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Perturbative approach to the penguin-inducedB — 7 ¢ decay

Blazenka Meli¢
Theoretical Physics Division, Rudjer Basvic Institute, P.O. Box 1016, HR-10001 Zagreb, Croatia
(Received 14 May 1998; revised manuscript received 19 October 1998; published 17 February 1999

Using a modified perturbative approach that includes the Sudakov resummation and transverse degrees of
freedom we analyze the penguin-induddd— 7~ ¢ decay by applying the next-to-leading order effective
weak Hamiltonian. The modified perturbative method enables us to include nonfactorizable contributions and
to control virtual momenta appearing in the process. In addition, we apply the three-scale factorization theorem
for nonleptonic processes that offers the possibility of having the scale-independent product of short- and
long-distance parts in the amplitude of the weak Hamiltonian. The calculation supports the results obtained in
the BSW factorization approach, illustrating the electroweak penguin dominance and the branching ratio of
order O(10 8). However, the estimated prediction of 16% for 1B® asymmetry is much larger than that
obtained in the factorization approa¢s0556-282(199)05605-4

PACS numbd(s): 13.25.Hw, 12.38.Bx

[. INTRODUCTION numbej of QCD-penguin amplitudes, one can show that in
this process the QCD-penguin contribution should be sup-
Among a variety of heavy-meson decaying channels, expressed and the dominant contribution comes from the elec-
clusive two-body nonleptonic decays are theoretically tharoweak (EW)-penguin operator§2]. The B~ — 7~ ¢ pro-
most challenging ones, owing to the phenomenon of hadronieess has already been considered by many auflge+§]
zation and the effects of final-state interactions. On the othefithin the Bauer-Stech-WirbeBSW) factorization ap-
hand, they present the most promising way to de@Bt  proach[7]. This method for reducing the hadronic matrix
violation in the heavy-meson sector and to explore theelement of four-quark operators to the product of two
Cabibbo-Kobayashi-Maskaw@CKM) mixing matrix ele-  current-matrix elements cannot account for QCD interactions
ments. between the currents, except by parametrizing them by a
The mechanism o€P violation can be investigated di- phenomenological parameter in the generalized factorization
rectly in the charged sector & mesons by measurinGP  approacH8]. In general, momenta of virtual gluons or pho-
asymmetry CP asymmetry is defined as the relative differ- tons in a process, appearing explicitly in the penguin matrix
ence between the decay rates of tBemeson and its elements after factorization have to be considered free pa-
CP-conjugated state: i.e., rametersCP asymmetry depends strongly on these param-
eters and the predictive power of calculations performed
F(B‘Hf)—F(B+H_) within thg faptorizqtion prescriptiog is gEeatIy reduged.
= . (1.1 Our aim is to investigate th®  — 7~ ¢ decay in the
(B~ —f)+I'(B"—f) modified perturbative approach. Perturbative calculations of
o , . exclusiveB decays were carried out by different authf@$
NonvanishingCP asymmetries appear through the interfer- 5| ot them following the framework for analyzing exclusive
ence between. amplitudes with Q|fferent we@lP—onatmg. decays in the perturbative QQIPQCD approach developed
phases and different P-conserving strong phases coming by Brodsky and Lepage, and other authfi6]. In the per-
from the final-state strong interactions different from zero. y,ihative approach, exclusive amplitudes involving large mo-
Nowadays, experimental facilities offer a possibility of hentym transfer factorize into a convolution of a process-
searching forCP asymmetries in penguin-induced nonlep-jhgependent and perturbatively incalculable distribution
tonic decays, very promising decays to detect di®Btvio-  amplitudes(hadronic wave functions one for each hadron
lation. Such decays have small branching ratiB), but  inyolved into the decay, with a process-dependent and per-
satisfy both requirements fdZ P-violating asymmetry, ow- rhatively calculable hard scattering amplitude of valence
ing to the fact that penguin diagrams are loop diagrams withy ions.
different quark generations contributing with different weak Tne applicability of such a PQCD framework to exclusive
CP-phases from the CKM matrix and that final-state stronggecays was widely discusséil,12 owing to the concern
interaction phases emerge from the absorptive part of penghout the possible uncontrollable nonperturbatised-piont
guin amplitudes. This mechanism of generatbg asym-  region) contributions and the problem was solved in a modi-
metries in decays that involve penguin diagrams was firsfieq perturbative approach proposed by Li and Sterfidh
considered by Bander, Silverman, and Sgdifi Besides offering a reliable perturbative calculation, the
In this paper we discuss the pure penguin-induBed  modified perturbative approach offers a possibility of going
—a~ ¢ decay governed by the heavy-qudrk-dssdecay. beyond the factorization approximation in the calculation of
Performing a consistent M, expansion K., quark color four-quark matrix elements. It also enables us to assign the
process-dependent virtual momerga in the loop matrix
elements and to fold them with their distribution in a particu-
*Email address: melic@thphys.irb.hr lar decay. In this way, the uncertainties @P asymmetry,
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which are due to some ad hoc quark model valueg’ofis b—d transitions,Vq= Vg4V, . Local four-quark operators,
applied in the factorization approach, do not appear. renormalized at the scaje, are

The purpose of this paper is to present a complete calcu-
lation of factorizable and nonfactorizable contributions in the

(@—dq ",
penguin-induced™ — 7~ ¢ decay up to ordeO(asxem), 017=(dalp)v-a(dgba)v-a.
testing the results on various CKM mixing matrix param-
eters. Especially, we wish to examine nonfactorizable contri- O(zq):(dQ)va(qb)v N

butions from the QCD-penguin operators and assign their
role in the EW-penguin dominated processes, suclBas
—1 ¢.

The plan of the paper is as follows. In Sec. Il we intro-
duce the method of calculation based on the next-to-leading
order (NLO) effective weak Hamiltonian, and the modified L
perturbative approach. A detailed analysis of tBe 04:(&%)\/%2 (%q;)v N
—a ¢ process is presented in Sec. Ill. A discussion of
mesonic wave functions and the Sudakov form factors is
given in Sec. IV and the selection of proper mesonic wave o
functions is made. In Sec. V we present our numerical results 05=(Eb)v_AZ (4’9" )vea,
for the branching ratio an@ P asymmetry, comparing them ’
with those obtained from the factorization approach and ex-
amine the dependence of the results on the choice of CKM . N
parameters. Concluding remarks are given in Sec. VI. Os=(dab5)V_A2 (q"gq;)erA,

pr

03=(Eb)v7AE (q_'qr)va,
ql

Il. PERTURBATIVE MODEL FOR CALCULATING THE 3
B™—@” ¢ DECAY 0O7= E(db)vaE €q'(d'd )v+a,
The nonleptonicB™ — 7~ ¢ decay is governed by the a

weak decay of the heavy b-quat,—~dss The light anti-
quark of theB meson is the spectator in the decay, being
only slightly accelerated by the exchange of a hard gluon to
form a pion in the final state.

