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Massive Yang-Mills model and diffractive scattering
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We argue that the massive Yang-Mills model of Kunimasa and Goto, Slavnov, and Cornwall, in which
massive gauge vector bosons are introduced in a gauge-invariant way without resorting to the Higgs mecha-
nism, may be useful for studying diffractive scattering of strongly interacting particles. With this motivation,
we perform in this model explicit calculations ofS-matrix elements between quark states, at the tree level, one
loop, and two loops, and discuss issues of renormalizability and unitarity. In particular, it is shown that the
S-matrix element for quark scattering is renormalizable at one-loop order, and is only logarithmically non-
renormalizable at two loops. The discrepancies in the ultraviolet regime between the one-loop predictions of
this model and those of massless QCD are discussed in detail. In addition, some of the similarities and
differences between the massive Yang-Mills model and theories with a Higgs mechanism are analyzed at the
level of theS matrix. Finally, we briefly discuss the high-energy behavior of the leading order amplitude for
quark-quark elastic scattering in the diffractive region. The above analysis sets up the stage for carrying out a
systematic computation of the higher order corrections to the two-gluon exchange model of the Pomeron using
massive gluons inside quantum loops.@S0556-2821~99!04305-2#

PACS number~s!: 12.40.Yx, 11.10.Gh, 11.55.Bq
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I. INTRODUCTION

The quantitative description of diffractive phenome
within the framework of QCD is a long-standing problem.
part, the difficulty arises because diffractive processes
volve both hard and soft scales, resulting in a complica
interplay between perturbative and non-perturbative effe
One way to tackle this problem is to attempt a descript
using a ‘‘dressed’’ version of the perturbative degrees
freedom, where the ‘‘dressing’’ is meant to mimic the role
non-perturbative effects. Following Low@1# and Nussinov
@2#, Landshoff and Nachtmann~LN! @3# introduced a two-
gluon exchange model of diffractive scattering, where th
assumed that the infrared behavior of the~Abelian! gluon
propagator is modified by non-perturbative effects. Th
success in reproducing several of the features of Pom
exchange suggests that such an attempt may not be to
futile, and makes the question of how to compute system
cally higher order corrections within this model all the mo
interesting.1

In the LN picture of the Pomeron the need for modifyin
the gluon propagator arises as follows: The simplest Fe
man diagram which can model the Pomeron~exchange car-

1A different approach is provided by the Balitskii-Fadin-Kurae
Lipatov ~BFKL! formalism@4#, which is the most serious attempt
a first principles QCD derivation of Pomeron exchange to da
However, the perturbative nature of the BFKL approach of
makes it unsuitable for the analysis of diffractive scattering, wh
both soft and hard momentum scales are in general relevant.
0556-2821/99/59~7!/074008~18!/$15.00 59 0740
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rying the quantum numbers of the vacuum! is a box diagram
where two off-shell gluons are exchanged between incom
and outgoing quarks, which scatter elastically. The pertur
tive calculation of the above process gives rise to an infra
singularity at t50, whose origin is the fact that the bar
gluon propagatord0(q2) diverges atq250. Specifically, the
amplitude obtained from such a diagram assumes the f

ib0
2(ūgmu)(ūgmu), where b0

2 is given by b0
2

;*dq2@asd(q2)#2, andd(q2) is the gluon propagator. The
introduction of a ‘‘massive’’ gluon propagator is the simple
way to obtain a finiteb0

2 and the gluon mass is then fixed b
data.

It has been suggested@5# that the non-perturbative dynam
ics of QCD lead to the generation of a dynamical glu
mass2 while the local gauge invariance of the theory rema
intact. This gluon ‘‘mass’’ is not a directly measurable qua
tity, but must be related to other physical parameters suc
the string tension, glueball masses, or the QCD vacuum
ergy @7#, and furnishes, at least in principle, a regulator f
all infrared divergences of QCD. The above picture emerg
from the study of a gauge-invariant set of Schwinger-Dys
equations@8#. In addition, lattice computations@9# reveal the
onset of non-perturbative effects which can be modelled
means of effectively massive gluon propagators. Various
dependent field theoretical studies spanning almost two

.
n
e

2Dynamically generated masses depend non-trivially on the
mentum; in particular, they vanish for large momenta. This prope
is crucial for the renormalizability of the theory@6#.
©1999 The American Physical Society08-1
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cades@10,11# also corroborate some type of mass generat
although no consensus about the exact nature of the m
generating mechanism has been reached thus far.3 Interest-
ingly enough, the effective gluon propagator derived in@8#
describes successfully nucleon-nucleon scattering when
serted, in a rather heuristic way, into the two-gluon excha
model @13#. Despite this phenomenological success, ho
ever, it is not clear whether a dynamical gluon propaga
may be used in calculations as if it were a tree-level pro
gator derived from Feynman rules. More importantly, it
not known how to systematically improve upon such a c
culation, i.e. how to compute higher order corrections.

Given this lack of a computational scheme originati
from a ‘‘first principles’’ QCD treatment, we propose instea
to resort to a field theory which is formally close to QCD a
contains at the same time the feature which appears to
phenomenologically useful, namely a gluon mass. To t
end we revisit a model introduced independently by Ku
masa and Goto@14#, Slavnov@15#, and Cornwall@16#, which
provides a generalization to a non-Abelian context of
work of Stueckelberg@17#. This model accommodates ma
sive vector bosonswithoutcompromising local gauge invari
ance andwithout introducing a Higgs sector. In what follow
we will refer to it as the massive Yang-Mills~MYM ! model.

In the MYM model, a mass term is added directly to t
Yang-Mills ~YM ! Lagrangian and gauge invariance is pr
served with the help of auxiliary scalar fields. Unlike th
usual Higgs mechanism@12#, however, there are no add
tional physical particles appearing in the spectrum~no Higgs
bosons!. The price one pays is that perturbative renorma
ability is lost. In particular, the one-loopS-matrix element
for gluon elastic scatteringgg→gg is known to be non-
renormalizable@18#; its renormalizability can be restore
only with the introduction of Higgs boson in the spectru
@19–21#. This fact renders the MYM non-renormalizable
one loop. However, the introduction of a Higgs boson isnot
necessary for the renormalizability of the one-loopS-matrix
of the processesqq̄→qq̄ which is relevant for diffractive
scattering. As we will see in detail, the first time this latt
process receives~logarithmically! non-renormalizable contri
butions is at two loops. In addition, the model has be
shown to be unitary, in the sense of the optical theorem
all orders in perturbation theory@15#. Several formal proper-
ties of this model have been extensively studied in the lite
ture cited above and are well understood.

Our main phenomenological motivation for turning to t
MYM model is to carry out the next-to-leading order corre
tions to the two-gluon exchange process forqq̄→qq̄, in the
context of a concrete field theory, where the effects origin
ing from the presence of a gluon mass can be studied
tematically. Clearly, before attempting such a complex c
culation it is necessary to develop some familiarity with t
predictions of the MYM model at leading and next-t

3Of course, the introduction of a gluon mass the at tree le
through the usual Higgs mechanism@12# is excluded, as it would
introduce extra~unwanted! scalar particles in the physical spectrum
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leading order. The purpose of the present work is to prov
a detailed analysis of various field-theoretical issues wh
appear when one uses the MYM model for computi
S-matrix elements4 involving quarks as external states.
addition to the clarification of theoretical points, several
the results presented in this paper constitute useful ingr
ents of the full calculation.

More specifically, we discuss the following points:
~i! We analyze in detail how the MYM and QCD diffe

already at the tree level, and how this difference propaga
to higher orders. In particular we show using both unitar
and analyticity arguments as well as explicit one-loop cal
lations how the tree-level discrepancy affects the one-lo
beta function, i.e. how it alters the high energy behavior
the theory.

~ii ! We verify explicitly in the context of a specific ex
ample that theS-matrix contains no unphysical poles. Th
cancellation of such poles, which is expected from form
considerations, provides a non-trivial consistency check
the model, and can serve as a guiding principle when ca
ing out lengthy calculations.

~iii ! We demonstrate that at the one-loop level the scat
ing amplitude of interest is renormalizable, and that one
construct a gauge-invariant running coupling~effective
charge! just as in QCD. This leads to the definition of
gauge-invariant gluon propagator, generalizing Cornwa
construction for the standard QCD case. A detailed comp
son of our result with the QCD one is performed.

~iv! We show that the non-renormalizable contributi
arising at the two-loop level depends only logarithmically
the cutoff. This result is new, to the best of our knowledg
its derivation relies crucially on extensive cancellatio
which take place at the level of theS-matrix after the judi-
cious exploitation of the tree-level Ward identities of th
MYM.

