B9 074008
(s— Mz)zfoc ds’ ImTII(s’)

am2(s' —M?)?(s' —s) '

FAVAVAV)
NANN4
(4.31
We end this section by commenting on how the naive mas- X M M

sive model gives precisely the same result for the one-loog
Smatrix element in question. We know that this must be the
case, given the work of Sec. Il. The equivalence also follows
from the tree-level arguments of the previous section. To see¢
this, note that in computing the imaginary part of the one-

loop amplitude we needed thygg— gg amplitude only(i.e.

in the unitarity equation the sum is over physical states anc
so ghost states do not contributén addition, the internal
gluon propagators couple to conserved currents and so agg,
the same in both MYM and naive gluon calculations. Under
the assumption of analyticity, it follows that the two ap- KEKITED = \2gab (5.1)
proaches give the same one-loop amplitude. To see how 1727 Ouv 0 '
things go working explicitly with the full one-loop amplitude \yhere

one needs to repeat the calculations of this section. The only

ko

FIG. 3. Diagrams contributing tdﬁ‘zv. The blob refers to the
me corrections to the gluon propagator as in Fig®,Ze),2(f).

differences between tig@matrix element of the MYM com- kg g

pared to the naive model are the replacement of the bare 88b=gfab°—2V3=gfab°—2V§. (5.2
gluon propagator of Eq4.1) with the unitary gauge propa- a a

gator,

Using Egs.(5.1) one finds that the imaginary part of the

1 amplitude, A, can be written

q2_M2’

4,0,
M2

(4.32

U;,w(q):(g,u.v 1 +
A= Ef To,, Q" (k1) Q" (k2) Tg,,d(PS?)

and the fact that the naive model does not have any ghosts.

The actual calculation is straightforward, given the results _ Ef (1T —SOST)d(PSZ) (5.3
presented above. One needs to replace the massless poles 2 0 “Ouv 0 ’

appearing in the auxiliary integralsg,l,, andJ;, stemming _

from the longitudinal part of the gluon propagator, k2. ~ Whereas, for normal Yang-Mills theory,

The algebraic cancellations go through in exactly the same 1

way as before with ¥#—1/M? and 1k?(k+q)2—1/M*. Aqco=3 f TOWPMP(kl,n)PW(kz,n)Tng(Psz)

V. TWO-LOOP ANALYSIS 1 + + 5

=5 (76" T0uy= 28505 9)d(PS). (5.9
Now we turn to the two-loop calculation. We will show

that in this case renormalizability breaks down, and that th@g

lnon—r_enqmahzable terms are propagator-hke .and. depen Osgterms in Eqs(5.3) and(5.4), both expressions give rise
ogarithmically on the cutoff. We will work again directly . o )

- = to renormalizable real parts; i.e., the real part can be obtained
with the Smatrix element for the proceggl—qq. The cal- by means of a twice-subtracted dispersion relation. Renor-
culations will be carried out using the Feynman rules for themalizability is manifest since the tree-level amplitudes con-
naive massive gluon model since we know that, at th&ain no dangerous termsuch terms vanish by current con-
Smatrix level, it is equivalent to the MYM. servation and the contraction via the polarization tensors

Consider the tree-level amplitude of Sec. mggy (note  does not induce any non-renormalizable terms, as a conse-
that we have changed notation by adding the subscript “0"quence of Eqs(5.1).

otice that, despite the different factors accompanying the

to denote a tree-level amplituddt satisfies the following Proceeding to the two-loop analysis, one must consider
BRST identitieq 26]: two separate quantitiest,y(s,«®), which is the contribution
to the imaginary part of the two-loop amplitude which arises
k’fTSfW: kZVSSb, from the convolution of the tree-level amplitude for
o ab ab a(p1)a(p2)—a(ky)a(k,) with the Hermitian conjugate of
k376,,=K1,SG its one-loop partnefsee Fig. 3, and.Asy(s, «®), which is the
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loops are well-behaved for large. In addition, as follows

from [28], the tree-level BRST identities do indeed hold at
one loop. Thus

3 :E uwp vo + 2
it Arg(s.0) =3 | 2 REIT;,,.Q40(ky) Q" (ky)Th,, JO(PS?)