In this section we present the basic ingredients for a cal- 3 L
culation of such a penguin-induced decay. The first ingredi- =~ (dt (a'a’
ent is the NLO effective weak Hamiltonian, which allows a % Z(db)v a2 S (A0 )v-a,
consistent study of nonleptonic decays in which penguin op-
erators are involved. The second ingredient, on which the 3 -
paper is based, is a modified perturbative method for calcu- 010:_(dabB)V—AE eq,(q’ﬁq;)V_A, (2.2
lating exclusive decays by which the matrix elements of 2 !
four-quark weak-Hamiltonian operators are perturbatively

3 _ -
Og=> (dabg)v-n2 €q(dpda)vsa.
q!

calculable. where VxA=1/2y,(1* ys), « and g are color indices,
q’'e{u,d,s,c,b}, and e, are the corresponding quark
charges(’)“‘) andO® are tree-level operatoré23, 06
A. Low-energy effective weak Hamiltonian beyond the leading e QCD-penguin operators, afd}, . . . 0, are EW pen-
logarithmic approximation guin operators.
Following Ref.[14] we consider the NLO effective weak ~ From the quark content of the operat@$® and O it
Hamiltonian forb—d transitions: is obvious that they do not contribute at the tree levebin

—dss transitions. Such transitions are pure penguin-

Gr induced, receiving contributions from the operators
Hef(AB=—1)= Eq;c V| o) 0P +cy(n) 05 Os, ..., 01, inwhichqg'’ is restricted to be a strange quark,
=t q’'=s.

In the NLO weak Hamiltoniar{2.1) the renormalization-
(2.1  scheme dependence of the Wilson coefficients is explicitly
canceled by the inclusion of the one-loop QCD and QED

matrix elements of the tree-level operat@§), Fig. 1. The

The scale-dependent Wilson coefficientéu) are the short-  O"€" loop matrix elements of the NLO weak Hamiltonian for
distance part of the Hamiltonian and include NLO QCD cor-& b—dss transition can be written in terms of products of
rections and leading-order,,, corrections. WithV, we de- the tree-level matrix elements of penguin operators and the
note products of CKM mixing matrix elements relevant to renormalization scheme-independent coefﬂcm@s)

10

+ 2 el ) O
k=3
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gluon) is not present in th® ™ — 7~ ¢ decay. The final ex-
pression for the matrix element is then

(7~ ¢|Her(AB=—1)|B")
10

G _
=—;q:2uc vq( > Cl(m)(O)ree

k=3

Qem

10 , _
tom g—AG(quq )ou) | (3ci(p)

’ +cz(u)){<07>”ee+<09>”e?) : (2.9
FIG. 1. QCD and QED one-loop penguinlike contributions of
the tree-level operator®; and O, in theb—dq'q’ decay. Here(@k)”ee:(w*¢|(’)k|B*>.
. We have retained the,-proportional term as a part of
(dsgHes(AB=—1)|b) the NLO weak Hamiltonian, although we show later that, in
10 the perturbative approach to the order we are working with,
_Gf as(p)— such a contribution emerges naturally. This term is produc-

V
\/qut},c d

|

tree
X(03—30,+ 05—306)> ]

k§=:3 Cr(p){(O )= a7 C2(1) ing hard final-state interaction phase shifts, necessary for
generatingCP asymmetry, which are due to the on-shell
10 2 2 2 quarks rescattering in the loop for particular valuesqéf
9 AG(my,q% 1) The CP asymmetry depends strongly on the valug®and,
in the factorization approach, the major source of uncertain-
ties in predictions comes from the lack of information about
the g2 value after the factorization of hadronic matrix ele-
ments is perfzormed. On the contrary, in the perturbative ap-
Xem  — — roach, theq“-dependence of the loop amplitude is calcu-
+ 9_77(3C1('“)+C2('“)) Ipable direcﬁ?/ as elxapart of the hadronicpmatr?x element and it
ree is determ:l?ed by th<_a r?hometn_tl{[r? d}i(str.ibutﬁonS indg p:;\kr‘ticular
process. However, in the strict factorization, and in the per-
< E_AG(mé 'qzw“z)> (O7+O9)> ]) turbative calculation for the process considered, the average
g°-value can be simply determined to be the mass ofghe
meson squared<q2>=Mf,,. Further discussion about this
. point is left for Sec. V.
where(O ,)"*=(dsq 0 |b)"® Let us now continue with the estimation of the matrix
The function AG(mg,qz,,u,z) arises from the one-loop elements of four-quark operators.
penguinlike diagrams witlq=u,c quarks in the loop:

X

X

2.3

B. Modified perturbative approach to the calculation
of the matrix elements of four-quark operators

Perturbative calculations of matrix elements in exclusive

hadron decays can be carried out in the Brodsky-Lapage
(2.4  (BL) formalism[10]. Hadrons are considered in the leading

approximation as a bound state of valence quarks and/or an-

Here, as well as the quark masg and the renormalization tiquarks, depending on the hadron. The amplitude of the pro-
scale u, there appears a new parametg; which is the cess factorizes into the convolution of distribution ampli-

momentum squared of a virtual gluon or photon emergingudes of hadrons involved in the decapadron wave

from the loop. In theb—>ds§transitionq2 can be indentified functions and the hard scattering amplitude of valence par-

with the sum of the strange quark momenta squared. tons. Ha_dronlc wave funct|on_s represent the nonpertqrbatlve
. . = part, which has to be determined for heavy hadrons in rela-
Concentrating now on the specific proceBs (bu)

il tivistic constituent or nonrelativistic models, or for light had-
—m (du)¢(ss), a few comments are in order. The strangerons by the QCD sum-rule method or by lattice calculations.
quark and antiquark building-meson are obviously in the Fuyrther discussion about the wave functions is given in Sec.
color-singlet state. Thes pair coming from the virtual gluon V.

decay in the QCD-penguin diagrams builds a color-octet The hard scattering amplitude can be calculated perturba-
state. Therefore, first, one expects a small contribution frontively, taking into account all possible exchanges of a hard
the QCD-penguin operators and, second, the one-loop QCBluon between valence partons in a givegorder of the
penguinlike contributiorishown in Fig. 1 with an exchanged calculation. Valence quarks are carrying some fraction of

1 m2—q2u(1l—u
AG(mé,qz,ﬂ2)=—4J’0du u(1—u)|n<%()>.
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caused by one of the operatot, (2.2). The exponential
factor in formula(2.6) is the Sudakov factor. Its explicit
form is given in Sec. IV.

Ill. CALCULATION OF THE B~ —a~ ¢ DECAY

The basic graph representing tBe — 7w~ ¢ decay in the
perturbative approach is shown in Fig. 2.

