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Perturbative approach to the penguin-inducedB˜pf decay
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Using a modified perturbative approach that includes the Sudakov resummation and transverse degrees of
freedom we analyze the penguin-inducedB2→p2f decay by applying the next-to-leading order effective
weak Hamiltonian. The modified perturbative method enables us to include nonfactorizable contributions and
to control virtual momenta appearing in the process. In addition, we apply the three-scale factorization theorem
for nonleptonic processes that offers the possibility of having the scale-independent product of short- and
long-distance parts in the amplitude of the weak Hamiltonian. The calculation supports the results obtained in
the BSW factorization approach, illustrating the electroweak penguin dominance and the branching ratio of
orderO(1028). However, the estimated prediction of 16% for theCP asymmetry is much larger than that
obtained in the factorization approach.@S0556-2821~99!05605-2#

PACS number~s!: 13.25.Hw, 12.38.Bx
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I. INTRODUCTION

Among a variety of heavy-meson decaying channels,
clusive two-body nonleptonic decays are theoretically
most challenging ones, owing to the phenomenon of hadr
zation and the effects of final-state interactions. On the o
hand, they present the most promising way to detectCP
violation in the heavy-meson sector and to explore
Cabibbo-Kobayashi-Maskawa~CKM! mixing matrix ele-
ments.

The mechanism ofCP violation can be investigated di
rectly in the charged sector ofB mesons by measuringCP
asymmetry.CP asymmetry is defined as the relative diffe
ence between the decay rates of theB meson and its
CP-conjugated state: i.e.,

aCP5
G~B2→ f !2G~B1→ f̄ !

G~B2→ f !1G~B1→ f̄ !
. ~1.1!

NonvanishingCP asymmetries appear through the interfe
ence between amplitudes with different weakCP-violating
phases and differentCP-conserving strong phases comin
from the final-state strong interactions different from zero

Nowadays, experimental facilities offer a possibility
searching forCP asymmetries in penguin-induced nonle
tonic decays, very promising decays to detect directCP vio-
lation. Such decays have small branching ratios~BR!, but
satisfy both requirements forCP-violating asymmetry, ow-
ing to the fact that penguin diagrams are loop diagrams w
different quark generations contributing with different we
CP-phases from the CKM matrix and that final-state stro
interaction phases emerge from the absorptive part of p
guin amplitudes. This mechanism of generatingCP asym-
metries in decays that involve penguin diagrams was
considered by Bander, Silverman, and Soni@1#.

In this paper we discuss the pure penguin-inducedB2

→p2f decay governed by the heavy-quarkb→dss̄decay.
Performing a consistent 1/Nc expansion (Nc , quark color
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number! of QCD-penguin amplitudes, one can show that
this process the QCD-penguin contribution should be s
pressed and the dominant contribution comes from the e
troweak ~EW!-penguin operators@2#. The B2→p2f pro-
cess has already been considered by many authors@3–6#
within the Bauer-Stech-Wirbel~BSW! factorization ap-
proach @7#. This method for reducing the hadronic matr
element of four-quark operators to the product of tw
current-matrix elements cannot account for QCD interacti
between the currents, except by parametrizing them b
phenomenological parameter in the generalized factoriza
approach@8#. In general, momenta of virtual gluons or ph
tons in a process, appearing explicitly in the penguin ma
elements after factorization have to be considered free
rameters.CP asymmetry depends strongly on these para
eters and the predictive power of calculations perform
within the factorization prescription is greatly reduced.

Our aim is to investigate theB2→p2f decay in the
modified perturbative approach. Perturbative calculations
exclusiveB decays were carried out by different authors@9#,
all of them following the framework for analyzing exclusiv
decays in the perturbative QCD~PQCD! approach developed
by Brodsky and Lepage, and other authors@10#. In the per-
turbative approach, exclusive amplitudes involving large m
mentum transfer factorize into a convolution of a proce
independent and perturbatively incalculable distributi
amplitudes~hadronic wave functions!, one for each hadron
involved into the decay, with a process-dependent and
turbatively calculable hard scattering amplitude of valen
partons.