The paper is organized as follows: In Sec. II we brie
review the MYM formalism, and establish connectio
which will be useful for the calculations which will follow
In Sec. III we analyzeqq̄ annihilation into two gluons at the
tree level within the MYM model, and compare with th
result in standard YM. In Sec. IV we study the one-lo
contributions toqq̄→qq̄ and show in detail how the MYM
model gives rise to renormalizable and unitaryS-matrix ele-
ments. In Sec. V we turn to the two-loop contribution
qq̄→qq̄, and demonstrate the emergence of logarithmica
divergent non-renormalizableS-matrix elements. In Sec. V
we investigate quantitatively the connection of the MYM

l

4By working directly with S-matrix elements one has the add
tional advantage of avoiding pathologies which affect individu
unphysical Green’s functions. In fact, because of several canc
tions taking place at the level ofS-matrix elements, the final answe
often has better properties than those of the Green’s functions
volved in the calculation. A typical example of this situation aris
when using the unitary gauges for the electroweak model; in th
gauges, Green’s functions are non-renormalizable, whileS-matrix
elements are@22#.
8-2



s

og
e
c

ph
te
a

l
d.
ica
tic
e
lic

e
d

a
s

e.

-
d

an

s
ng

s-

:

an

n

ge
n
oce-

to

to
one
g

in-
e
les

r-
pli-

this,
ion

r-

ly
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field theories where the gauge bosons acquire masse
means of the usual Higgs mechanism@12#. In particular, we
show how the presence of a Higgs boson cancels the l
rithmically non-renormalizable contributions found in th
previous section. Throughout Secs. III–VI we use the pin
technique~PT! rearrangement of theS-matrix @23,8# in order
to make several cancellations manifest. We hasten to em
size, however, that the PT only serves as a convenient in
mediate step, helping to expose the unitarity and renorm
ization properties of theS-matrix, but none of the fina
results reported here depends on the use of this metho
Sec. VII we take a first look at a possible phenomenolog
application of the MYM model, namely, quark-quark elas
scattering in the diffractive region. Finally, in Sec. VIII w
summarize our results and discuss possible future app
tions.

II. THE MASSIVE YANG-MILLS MODEL

In this section we first review briefly how local gaug
invariance and massive gauge bosons can be reconcile
the MYM. Next we show that the MYM is physically
equivalent to a field theory where the gauge bosons h
been endowed with a mass ‘‘naively,’’ i.e. by adding a ma
term at the tree level without preserving gauge invarianc

In order to introduce the MYM model@15,16#, let us start
from the standard YM action for theSU(3) gauge group:

SY M@A#52
1

2E d4x Tr~FmnF mn! ~2.1!

whereFmn(x)5]mAn(x)2]nAm(x)1 ig@Am(x),An(x)# and
Am(x)5Am

a (x)Ta , with Ta theSU(3) generators in the fun
damental representation. For the purpose of the present
cussion, matter fields can be ignored. Under a gauge tr
formation, parametrized byU(x),Am→Am

U where

Am
U~x![U~x!Am~x!U21~x!2

i

g
U~x!]mU21~x!.

~2.2!

The requirement of gauge invariance for the action forbid
naive mass term for the gluon. However, by introduci
SU(3)-valued fields,V(x), one can define

Cm~x![2
i

g
V~x!]mV21~x!. ~2.3!

Under a gauge transformation one postulates thatV→VU

5UV. As a consequence,Cm(x) has the same gauge tran
formation properties as the gauge fieldAm , i.e.

Cm
U5UCmU212

i

g
U]mU21. ~2.4!

The quantity

Bm@A,V#~x![Am~x!2Cm~x! ~2.5!
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thus transforms asBm
U5UBmU21 under a simultaneous

gauge transformation of theAm andV fields; so one can add
to the Yang-Mills action the following gauge-invariant term

SM@A,V#5M2E d4x Tr BmBm. ~2.6!

More explicitly, gauge invariance of the above quantity c
be written as

SM@AU,VU#5SM@A,V#. ~2.7!

Recalling Eqs.~2.3! and~2.5!, it is clear thatSM generates a
mass term for the gluon fieldAm , a kinetic term for the field
V, and an interaction term between theA andV fields.

Finally, we can write down the gauge-invariant actio
functional for the MYM theory:

SMY M@A,V#[SY M@A#1SM@A,V#. ~2.8!

We write now the path integral for such a theory. Gau
invariance ofSMY M implies that a gauge-fixing prescriptio
is needed to quantize the theory. The Faddeev-Popov pr
dure can be carried out as in standard YM theory, leading

Z5E DVDAeiSMY M[A,V]D@A#d~g@A# !. ~2.9!

Here the gauge-fixing condition isg@A#50 andD@A# is the
corresponding Faddeev-Popov determinant . In order
make the theory amenable to a perturbative treatment
could rewriteSM@A,V# as a power series in the couplin
constantg. This is obtained by writing

V~x!5exp~ igua~x!Ta!, ~2.10!

and inserting the power expansion forV into Eq. ~2.6!. The
resulting expression contains interaction vertices with an
creasing number of scalaru fields and zero or one gaug
field Am . Then, using standard techniques, Feynman ru
can be derived@15#. However, as long as one is only inte
ested in gauge-invariant calculations, a considerable sim
fication of the Feynman rules can be achieved. To see
let us consider the calculation of the vacuum expectat
value of a generic gauge-invariant operatorO@A#:

^O&[
1

ZE DVDAeiSMY M[A,V]D@A#d~g@A# !O@A#.

~2.11!

We perform a change of integration variable in theDA inte-
gral; i.e., we rewrite it in terms of a new fieldAm8 , defined
through the following identity:

Am5V Am8 V212
i

g
V]mV21[A

m

8 V
. ~2.12!

In other words,Am andAm8 are related by the gauge transfo
mation generated byV. Thus,DA5DA8. Also, gauge invari-
ance implies thatSY M@A#5SY M@A8#,O@A#5O@A8# and
D@A#5D@A8#. Strictly speaking, the last equality holds on
8-3
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if one neglects the issue of Gribov copies. This is correct
the purpose of a perturbative treatment.

The crucial observation is that because of Eqs.~2.3!, ~2.4!
and ~2.5! one has

Bm@A,V#[Bm@A8 V,V#5V Am8 V21; ~2.13!

hence, we can write

SM@A,V#5M2E d4x Tr Am8 A8 m. ~2.14!

The path integral~2.11! can then be rewritten as

^O&[
1

ZE DV DA8expi S SY M@A8#1M2E d4x Tr Am8 A8mD
3D@A8# d~g@A8 V# ! O@A8#. ~2.15!

Notice that in the above expression all the dependence on
V fields is carried by thed-function. The integration on theV
fields yields a factor 1/D@A8#, which cancels the Faddeev
Popov determinant arising from the gauge-fixing procedu
The final path integral can be written as

^O&5
1

ZE DA

3expi S SY M@A#1M2E d4x Tr AmAm D O@A#.

~2.16!

The above manipulations show that, as long as the oper
of interest is gauge invariant in the usual massless Q
sense, the model defined by Eq.~2.9! is equivalent to the
simpler massive vector theory defined by Eq.~2.16!. The
latter is obviously much easier to handle in perturbative c
culations.

It is important to emphasize that the models are
equivalent at the level of~gauge dependent! Green’s func-
tions of the gluon field. In particular, let us compare t
tree-level expressions for the gluon propagator in the
models. From Eq.~2.9! one obtains~in the Landau gauge!

Dmn
tree~k!5

1

k22M2 S gmn2
kmkn

k2 D , ~2.17!

while Eq. ~2.16! yields

Dmn
tree~k!5

1

k22M2 S gmn2
kmkn

M2 D . ~2.18!

The former expression corresponds to a gluon with two
larization states, as in the massless case, while the latte
three polarization states, as expected for a massive ve
boson. Of course the number of degrees of freedom in
two models has to match. In fact, the third polarization st
of Eq. ~2.18! corresponds to the massless scalar fieldu(x)
which appears in the MYM model.
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We have seen that gauge invariance can be maintaine
a theory of massive gluons without introducing addition
particles into the spectrum. However, as we will discu
later, and as noted by others@18#, the resulting theory is no
longer renormalizable.

III. TREE-LEVEL ANALYSIS

In this section we will study in detail the tree-level cro
section for quark-antiquark annihilation into two massi
gluons, i.e.qq̄→gg, within the framework of the MYM
model. The reason is three-fold: First we want to gain so
familiarity with the formalism, second we want to study th
difference between the MYM model and standard QCD
the level of physical amplitudes, and third, in conjuncti
with the results of the next section, we will check explicit
that the MYM model produces unitaryS-matrix elements.
Throughout this section we use the methodology and n
tion first introduced in@24#.

Let us consider the quantityA,

A5
1

2E d~PS2!^qq̄uTugg&^gguTuqq̄&†, ~3.1!

where

E d~PS2!5
1

~2p!2E d4k1E d4k2d1~k1
22M2!

3d1~k2
22M2!d~4!~q2k12k2! ~3.2!

is the phase space integral for two particles with equal m
M in the final state, withd1(k22M2)[u(k0)d(k22M2). In
Eq. ~3.1!, the factor 1/2 is statistical, arising from the fa
that the final on-shell gluons should be considered as ide
cal particles in the total rate.A is the contribution to the
imaginary part of the amplitude forqq̄→qq̄ which arises
from a gluon loop. We first focus on the tree-level amplitu
T[^qq̄uTugg&. Diagrammatically, the amplitudeT consists
of two distinct parts:t- andu-channel graphs that contain a
internal quark propagator,T tmn

ab , as shown in Figs. 1~a!,1~b!
and ans-channel amplitude,T smn

ab , as shown in Fig. 1~c!.
The subscripts ‘‘s’’ and ‘‘ t ’’ refer to the corresponding Man
delstam variables, i.e.s5(p11p2)25(k11k2)2 and t5(p1
2k1)25(p22k2)2.