In order to perform the calculation, we have to specify the
hadronic momenta. The simplest choice can be made using

- = the light-cone coordinates and taking tBemeson to be at
z1p1+k1 z3p3+ks rest:

FIG. 2. The basic graph of thB™ — 7~ ¢ decay with the mo- M
mentum definitions specified. The black circle stands for the NLO Pg= p1=—B(1,1,6), p'i‘: M2,
effective weak Hamiltoniarn2.1). \/5

momentum of their parent hadron and the final expression is Mg o 2 w42
integrated over the fractions (i=1,2,3), see Fig. 2. The Py= pZ_E(l’r 0), pa=My,
concern about the applicability of this method to exclusive

processes was raised when it was noted that even at large

M -
momentum transfer the contribution to these processes could P.= p3=—B(0,1— r2,0), p3=0.
come predominantly from the momentum regions in which V2
as is large[11,17. The problem is connected with the end- (3.9

point region of momentum fractions. Namely, when one ofyere M, andM , are the masses of tiand the¢ meson,
the hadron constituents carries all the momentum of a hatkespectively, and is defined as their ratia,=M ,/Mg. The
ron, the situation is no more perturbative and significant unyion s taken to be massless. In addition to carrying some
controllable soft contributions m_|ght appear. The solution Ofportion of the momentum of their parent meson, the valence
the problem was proposed by Li and Sternja8]. Contrary -

. quarks also carry some small transverse momerkufsee
to the BL formalism, they suggested to go beyond the coI—Fig 2

linear approximation and to retain the small transverse mo- Working in the leading order, the perturbative part,

mentum of valence quarks. Owing to the transverse degreensamely, the amplitudes of the four-quark operat@s), can

of freedom, the parton virtualities become large enough i . .
. . . : e calculated from the Feynman graphs with all possible
the whole region for a reliable perturbative calculation. Fur- L '
ttachments of a hard gluon, shown in Fig. 3. As discussed

thermore, they included the Sudakov form factor for each o ater explicitly, Fig. 3a) shows factorizable amplitudes of

the hadrons in the _decay to suppress the contrll_)utlons fror{he decay. Figure(®) shows nonfactorizable amplitudes, not
dangerous soft regions. All these effects can be incorporated

into the factorization formula by expressing the transversé)resented in the BSW-factorization approach. Contributions

momentum variables in the Fourier transforntedpace. Of one-loop induced penguinlike diagrams coming from the

The very last formula, which is used throughout this papertree—level operators are shown in Figcl8 These contribu-

. tions can be taken into account immediately assuming the
to calculate the matrix elements of four-quark operators fronNLO weak Hamiltonian. but thev emerde naturally in the
Eq. (2.5 relevant to theB™ — 7~ ¢ decay, is ' Y g y

pertubative model. Finally, Fig.(8) shows some additional
diagrams that have to be included to perform a proper

(7~ $lOB™) O(asaey) calculation.
o In full hadron wave functions one can split up spin wave
:f [dx]f ﬂ}\lf*(xg Bs)q’fp(xz 52) functions from the rest; particularly,
Qg | ™% ’
- . 1 1 .
T(X,Q,M (X,*e_ BB B{X1,01)=—7=(P1 375_C51,1:
X T bl,Mg)Wg(x,,b,)e™ Sx){b}.Me) Wg(xq,bq) \/5(16 +Mjp) \/§CI> (Xq,byq)
(2.6
1 1.

* S\ * e
wherex; (i=1,2,3) are fractions of longitudinal momenta of Wy (x2,b2)= \/Eé(p2+ M) \/§<I>¢(x2 \b2),

B, ¢, and 7 mesons, respectively. Analogously, denote

the Fourier-transformed transverse momenta of these me- . 1 1 .
sons.[dx]=dx,;dx,dx; and{x} denotes the set of variables \Iff,(x3,b3)=Ty5|b3\/—i<bj‘,(x3,b3), 3.2
{X1,X2,X3}. Similarly, for b variables.¥* , vy, and Vg 2 3

are the wave functions of the outgoimgand ¢ mesons, and wherel, is the unit color matrixe* is the polarization vector
the decayingd meson, respectivelyf is the hard scattering of the ¢ meson. The scalar wave functiotsare specific to
amplitude describing thB— 7r¢» decay at the one-loop level each of the mesons and are discussed in Sec. IV.
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FIG. 3. Leading-order contributions to tBe — 7~ ¢ decay:(a)
factorizable,(b) nonfactorizable, andc) and (d) penguinlike. The

square stands for the penguin operai©fs k=3, .. .,10, and

circle represents the tree-level operatdy.

In this process it is enough to calculate QCD-penguin
contributions, because EW-penguin operators are simply re-

lated to QCD penguin operators as

_ _ 2
Osz(db)va(SS)va:_se Oy,
S

_ _ 2
Oy=— (dS)va(Sb)va:_:ge O10,
S

PHYSICAL REVIEW D 59 074005

_ _ 2
Os= (db)va(SS)WA:@O?-
S

_ — 2
_2(d5)3+P(5b)sfP:£OS, 3.9
S

wherees is the strange quark charge,= —1/3e.

Applying the standard procedure for calculating Feynman
diagrams, the hard scattering amplitudgs can be easily
worked out by performing color and spin traces. They appear
after the spin and color parts of the wave functions are added
to the amplitude, leaving the scalar functiohsat the place
of the full mesonic wave function¥ in Eq. (2.6).

All operators receive the same contribution from the fac-
torizable diagrams, Fig.(8):

Ttact=Ta+ Tg,

Ta=—4may(pn) Cf ——32M3 gl

Bae

, 11
X[(A+x3(1—r ))6'p3]'D_GD_b’

——32M3r

47Tas(1u’ Cf \/— \F

1
X[Xl(l—rz)e-pl—xlep?,]-D—GD , (349
Sl

where C; is the color factor equal t&€;=Cr=4/3 for the
03(0g) and O5(0O;) operators andC;=Cg /N, for the oth-
ers. We are going to take the number of coldgsto be equal
to 3.

D¢, Dy, and Dg, denote the denominators of the ex-

changed gluon, and of the virtulandd quark propagators,
respectively:
1-r?)]=(ky—kg)*+in,

De=0&+i7=MZ[X5—X1X3(
the
Dp=0p+i7=—Mgxs(1-r?)—ki+iz,

0y = gy +17=ME[XE—x(1=r?) ] - ki +i7.
39

The approximation made here was to takg=Mpg in the
propagator of the heavyquark. Other propagators are mass-
less.

The operatorg,(0,¢ and Og(Og) also receive nonfac-
torizable contributions coming from the estimation of the
diagrams in Fig. @). The expressions for th@,(O,q) op-
erator are

074005-5
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Thontac{ Oa) =Tc(O4) + Tp(Oy),
Tc(Oh)=— 47Tas(,u) 3 \/_ \/_32MBr
’ 1 1
XL(L=r)(1=X;—=Xp)€-p1]-=5— Do D
To(O4) =~ ——32M3r

47TaS(M) 3 \/— \/—

X[(2X1—Xy— X3

X )€ ps] t 2
—r%(Xo—X3))e- P3| — —,
27— X3 Ps De Dq3

and similarly for theOg(Og) operator
Thontac{ Os) = Tc(Og) + Tp( ),

N
F
Te(Op) = —4may(p) 5 fﬁsm
X[(1—2X1—Xo+ X3
) 1 1
r (1_X2_X3))E'P3]'D_GD—,
az
Tp(Op)=— 32MBr

1

5 1
X[(L=r9)(Xg—X2) € pq]- De D

PHYSICAL REVIEW D 59 074005

The contributions from other two penguinlike diagrams,
Fig. 3(d), are lengthy because they involve the-dy* g*
vertex calculation16] and will be given only in the final
form, in expression3.17), and in the Appendix.