1
NNV =32 f 2 Rel(T4"T5,,~ S18H)1d(PS?)  (6.7)

. — b . . .
~ FIG. 4. Diagrams contributing td7,7. We do not show the and the real part can be obtained using the twice-subtracted
diagrams which are related to those shown by exchange of OUtgo'nﬂispersion relation.

bosons. Now we turn to the amplitude82°(k,,kz ,k3) for the

contribution to the imaginary part which arises on convolut-Process d(p1)d(p2)—9(ki)g(kz)g(ks), where k; is the
four-momentum of theth gluon, andp;+p,=q=k;+k,

ing the tree-level amplitude for the proces¢p:)d(Pz2)  +k,. Such an amplitude is given by the sum of the diagrams
—g(ky)g(kz)g(ks) with its Hermitian conjugatdsee Fig.  shown in Fig. 4.

4). The two contributions must then be fed into a twice- | gt ys compute the quantity
subtracted dispersion relation and integrated frdw?4o o
and from M? to = respectively, i.e.

Agg(s,a3)
" 1m T , 1
RE[I:I(S az)]:(s_ M2)2’7 fw ds’' Im HZQ(S ,az) = gf [ZLV[J Q,luf(kl) Qv)\(kz)pr(ks) TZ)\T]d(Psg)
' v \- 4M2(S/_M2)2(S/_S) .
- (5.9
= ds’ Im Iz4(s’,a?)
JgMz (s'—M2)%(s' —s) (55  where [d(PS® denotes the integration over the three-body

phase space, with the combinatorial factor 1/3! accounting
for the three indistinguishable gluons in the final state. As

where before, the polarization tensors satisfy the transversality con-
dition: k;- Q(k;)=0. At first sight, the integrand in E¢5.8)
seems to contain terms proportional to

Ang(slas)ZZDO(S)VﬂcvgIer‘Ig(Slaz)' (56) (M—Z)O (M—Z)l (M—Z)Z and (M_Z)S. The term propor-

tional to (M ~2)° is renormalizable, whereas all higher pow-
If our calculations reveal that the RHS of H§.5) is infinite,  ers give rise to non-renormalizable contributions: The higher
then we will have shown that th&matrix element forqq  the power, the worse the divergence. However, as we shall
— shortly see, by virtue of the BRST identities thgt,,, satis-
fies and the transversality properties of the polarization ten-
sors, only terms proportional toM~2)° and (M ~2)* sur-
vive. Thus, the worst divergence is logarithmic.

—qq computed in the framework of the MYM is not renor-
malizable at two loops.

We shall now show tha#l,y, when fed into the integral
on the RHS of Eq(5.9), gives "f‘.f'”'te contrlbu_tlon_, wheras 1 egtablish this fact, let us first study the action of the
the Asq mtegrallnegds an gdd|t|qnal subtraction in order toIongitudinal moment&?/ ,k;, andk5 on7,,,. Itis straight-
be rendered finite; i.e., it gives rise to a non-renormahzableforward {0 verify that]"’l";c(zlé K k3) satig¥fes the following
contribution. urp\R1102:13

To see that the contribution frord,4 contains no danger-
ous terms, it suffices to prove th@ the one-loop amplitude

identities:

prabe _ abg abc
T3P, for qq—gg is renormalizable andb) that it satisfies KL Ty = (512}, Kau t (S10), kg
exactly the same type of BRST identity as its tree-level
counterpartZg,,, i.e. that Egs.(5.1) hold if we replace K5 T500 = (S50 K1, (S29) 3 Ksy
Ton,—7T5., and S§°—S3°. The above statements) and
(b) can be both easily proved based on the analysi28if It K§TaRC = ( SBl)ibckl,u"' (S32)2%,, .
turns out that the closed expressions ., and S3° are e g (5.9
given by the Feynman diagrams of regular QCD in the Feyn-
man gauge, but with the tree-level propagators inside algose symmetry imposes the following relations among the
graphs replaced by massive ones, again in the Feynmag_ amplitudes:
gauge, with the exception that for the ghost contributions we !
have a different statistical factor. This discrepancy does not ajaia _ caaa
affect the high energy behavior of such graphs; i.e., the ghost Sij (ki kg -kl)_SjiJ (kj ki ki),
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Sﬁiajal(ki K; ’kl):Si"’l‘ialaj(ki ki k) Thus, one more power o ~2 has been eliminated. We are
(5.10 left with
1
and Aog=g: | [(TuuyTh, = S5:815) Q7(k)1d(PS),
:AR+ ANR! (517}
The closed form 05355k, k5 ,ks) reads
where
(S = (S + (Sl (5.12 .
with Aymgr [ 15T 3508 10PS), (5.8
kUFao’ (qvkl_ q,— kl)
Ss abc_ 2y/a| selcglab 3 H NR_ i i + 3
(5%, =0"Ve 2K, Ko s M2 ASF= =57 5 | (kS (ke S "d(PSY). (.19
4 fealginc Kza(ki+ka), . gelbflac K2oKs, In deriving the above expressions we have used the fact that
2ky-ko+M? 2k, k3+M?2 ’ the phase-space integration is invariant unkierk;. The

term in Eq.(5.19 will generate non-renormalizable terms; it

_ is clearly non-vanishing, since it is a three-body phase-space
(853)Zb°= —ig%v(p,) Tay"“k 5 Ty, integral over a positive definite quantity. In particular,
17 P2
2
feaqe NR__i Ca €l L\l — I \B\/E B
oTo , Ta)u(p) 7 Asg= 31 gyz) Valki—ko)“(ki—kp)PV3d(PS?)
o 1 . :
pr—ky 2k, k3 +M? (5.20

G139 Lhere the identitiesfabefede . facefdbe,, fadetbce_ g ang

In deriving the above expressions, in addition to the element?™Mf?Me'= 3¢, fabe _have been used. We also used
tary Ward identity, Eq.(3.9), we have employed the tree- (ki-kj)/(2kikj+M?)=3+---, where the omitted term is

level Ward identity proportional toM?, thus giving rise to a renormalizable con-
bed bemcd tribution; i.e., the omitted term belongs effectively,tbng.
A1 TS vap(A1,02,03,04) = PP 55(03,04,01+ 02) Notice that the non-renormalizable terms apurely
acemdbe propagator-like(universal, process independgent
+f el“ﬁva(q4,q2,ql+q3) Finally, it is instructive to compare the result of E§.17)
+fader52%(q21q3,ql+q4), with that of normal QCD. In the QCD case there are, of

course, no terms proportional d 2 or higher powers. On
(5.14  the other hand, the presence of the auxiliary four-vegipr
in the polarization tensors could in principle induce spurious
divergences, should it survive in the final answer. It is easy
to see however how any reference g disappears before
any of the phase-space integrations are carried out. Let us

which relates the bare three- and four-gluon vertices. All
remainingS;; amplitudes can be obtained fro#, using the
relations of Eq.(5.10.

We next let the longitudinal momenta in the polarization i ]
tensors act off,,,, and7,,, ,, and use Eq(5.9). We can see denote the corresponding QCD amplitudey,, . We start
how the (M ~2)3 terms disappear. The action of the term again with
M ~2k&k? gives terms proportional tk4 andk (or equiva- 49€D
lently k7 and k)z‘), which vanish when they hiQ*#?(k,) or 39
Q"*(k,). So Eq.(5.8) reduces to

OMNT.

As :if [ 7,0, Q"7 (K1) Q™M (k) Thy , 1d(PSY).
97 31 uvp 1 2) £anp (5.2

.19 where the gluons are now massless andP(k;)=0(i
At this point, the highest possible powerMf ?is (M~2)2 =1,2,3). Equatior(5.9) is valid for QCD, as can be shown
We now IetM’ZkEkg‘ act on7,,, andTpr: rigorously using BRST arguments. Since the elementary
Ward identity (3.9) is the same for both MYM model and
M‘ZkgkgTwp Q*7(ky) szp massless QCD, it follows that the closed expressions for the
factors §;; in Eq. (5.9 may be recovered from Ed5.13

simply by settingM?=0. We denote them béij . Then, by
= 545593 Quuo(ky). (5.1 letting the longitudinal momenta act dfj,,, and using Eq.