The applicability of such a PQCD framework to exclusi
decays was widely discussed@11,12# owing to the concern
about the possible uncontrollable nonperturbative~end-piont
region! contributions and the problem was solved in a mo
fied perturbative approach proposed by Li and Sterman@13#.

Besides offering a reliable perturbative calculation, t
modified perturbative approach offers a possibility of goi
beyond the factorization approximation in the calculation
four-quark matrix elements. It also enables us to assign
process-dependent virtual momentaq2 in the loop matrix
elements and to fold them with their distribution in a partic
lar decay. In this way, the uncertainties inCP asymmetry,
©1999 The American Physical Society05-1
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which are due to some ad hoc quark model values ofq2 as
applied in the factorization approach, do not appear.

The purpose of this paper is to present a complete ca
lation of factorizable and nonfactorizable contributions in t
penguin-inducedB2→p2f decay up to orderO(asaem),
testing the results on various CKM mixing matrix param
eters. Especially, we wish to examine nonfactorizable con
butions from the QCD-penguin operators and assign t
role in the EW-penguin dominated processes, such asB2

→p2f.
The plan of the paper is as follows. In Sec. II we intr

duce the method of calculation based on the next-to-lead
order ~NLO! effective weak Hamiltonian, and the modifie
perturbative approach. A detailed analysis of theB2

→p2f process is presented in Sec. III. A discussion
mesonic wave functions and the Sudakov form factors
given in Sec. IV and the selection of proper mesonic wa
functions is made. In Sec. V we present our numerical res
for the branching ratio andCP asymmetry, comparing them
with those obtained from the factorization approach and
amine the dependence of the results on the choice of C
parameters. Concluding remarks are given in Sec. VI.

II. PERTURBATIVE MODEL FOR CALCULATING THE
B2

˜p2f DECAY

The nonleptonicB2→p2f decay is governed by th
weak decay of the heavy b-quark,b→dss̄. The light anti-
quark of theB meson is the spectator in the decay, be
only slightly accelerated by the exchange of a hard gluon
form a pion in the final state.

In this section we present the basic ingredients for a
culation of such a penguin-induced decay. The first ingre
ent is the NLO effective weak Hamiltonian, which allows
consistent study of nonleptonic decays in which penguin
erators are involved. The second ingredient, on which
paper is based, is a modified perturbative method for ca
lating exclusive decays by which the matrix elements
four-quark weak-Hamiltonian operators are perturbativ
calculable.

A. Low-energy effective weak Hamiltonian beyond the leading
logarithmic approximation

Following Ref.@14# we consider the NLO effective wea
Hamiltonian forb→d transitions:

Heff~DB521!5
GF

A2
(

q5u,c
VqS c1~m!O 1

~q!1c2~m!O 2
~q!

1 (
k53

10

ck~m!OkD . ~2.1!

The scale-dependent Wilson coefficientsci(m) are the short-
distance part of the Hamiltonian and include NLO QCD c
rections and leading-orderaem corrections. WithVq we de-
note products of CKM mixing matrix elements relevant
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b→d transitions,Vq5Vqd* Vqb . Local four-quark operators
renormalized at the scalem, are

O 1
~q!5~ d̄aqb!V2A~ q̄bba!V2A ,

O 2
~q!5~ d̄q!V2A~ q̄b!V2A ,

O35~ d̄b!V2A(
q8

~q8̄q8!V2A ,

O45~ d̄abb!V2A(
q8

~qb8̄qa8 !V2A ,

O55~ d̄b!V2A(
q8

~q8̄q8!V1A ,

O65~ d̄abb!V2A(
q8

~qb8̄qa8 !V1A ,

O75
3

2
~ d̄b!V2A(

q8
eq8~q8̄q8!V1A ,

O85
3

2
~ d̄abb!V2A(

q8
eq8~qb8̄qa8 !V1A ,

O95
3

2
~ d̄b!V2A(

q8
eq8~q8̄q8!V2A ,

O105
3

2
~ d̄abb!V2A(

q8
eq8~qb8̄qa8 !V2A , ~2.2!

where V6A51/2gm(16g5), a and b are color indices,
q8P$u,d,s,c,b%, and eq8 are the corresponding quar
charges.O 1

(q) andO 2
(q) are tree-level operators,O3 , . . . ,O6

are QCD-penguin operators, andO7 , . . . ,O10 are EW pen-
guin operators.