Let us first define the following quantities:

Vr
c~p1 ,p2![gv̄~p2! Tcgr u~p1!,

FIG. 1. Diagrams contributing toT mn
ab .
8-4
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R m
ab~p1 ,p2 ,q![g fabcD0~q!Vm

c ~p1 ,p2!, ~3.3!

where

D0~q![
1

q22M2
. ~3.4!

The amplitude is given by

T mn
ab5T smn

ab1T tmn
ab , ~3.5!

with

T smn
ab5R l

abGmn
l ~q,2k1 ,2k2!, ~3.6!

where

Glmn~q,2k1 ,2k2! 5 ~q1k1!nglm1~k22k1!lgmn

2~q1k2!mgln ~3.7!

is the usual three-gluon vertex and

T tmn
ab52 ig2v̄~p2!

3S Tbgn
1

p” 12k” 1

Tagm1Tagm
1

p” 12k” 2

gnTbD u~p1!.

~3.8!

Notice that in Eq.~3.6! only the ‘‘gmn’’ part of the tree-level
massive gluon propagator appears, since any longitud
part vanishes due to current conservation when it hits
external on-shell quarks. The three-gluon vertex satisfies
fundamental Ward identity

k1
mGlmn~q,2k1 ,2k2!5@d0

21~k2!2d0
21~q!#gln

1@qlqn2k2lk2n#

5@D0
21~k2!2D0

21~q!#gln

1@qlqn2k2lk2n# ~3.9!

~and cyclic permutations! whered0
21(q)[q2. The form of

the Ward identity in the massive theory is therefore identi
to that of the massless theory.

We then have

A5
1

2E T mn
abQms~k1!Qnl~k2!T sl

ab†d~PS 2!

5
1

2E @T smn
ab1T tmn

ab #Qms~k1!Qnl~k2!

3@T ssl
ab†1T tsl

ab†#d~PS2!, ~3.10!

where

Qmn~k! [2gmn1
kmkn

M2
~3.11!
07400
al
e

he

l

is the polarization tensor of the massive gluon. On shell,
k25M2, we have thatkmQmn(k)50. This fact motivates the
standard PT decomposition of the three-gluon vertex@25#:

Glmn~q,2k1 ,2k2!5Glmn
F ~q,2k1 ,2k2!

1Glmn
P ~q,2k1 ,2k2! ~3.12!

where

Glmn
F ~q,2k1 ,2k2!5~k22k1!lgmn12qnglm22qmgln ,

Glmn
P ~q,2k1 ,2k2!5k1mgln2k2nglm . ~3.13!

The termGrmn
P vanishes when it hits the polarization tenso

and Eq.~3.10! becomes

A5
1

2E @T smn
F,ab1T tmn

ab #Qms~k1!Qnl~k2!

3@T ssl
F,ab†1T tsl

ab†#d~PS2!, ~3.14!

where

T smn
F,ab5R r

abGrmn
F . ~3.15!

To evaluate further the expression on the right-hand s
~RHS! of Eq. ~3.14! and establish its connection to massle
QCD we proceed to determine the action of the longitudi
momenta coming fromQms(k1) andQnl(k2) on T smn

F,ab and
T tmn

ab :

k1
mT smn

F,ab5@~k12k2!lk2n2M2gln#R l
ab2D0

21~q!R n
ab,

~3.16!

k2
nT smn

F,ab5@~k12k2!lk1m1M2glm#R l
ab1D0

21~q!R m
ab,

~3.17!

k1
mT tmn

ab5D0
21~q!R n

ab , ~3.18!

k2
nT tmn

ab52D0
21~q!R m

ab. ~3.19!

The terms proportional toD0
21(q) cancel when forming the

sumk1
m@T smn

F,ab1T tmn
ab #, giving rise to

k1
m@T smn

F,ab1T tmn
ab #5@~k12k2!lk2n2M2gn

l#R l
ab,

k2
n@T smn

F,ab1T tmn
ab #5@~k12k2!lk1m1M2gm

l #R l
ab.

~3.20!

Such a cancellation is instrumental for the good high-ene
behavior of the resulting amplitudes. Using the longitudin
momenta inside the polarization tensors to trigger the id
tities listed above, we can decomposeA into three parts:

A5A11A21A3 ~3.21!

where
8-5
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A15
1

2E FT s
FT s

F†2RmH 7

4
~k12k2!m~k12k2!n

12M2gmnJ Rn
†Gd~PS2!, ~3.22!

A25
1

2E ~TtT s
F†1T s

FT t
†!d~PS2!, ~3.23!

A35
1

2E TtT t
†d~PS2!. ~3.24!

A1 contains the purely propagator-like~self-energy! contri-
butions,A2 contains the vertex-like contributions andA3
contains the box-like contributions. We see that all ter
proportional toM 22 or M 24 have disappeared.Therefore, at
this point, it is clear that at the one-loop level the MY

model gives rise to a renormalizable S-matrix for qq→̄qq̄,
provided that we assume unitarity and analyticity~i.e. dis-
persion relations!. In the next section we shall check th
conclusion by an explicit one-loop calculation.

We now focus on the propagator-like part,A1 . Current
conservation allows us to make the replacement

Grmn
F Gl

F,mn → 8q2grl14~k12k2!r~k12k2!l .
~3.25!

Then Eq.~3.22! becomes

A15 g2 cA D0
2~q! Vm

c H E F ~4q22M2!gmn

1
9

8
~k12k2!m~k12k2!nGd~PS2!J Vn

c , ~3.26!

wherecA is the Casimir eigenvalue in the adjoint represe
tation. The final step is to use the following results for t
phase space integrals:

E d~PS2!5
1

8p
u~q0!u~q224M2!D~q2!,

E d~PS2!~k12k2!m~k12k2!n

52
1

24p
u~q0!u~q224M2!q2D3~q2!gmn ,

~3.27!

where

D~q2![A12
4M2

q2
. ~3.28!

We obtain

A15D0
2~q!Vm

c H as

2
cAq2D~q2!S 29

8
1

1

2

M2

q2 D gmnJ Vn
c ,
07400
s

-

5D0
2~q!Vm

c H as

2
cAq2D~q2!F S 11

3
2

1

24D1
1

2

M2

q2 GgmnJ Vn
c

~3.29!

with as5g2/(4p). The reason why we write the coefficien
29
8 as the deviation from11

3 on the second line of Eq.~3.29!
will become clear in what follows.

It is instructive to repeat the same calculation for the c
of massless QCD, in order to examine the physical differe
between the two theories at the tree level@24#. The crucial
modification, in the case of QCD, is that in Eq.~3.10! the
polarization tensorsQmn , corresponding to the massive glu
ons, are replaced by the polarization tensorsPmn(k,h),
given by

Pmn~k,h! 52gmn1
hmkn1hnkm

hk
2h2

kmkn

~hk!2
,

~3.30!

which are appropriate for massless spin-1 gauge bosons
before we have that, for massless on-shell gluons,kmPmn

50. All other expressions can be obtained directly from t
MYM expressions simply by settingM250. In particular,
both the derivation and the final form of the Ward identiti
of Eq. ~3.20! are identical@24,26#.

The QCD expression corresponding to Eq.~3.26! is given
by @24#

A 1
QCD5g2cAd0

2~q!Vm
c H E @4q2gmn1~k12k2!m~k1

2k2!n#d~PS2!J Vn
c ~3.31!

and, after carrying out the phase space integration for the
final ~massless! gluons, we obtain the QCD analogue of E
~3.29!:

A 1
QCD 5Vm

c d0
2~q!H as

2 S 11

3 D cAq2gmnJ Vn
c . ~3.32!

Notice that the factor11
3 in Eq. ~3.32! is the characteristic

coefficient of the one-loopb function of quarkless QCD.
Obviously, if we setM250 in Eqs.~3.26! and ~3.29! we

do not recover the massless QCD result, i.e.A1(M250)
ÞA 1

QCD. In that limit the two answers differ by the amoun
1

24 ; this descrepancy heralds the difference in the lead
logarithmic behavior of the two theories, which we will e
tablish in the next section. On the other hand, it is clear t
Ai(M250)5A i

QCD for i 52,3. Evidently, even though the
two theories satisfy the same type of tree-level Ward ide
ties, the fact that we have to use different polarization tens
for massive and massless gluons gives rise to differ
S-matrix elements, and this difference persists even in
limit M→0. As explained by Slavnov@15#, the physical rea-
son why the limitM→0 of the MYM model does not re-
cover the massless Yang-Mills model is that one cannot c
tinuously go from three polarization states to two. It
interesting to notice that after the PT rearrangement the
8-6
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crepancy between the two theories asM→0 has been iso-
lated in the universal, process-independent, propagator
piece,A1 .