1 - ~
=30 f [T 10 PR7(Ka) P () PP7(k3) T 1, Jd(PS?)

= (ShKE + S5KE) QK1) (Sa kY +S5ks,)'
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(5.9, one can easily verify that any reference to the four- 1 — ;
vector 7, disappears and that the final answer is L== 3 FuFr "+ yDy+(D,¢) (D ) = V()

(6.1
1( ~ - N
AGSo= [ (40T, ~65,5],1d(PS?). with

5.2 .
(522 (D)= 0+ 1GT A,
So, unlike the MYM model, in massless QCD all potentially

[ i inTi 4. a2
dangerous terms vanish. (D) =0d,9'+igTa diA,,

V(¢)=p?dd"+N(pd")?, 6.2
VI. CONNECTION TO FIELD THEORIES
WITH A HIGGS MECHANISM whereT,=30,, ando, are the Pauli matrices. }i2<0, the
Higgs mechanism gives rise to three degenerate massive

gauge bosons of masd =guv/2, wherev = \/—,u.zl)\ is the
minimum ofV(¢). The above model is a vector-like variant

It is well known that the only way to endow gauge fields
with mass whilst maintaining unitarity and renormalizability

Eu;;:lbrgehoH\/IvgegvSermf?)Crh:RirEfie?:Esgr;rgéselpgofcset?g;e ';};?;C_of the usual electroweak sector of the standard model,
9 SU(2)xU(1), with the Weinberg angl®,, set to zero.

tions because it introduces extra scalar particles in the physi- The corresponding bare aauge boson bropadator iRthe
cal spectrum. In the MYM model massive gauge fields are P 9 gaug propag t

obtained without introducing extra physical fields, at the9349€ has the form

price of losing renormalizability at higher orders of pertur-
bation theory. It is instructive to see explicitly how the lack A = C9a(1-8) - 6.3
of renormalizability in the MYM model can be traced back my K g2 eM2 | g2— M2 '

to the absence of a Higgs particle, in particular understand

why the processig— qq (andqg—gg) is renormalizable at and the would-be Goldstone bos@®) and ghosft(c) propa-
one-loop, but ceases to be renormalizable beyond one-loogators are

In this section we address these issues in detail by perform-

ing a quantitative analysis of the differences and similarities i
between the MYM model and a Higgs modé&lM) at the AG,CZW'
level of the S'matrix. In addition, as has been discussed in

de.tail in[16], it is possible to speak. &.lbOUt the MYM m_odel In the unitary gauge, which formally corresponds to the limit
using the language of a HM. Specifically, one can think ofg_m, the gauge boson propagator takes the f6tr82 and
the MYM model as a theory where all gluons have beenyqqe are no Goldstone boson and ghost propagitbis.

given masses by adding to the Lagrangian a sufficient num: . . . _ )
ber of Higgs multipletd N fundamental representations o?b)?;lgégﬁ;? is a Higgs particle of mabk,=uv y2\ with bare

SU(N)], and then “freezing” all the polar excitations of the
N Higgs fields. The remainind\>—1 angular excitations
corresponding to the Goldstone bosons are precisely the an- Ay= _ (6.5
gular fieldsé? displayed in Eq(2.10. g?>— M3

To illustrate the above points we will use a toy Higgs field
theory which displays all the essential features we want tdrhe one-loog3-function for the gauge coupling has the form
study. The gauge group of this modelS$J(2). TheHiggs [30]
mechanism is triggered by a complex douhfetn the fun-
damental representatiofisospinl=3). This particular as-

signment endows all three gauge bosons with the same mass B=- P(bg_ b¢—bs)g® (6.6
- T