From the quark content of the operatorsO 1
(q) andO 2

(q) it
is obvious that they do not contribute at the tree level inb

→dss̄ transitions. Such transitions are pure pengu
induced, receiving contributions from the operato
O3 , . . . ,O10, in whichq8 is restricted to be a strange quar
q85s.

In the NLO weak Hamiltonian~2.1! the renormalization-
scheme dependence of the Wilson coefficients is explic
canceled by the inclusion of the one-loop QCD and QE
matrix elements of the tree-level operatorsO1,2

(q) , Fig. 1. The
one-loop matrix elements of the NLO weak Hamiltonian f
a b→dss̄ transition can be written in terms of products
the tree-level matrix elements of penguin operators and
renormalization scheme-independent coefficientsc̄(m):
5-2
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^dss̄uHe f f~DB521!ub&

5
GF

A2
(

q5u,c
VqS (

k53

10

c̄k~m!^O k&
tree2

as~m!

24p
c̄2~m!

3H K S 10

9
2DG~mq

2 ,q2,m2! D
3~O323O41O523O6!L treeJ
1

aem

9p
„3c̄1~m!1 c̄2~m!…

3H K S 10

9
2DG~mq

2 ,q2,m2! D ~O71O9!L treeJ D ,

~2.3!

where^O k&
tree5^dss̄uO kub& tree.

The function DG(mq
2 ,q2,m2) arises from the one-loop

penguinlike diagrams withq5u,c quarks in the loop:

DG~mq
2 ,q2,m2!524E

0

1

du u~12u!lnS mq
22q2u~12u!

m2 D .

~2.4!

Here, as well as the quark massmq and the renormalization
scalem, there appears a new parameterq2, which is the
momentum squared of a virtual gluon or photon emerg
from the loop. In theb→dss̄transitionq2 can be indentified
with the sum of the strange quark momenta squared.

Concentrating now on the specific processB2(bū)
→p2(dū)f(ss̄), a few comments are in order. The stran
quark and antiquark buildingf-meson are obviously in the
color-singlet state. Thess̄pair coming from the virtual gluon
decay in the QCD-penguin diagrams builds a color-oc
state. Therefore, first, one expects a small contribution fr
the QCD-penguin operators and, second, the one-loop Q
penguinlike contribution~shown in Fig. 1 with an exchange

FIG. 1. QCD and QED one-loop penguinlike contributions

the tree-level operatorsO1 andO2 in the b→dq8q̄8 decay.
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gluon! is not present in theB2→p2f decay. The final ex-
pression for the matrix element is then

^p2fuHe f f~DB521!uB2&

5
GF

A2
(

q5u,c
VqS (

k53

10

c̄k~m!^O k&
tree

1
aem

9p S 10

9
2DG~mq ,^q2&,m! D „3c̄1~m!

1 c̄2~m!…$^O 7&
tree1^O9&

tree% D . ~2.5!

Here ^O k&
tree.^p2fuO kuB2&.

We have retained theaem-proportional term as a part o
the NLO weak Hamiltonian, although we show later that,
the perturbative approach to the order we are working w
such a contribution emerges naturally. This term is prod
ing hard final-state interaction phase shifts, necessary
generatingCP asymmetry, which are due to the on-she
quarks rescattering in the loop for particular values ofq2.
TheCP asymmetry depends strongly on the value ofq2 and,
in the factorization approach, the major source of uncerta
ties in predictions comes from the lack of information abo
the q2 value after the factorization of hadronic matrix el
ments is performed. On the contrary, in the perturbative
proach, theq2-dependence of the loop amplitude is calc
lable directly as a part of the hadronic matrix element an
is determined by the momentum distributions in a particu
process. However, in the strict factorization, and in the p
turbative calculation for the process considered, the aver
q2-value can be simply determined to be the mass of thef
meson squared,̂q2&5Mf

2 . Further discussion about thi
point is left for Sec. V.