The next step to be performed is to express the hard scat-
tering amplitudes, Eqgs(3.4), (3.6), (3.7) in the Fourier-
transformed space of transverse momenta. The Fourier-
transformed amplitudes read

fact—

The denominators of the virtual quark propagators in Fig.

3(b) are

D, =, +17=MZL(1=X;—Xg) (— (X1~ X3)

The calculation of the one-loop EW-penguinlike contribu-
tions from Fig. 3c) follows the already familiar procedure.

+(1=X; = X3)r?)] = (Ky + ky—kg)?+i 7,

=q§3+in=Mé[(x1—xz>(<x1—x3>
|23)2+i n.

—(Xa—X3)rH)]— kz

(3.6
?rnonfac&04)
;T-nonfac{06)
3.7
where

ha(Dg,Dy,by,b3)=

(3.9

Both diagramsA,,,, andB),,, are proportional to their skel-
eton graphsA and B, respectively. Performing renormaliza-

tion consistent with the use of the NLO weak Hamiltonian
and its renormalization-scheme independefits, the re-

sult, as

expected, is given by

ag

T 2520 A (m2 M2 2
fact’ 97\ 9 (mq! ¢nu') ’

(3.9

where AG has already been defined by E@.4 and the

value of the parametey?

distributions in the process to bﬂfﬁ.

is determined from momentum

074005-6

as(u)
TR
X{[(1+x3(1=r%))e p3]
Xha(Dg,Dy,by,b3)
+[X1(1-r?)e-py—Xq€- p3]
Xhg(Dg,Dgq,,b3,b1)},

———32M3r

X{[(L=r?)(1—X;—Xy) € P1]
X ho(Dq,,Dg by,by)
+[(2x;—X— r2(xp—

X hD(Dq3lDG 1b21bl)}y

X3~ X3))€- P3]

C 1
_ﬁ._F_c_gzM
™ 2

X{[(1—2x1— X+ X3

+r?(1=x;—X3))e-ps]-he

X (Dg,.Da bz,b1)

+[(1=r?)(xy—X2)€-py]

% hip(Dq,, D ba,by)}, (3.10
Ko(\/=ag[bi))

X Ko(V=ap|by+b3]) 8(by),

hB(DG ,Dq11b3ibl):K0( \Y _qé|63|)

X Kol \/_QSHBDL ba|) 8(b,),

hC(DQZ'DG beibl) = KO( vV q(2]2| 62|)

X Ko(y/—q5|by—ba|) 8(by+bg),

hp(Dg,Da b2,b1)=Ko(+/— a5 [ba])

X Ko(\/_q6|61_62|)5(61+ bs),
(3.11)
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andK, is the modified Bessel function of order zero. which ensures the reliable perturbative calculations with the
For the scaleg. appearing in formula$3.10 and (3.9  small ag coupling.
we are going to take the largest mass scale in the particular Performing trivialb integrations oves functions and per-

diagram: forming angular integrations by using Graph’s theorem:
tA: ma)( NV qé, AV q2, 1/b1 y 1/b3),
_ — 7 .2 f(x,bl,bz)zf dpKo(x|by=b,))
tg=maxy—dg,v—qd 1,1/b1,1/b3),

=2m[O(b;—by)Ko(xby)lo(xby)
+0(by—by)Ko(xby)lo(xby)], (3.13

te=maxy—dg, /= dg, 11, 1/y),

to=max(\/— g,/ — G5, /b1, 1by),
one can finally write the total amplitude of th&™ — 7~ ¢

tioop=Max\/—qg, 1hb,), (312 decay as

Ge
M= H.:BY=— VA,
<7T¢| eff| > \/quzu’(: gvq
- — 1 - — - — 1 — — 1 — 1
Aq=13| st Cs— 5(C7+Co) | +C4+C6— 5 (Ca+C10) (Tracy) +{ Ca~ 5C10|(Tnontacl Oa)) +| €6~ 58 | (Tnonfacl Oe))
a — 10 2
— 9 (361+65)- 3(Trac)| 5 ~AG(ME, M3 ,mg)) ~ 3. cTioopq: (3.14

with the matrix elements

t
QS;A) H(Dg,Dy,b;,bs)

C
(Trac=— ?qusMgrf dxldng bidb;bsdby®g(x;,b1) P (X3,b3) X

X[(A+x%3(1—r?))e-p3le” (Sa(ta)+S(ta) 4 & *s(ls )H(DG,Dql bs.b;)

X[Xy(1—r?)€e-py—Xq€- ps]e‘(SB(tBHSW(tB))} ’

¢( 2 2)

Cr
(Thontac{ Oa))=— 3 f¢MBrf[dX]fb1dblb2db2 g(X1,b1) D7 (x3,by)

5¢ ( ag(te)
T

H(Dg,,Dp,bz,by)[ (1~ r3)(1—X;—Xp)€- pyle Selte)+Sulte)Saltehln,—n,

ag(tp)
T

H(Dg,,Dp,b2,b1)[(2X1 =Xz = X3~ r%(Xz—X3))e- Pg]x ™ 58101 Sullo)+Seltolo, -, 1

Ce 5(X2,0)
(Thontac{ Op)) = — 3 ¢MBrf[dX]f b,db;b,db,dg(xy,b 1)(/)—22‘1)*( X3,b1)

5 [ ag(te)
T

H(Dq, Dy, b2,01)[ (1= 2% = Xo+ X3+ r?(1 =Xz~ X3))€- psle” e(te)*Slte)*SulteDo, -,

s( p)

H(Dg,,Dp,b2,b1)[(1-12)(x;—Xp) - pyle™ Gato)*Sulto)*SaltoDlo,-v, 1 (3.15
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where the Fourier-transformed expressions for the propaga- f
tors in Egs.(3.15 have the general form D2(x) =6x(1—X) —= 4.1

26’

H(D1,D5,by,b3)=Ko(V—D1by)f(y—D ,bl.bz)(é 16 and the Chernyak-Zhitnitsk¢CZz) wave function[17]

m

with the functionf as defined by3.13. CI)iz(x):SOx(l—x)(l—Zx)zz\/é, (4.2)
In Eqg. (3.14 we have also included the one-loop contri-

butions from th_e.diagrams of Figs_(c’} and 3d). The. matrix . both normalized to satisfy the experimentally obtained value
elements receiving the contributions from the diagrams Nor the pion decay constant=0.133 GeV. In addition, any

Fig. 3(d) are comparison between theoretically calculable processes and
existing experiments cannot provide an unambiguous deter-
Cr 3 mination between therflL9].
{Tioop)q= "~ ?f¢MBrJ dxldx3f badb; Pa(X1,by) What we are going to regard as the CZ wave function
throughout the paper is the CZ form in which the evolution
1 [ ag(tioop) > from the hadronic scalg,~0.5 GeV to some scalg, is
X (D;(X&bl)W[TKO( V—aghy) included[20]:
@
X[T5+T5]e(SB(tloOp)+Sq(tloop))b3—b1]_ (3.17 DEX(x, 1) =6X(1—x)| 1+ (5(1—2x)2—1)
a(p) | 1,
The expressions foft and TF, are given explicitly in the X , (4.3
q q )
Appendix. @s(to 2.6

One should note that in the above expressions we havgnd in the modified perturbative approach. the sealds
pulled out the normalization factof¢/2\/§(f¢ is the ' P PP ' e