IV. ONE-LOOP ANALYSIS

In this section we turn to the issue of unitarity and ren
malizability at one loop. To begin with, we show using
one-loop calculation that all unphysical poles introduced
the gauge-fixing choice cancel in anS-matrix element. This
cancellation is a necessary condition for proving the unita
of the resulting expressions; indeed, if expressions cont
ing mixed poles had survived, they would give rise to u
physical thresholds. Next, by comparing the results of t
section with those of the previous one, we will be able
establish explicitly the validity of the generalized optic
theorem to lowest order and hence have an explicit dem
stration of unitarity at one loop. Finally, we show that t
resulting expressions can be made finite by the usual m
and wave-function renormalization. Throughout this sect
we employ the PT, which makes cancellations particula
easy to track down.

We study the one-loop amplitude,M5^qq̄uTuqq̄&, for
the processqq̄→qq̄, using the Feynman rules derived b
Slavnov @15#: the massive gluon propagator in the Land
gauge5 is given by,

Dmn~k!5
1

k22M2 S gmn2
kmkn

k2 D ,

[D0~k!tmn , ~4.1!

the ghosts are massless and only appear inside closed
~with a statistical factor21/2), and the three- and four-gluo
vertices are those known from massless QCD. Note that
do not include quark loops since they are trivially related
the equivalent QCD diagrams and, as such, need not be
sidered when investigating the new features of the MY
model. We will show explicitly that all unphysical poles~i.e.
massless poles in the Landau gauge! induced by the longitu-
dinal part ofDmn and by the massless ghosts vanish in
one-loop amplitudeM. Moreover, all contributions contain
ing unphysical poles are propagator-like, in the sense defi
by the PT re-arrangement of the amplitude@23,8#.

First we define

I ~q,k![
1

~k22M2!@~k1q!22M2#
,

J~k![
1

k22M2
, ~4.2!

5Slavnov’s choice of the Landau gauge was motivated by the
that it leads to a reduction in the number of interaction vertices.
course, for computations ofS-matrix elements any other choice o
the gauge fixing parameter will lead to the same final answer.
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and the auxiliary expressions containing mixed poles,

I 0~q,k![
1

k2~k1q!2
,

I 1~q,k![
1

k2~k22M2!@~k1q!22M2#
,

I 2~q,k![
1

k2~k1q!2~k22M2!@~k1q!22M2#
,

J1~k![
1

k2~k22M2!
, ~4.3!

which appear in intermediate steps but vanish in the fi
answer. In addition, we define

Umn
21~k![D0

21~k!gmn2kmkn . ~4.4!

We consider the diagrams of Fig. 2 individually. The expre
sions for all non-propagator-like contributions are the sa
as the corresponding contributions of the regular QC
graphs in the Feynman–’t Hooft gauge, with the only diffe
ence that the internal gluon propagators areD0 rather than
d0 . These results emerge at the end of a gauge-invar
calculation and are not linked to any particular gauge cho
Consequently we turn our attention to the propagator-l
contributions.

For each diagram of Fig. 2 we write the associated am
tude as a sum of propagator-like~P! and non-propagator-like
(NP) pieces:

M ~ i !5M P
~ i !1MNP

~ i ! , ~4.5!

ct
f

FIG. 2. One loop diagrams.
8-7
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wherei labels which diagram is being considered. Of cou
MNP

(a)5MNP
(e) 5MNP

( f ) 50. For the propagator-like piece it i
convenient to write

M P
~ i !5g2cAD0

2~q!Vc
mVc

nE dnk

i ~2p!n
Pmn

~ i ! . ~4.6!

For graph 2~a! one finds that

Pmn
~a!5P0,mn

~a! 1P1,mn
~a! ~4.7!

where

P0,mn
~a! 52

1

2
I ~q,k!Gmrs~q,k,2k2q!Gn

rs~q,k,2k2q!

~4.8!

and

P1,mn
~a! 52I 1~q,k!@D0

22~q!gmn22D0
21~q!Umn

21~k1q!

1Umr
21~k1q!Un

r21~k1q!#

1
1

2
I 2~q,k!@D0

22~q!12M2D0
21~q!1M4#kmkn .

~4.9!

P0
(a) is the part of Fig. 2~a! which arises due to thegrlgst

part of trltst and contains only the physical~massive! poles.
The unwanted mixed poles reside inP1

(a) . We note that the
term in parentheses accompanying theI 2 factor of Eq.~4.9!
is equal toq4. We choose not to simplify this expressio
since the terms proportional to inverse powers ofD0 are
going to cancel against similar contributions from vertex a
box graphs; retaining them explicitly will make the mech
nism of the cancellation more transparent.

We next turn to the vertex graph of Fig. 2~b! ~and its
mirror image!. We write

Pmn
~b!5P0,mn

~b! 1P1,mn
~b! . ~4.10!

The contribution which arises from the ‘‘gabgdg ’’ term in
the product of the two gluon polarization tensors is equa
the usual QCD vertex graph in the Feynman–’t Hooft gau
with massive, instead of massless, internal gluon propa
tors. This term can still give a propagator-like contributi
due to the pinching of the fermion propagator triggered
the three-gluon vertex@23#. This contribution is

P0,mn
~b! 52I ~q,k! D0~q!21 gmn . ~4.11!

The P1
(b) term contains the remaining parts of the polariz

tion tensor product and the pinching of the quark propaga
is triggered by the momenta therein:

P1,mn
~b! 52D0

21~q!I 1~q,k!@D0
21~q!gmn2Umn

21~k1q!#

2D0
21~q!I 2~q,k!@D0

21~q!1M2#kmkn . ~4.12!

For the box graph of Fig. 2~c! ~along with the crossed
box!,
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Pmn
~c!52D0

22~q!I 1~q,k!gmn1
1

2
D0

22~q!I 2~q,k!kmkn ,

~4.13!

and for the remaining graphs:

Pmn
~d!5D0

21~q!J1~k!gmn , ~4.14!

Pmn
~e!5k2J1~k!tmn~k!, ~4.15!

Pmn
~ f !52

1

2
I 0~q,k!kmkn . ~4.16!

Notice that, at this point, all terms containing massle
propagators are multiplied by inverse powers ofD0(q). If
we now add these contributions, all terms proportional
inverse powers ofD0(q), and therefore all terms containin
massless poles, cancel against each other. In order for
cancellation to go through it is crucial that the ghost diagr
has a statistical factor of (21/2), rather than the21 of
massless QCD. It is also interesting to observe that the af
mentioned cancellations take place algebraically before
of the integrations over the virtual momentak are carried out.
In particular, we have not resorted to the use of dimensio
regularization results such as*dnk/k250 or *dnk/k450.

Our final result for the propagator-like part of the on
loop amplitude is thus

Pmn5P0,mn
~a! 1I ~q,k!S 2D0

21~q!gmn2
1

2
kmknD .

~4.17!

Notice that the last term in the above equation could
interpreted as a contribution from massive ghosts. This te
has emerged naturally from our calculation, even though
started out with massless ghosts.

As we have already mentioned, in the limitM→0, the
box-like and vertex-like parts of the MYMS-matrix element
exactly reproduce their massless QCD counterparts.
propagator-like piece is, as expected from the work of
previous section, different. Defining the effective gluon se

energy,P̂, via

MP5D0
2~q!Vc

mP̂~q2!Vmc ~4.18!

a straightforward calculation yields

P̂~q2!5g2cAH F29

8
q21

1

2
M21

e

24
~q224M2!G

3E dnk

i ~2p!n
I ~q,k!2S 5

4
2

11e

12 D E dnk

i ~2p!n
J~k!J

~4.19!

wheree542n. SettingM250, and using*dnk/k250, the
above expression reduces to
8-8
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P̂~q2!uM505g2cA q2S 29

8
1

e

24D E dnk

i ~2p!n
I 0~q,k!.

~4.20!

The corresponding gauge-invariant effective self-energy
massless QCD, first given in@25#, reads

P̂QCD~q2!5g2cAq2S 11

3
1

e

6D E dnk

i ~2p!n
I 0~q,k!.

~4.21!

Notice that the above result can be obtained from Eq.~4.17!
by taking theM2→0 limit and, at the same time, changin
by hand the coefficient in front of the ghost term from
(21/2) to (21).

To establish contact with the previous section, we nee
compute the imaginary part ofMP . Using

Im F E dnk

i ~2p!n
I ~q,k!G

52
1

16p2
Im H E

0

1

dx ln @M22q2x~12x!#J
5

u~q224M2!

16p
D~q2!5

1

2E d~PS2!, ~4.22!

it is straightforward to check that unitarity holds, i.e.

2 Im MP5A1 . ~4.23!

Similarly, one can demonstrate the unitarity of the verte
and box-like contributions.

We next proceed to renormalize the expression

P̂(q2); we carry out the two subractions~corresponding to
mass and wave-function renormalization! at q25M2 ~‘‘on-
shell’’ scheme6! i.e.