Let us now continue with the estimation of the matr
elements of four-quark operators.

B. Modified perturbative approach to the calculation
of the matrix elements of four-quark operators

Perturbative calculations of matrix elements in exclus
hadron decays can be carried out in the Brodsky-Lap
~BL! formalism @10#. Hadrons are considered in the leadin
approximation as a bound state of valence quarks and/or
tiquarks, depending on the hadron. The amplitude of the p
cess factorizes into the convolution of distribution amp
tudes of hadrons involved in the decay~hadron wave
functions! and the hard scattering amplitude of valence p
tons. Hadronic wave functions represent the nonperturba
part, which has to be determined for heavy hadrons in re
tivistic constituent or nonrelativistic models, or for light ha
rons by the QCD sum-rule method or by lattice calculatio
Further discussion about the wave functions is given in S
IV.

The hard scattering amplitude can be calculated pertu
tively, taking into account all possible exchanges of a h
gluon between valence partons in a givenas-order of the
calculation. Valence quarks are carrying some fraction
5-3
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BLAŽENKA MELIĆ PHYSICAL REVIEW D 59 074005
momentum of their parent hadron and the final expressio
integrated over the fractionsxi ( i 51,2,3), see Fig. 2. The
concern about the applicability of this method to exclus
processes was raised when it was noted that even at
momentum transfer the contribution to these processes c
come predominantly from the momentum regions in wh
as is large@11,12#. The problem is connected with the en
point region of momentum fractions. Namely, when one
the hadron constituents carries all the momentum of a h
ron, the situation is no more perturbative and significant
controllable soft contributions might appear. The solution
the problem was proposed by Li and Sterman@13#. Contrary
to the BL formalism, they suggested to go beyond the c
linear approximation and to retain the small transverse m
mentum of valence quarks. Owing to the transverse deg
of freedom, the parton virtualities become large enough
the whole region for a reliable perturbative calculation. F
thermore, they included the Sudakov form factor for each
the hadrons in the decay to suppress the contributions f
dangerous soft regions. All these effects can be incorpor
into the factorization formula by expressing the transve
momentum variables in the Fourier transformedb-space.

The very last formula, which is used throughout this pa
to calculate the matrix elements of four-quark operators fr
Eq. ~2.5! relevant to theB2→p2f decay, is

^p2fuO kuB2&

5E @dx#E Fd2bW

4p
GCp* ~x3 ,bW 3!Cf* ~x2 ,bW 2!

3Tk~$x%,$bW %,MB!CB~x1 ,bW 1!e2S~$x%,$bW %,MB!,

~2.6!

wherexi ( i 51,2,3) are fractions of longitudinal momenta
B, f, and p mesons, respectively. Analogously,bi denote
the Fourier-transformed transverse momenta of these
sons.@dx#5dx1dx2dx3 and $x% denotes the set of variable

$x1 ,x2 ,x3%. Similarly, for bW variables.Cp* , Cf* , and CB

are the wave functions of the outgoingp andf mesons, and
the decayingB meson, respectively.Tk is the hard scattering
amplitude describing theB→pf decay at the one-loop leve

FIG. 2. The basic graph of theB2→p2f decay with the mo-
mentum definitions specified. The black circle stands for the N
effective weak Hamiltonian~2.1!.
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caused by one of the operatorsOk ~2.2!. The exponential
factor in formula ~2.6! is the Sudakov factor. Its explici
form is given in Sec. IV.

III. CALCULATION OF THE B2
˜p2f DECAY

The basic graph representing theB2→p2f decay in the
perturbative approach is shown in Fig. 2.

In order to perform the calculation, we have to specify t
hadronic momenta. The simplest choice can be made u
the light-cone coordinates and taking theB meson to be at
rest:

PB5p15
MB

A2
~1,1,0W !, p1

25MB
2 ,

Pf5p25
MB

A2
~1,r 2,0W !, p2

25Mf
2 ,

Pp5p35
MB

A2
~0,12r 2,0W !, p3

250.