\ taken to be W [21].
¢-meson decay constanof the ¢ wave function and we If we are going to retain the intristio dependence of the

denote the rest b in order to have the same prefactor in \aye functionsb in the expressions for the matrix elements,
both factorizable and nonfactorizable contributions. then we are faced with even more uncertainties coming from
From the expression fqiTr,cy in Eq. (3.19 itis easy to  the ambiguity in the form of the wave functidmpart as well
essentially recognize the factorization structure in which &g in the values of some new parameters.
matrix element of a four-quark operator factorizes in the Tne constituent quark model of the wave function associ-
product of two current matrix elementég|(ss)y_al0) ates some Gaussian exponential tolirdependent paf22],
(7 (pa)|(db)y_alB™ (py))~f e (Api+Bp4), and the SO that
¢-meson wave function integrates out. The current matrix
element (7~ (p3)|(db)y_alB~(p1)) exactly describes the D35(x,b) = 6x(1— X) 47 exp(— x(1—x)b?/(4a2 ))f_w
B— transtion form factor at the momentum transfer T 2.6
=(p1—p3)2=M§5. In Sec. IV we use this form factor to (4.9
select mesonic wave functions.
The expressions for the Sudakov exponedyts S, , and and

in Egs.(3.15 and(3.17) are given in Sec. IV.
% In £45.(3.19 and(3.19 are g ®EZ(x,b, 1) = 6X(1-x)

0/8

IV. MESONIC WAVE FUNCTIONS AND SUDAKOV vz s | @s(ma) S0/t

X|1+(B(1-2x)"—1)| ——
FACTORS as( o)

The calculation of the matrix elements requires the f
knowledge of the scalar meson wave functidnsThe had- x4 exp(—x(1-x)b%/(4a% )=,
ronic wave functions represent the most speculative part of 2\6
the perturbative approach. They are of nonperturbative origin 4.5

and should be a universal, process-independent quantity.

However, even for the most theoretically and experimenwhere the pion’s transverse parametesandac; are fixed
tally exploited hadron, namely, the pion there are contradicfrom the w— yy process to bea,=0.846 GeV! and
tory conclusions about the specific form ®f,. Theoretical ac,=0.655 GeV'!, respectively[23].
calculations performed by using the QCD sum-rule method For a B-meson wave function there exist a few models
[17] and on the latticd 18] cannot distinguish between the [24]. We consider two forms that have been proved in the
most promising forms of the pion wave function, the calculations of various nonleptoni2decays. The first one is
asymptotic one [25]
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mﬁ k2 |72 The Sudakov exponentials exhibit the result of all-order
1—+1— , (4.9 resummation of double logs appearing from the overlap of
—X X(1-Xx) collinear and soft divergenc¢g9]. In our case,

WP (x,k)=NY| C+

whose Fourier transform gives

Se(t)=s(x1p1 by ,t)— 18, | (—In(t/AQCD) )
(I)(l)(x b)— N(l) bxz(l_x)z B( )_S(lel M1 ) BO n |n(1/(b1AQCD)) ’
5 ,b)y=——

4 \MZx+Cx(1—x)
X K1 (yYM3x+Cx(1—x)b), (4.7

S¢(t) = S(sz; vb2 vt) + S[((l_XZ) p2+)vb2 ,t]

In(t/Aqcp)
=1BoIN| —ri— |,

with the approximationmy,=Mg=5.28 GeV. K; is the In(1/(bzA gcp))
modified Bessel function of order one. Neglecting thde-
pendence leads to SH(t)=S(xsP3 ,b3,1) +S[ (1~ X5)P3),bs,t]

ND _x(1-x0? _ g | "WAoco)

()= —— — . (4.8 Lo In| (i tbah ) (4.12
16m2 M3+ C(1—x) Q

For the constantsl® andC we have used the fitted param- Where Bo=(33-2n;)/12 andn;=4. For Aqcp we have
eters N=604.34 GeV and C=-27.5 Ge\?, which Used the value\ocp=0.2 GeV throughout the paper. The

have been proved in other calculatidis]. last term in the above expressions accounts for the renormal-
Another model is the oscillatorlike wave function of ization from the IR scale b/to the some renormalization
Bauer, Stech, and Wirb¢27]: scalet, which we are going to take to be one of the scales
from Eq.(3.12, depending on the diagram considered.
NG 2 W2 The full expressions for the Sudakov functions
o0t | e - . s ) ogeerwth o sl sproitions s

(4.9 Note that we have also associated the Sudakov function
S(x1p7 ,b1,t) with the light antiquark of the B meson. The
with the constantsN(®?’=156.34 GeV andw=0.4 GeV. heavyb quark, having a finite mass, does not produce col-
Both wave functions, Eqsi4.7) and (4.9), are normalized linear divergences and its Sudakov function is zero.
with fz=200 MeV. Use of the above mentioned diversity of the wave func-
The vector-meson wave functions are modeled in theions would certainly diminish the capability of perturbative
QCD sum-rule calculationgl7,28. Since the form of the calculations for giving reliable predictions for thB~
¢-meson wave function is still questionable, we have de-— 7~ ¢ branching ratio an€ P asymmetry, having in mind
cided to use the asymptotic form that the effects of the large reduction of the results owing to
the intrinsich dependence in the wave functions as well as
fg the large difference in the predictions depending on Bhe
‘I’¢(X)=6X(1—X)—\/—, f4=0.233 GeV, (4.10  andw meson wave function employed, has already been ob-
276 served in other perturbative calculatiof31]. We have

. . . . . checked that this is also the case in the calculation oBthe
without including anyb dependence. We believe that owing — ¢ decay.

to the lack of better experimental data to which transverse Owing to the specific character of tBe— 7 decay gov-
parameters can be fixed, an unrealistidependent part may

produce more questionable results than by neglecting it. erned by theb—dss transition where the strange quark-

In order to suppress the soft contributions in the hamanthuark pair has to form the fingl-meson state, we can

scattering amplitude$¢3.15, (3.17), we have included the 2SSUme that the— m¢ Process is deterr;unedz predomi-
Sudakov factor§13]. They ensure that the hard scattering "@ntly by theB— m transition at the energp®=My;.

amplitude receives contributions only from the exchange of 1herefore, we can try to make a selection among the wave
hard gluons, suppressing the contributions of soft gluondunctions by comparing the results for tle- 7 transition
from the largeb region. The Sudakov suppression is com-form factor obtained from the QCD sum rig2] and lattice

prised by the hadron wave function redefinition calculations33] summarized in
dg— DPp(xq,bq)exp(—Ss(t)), F8~7(0)=0.25-0.35, (4.13
D y— D 4(X2,bz)eXp(— Sy(1)), with those estimated in our modified perturbative approach.
The expression for the form factor in the perturbative ap-
O, —D_(X3,bz)exp(—S,(1)). (4.1)  proach has the form
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— 2V Im(Vy)Im( A A*)

B—m _CF 2
FY ()= = Mg | dxdxs [ bydb,bsdbs®g(xy,by)

acp= .
(Vo2 A 2+ VA A2+ 2V RV ) RE(ALAS))
. ag(ta) (5.2
X D7 (x3,b3) H(Dg,Dp,by,bs) . .
™ The products of the CKM matrix elements may be written

X[ 1+ xg7]e~ (Ss(tw)+Srlia) in the Wolfenstein parametrization as
3

ag(ts) V=V Vip=AN3(1-\22) (p—ip)=AN3(p—i ),

+ == 2H(Dg Dy, b3.by)
V=V Vep=—AN3 (5.3

X[ =% (1~ ”)]e(SB(tBHS”(tB))]’ (4.14 We use the following values of the parametgrand 7:

which can be easily recognized in the expression for the p=0.16, 7=0.33, (5.9

factorizable part of thd8— 7 ¢ decay, Eq.(3.15. The pa-
rametery is the fraction of the energy of the meson and at
the momentum transfg?=0 or p?>= be we haven=1 or
n=1-M3/MZ=1—-r?, respectively.