P̂R~q2!5P̂~q2!2P̂~M2!2~q22M2!
]P̂~q2!

]q2 U
q25M2

~4.24!

and so the renormalized self-energyP̂R(q2) becomes

P̂R~q2!5
ascA

4p H S 29

8
q21

1

2
M2D ~L~q2!2L~M2!!

2
11

8
~q22M2!~322L~M2!!J ~4.25!

where

L~q2!5D~q2! ln S D~q2!11

D~q2!21
D ~4.26!

6Any other subtraction pointm2 would work equally well.
07400
r
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-

r

andD(q2) was defined in Eq.~3.28! @27#. Note that only the

self-energy contributionP̂(q2) needs to be renormalized
indeed, after the PT rearrangement the resulting express
for the vertices~and boxes! are ultra-violet finite, exactly as
happens in normal QCD@23#. As a result, the gluon wave
function renormalization constantZA and the gauge coupling
renormalization constantZg are related by the QED-like re
lation ZA5Zg

1/2 @23–25#.
In the limit q2@M2, the leading~logarithmic! contribu-

tion to P̂R(q2) is given by

P̂R~q2!5
ascA

4p S 29

8 Dq2 ln ~q2/m2!1••• ~4.27!

where the ellipsis denotes subleading contributions andm is
an arbitrary reference momentum. Instead, the correspon
limit for QCD is given by

P̂R
QCD~q2!5

ascA

4p S 11

3 Dq2 ln ~q2/m2!1•••. ~4.28!

It is also interesting to compare the qualitative features of

MYM self-energyP̂ with Cornwall’s massive propagator@8#
which has been used successfully for fitting data@13#; it has
the form7 ~for Euclideanq2)

dC
21~q2!5@q21m2~q2!#bg2 ln Fq214m2~q2!

L2 G
~4.29!

with

m2~q2!5m2F ln Fq214m2

L2 G
ln S 4m2

L2 D G212/11

, ~4.30!

whereL is the QCD mass. BothdC
21(q2) andP̂(q2) display

the correct threshold behavior~i.e. they turn imaginary for

2q254m2). In addition@and in contrast toP̂(q2)],dC
21(q2)

has the correct asymptotic limit forq2@L2, since the coef-
ficient multiplying the leading logarithm is 11/3@instead of

29/8 in the case ofP̂(q2)], thus capturing the one-loop QCD
running coupling. Notice also the non-trivial dependence
the massm(q2) on the momentum.

Finally, it is straightforward to check that if one inser

the expression for ImP̂(q2) obtained from the tree-level cal

7The functional form fordC
21(q2) given in Eq.~4.29! represents

an excellent, physically motivated fit to the numerical solution o
Schwinger-Dyson equation for the gauge-independent QCD gl
self-energy.
8-9
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culation of the previous section into a twice-subtracted d
persion relation, then one obtains the real part of the ri
hand side of Eq.~4.25!, i.e.

ReP̂R~s!5
~s2M2!2

p E
4M2

` ds8 Im P̂~s8!

~s82M2!2~s82s!
.

~4.31!

We end this section by commenting on how the naive m
sive model gives precisely the same result for the one-l
S-matrix element in question. We know that this must be
case, given the work of Sec. II. The equivalence also follo
from the tree-level arguments of the previous section. To
this, note that in computing the imaginary part of the on

loop amplitude we needed theqq̄→gg amplitude only~i.e.
in the unitarity equation the sum is over physical states
so ghost states do not contribute!. In addition, the internal
gluon propagators couple to conserved currents and so
the same in both MYM and naive gluon calculations. Und
the assumption of analyticity, it follows that the two a
proaches give the same one-loop amplitude. To see
things go working explicitly with the full one-loop amplitud
one needs to repeat the calculations of this section. The
differences between theS-matrix element of the MYM com-
pared to the naive model are the replacement of the b
gluon propagator of Eq.~4.1! with the unitary gauge propa
gator,

Umn~q!5S gmn2
qmqn

M2 D 1

q22M2
, ~4.32!

and the fact that the naive model does not have any gho
The actual calculation is straightforward, given the resu
presented above. One needs to replace the massless
appearing in the auxiliary integralsI 1 ,I 2 , andJ1 , stemming
from the longitudinal part of the gluon propagator, byM2.
The algebraic cancellations go through in exactly the sa
way as before with 1/k2→1/M2 and 1/k2(k1q)2→1/M4.

V. TWO-LOOP ANALYSIS

Now we turn to the two-loop calculation. We will show
that in this case renormalizability breaks down, and that
non-renormalizable terms are propagator-like and dep
logarithmically on the cutoff. We will work again directly

with the S-matrix element for the processqq̄→qq̄. The cal-
culations will be carried out using the Feynman rules for
naive massive gluon model since we know that, at
S-matrix level, it is equivalent to the MYM.

Consider the tree-level amplitude of Sec. III,T 0mn
ab ~note

that we have changed notation by adding the subscript ‘
to denote a tree-level amplitude!. It satisfies the following
BRST identities@26#:

k1
mT 0mn

ab 5k2nS 0
ab ,

k2
nT 0mn

ab 5k1mS 0
ab ,
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k1
mk2

nT 0mn
ab 5M2S 0

ab , ~5.1!

where

S 0
ab5g fabc

k1
s

q2
Vs

c 5g fabc
k2

s

q2
Vs

c . ~5.2!

Using Eqs.~5.1! one finds that the imaginary part of th
amplitude,A, can be written

A5
1

2E T0mnQmr~k1!Qns~k2!T 0rs
† d~PS2!

5
1

2E ~T 0
mnT 0mn

† 2S0S 0
†!d~PS2! , ~5.3!

whereas, for normal Yang-Mills theory,

AQCD5
1

2E T0mnPmr~k1 ,h!Pns~k2 ,h!T 0rs
† d~PS2!

5
1

2E ~T 0
mnT 0mn

† 22S0S 0
†!d~PS2!. ~5.4!

Notice that, despite the different factors accompanying
S0S 0

† terms in Eqs.~5.3! and~5.4!, both expressions give ris
to renormalizable real parts; i.e., the real part can be obta
by means of a twice-subtracted dispersion relation. Ren
malizability is manifest since the tree-level amplitudes co
tain no dangerous terms~such terms vanish by current con
servation! and the contraction via the polarization tenso
does not induce any non-renormalizable terms, as a co
quence of Eqs.~5.1!.

Proceeding to the two-loop analysis, one must consi
two separate quantities:A2g(s,a3), which is the contribution
to the imaginary part of the two-loop amplitude which aris
from the convolution of the tree-level amplitude fo

q(p1)q̄(p2)→g(k1)g(k2) with the Hermitian conjugate o
its one-loop partner~see Fig. 3!, andA3g(s,a3), which is the

FIG. 3. Diagrams contributing toT 1mn
ab . The blob refers to the

same corrections to the gluon propagator as in Figs. 2~a!,2~e!,2~f!.
8-10
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contribution to the imaginary part which arises on convol

ing the tree-level amplitude for the processq(p1)q̄(p2)
→g(k1)g(k2)g(k3) with its Hermitian conjugate~see Fig.
4!. The two contributions must then be fed into a twic
subtracted dispersion relation and integrated from 4M2 to `
and from 9M2 to ` respectively, i.e.

Re@P̂~s,a2!#5
~s2M2!2

p F E
4M2

` ds8 Im P̂2g~s8,a2!

~s82M2!2~s82s!

1E
9M2

` ds8 Im P̂3g~s8,a2!

~s82M2!2~s82s!
G ~5.5!

where

Ang~s,a3!52D0~s!VmcVc
m Im P̂ng~s,a2!. ~5.6!

If our calculations reveal that the RHS of Eq.~5.5! is infinite,

then we will have shown that theS-matrix element forqq̄

→qq̄ computed in the framework of the MYM is not reno
malizable at two loops.

We shall now show thatA2g , when fed into the integra
on the RHS of Eq.~5.5!, gives a finite contribution, whera
theA3g integral needs an additional subtraction in order
be rendered finite; i.e., it gives rise to a non-renormaliza
contribution.

To see that the contribution fromA2g contains no danger
ous terms, it suffices to prove that~a! the one-loop amplitude

T 1mn
ab for qq̄→gg is renormalizable and~b! that it satisfies

exactly the same type of BRST identity as its tree-le
counterpartT 0mn

ab , i.e. that Eqs.~5.1! hold if we replace
T 0mn

ab →T 1mn
ab andS 0

ab→S 1
ab . The above statements~a! and

~b! can be both easily proved based on the analysis of@28#. It
turns out that the closed expressions forT 1mn

ab andS 1
ab are

given by the Feynman diagrams of regular QCD in the Fe
man gauge, but with the tree-level propagators inside
graphs replaced by massive ones, again in the Feyn
gauge, with the exception that for the ghost contributions
have a different statistical factor. This discrepancy does
affect the high energy behavior of such graphs; i.e., the gh

FIG. 4. Diagrams contributing toT mnr
abc . We do not show the

diagrams which are related to those shown by exchange of outg
bosons.
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loops are well-behaved for largeq2. In addition, as follows
from @28#, the tree-level BRST identities do indeed hold
one loop. Thus

A2g~s,a3!5
1

2E 2 Re@T1mnQmr~k1!Qns~k2!T 0rs
† #d~PS2!