(6.9

M, whilst simultaneously prohibiting terms of the forgn/
for any fermion representation of isospih To mimic QCD,  ith

we choose the fundamental representation for the massless

fermion fields ¢, although this choice is not essential for

what follows. As there are no interactions between fermions o ) ] )

and scalars, the fermions remain massless even when the'ne renormalizability of the HM in the unitary gauge is not

scalar fields acquire a non-vanishing vacuum expectatioff@nifest. For example, it is known that, even though mhgoint
value. The Lagrangian density for this model is functions are non-renormalizable, by virtue of subtle cancellations,

the S'matrix element built out of these non-renormalizabipoint
functions can be made finite with the usual mass and charge renor-
malization[22]. A more immediate way to see this is to resort from

81t is elementary to verify that no gauge singlistal|=0) can be  the beginning of the calculation to the PT rearrangement of the
formed out of the above isospin assignments. amplitude[29].
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© FIG. 6. The Higgs graphs contributing tb'f The graphs of

Fig. 3 must also be included when comput'rﬁﬁ.
FIG. 5. Higgs boson contributions ﬂi’j In the unitary gauge ) ) )
recall that(b) is absent. the above expression becomes, in the ligfe=M? (and
dropping the terms proportional tg‘q”),
11 4

1
bQZECA, bf:—nfo, bS:—nSTS, (67)

1
3 6

ToH 2y Y T2 2 M2V A
I1,,(a%) 477(12>q In(q“/M“)g*"+ (6.9

whereT; is the Dynkin index of the fermion representation, L ,
T, is the Dynkin index of the scalar representatiopjs the where the ellipsis denotes numerical constants and terms of
number of fermion families in a given representation agd °rderO(M</g®). If we now setc,=2 in the expression of

the number of real scalar families. For the particular scalaFd- (427, and add it to the expression in H§.9), we see
representation we have chosdh=2 andn,=2. In the ab- that the coefficient in front of the resulting logarithmic term

sence of quarks we have that= (— g3/16m2) (43/6). is equa_l to 43/6, which is precisely_the coefficient of the HM
Let us now proceed with a study of the one-loop amp“_ﬁl—functl_on without quarks. _In addition, as expected from the
tude. As we already showed, at the level ®atrix ele- discussion on the connection between the MYM model and
ments the MYM model and the naive model are equivalenttn® HM given at the beginning of this section, the expression
In addition, if we adopt the unitary gauge for the HM, then it I" EQ- (6.9) is exactly the difference between E¢$.27) and
is obvious that, to any finite order in perturbation theory, the(4-28 for ca=2. o _
only difference between aB-matrix element computed in e now tum to the two-loop analysis. First, it is relatively
the MYM model and the correspondingmatrix element straightforward to establish that the contrlbut!on from 'the
computed in the HM is due to contributions to the latter 'Wo-gluon cut of those one-loop diagrams which contain a
which come from Feynman diagrams containing Higgs bo_l-_hggs_ boson, Fig. 6, gives rise Fo a re_normahzable contribu-
son propagatorf31]. For example, in the case of one-loop tion; i.€., the corresponding dispersiveea) part can be
quark scattering, in addition to the graphs in Fig. 2, whichmade finite by means of a twice-subtracted dispersion rela-
are common to both the MYM model and HM, the diagramt'on- Thls is of course expected, since the one—!oop dlag_rams
of Fig. 5a) contributes to th&matrix element of the HM. In  contributing to.A¢ which we studied in the previous section
other words, thesmatrix elements of the MYM model may Were themselve;_ renormallzable; i.e., no qancellat|on from
be obtained from the correspondi@matrix elements of diagrams containing a Higgs boson is requ_|red.H _
HM by omitting all diagrams containing a Higgs particle. ~ TO see this explicitly, consider the amplitude;,, given
Given this observation, it is easy to see why the the proce
gg—4qq in the MYM model is renormalizable at one loop: L
The only difference between the renormalizable HM and the | vo + 2
MYM model is the contribution corresponding to the graphs Azg(S)= Ef 2 Re[T'fW Q7 (k1) Q™(K2) Ty, 1d(PS?)
of Fig. 5, which themselves form a gauge-invariant and (6.10

renormalizable subset. Denoting their contribution Iﬁ&ﬂ

we have that, up to the immaterial tadpole graph, whereT'fW is shown in Fig. 6. It is straightforward to verify

that TZ'W is a gauge-independent quantity, and that it satis-
dnk fies

i(2m)"