Estimating theB— 7 transition form factor at the momen-
tum transferp?=0 using different forms of thé and =
meson wave functions taken from above, we achieve predic-
tions which are far from the values obtained in the QCD sum . —
rule and lattice calculationg}.13, except if we assume the and using t_h(_a central value for_ the parameter from Eq.
oscillatorlike model for the B meson wave function (5.4), the minimum and the maximum allowed valjég]

®@)(x), Eq. (4.9, and the CZ type of the pion wave func-

which correspond to their central values obtained by the uni-
tarity fit [34]. Since recent measurements disfavor the nega-
tive values for thep parametef35], the CP asymmetries

will be presented in figures by taki@in the range

0<p=<0.25 (5.5

tion (4.3), both being intrinsid independent. Our predicted n=0.27,
value for theB— 7 form factor obtained with these wave —0.38 5.6
functions is 7=0.38, (5.6

respectively. The other Wolfenstein CKM parameters used
areA=0.823 and»=0.2196.

@) cz , Following Ref.[36], we are going to take the constituent
Both, ®5”(x) and ®;%(x,u,) are more end-point concen- gyark masses in the loop expressions, Es) and(3.17),
trated wave functions than their alternative forrﬁsgl)(x) with particular valuesn,=0.2 GeV andm.=1.5 GeV.

(4.8) and ®2%(x) (4.1), respectively. This indicates a need  For the Wilson scale-independent coefficients at the

Frerr(0)=0.282. (4.15

for the enhancement of the soft contributions in order torenormalization scale u=m,=4.8 GeVay(My)
match the prediction$4.13 for the B— 7 form factor esi- =0.118,a(M;)=1/128 we take[37]
mated by nonperturbative methods.
Comparable calculations of tHg— 7 form factor in the c;=-0.324, c,=1.15,
modified perturbative approach have also been performed in
[22,3] and, similarly, the results obtained have exibited €3=0.017, c,=—0.038,
strong dependence on the mesonic wave functions used, con-
firming that the wave functions represent the weakest point ~_ - __
in the calculation oB-meson decays in the perturbative ap- Cs=0.011, ¢g=-0.047,
proach.

c,=—1.05x107°, cg=—3.84x10 4,
V. NUMERICAL RESULTS AND DISCUSSIONS Eg: —0.0101, glo: 1.96x 1073, (5.7)

Now we are going to discuss the branching r&iR and
the CP asymmetry in thédB™— 7~ ¢ decay numerically.
The decay rate is given as

One can note from expressi@h.2) that some absorptive
part in the amplitude is essential for nonvanish@B asym-
metry.

1 A\YZ(Mg . M.,.0) As in the BSW factorization approach, the_ necessary ab-
[(B =7 ¢)= #Mfﬂz, (5.1) sorptive part comes from the cut in the penguinlike diagrams
167 M3 in Fig. 3(c), residing in the termAG(m;, M3, u?). From
expression2.4) it is easy to see that the absorptive part is
whereA*(Mg,M,;,0)=M3(1—r?) and the total amplitude developed for the virtual photon momentunsuch thatg?
M is given by Eq(3.14). CP asymmetry in terms of thel, >4m§, g=u,c. Owing to the specific momentum distribu-
and A, amplitudes, Eq(3.14), reads tions in theB™— 7~ ¢ process, the imaginary part emerges
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only from the diagram with a quark in the loop. In numeri-
cal calculations we use the approximation of E2j4),

mg
R(z)—ln—2
72

2
¢

2|5
2 —
AGapp(m :Mz)_§ §+

Q’M

2
+1+-
V4

(5.9
where by defininga=|1—4/z|, we have

—am+2aarctarta), z=(M,/m,)?,

. | a
iart+aln—-,
l+a

R(z)= (5.9

z=(M,/m,)%.

In addition, in the perturbative approach there are absorp :
tive parts connected with the cuts in the propagators of virQCD-factorizable
tual partons in each of the diagrams in Fig. 3. The expressioRCD-all

for H, Eq.(3.16, can develop the imaginary part for some of
the values of the fractions in the integration for which the

denominators of the gluon or quark propagators under th@CD+QED-all

square root become negati{gee Eqs(3.5), (3.8)]. In this
case we take

] _i7T (1)
KO(|yb)—7H0 (yb) (5.10

and

) B i )
f(iy,by,by)= ?[®(b1_b2)Ho (yby)Jo(yby)

+0(by,—by)HE(yb,) Jo(yby)].
(5.11)

Having selected the B meson wave functid?(x), Eq.
(4.9), in the preceding section:

(5.12

and thedS%(x,1/b) Eq. (4.3 for the = meson wave func-

2

2
@ ME,
2

1 N
PP (x)= Ec1><52>(x,0)=F X(1—Xx)ex
a
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TABLE I. Branching ratios for th&~— 7~ ¢ decay calculated
for different penguin contributions, by taking only the factorizable
parts or the complete expression into account. The first column
contains the predictions obtained in the BSW factorization approach
by using<q2>:M§ (see text Columns | and Il give predictions
calculated in the modified perturbative approach by employing the
meson wave function®?(x), Eq. (5.12 and ®S%(x,1hb), Eq.
(4.3), and by using the Wilson coefficien&(mb) (5.7) in column
I andf(ko)(t) (5.16 in column Il. The CKM parameters used are
p=0.16 and»=0.33.

Penguin contributions BR

BSW | Il

0.2810°1° 0.14x10°1° 1.06x10°%°
2.51x10°1° 0.73x10°%°

QCD+QED-factorizable 0.3%10° 8 0.38<10°% 0.89x10 8
0.44<10°8 0.85x10°8

plitude given by Eq.(3.14 by neglecting nonfactorizable
parts and numerically suppressed contributions emerging
from the diagrams in Fig. (8). The matrix element in the
strict factorization approach is proportional to the
FBﬁ"(Mfl,) form factor which we calculate in the single-
pole approximation as

Fasw(0)

F L
1-M3/M3(17)

Bsw(M%)= (5.13

B—m

whereM3 (17)=5.32 GeV andFg57(0)=0.33[7]. It is
worth mentioning that the prediction for tiile— 7 form fac-
tor estimated in the perturbative approach, E4.15), is
somewhat smaller than tHeS5\7(0) value.