5
1

2E 2 Re@~T 1
mnT 0mn

† 2S1S 0
†!#d~PS2! ~5.7!

and the real part can be obtained using the twice-subtra
dispersion relation.

Now we turn to the amplitudeT mnr
abc(k1 ,k2 ,k3) for the

process q(p1)q̄(p2)→g(k1)g(k2)g(k3), where ki is the
four-momentum of thei th gluon, andp11p25q5k11k2
1k3 . Such an amplitude is given by the sum of the diagra
shown in Fig. 4.

Let us compute the quantity

A3g~s,a3!

5
1

3!E @Tmnr Qms~k1! Qnl~k2!Qrt~k3! T slt
† #d~PS3!

~5.8!

where*d(PS3) denotes the integration over the three-bo
phase space, with the combinatorial factor 1/3! account
for the three indistinguishable gluons in the final state.
before, the polarization tensors satisfy the transversality c
dition: ki•Q(ki)50. At first sight, the integrand in Eq.~5.8!
seems to contain terms proportional
(M 22)0,(M 22)1,(M 22)2 and (M 22)3. The term propor-
tional to (M 22)0 is renormalizable, whereas all higher pow
ers give rise to non-renormalizable contributions: The hig
the power, the worse the divergence. However, as we s
shortly see, by virtue of the BRST identities thatTmnr satis-
fies and the transversality properties of the polarization t
sors, only terms proportional to (M 22)0 and (M 22)1 sur-
vive. Thus, the worst divergence is logarithmic.

To establish this fact, let us first study the action of t
longitudinal momentak1

m ,k2
n , andk3

r on Tmnr . It is straight-
forward to verify thatT mnr

abc(k1 ,k2 ,k3) satisfies the following
identities:

k1
mT mnr

abc5~S12!r
abck2n1~S13!n

abck3r ,

k2
nT mnr

abc5~S21!r
abck1m1~S23!m

abck3r ,

k3
rT mnr

abc5~S31!n
abck1m1~S32!m

abck2n .
~5.9!

Bose symmetry imposes the following relations among
Si j amplitudes:

S i j
aiajal~ki ,kj ,kl !5S j i

ajaial~kj ,ki ,kl !,

ng
8-11
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S i j
aiajal~ki ,kj ,kl !5S i l

aialaj~ki ,kl ,kj !
~5.10!

and

ki•Sj l 5kj•Si l , lÞ iÞ j . ~5.11!

The closed form ofS 23
abc(k1 ,k2 ,k3) reads

~S23!m
abc5~S 23

s !m
abc1~S 23

t !m
abc ~5.12!

with

~S 23
s !m

abc5g2Ve
aF f elcf lab

k3
sGasm~q,k12q,2k1!

2k2•k31M2

1 f ealf lbc
k3a~k11k2!m

2k1•k21M2
1 f elbf lac

k2ak3m

2k1•k31M2G ,

~S 23
t !m

abc52 ig2v̄~p2!S Tagm

1

k” 12p” 2

Tegs

1Tegs

1

p” 12k” 1

gmTaD u~p1!
f eack1

s

2k2•k31M2
.

~5.13!

In deriving the above expressions, in addition to the elem
tary Ward identity, Eq.~3.9!, we have employed the tree
level Ward identity

q1
mGmnab

abcd ~q1 ,q2 ,q3 ,q4!5 f abeGabn
cde ~q3 ,q4 ,q11q2!

1 f aceGbna
dbe~q4 ,q2 ,q11q3!

1 f adeGnab
bce ~q2 ,q3 ,q11q4!,

~5.14!

which relates the bare three- and four-gluon vertices.
remainingSi j amplitudes can be obtained fromS12 using the
relations of Eq.~5.10!.

We next let the longitudinal momenta in the polarizati
tensors act onTmnr andTslt , and use Eq.~5.9!. We can see
how the (M 22)3 terms disappear. The action of the ter
M 22k3

rk3
t gives terms proportional tok1

m andk2
n ~or equiva-

lently k1
s and k2

l), which vanish when they hitQms(k1) or
Qnl(k2). So Eq.~5.8! reduces to

A3g5
1

3!E @T mnrQms~k1! Qnl~k2! T slr
† #d~PS3!.

~5.15!

At this point, the highest possible power ofM 22 is (M 22)2.
We now letM 22k2

nk2
l act onTmnr andT slr

† :

M 22k2
nk2

lTmnr Qms~k1! T slr
†

5~S 21
r k1

m1S 23
m k3

r! Qms~k1! ~S21rk1
s1S 23

s k3r!†

5S 23
m S 23

s† Qms~k1!. ~5.16!
07400
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Thus, one more power ofM 22 has been eliminated. We ar
left with

A3g5
1

3!E @~TmnrT snr
† 2S 23

m S 23
†s! Qms~k1!#d~PS3!,

5AR1ANR , ~5.17!

where

A 3g
R 5

1

3!E @TmnrT mnr
† 23~S12S 12

† !#d~PS3!, ~5.18!

A 3g
NR52

1

3!

1

M2E ~k1•S23!~k1•S23!
†d~PS3!. ~5.19!

In deriving the above expressions we have used the fact
the phase-space integration is invariant underki↔kj . The
term in Eq.~5.19! will generate non-renormalizable terms;
is clearly non-vanishing, since it is a three-body phase-sp
integral over a positive definite quantity. In particular,

A 3g
NR52

1

3!

cA
2

8M2E Va
e~k12k2!a~k12k2!bVb

ed~PS3!

~5.20!

where the identitiesf abef cde1 f acef dbe1 f adef bce50 and
f almf bmnf cnl5 1

2 cAf abc have been used. We also use
(ki•kj )/(2kikj1M2)5 1

2 1•••, where the omitted term is
proportional toM2, thus giving rise to a renormalizable con
tribution; i.e., the omitted term belongs effectively toA 3g

R .
Notice that the non-renormalizable terms arepurely
propagator-like~universal, process independent!.

Finally, it is instructive to compare the result of Eq.~5.17!
with that of normal QCD. In the QCD case there are,
course, no terms proportional toM 22 or higher powers. On
the other hand, the presence of the auxiliary four-vectorhm
in the polarization tensors could in principle induce spurio
divergences, should it survive in the final answer. It is ea
to see however how any reference tohm disappears before
any of the phase-space integrations are carried out. Le

denote the corresponding QCD amplitude byT̂mnr . We start
again with

A 3g
QCD

5
1

3!E @ T̂ mnr Pms~k1! Pnl~k2! Prt~k3! T̂ slt
† #d~PS3!

~5.21!

where the gluons are now massless andki•P(ki)50(i
51,2,3). Equation~5.9! is valid for QCD, as can be show
rigorously using BRST arguments. Since the element
Ward identity ~3.9! is the same for both MYM model and
massless QCD, it follows that the closed expressions for
factors Si j in Eq. ~5.9! may be recovered from Eq.~5.13!

simply by settingM250. We denote them byŜi j . Then, by

letting the longitudinal momenta act onT̂mnr and using Eq.
8-12



ur

lly

ds
ty
t
c
y
ar
he
r-

ck
ck
an

oo
rm
ie

in
el
o
e
um
of
e

a

ld
t t

a

sle
or
n

tio

sive

t
del,

e

it

m

ot

ns,

nor-
m
the

MASSIVE YANG-MILLS MODEL AND DIFFRACTIV E . . . PHYSICAL REVIEW D 59 074008
~5.9!, one can easily verify that any reference to the fo
vectorhm disappears and that the final answer is

A 3g
QCD5

1

3!E @ T̂ mnrT̂ mnr
† 26Ŝ12Ŝ12

† #d~PS 3!.

~5.22!

So, unlike the MYM model, in massless QCD all potentia
dangerous terms vanish.

VI. CONNECTION TO FIELD THEORIES
WITH A HIGGS MECHANISM

It is well known that the only way to endow gauge fiel
with mass whilst maintaining unitarity and renormalizabili
is via the Higgs mechanism@19–21#. This procedure is no
suitable however for an effective model of strong intera
tions because it introduces extra scalar particles in the ph
cal spectrum. In the MYM model massive gauge fields
obtained without introducing extra physical fields, at t
price of losing renormalizability at higher orders of pertu
bation theory. It is instructive to see explicitly how the la
of renormalizability in the MYM model can be traced ba
to the absence of a Higgs particle, in particular underst

why the processqq̄→qq̄ ~andqq̄→gg) is renormalizable at
one-loop, but ceases to be renormalizable beyond one-l
In this section we address these issues in detail by perfo
ing a quantitative analysis of the differences and similarit
between the MYM model and a Higgs model~HM! at the
level of theS-matrix. In addition, as has been discussed
detail in @16#, it is possible to speak about the MYM mod
using the language of a HM. Specifically, one can think
the MYM model as a theory where all gluons have be
given masses by adding to the Lagrangian a sufficient n
ber of Higgs multiplets@N fundamental representations
SU(N)], and then ‘‘freezing’’ all the polar excitations of th
N Higgs fields. The remainingN221 angular excitations
corresponding to the Goldstone bosons are precisely the
gular fieldsua displayed in Eq.~2.10!.