K.k,
M2

Hgg:gzsz ( _gp,v+

kTﬁMV:kZVS? (611)
1

X 2 2 2 27"

(k*=M2)[(k+q)*=M{]

SH=g\V*DYUq)[IDA() ] (ki —ky)®.  (6.12
The factorM? in front of the integral originates from the 19 (@URD @] (ke ~kz)

gluon-gluon-Higgs coupling and guarantees Iﬁaﬂ can be Notice that the expression in square brackets behaves like
made ultraviolet-finite by means of the usual mass and waveg(¥M?) for s=>M?2. Using Eqs(5.1) and(6.11) we can see
function renormalization. Afteron-shel) renormalization, that
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=2(ky— ko) *(ky—ky)?, or kgkh=—1ksk& valid under the
integral sign, may be found useful. Comparing to E520

of the previous sectionisetting c,=2), we see that the
Higgs contribution exactly cancels the non-renormalizable
part of the MYM two-loop contribution. Evidently, even
though the Higgs boson does not couple directly to the
quarks(since in this toy model the gauge symmetry prohibits
Yukawa couplingy its importance in restoring the renormal-

y 1 : Hot ) izability of the procesg q— qq manifests itself through the
AZg(S):EJ 2Re[(T4,, 76" — S{SHId(PS?). tree-level sub-amplitudegg— gg containing the Higgs bo-
(6.13 son(Fig. 7), which reside in the two-loop diagrams.

i: In arriving at the above results, identities of the tyfek®

FIG. 7. One of the graphs contributing 7d;,, . The others are
obtained by permuting the outgoing bosons.

So this contribution gives rise to renormalizable two-loop
amplitudes.

To see how the presence of the Higgs boson enforces In this section we take an introductory look at the elastic
renormalizability, we focus on the two amplitudeéisgéa and  scattering of a pair of quarks via two-gluon exchange within
A's"éb: the MYM model. Of course, quark-quark elastic scattering

cannot be measured directly, but it is possible that many of
A';,'g'a(s) the elements which are central to the more realistic processes
(e.g. hadron-hadron elastic scattejirage contained in this
:ij [T7 Q“o(k;) Q™(kp)QP7(k )7 1d(PS?) simpler treatment. This is in the spirit of the Donnachie-
3! mvp 1 2 8/ Lans Landshoff-Nachtmann approaf®,32], where the success of
6.14) the additive quark rule provides evidence that one need not
' know about the detailed structure of the colliding hadrons
and before one can proceed to make elastic scattering calcula-
tions, although it is not yet established that this is correct
1 [33].
Agg'bZQ 2 Re[74,, Q" (ky) Q"™(k2)Q?"(k3) T, ] As a first step, one can calculate the amplitude for the
' elastic scattering of differently flavoured quarks, igqg;
X d(PS?) (6.15 —@;q;, at the lowest order, keeping only those terms which
dominate in the Regge limit. This is a straightforward calcu-
where the amplitudépr is shown in Fig. 7. As can be seen, lation of the box diagram shown in Fig(@ rotated through
.Agéa arises by multiplying only those three-gluon ampli- 90° (the CI’OSSEd b_OX diagram Cor_1tri_butes only t(_) the real part
tudes which contain Higgs particles whileh:" comes from  Of the amplitude in the Regge limit and constitutes a sub-
interfering the Higgs diagrams with the non-Higgs diagramd€ading correction The leading contribution is imaginary
of Fig. 4. Since the coupling of the Higgs boson to twoand so can be obtained directly using the cutting rules; i.e.,
gauge bosons is proportional kb, it follows thatTﬂVp has the amplitude for single gluon exchange can be written