~3.1!

Here,MB andMf are the masses of theB and thef meson,
respectively, andr is defined as their ratio,r 5Mf /MB . The
pion is taken to be massless. In addition to carrying so
portion of the momentum of their parent meson, the vale
quarks also carry some small transverse momentumkW ~see
Fig. 2!.

Working in the leading order, the perturbative pa
namely, the amplitudes of the four-quark operators~2.6!, can
be calculated from the Feynman graphs with all possi
attachments of a hard gluon, shown in Fig. 3. As discus
later explicitly, Fig. 3~a! shows factorizable amplitudes o
the decay. Figure 3~b! shows nonfactorizable amplitudes, n
presented in the BSW-factorization approach. Contributio
of one-loop induced penguinlike diagrams coming from t
tree-level operators are shown in Fig. 3~c!. These contribu-
tions can be taken into account immediately assuming
NLO weak Hamiltonian, but they emerge naturally in th
pertubative model. Finally, Fig. 3~d! shows some additiona
diagrams that have to be included to perform a pro
O(asaem) calculation.

In full hadron wave functions one can split up spin wa
functions from the rest; particularly,

CB~x1 ,bW 1!5
1

A2
~p” 11MB!g5

1c

A3
FB~x1 ,bW 1!,

Cf* ~x2 ,bW 2!5
1

A2
e” ~p” 21Mf!

1c

A3
Ff* ~x2 ,bW 2!,

Cp* ~x3 ,bW 3!5
1

A2
g5p” 3

1c

A3
Fp* ~x3 ,bW 3!, ~3.2!

where1c is the unit color matrix,em is the polarization vector
of thef meson. The scalar wave functionsF are specific to
each of the mesons and are discussed in Sec. IV.
5-4
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In this process it is enough to calculate QCD-peng
contributions, because EW-penguin operators are simply
lated to QCD penguin operators as

O35~ d̄b!V2A~ s̄s!V2A5
2

3es
O9 ,

O452~ d̄s!V2A~ s̄b!V2A5
2

3es
O10,

FIG. 3. Leading-order contributions to theB2→p2f decay:~a!
factorizable,~b! nonfactorizable, and~c! and ~d! penguinlike. The
square stands for the penguin operatorsOk , k53, . . .,10, and the
circle represents the tree-level operatorO2 .
07400
n
e-

O55~ d̄b!V2A~ s̄s!V1A5
2

3es
O7 ,

O6522~ d̄s!S1P~ s̄b!S2P5
2

3es
O8 , ~3.3!

wherees is the strange quark charge,es521/3e.
Applying the standard procedure for calculating Feynm

diagrams, the hard scattering amplitudesTk can be easily
worked out by performing color and spin traces. They app
after the spin and color parts of the wave functions are ad
to the amplitude, leaving the scalar functionsF at the place
of the full mesonic wave functionsC in Eq. ~2.6!.

All operators receive the same contribution from the fa
torizable diagrams, Fig. 3~a!:

Tf act5TA1TB ,

TA524pas~m!Cf

Nc

A3

1

2A2
32MB

3r

3@„11x3~12r 2!…e•p3#•
1

DG

1

Db
,

TB524pas~m!Cf

Nc

A3

1

2A2
32MB

3r

3@x1~12r 2!e•p12x1e•p3#•
1

DG

1

Dq1

, ~3.4!

whereCf is the color factor equal toCf5CF54/3 for the
O3(O9) andO5(O7) operators andCf5CF /Nc for the oth-
ers. We are going to take the number of colorsNc to be equal
to 3.

DG , Db , and Dq1
denote the denominators of the e

changed gluon, and of the virtualb andd quark propagators
respectively:

DG5qG
2 1 ih5MB

2@x1
22x1x3~12r 2!#2~kW12kW3!21 ih,

Db5qb
21 ih.2MB

2x3~12r 2!2kW3
21 ih,

Dq1
5qq1

2 1 ih5MB
2@x1

22x1~12r 2!#2kW1
21 ih.

~3.5!