To illustrate the above points we will use a toy Higgs fie
theory which displays all the essential features we wan
study. The gauge group of this model isSU(2). TheHiggs
mechanism is triggered by a complex doubletf in the fun-
damental representation~isospin l 5 1

2 ). This particular as-
signment endows all three gauge bosons with the same m

M, whilst simultaneously prohibiting terms of the formfc̄c
for any fermion representation of isospinl 8. To mimic QCD,
we choose the fundamental representation for the mas
fermion fieldsc, although this choice is not essential f
what follows. As there are no interactions between fermio
and scalars, the fermions remain massless even when
scalar fields acquire a non-vanishing vacuum expecta
value. The Lagrangian density for this model is

8It is elementary to verify that no gauge singlet~total l 50) can be
formed out of the above isospin assignments.
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L52
1

4
FmnF mn1c̄D” c1~Dmf!~Dmf!†2V~f!

~6.1!

with

~D” c!a5]ca1 igTab
a cbA” a,

~Dmf! i5]mf i1 igTa
i j f jAm

a ,

V~f!5m2ff†1l~ff†!2, ~6.2!

whereTa5 1
2 sa , andsa are the Pauli matrices. Ifm2,0, the

Higgs mechanism gives rise to three degenerate mas
gauge bosons of massM5gv/2, wherev5A2m2/l is the
minimum ofV(f). The above model is a vector-like varian
of the usual electroweak sector of the standard mo
SU(2)3U(1), with the Weinberg angleuW set to zero.

The corresponding bare gauge boson propagator in thRj

gauge has the form

Dmn5S gmn2
qmqn~12j!

q22jM2 D 2 i

q22M2
~6.3!

and the would-be Goldstone boson~G! and ghost~c! propa-
gators are

DG,c5
i

q22jM2
. ~6.4!

In the unitary gauge, which formally corresponds to the lim
j→`, the gauge boson propagator takes the form~4.32! and
there are no Goldstone boson and ghost propagators.9 Fi-
nally, there is a Higgs particle of massMH5vA2l with bare
propagator

DH5
i

q22MH
2

. ~6.5!

The one-loopb-function for the gauge coupling has the for
@30#

b52
1

16p2
~bg2bf2bs!g

3 ~6.6!

with

9The renormalizability of the HM in the unitary gauge is n
manifest. For example, it is known that, even though then-point
functions are non-renormalizable, by virtue of subtle cancellatio
the S-matrix element built out of these non-renormalizablen-point
functions can be made finite with the usual mass and charge re
malization@22#. A more immediate way to see this is to resort fro
the beginning of the calculation to the PT rearrangement of
amplitude@29#.
8-13
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bg5
11

3
cA , bf5

4

3
nfTf , bs5

1

6
nsTs , ~6.7!

whereTf is the Dynkin index of the fermion representatio
Ts is the Dynkin index of the scalar representation,nf is the
number of fermion families in a given representation andns
the number of real scalar families. For the particular sca
representation we have chosen,Ts5

1
2 andns52. In the ab-

sence of quarks we have thatb5(2g3/16p2)(43/6).
Let us now proceed with a study of the one-loop amp

tude. As we already showed, at the level ofS-matrix ele-
ments the MYM model and the naive model are equivale
In addition, if we adopt the unitary gauge for the HM, then
is obvious that, to any finite order in perturbation theory,
only difference between anS-matrix element computed in
the MYM model and the correspondingS-matrix element
computed in the HM is due to contributions to the lat
which come from Feynman diagrams containing Higgs
son propagators@31#. For example, in the case of one-loo
quark scattering, in addition to the graphs in Fig. 2, wh
are common to both the MYM model and HM, the diagra
of Fig. 5~a! contributes to theS-matrix element of the HM. In
other words, theS-matrix elements of the MYM model ma
be obtained from the correspondingS-matrix elements of
HM by omitting all diagrams containing a Higgs particl
Given this observation, it is easy to see why the the proc
qq→qq in the MYM model is renormalizable at one loop
The only difference between the renormalizable HM and
MYM model is the contribution corresponding to the grap
of Fig. 5, which themselves form a gauge-invariant a

renormalizable subset. Denoting their contribution byP̂mn
gH

we have that, up to the immaterial tadpole graph,

P̂mn
gH5g2M2E dnk

i ~2p!nS 2gmn1
kmkn

M2 D
3

1

~k22M2!@~k1q!22MH
2 #

. ~6.8!

The factorM2 in front of the integral originates from th

gluon-gluon-Higgs coupling and guarantees thatP̂mn
gH can be

made ultraviolet-finite by means of the usual mass and w
function renormalization. After~on-shell! renormalization,

FIG. 5. Higgs boson contributions toP̂mn
gH . In the unitary gauge

recall that~b! is absent.
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the above expression becomes, in the limitq2@M2 ~and
dropping the terms proportional toqmqn),

P̂mn
gH~q2!52

a

4pS 1

12Dq2 ln ~q2/M2!gmn1••• ~6.9!

where the ellipsis denotes numerical constants and term
orderO(M2/q2). If we now setcA52 in the expression of
Eq. ~4.27!, and add it to the expression in Eq.~6.9!, we see
that the coefficient in front of the resulting logarithmic ter
is equal to 43/6, which is precisely the coefficient of the H
b-function without quarks. In addition, as expected from t
discussion on the connection between the MYM model a
the HM given at the beginning of this section, the express
in Eq. ~6.9! is exactly the difference between Eqs.~4.27! and
~4.28! for cA52.

We now turn to the two-loop analysis. First, it is relative
straightforward to establish that the contribution from t
two-gluon cut of those one-loop diagrams which contain
Higgs boson, Fig. 6, gives rise to a renormalizable contri
tion; i.e., the corresponding dispersive~real! part can be
made finite by means of a twice-subtracted dispersion r
tion. This is of course expected, since the one-loop diagra
contributing toA2g which we studied in the previous sectio
were themselves renormalizable; i.e., no cancellation fr
diagrams containing a Higgs boson is required.

To see this explicitly, consider the amplitudeA 2g
H given

by

A 2g
H ~s!5

1

2E 2 Re@T 1mn
H Qmr~k1! Qns~k2! T 0rs

† #d~PS 2!

~6.10!

whereT 1mn
H is shown in Fig. 6. It is straightforward to verify

that T 1mn
H is a gauge-independent quantity, and that it sa

fies

k1
mT 1mn

H 5k2nS 1
H ~6.11!

with

S 1
H5gVlD0~q!@P̂la

gHD0~q!#~k12k2!a. ~6.12!

Notice that the expression in square brackets behaves
log(s/M2) for s@M2. Using Eqs.~5.1! and~6.11! we can see
that

FIG. 6. The Higgs graphs contributing toT 1
H . The graphs of

Fig. 3 must also be included when computingT 1
H .
8-14
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A 2g
H ~s!5

1

2E 2 Re@~T 1mn
H T 0

mn† 2 S 1
HS 0

†!#d~PS 2!.

~6.13!

So this contribution gives rise to renormalizable two-lo
amplitudes.

To see how the presence of the Higgs boson enfo
renormalizability, we focus on the two amplitudes,A 3g

H,a and
A 3g

H,b :

A 3g
H,a~s!

5
1

3!E @T mnr
H Qms~k1! Qnl~k2!Qrt~k3!T slt

H† #d~PS3!

~6.14!

and

A 3g
H,b5

1

3!E 2 Re @T mnr
H Qms~k1! Qnl~k2!Qrt~k3!T slt

† #

3d~PS3! ~6.15!

where the amplitudeT mnr
H is shown in Fig. 7. As can be see

A 3g
H,a arises by multiplying only those three-gluon amp

tudes which contain Higgs particles whileA 3g
H,b comes from

interfering the Higgs diagrams with the non-Higgs diagra
of Fig. 4. Since the coupling of the Higgs boson to tw
gauge bosons is proportional toM, it follows thatT mnr

H has
already a factorM2 built into it. Consequently, there is a
implicit factor M4 insideA 3g

H,a(s), and therefore the only
non-renormalizable contribution inA 3g

H,a(s) will come from
the term in the polarization tensors which is proportional
(M 22)3. We therefore find that

@A 3g
H,a#NR~s!52S 1

2D 1

3!

1

M2E Va
e~k12k2!a

3~k12k2!bVb
ed~PS3!. ~6.16!

The interference term,A 3g
H,b , has an implicitM2 inside, and

so now contributions from the (M 22)3 and (M 22)2 terms in
the polarization tensors are needed. One finds, using
~5.9!, the following non-renormalizable contribution:

@A 3g
H,b#NR~s!5

1

3!

1

M2E Va
e~k12k2!a~k12k2!bVb

ed~PS3!.

~6.17!