already a factoM? built into it. Consequently, there is an

VII. QUARK-QUARK ELASTIC SCATTERING

implicit factor M* inside A5;%(s), and therefore the only _ v
non-renormalizable contribution id 5;%(s) will come from A(s,1)1 guon= T ®T?2pY o M22p55)‘1)‘15)‘2)‘é’
the term in the polarization tensors which is proportional to 7.1
(M~2)3, We therefore find that '
11 1 wherek is the momentum of the exchanged gluon apdnd
[Agéa]NR(s)=—(§>§—2 Ve (ky—ky)“ p, are the momenta of the incoming quarks, ise=(p;
"M +p,)?. The high-energy limit allows the exchanged gluon to
x(kl—kz)ﬁvzd(P§’). 6.16 be assumed soft, and so the eikonal approximation has been

used to simplify thegqg vertex. The delta functions ensure
helicity conservation at each vertex. Multiplying by the con-
jugate amplitude, projecting out the color singlet part and

erforming the two-body phase space integaitting the
mtermediate quarks on-shehllows us to write

The interference term,étgdb, has an implicitM 2 inside, and
so now contributions from theM ~2)2 and (M ~2)? terms in
the polarization tensors are needed. One finds, using E
(5.9), the following non-renormalizable contribution:

[A5E] (s):iif Ve (ki —k,) (ki —ko)PVed(PS®). A(St)=iSa2N2 1] d?k !
3g JNR IRYE o\ K17 Ko 1 2 B ) s N2 (k2+M2)[(k—q)2+M2]’

(6.17) (7.2
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where g?=—t>0N is the number of colors and the ex- situation is different for high- processes, since noy?)
changed gluons are taken to be purely transverse. The trans-1//t| and so, for\/—t>(10°—10*)M we would need to
verse momentum integral can be performed and yields ~ worry that unitarization corrections are important.

2
N“—1 1 A(t)+1 7.3 VIIl. CONCLUSION AND PERSPECTIVES

S
A(st)=i —2mai—— N,
t NZ A TAM-—L In this paper we have reviewed and investigated the for-

where A(t) is defined in Eq.(3.28. Thus, the total cross malism of the_ MYM mode!, argL_Jing that it_may be rel_evant
section forg;q;— X is as a tool to mvestlgate_ d|ﬁracF|ve scatterifgnd possibly

" other areas of strong interactions phenomenodlogyhere
1 N2—1 traditi_onaI_QCD methods are inadequate. A detailed study of

‘TT:WT’“S 749 the gg—0q process in the context of this model up to the
two-loop order was presented, and the renormalization prop-
It is instructive to investigate the conditions under whicherties of the correspondingmatrix were discussed.

the two-gluon exchange amplitude calculated above violates L€t us summarize briefly the prospects for a study of dif-
unitarity. We shall see that unitarity is violated only for very fractive scattering. A successful model of diffraction should
central collisions and that these constitute an insignificanP€ able to explain the growth of total hadronic cross sections
fraction of the total and elastic scattering cross sections. Onlyith increasings. In particular, the model should show why
for very hight processes do we have collisions which arethe rise in soft hadronic processésg. the totalpp cross
sufficiently central to cause a worry. This gives us confi-Section proceeds at a much slower rate than in hard pro-
dence to proceed to the next order of calculation, assured thgessese.g. they* p cross sectio the shrinkage of the for-
we have yet to receive indications that unitarisation correcward diffraction peak with increasing In other words, the

NZ

tions are important. model should be able to explain the qualitative success of the
To investigate unitarity we perform a Fourier transform of Donnachie-Landshoff-Nachtmann model of the Pomeron as
the elastic scattering amplitude, i.e. a single Regge pole in soft diffractidne. in those processes
where there is no large scalend its failure in smalk deep
~ 2q 7iq-bA(S’t) inelastic scattering, in the diffractive production of all vector
A(S,b)Zf (277)26 55 (7.5 mesons at higi)? and in the diffractive production af/¥

mesons at lowQ?.
andb is the impact parameter of the collision. Written in this /" the future, we plan to use the MYM model to compute

way, unitarity demands that the completeO(«;) corrections to the two-gluon-exchange
' amplitude discussed in the previous section, in order to
|,~A(s b)|2<1 verify whether some or all of the aforementioned features

emerge. More specifically, such a calculation should help us

for all b. However, we can be confident that unitarisationinvestigate the following points: .
corrections are small if the inequality is satisfied for those () In the limit of large enoughs, the logarithms
values of impact parameter which dominate the process ur= (@sIn ™, which appear at each order in perturbation
der study. Numerical evaluation of E7.5 demonstrates theory, become large and it becomes necessary to sum them
that the amplitude only ever violates unitarity fanb O all orders. This summation of leading logarithms is per-