All results estimated in the factorization approach are ob-
tained by taking the virtual photon momentum squared equal
to qzzMﬁ,. We have already stated that, in general, infor-
mation about theg? value is lost by factorizing hadronic
matrix elements, except in the strict factorization, when non-

tion, we can now continue along the lines developed in the

preceding sections and give reliable predictions for Bhe

— ¢ branching ratio aneC P asymmetry in the modified

perturbative approach, using the NLO weak Hamiltonian.
The results are presented in Tables | and I, together wit

the predictions estimated in the BSW factorization approach,
both being calculated with the preferred values of the CKM

parametersp=0.16 andz=0.33.
Calculations of thé8™ — 7~ ¢ branching ratio and asym-

metry in the BSW factorization approach have been per

formed by many authoi8—6]. In order to be able to clearly

assign the role of nonfactorizable contributions in the decaypenguin contributions

TABLE Il. CP asymmetries for thd~ — ™ ¢ decay calcu-
lated for the QCD and QED penguin contributions together, by
taking only the factorizable parts or the complete expression into
ccount. The first column contains the predictions obtained in the
SW factorization approach by usir'(g]z)=be (see text. Col-
umns | and Il give predictions calculated in the modified perturba-
tive approach by employing the meson wave functi@r@%’(x), Eq.
(5.12 and ®S%(x,1b), Eq.(4.3), and by using the Wilson coeffi-
cientsc,(my) (5.7) in column | andE(kO)(t) (5.1 in column II. The

CKM parameters used ape=0.16 and»=0.33.

we have recalculated the BSW factorization predictions us-

ing our values of the Wilson coefficienE (5.7 and the
CKM parameterg and 7.

The decay amplitude in the BSW approach can be directlyycp+QED-all

compared with the complete expression for Bre m¢ am-

acp/1072
BSW I Il
QCD+QED-factor of two factorizable -1.9 14.6 154
16.1 16.3
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FIG. 4. Branching ratio an€P asymmetry in thaB™— 7~ ¢
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coefficients multiplying the one-loop QED penguinlike ma-
trix element, Eq(3.14), because of the relation

3¢y (M) =—Cy(mMp). (5.19
On the contraryCP asymmetry exibits a large reduction of
up to 70% if higherg?)-values are taken.

The results in column Il in Tables | and Il are obtained by
calculation inspired by the papers of Li and collaborators
[26,39, in which the u scale-setting ambiguity of Wilson
coefficients is moderated by applying the three-scale factor-
ization theorem. Their theorem keeps trace of all three scales
characterizing the nonleptonic weak decay, the W-boson
massMy, the typical scalé of the process, and the hadronic
scale ~Aqcp, and proves for the leading-order weak
Hamiltonian that Wilson coefficients should be taken at the
scalet, a typical scale in a particular decay. The matrix ele-
ments of the operator®, and Wilson coefficients are then
both calculated at the same scale. The scale is determined by
the dynamics of the process, contrary to the arbitrary renor-

malization scaleu taken to be a constanty,, for the c,
coefficients, Eq(5.7).

Under the assumption that the three-scale factorization
theorem is also valid for the NLO weak Hamiltoni&®.1)
we have taken the explicit form of the Wilson coefficients,
calculated directly aMy and then rescaled to some lower
scalet [3]:

cO(t)=O(ag(t))+ O aem),

cO(t)=1+O(ag(t))+ O agn),

decay calculated in the BSW factorization approach as a function of
the CKM parametep and for the central value o,=0.33. The
solid, long dashed, and dot-dashed lines denote predictions obtained
by taking (g?)=M3, (g?)=mZ/2, and(q?)=mp/4, respectively
(see text

factorizable and/or strong final-state interactions are ne-
glected. Therefore, considering possible nonfactorizable or
final-state corrections, after the factorization procedure, the
q? is usually considered as a free parameter, whose average
value is constrained by some simple, general kinematical
reasons to bg38]
m2/4<(q?)<mg/2, (5.14
and usually assumed to be valid for all nonleptonic heavy-

to-light transitions.

The dependence of the branching ratio & asymme-
try on the(qg?) as a function of thep CKM-parameter is
shown in Fig. 4. The branching ratio appears to be practi-
cally independent of the value of tg?). Such behavior is
due to the cancellation which occurs between the Wilson
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o t2 20 calculated using the Wilson coefﬁcierﬁg”(t) are enlarged
PROPrap— : . . : .
Co (=5 4Co(X) + Do(x) + §|09M—2— 57 by some factor two in comparison with the estimations ob-
w tained by usingc, (uw=my). In addition, CP asymmetries
are predicted to be about 16%, similarly as in the model in

[5Bo(X;) =2Co(Xp) ], column I, wherec,(m,) are used.
The predicted asymmetries are much larger than those
—0) obtained from the BSW factorization model, and they are of
C10(1)=0, (5.16  an opposite sign. The reason for such an enlargeme@tof
asymmetry are absorptive contributions due to the on-shell
wherex,=mZ/M§,. The functionsB,, Co, Do, andE, are  effects in the propagators of virtual partons appearing in the
the Inami-Lim functiond40]. perturbative calculation. They are also present in the factor-
These coefficients are only an approximation of the Wil-izable amplitudgT¢,.;) which multiplies the penguin loop.
son coefficients, (u=m,), Eq. (5.7) obtained by perform- Neglecting of the imaginary parts coming from the on-shell
ing the renormalization-group analysigl4] and used effects in the propagators would give predictions ©P
throughout the paper, but we hope that possible uncertaintiedsymmetry comparable with that obtained in the factoriza-
involved in the calculation by using the coefficients in Eq.tion approach.
(5.16 are covered within the accuracy of our model. In the Figure 5 shows the impact of different choices of CKM
numerical estimates we have also taken into acc@(nt) parameters on our predictions for the branching ratios and
corrections inc® and ci® in order to have the proper CP asymmetry in theB” —m ¢ decay. The predicted
O(asargy) calculation. asymmetries calculated by using the Wilson coefficients
s e c(0)
By taking the Wilson coefficients_ﬁo) at one of the scales Ck(Mp) andc;’(t) are almost the same. Therefore, we show

(3.12, depending on the diagram involved as a contribution€XPlicitly only the CP asymmetry obtained by using
of the operato),, we obtain the results given in column Il C_(t) coefficients. One can note that the predicited®
in Tables | and II. The results are estimated again with théasymmetry can be enlarged up to 22%.
selected wave function®?)(x) and ®%(x,1/b).
Let us now discuss the results from Tables | and Il and VI. CONCLUSIONS
emphasize their general characteristics. One can note that the , . .
In this paper we have calculated the branching ratio and

B~ — @ ¢ process is clearly dominated by the EW penguin o - )
contributions, in both the factorization and the perturbativeC P @symmetry of the penguin-induc& — ¢ dr:acay In .
approaches and the predicted branching ratio for Bhe the _mod|f|ed pertu_rbat!ve appro‘"?‘Ch _by applying the NLO ef-

- ; -8 fective weak Hamiltonian. Working in the framework of the
— o ¢ decay is of orde)(10°°).