FIG. 7. One of the graphs contributing toT mnr
H . The others are

obtained by permuting the outgoing bosons.
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In arriving at the above results, identities of the typek1
ak1

b

5 1
3 (k12k2)a(k12k2)b, or k2

ak3
b52 1

2 k3
ak3

b valid under the
integral sign, may be found useful. Comparing to Eq.~5.20!
of the previous section~setting cA52), we see that the
Higgs contribution exactly cancels the non-renormaliza
part of the MYM two-loop contribution. Evidently, eve
though the Higgs boson does not couple directly to
quarks~since in this toy model the gauge symmetry prohib
Yukawa couplings!, its importance in restoring the renorma

izability of the processqq̄→qq̄ manifests itself through the
tree-level sub-amplitudesgg→gg containing the Higgs bo-
son ~Fig. 7!, which reside in the two-loop diagrams.

VII. QUARK-QUARK ELASTIC SCATTERING

In this section we take an introductory look at the elas
scattering of a pair of quarks via two-gluon exchange with
the MYM model. Of course, quark-quark elastic scatteri
cannot be measured directly, but it is possible that many
the elements which are central to the more realistic proce
~e.g. hadron-hadron elastic scattering! are contained in this
simpler treatment. This is in the spirit of the Donnach
Landshoff-Nachtmann approach@3,32#, where the success o
the additive quark rule provides evidence that one need
know about the detailed structure of the colliding hadro
before one can proceed to make elastic scattering calc
tions, although it is not yet established that this is corr
@33#.

As a first step, one can calculate the amplitude for
elastic scattering of differently flavoured quarks, i.e.qiqj
→qiqj , at the lowest order, keeping only those terms wh
dominate in the Regge limit. This is a straightforward calc
lation of the box diagram shown in Fig. 2~c! rotated through
90° ~the crossed box diagram contributes only to the real p
of the amplitude in the Regge limit and constitutes a s
leading correction!. The leading contribution is imaginar
and so can be obtained directly using the cutting rules;
the amplitude for single gluon exchange can be written

A~s,t !1-gluon5 iTa
^ Ta2p1

m gmn

k22M2
2p2

ndl1l
18
dl2l

28
,

~7.1!

wherek is the momentum of the exchanged gluon andp1 and
p2 are the momenta of the incoming quarks, i.e.s5(p1
1p2)2. The high-energy limit allows the exchanged gluon
be assumed soft, and so the eikonal approximation has b
used to simplify theqqg vertex. The delta functions ensur
helicity conservation at each vertex. Multiplying by the co
jugate amplitude, projecting out the color singlet part a
performing the two-body phase space integral~putting the
intermediate quarks on-shell! allows us to write

A~s,t !5 isas
2 N221

N2 E d2k
1

~k21M2!@~k2q!21M2#
,

~7.2!
8-15
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where q252t.0,N is the number of colors and the ex
changed gluons are taken to be purely transverse. The tr
verse momentum integral can be performed and yields

A~s,t !5 i
s

2t
2pas

2 N221

N2

1

D~ t !
ln

D~ t !11

D~ t !21
, ~7.3!

where D(t) is defined in Eq.~3.28!. Thus, the total cross
section forqiqj→X is

sT5
1

M2
pas

2 N221

N2
. ~7.4!

It is instructive to investigate the conditions under whi
the two-gluon exchange amplitude calculated above viola
unitarity. We shall see that unitarity is violated only for ve
central collisions and that these constitute an insignific
fraction of the total and elastic scattering cross sections. O
for very high-t processes do we have collisions which a
sufficiently central to cause a worry. This gives us con
dence to proceed to the next order of calculation, assured
we have yet to receive indications that unitarisation corr
tions are important.

To investigate unitarity we perform a Fourier transform
the elastic scattering amplitude, i.e.

Ã~s,b!5E d2q

~2p!2
e2 iq•b

A~s,t !

2s
, ~7.5!

andb is the impact parameter of the collision. Written in th
way, unitarity demands that

uÃ~s,b!u2,1

for all b. However, we can be confident that unitarisati
corrections are small if the inequality is satisfied for tho
values of impact parameter which dominate the process
der study. Numerical evaluation of Eq.~7.5! demonstrates
that the amplitude only ever violates unitarity forMb
,1022,1023 for 2/as

2520,50 respectively, i.e. only for ver
central collisions~on the scale of the gluon mass!. In this
language, the total cross section is given by

sT52E d2b Ã~s,b! ~7.6!

while the elastic scattering cross section is given by

sel5E d2b uÃ~s,b!u2. ~7.7!

Since Ã(s,b) decreases monotonically asMb increases, it
follows that the elastic scattering cross section receive
larger contribution from more central collisions than the to
cross section. To a first approximation, the typical imp
parameter is set by the gluon mass, i.e.^b2&5C/M2 where
C;1 and is larger for the total cross section than for
elastic cross section. In either case, we are always well a
from the dangerous region where unitarity is violated. T
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situation is different for high-t processes, since noŵb2&
;1/utu and so, forA2t.(1022103)M we would need to
worry that unitarization corrections are important.

VIII. CONCLUSION AND PERSPECTIVES

In this paper we have reviewed and investigated the
malism of the MYM model, arguing that it may be releva
as a tool to investigate diffractive scattering~and possibly
other areas of strong interactions phenomenology!, where
traditional QCD methods are inadequate. A detailed study

the qq̄→qq̄ process in the context of this model up to th
two-loop order was presented, and the renormalization pr
erties of the correspondingS-matrix were discussed.

Let us summarize briefly the prospects for a study of d
fractive scattering. A successful model of diffraction shou
be able to explain the growth of total hadronic cross secti
with increasings. In particular, the model should show wh
the rise in soft hadronic processes~e.g. the totalpp cross
section! proceeds at a much slower rate than in hard p
cesses~e.g. theg* p cross section!, the shrinkage of the for-
ward diffraction peak with increasings. In other words, the
model should be able to explain the qualitative success of
Donnachie-Landshoff-Nachtmann model of the Pomeron
a single Regge pole in soft diffraction~i.e. in those processe
where there is no large scale! and its failure in small-x deep
inelastic scattering, in the diffractive production of all vect
mesons at highQ2 and in the diffractive production ofJ/C
mesons at lowQ2.

In the future, we plan to use the MYM model to compu
the completeO(as) corrections to the two-gluon-exchang
amplitude discussed in the previous section, in order
verify whether some or all of the aforementioned featu
emerge. More specifically, such a calculation should help
investigate the following points:

~i! In the limit of large enoughs, the logarithms
;(as ln s)m, which appear at each order in perturbati
theory, become large and it becomes necessary to sum
to all orders. This summation of leading logarithms is p
formed using the formalism of BFKL. It is an open questio
as to precisely when this summation leads to the domin
contribution to the amplitude. In fact, since the summation
of leading logarithms only, we cannot define exactly wha
means to says is large, although we note that, in this respe
analysis of the next-to-leading logarithmic corrections cal
lated by Fadin and co-workers@34# should improve the situ-
ation. By computing at fixed order inas we can investigate
the relative importance of the;as ln s term compared to the
terms which do not include the logarithm. In this way, w
can make some quantitative statements regarding the
~within the MYM model! to sum the remaining leading loga
rithms. For example, it might be that, at the energies of c
temporary colliders, the logarithm is not so large to just
dropping the other terms; i.e., a fixed order calculation mi
be the better way to proceed.

It is known that introducing a gluon mass has a very sm
effect on the leading logarithmic contribution@35,4#. This
arises largely because the BFKL summation is infrared
nite; i.e., there are infrared cancellations between real
8-16
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virtual graphs which reduce the sensitivity to this regio
These cancellations persist even after adding a gluon m
~via a Higgs mechanism, or via the MYM model! and serve
to reduce the sensitivity of the amplitudes to variations in
mass. Note that it is not too important how the mass is
troduced. This can be seen since no Higgs graphs contri
to the leading logarithm summation and since the gau
dependent part of the gluon propagator is also sub-lea
~in covariant gauges!.

~ii ! It is also known that the leading logarithm summati
leads to a rapid rise of total cross-sections. It can be arg
that this rapid rise, which is due to multiple soft gluon em
sion, reveals itself in hard scattering processes, but is ma
in softer processes by unitarity corrections. Any slowi
down of the rise via unitarity corrections has yet to be p
cisely quantified. Another possibility is that the strong ri
seen in hard processes can be explained in fixed-order
turbation theory, i.e. arising from the lns term, and that this
same rise is masked in soft processes by a non-logarith
contribution which is comparable in size to the logarithm
contribution ~i.e. as the process becomes harder, the n
logarithmic contribution falls away to reveal the logarithm!.
s

l.

,

d

.

.

07400
.
ss

e
-
te

e-
g

ed
-
ed

-

er-

ic

n-

This latter possibility can be investigated after computing
radiative corrections to the two-gluon exchange graphs.

In summary, we think that the MYM model may prove
useful tool in understanding the phenomenology of diffra
tive scattering by bridging the gap between different QC
inspired models. Such a conjecture will be tested throu
next-to-leading order calculations of quark-quark elas
scattering, which we plan to discuss in a forthcoming pap
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