<1072,10°3 for 2/a?= 20,50 respectively, i.e. only for very formed using the formalism of BFKL. It is an open question
central collisions(on the scale of the gluon massn this as to precisely when this summation leads to the dominant

language, the total cross section is given by contribytion to the amplitude. In fact, sincg the summation is
of leading logarithms only, we cannot define exactly what it
oy means to sagis large, although we note that, in this respect,
UTZZJ d°b A(s,b) (7.6) analysis of the next-to-leading logarithmic corrections calcu-
lated by Fadin and co-workef84] should improve the situ-
while the elastic scattering cross section is given by ation. By computing at fixed order iag we can investigate
the relative importance of the «In sterm compared to the
O'eI:f d2b |Z(s,b)|2. (7.7) terms which do not inc_lud.e the logarithm. In thi_s way, we
can make some quantitative statements regarding the need
- (within the MYM mode) to sum the remaining leading loga-
Since A(s,b) decreases monotonically &b increases, it rithms. For example, it might be that, at the energies of con-
follows that the elastic scattering cross section receives gemporary colliders, the logarithm is not so large to justify
larger contribution from more central collisions than the totaldropping the other terms; i.e., a fixed order calculation might
cross section. To a first approximation, the typical impactbe the better way to proceed.
parameter is set by the gluon mass, {l&?)=C/M? where It is known that introducing a gluon mass has a very small
C~1 and is larger for the total cross section than for theeffect on the leading logarithmic contributid®5,4]. This
elastic cross section. In either case, we are always well awagrises largely because the BFKL summation is infrared fi-
from the dangerous region where unitarity is violated. Thenite; i.e., there are infrared cancellations between real and
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virtual graphs which reduce the sensitivity to this region.This latter possibility can be investigated after computing the
These cancellations persist even after adding a gluon masadiative corrections to the two-gluon exchange graphs.
(via a Higgs mechanism, or via the MYM modelnd serve In summary, we think that the MYM model may prove a
to reduce the sensitivity of the amplitudes to variations in theuseful tool in understanding the phenomenology of diffrac-
mass. Note that it is not too important how the mass is intive scattering by bridging the gap between different QCD-
troduced. This can be seen since no Higgs graphs contributaspired models. Such a conjecture will be tested through
to the leading logarithm summation and since the gaugenext-to-leading order calculations of quark-quark elastic
dependent part of the gluon propagator is also sub-leadingcattering, which we plan to discuss in a forthcoming paper.
(in covariant gauges

(ii) It is also known that the leading logarithm summation
leads to a rapid rise of total cross-sections. It can be argued
that this rapid rise, which is due to multiple soft gluon emis- We thank V. Del Duca and M. Testa for some useful
sion, reveals itself in hard scattering processes, but is masketiscussions. This work was supported in part by the EU
in softer processes by unitarity corrections. Any slowingFourth Program “Training and Mobility of Researchers,”
down of the rise via unitarity corrections has yet to be pre-Network “Quantum Chromodynamics and the Deep Struc-
cisely quantified. Another possibility is that the strong riseture of Elementary Particles,” contract FMRX-CT98-0194
seen in hard processes can be explained in fixed-order pefPG 12-MIHT). The work of J.P. is funded through Grant
turbation theory, i.e. arising from the $rterm, and that this No. TMR-ERBFMBICT 972024. J.P. also acknowledges fi-
same rise is masked in soft processes by a non-logarithmitancial support from the Department of Physics and As-
contribution which is comparable in size to the logarithmictronomy of the University of Manchester while parts of this
contribution (i.e. as the process becomes harder, the nonwork were being completed. C.P. acknowledges the support
logarithmic contribution falls away to reveal the logarithm of PPARC.
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