It is obvious that EW nonfactorizable contributions are Medified perturbative approach we have included the trans-
small, being directly proportional to the small Wilson coef- Y&'S€ momentum dependence and the Sudakov form factors.

fici der F f zabl buti ¢ The modified perturbative approach also enables us to calcu-
|c(|:e|£1ts Cg and Cyo. FOT nr(])n actorizable r(]:ontn utions of e nonfactorizable contributions.
Q penguin operators there Is no such apparent reason, \ye haye used the—  transition form factor to select

because the Wilson coefficients multiplying the operatars  mesonic wave functions by comparing our result with the
andcg, are in absolute magnitude even larger than the coefpredictions estimated in the QCD sum rule and lattice calcu-

ﬁcienta), which dominates thB8~— 7~ ¢ decay(5.7). The lations. The comparable prediction has been obtained only
influence of the QCD nonfactorizable contributions is notice-for the intrinsicb independent, more end-point concentrated
able, especially in the perturbative results based on the Wilwave functions for bottB and= mesons®£)(x) (5.12 and
son coefficients taken from E¢6.7) and represented in col- ®S%(x,1b) (4.3, respectively.
umn . For this case, by comparing the third and fourth rows Using the NLO weak Hamiltonian and the selected wave
in Table I, we can see that nonfactorizabile corrections cafunctions we have first worked with the renormalization
account for some 14% of the final result. However, afterscheme-independent coefficients and have been able to cal-
taking the Wilson coefficients in the convolution with the culate the EW penguin contributions properly, proving their
hadronic matrix elements at the same scale, as it is done lominance in thd™ — 7~ ¢ decay.
obtaining the results in column II, nonfactorizable contribu-  In addition, we have examined the assumption of taking
tions become negative, and small, and can be consider@be Wilson coefficients to be convolution functions in the
negligible, lowering the final result by some 4%. Negligible starting factorization formulé2.5) instead of taking them as
nonfactorizable corrections in this model indicate that, by aconstants at some arbitrary scale The Wilson coefficients
suitably chosen scale which truly makes the product of thehen enter into the factorization formula in the convolution
Wilson coefficients and the hadronic matrix elements scalevith the matrix elements at the same sctalgypical of the
independent, it is possible to account for the almost stricbrocess and that resolves the problem of different renormal-
factorization in theB™— 7~ ¢ decay, which would be na- ization scales for the short-distance p&kilson coefficients
ively expected by the “color transparency argumef8]. and the long-distance p&rnatrix elements of the four-quark
Further general behavior of the results from column Il canoperatory in the amplitude of the weak Hamiltonian. Esti-
be summarized in the statement that the branching ratiosations based on this assumption have produced the branch-

Aem

+ —_
37 sirt O
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20 . ™ hadronic matrix elements, then the nonfactorizable QCD
penguin contributions appear to be negligible, as is the case
with the obviously very small nonfactorizable contributions
of the EW penguin operators.

Therefore, our results for the branching ratio appear to be
in agreement with previous calculations performed in the
BSW factorization approach, predicting the branching ratio
to be of order®(10 %), dominated by the EW penguin op-
erators. On the other side, the predic@® asymmetry dif-
fers a lot from that estimated in the BSW factorization ap-
proach, being as large as 16% and having an opposite sign

for the preferred values of the CKM parametprs0.16 and

7=0.33. The largeCP asymmetry estimated in the pertur-
bative approach is the result of large on-shell effects of the
0.0 . . virtual propagators involved in the calculation.

- _ - The strong reduction of the results obtained with the in-
trinsic b dependence of the wave functions indicates that
0.4 : . mesonic wave functions still need further investigations.
Presently,B-meson wave functions suffer from uncertaintes
involved in the models from which they are derived as well

15

BR(10"%)
P

—— 1=033 as from uncertaintes coming from the fit to experimental
03 - ‘_l'g-gg 1 data, and ask for a more refined treatment in their derivation.
—— =0

Provided that thé3-meson wave function could be better
determined, the formalism of this paper may be successfully
applied to similar penguin-induced decays, of whiBh
—K™ ¢ andB™ — w¢ are particularly interesting owing to
recent experimental measurements and their role in the de-
termination of the values of some CKM matrix elements.
These topics will be the subject of our future investigations.
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=0.27, and5=0.38, respectively. Predictions obtained by usingin Fig. 3(d), are given here explicitly. In the calculation we

the Wilson coefficients,(my) (5.7 andc{?(t) (5.16 are denoted have neglected the transverse momenta in the loops. The

by labels | and Il, respectively. general expression for the contribution of the diagrams can
be written as

ing ratios about factor two larger than those calculated with T =Ci+l'+H +G.. i=E.F. (A1)
the conventional Wilson coefficients. d a e e ’

Besides, if the Wilson coefficients are considered to beThe results are presented as integrals over Feynman param-
functions of the scale, the same one which appears in theters and the particular contributions are found to be

CE=(—)£[2(1—r2)(1—2x Je-pr+ (L+12—4x,+2x3(1—r2))e- p3]
6 1 1 1 3 35

1 1-u M2
Icf:JOduJO dv(—)M—g(UJrv(l_xl))(l_u_v(l_xl))
X[1—u—v+(1—v)(—2X;+x3) +r2(L—u—v—x3(1—v))][(1—r?)e-p;—€-p3l, (2)
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1 1-u m?
H§=f duf dv—g[(l—rz)(u+v(1—x1))e- p1+(1—2u—20—2X;(1—v)+X3(1—r?))e-pzl,
0 0

Mg
(A3)
4 M2
ngfolduf: do In—[(1-1?)(1—2u—20(1-X;))e- Py
)7
—[1-u—v—2x(1—v)+x3(1—v)+r?(1—u—v—Xz(1—v))]e- psl, (A4)
and
1
CF=(—)6[(1—r2)(1—2x1)e~p1+2(1+r2—4x1+2x3(1—r2))e~p3],
. 1 1-u M3
qufodufo dvW{(l—rz)(—ux1+v(1—xl))[(v(l—x1)+x1(1—u))((l—v)(l—x1)+ux1)e-pl
F
+H{v(1=v)+x,(1—u—3v+2v(u+v))](1-r?)—2((1—u)(1—u—2v) + v?)X;X3
+[2(u—v)+(u+v)?=(1—u)(1—u—2v) +v?)r?Ixsle- psl, (A5)
1 1-u  m?
HE=[ du dov—[(1—-r?)x1e- p1— [ (1—X3)+Xa(1—U))(1—r2)+r?]e- psl, (AB)
q J;) fo M;Z: 1 1 3 3 3
“u M2
G§=JolduJOl dv InILL—;:{(l—rz)(v—xl(u~l—v))as-p1
+[2(Xx;—X3)(1—u—0v)—r?(1—2v—2x3(1—u—v))]e- p3}. (A7)

The functionsMZ andM? depend on the quark mass in the lowg and are given by

M§=m§— ME[u(1—u)r?+v(1—v)(1—x1)(— (X3 —X3) +T2(1—X3))— Uv (— (X1 — X3) +12(2— X, — X3))] (A8)

and
MZ=m;—ME[U(1—u)X;(Xs = X3+ 12X3) +0(1=v) (1= Xg) (— (X1=Xg) +1%(1=X3))
—Uv (X —X3) (1= 2X;) + r2(X, + X3— 2X1X3))]. (A9)
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