The approximation made here was to takemb.MB in the
propagator of the heavyb quark. Other propagators are mas
less.

The operatorsO4(O10) andO6(O8) also receive nonfac-
torizable contributions coming from the estimation of t
diagrams in Fig. 3~b!. The expressions for theO4(O10) op-
erator are
5-5
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Tnon f act~O4!5TC~O4!1TD~O4!,

TC~O4!524pas~m!
CF

3

Nc

A3

1

2A2
32MB

3r

3@~12r 2!~12x12x2!e•p1#•
1

DG

1

Dq2

,

TD~O4!524pas~m!
CF

3

Nc

A3

1

2A2
32MB

3r

3@„2x12x22x3

2r 2~x22x3!…e•p3#•
1

DG

1

Dq3

, ~3.6!

and similarly for theO6(O8) operator

Tnon f act~O6!5TC~O6!1TD~O6!,

TC~O6!524pas~m!
CF

3

Nc

A3

1

2A2
32MB

3r

3@„122x12x21x3

1r 2~12x22x3!…e•p3#•
1

DG

1

Dq2

,

TD~O6!524pas~m!
CF

3

Nc

A3

1

2A2
32MB

3r

3@~12r 2!~x12x2!e•p1#•
1

DG

1

Dq3

. ~3.7!

The denominators of the virtual quark propagators in F
3~b! are

Dq2
5qq2

2 1 ih5MB
2@~12x12x3!„2~x12x3!

1~12x22x3!r 2
…#2~kW11kW22kW3!21 ih,

Dq3
5qq3

2 1 ih5MB
2@~x12x2!„~x12x3!

2~x22x3!r 2
…#2~kW12kW22kW3!21 ih. ~3.8!

The calculation of the one-loop EW-penguinlike contrib
tions from Fig. 3~c! follows the already familiar procedure
Both diagramsAloop andBloop are proportional to their skel
eton graphsA and B, respectively. Performing renormaliza
tion consistent with the use of the NLO weak Hamiltoni
and its renormalization-scheme independence@15#, the re-
sult, as expected, is given by

23Tf act•
as

9pS 10

9
2DG~mq

2 ,Mf
2 ,m2! D , ~3.9!

where DG has already been defined by Eq.~2.4! and the
value of the parameterq2 is determined from momentum
distributions in the process to beMf

2 .
07400
.

The contributions from other two penguinlike diagram
Fig. 3~d!, are lengthy because they involve theb→dg* g*
vertex calculation@16# and will be given only in the final
form, in expression~3.17!, and in the Appendix.

The next step to be performed is to express the hard s
tering amplitudes, Eqs.~3.4!, ~3.6!, ~3.7! in the Fourier-
transformed space of transverse momenta. The Fou
transformed amplitudes read

T̃f act52
as~m!

p
•Cf

Nc

A3

1

2A2
32MB

3r

3$@„11x3~12r 2!…e•p3#

3hA~DG ,Db ,b1 ,b3!

1@x1~12r 2!e•p12x1e•p3#

3hB~DG ,Dq1
,b3 ,b1!%,

T̃non f act~O4!52
as~m!

p
•

CF

3

Nc

A3

1

2A2
32MB

3r

3$@~12r 2!~12x12x2!e•p1#

3hC~Dq2
,DG ,b2 ,b1!

1@„2x12x22x32r 2~x22x3!…e•p3#

3hD~Dq3
,DG ,b2 ,b1!%,

T̃non f act~O6!52
as~m!

p
•

CF

3

Nc

A3

1

2A2
32MB

3r

3$@„122x12x21x3

1r 2~12x22x3!…e•p3#•hC

3~Dq2
,DG ,b2 ,b1!

1@~12r 2!~x12x2!e•p1#

3hD~Dq3
,DG ,b2 ,b1!%, ~3.10!

where

hA~DG ,Db ,b1 ,b3!5K0~A2qG
2 ubW 1u!

3K0~A2qb
2ubW 11bW 3u!d~bW 2!,

hB~DG ,Dq1
,b3 ,b1!5K0~A2qG

2 ubW 3u!

3K0~A2qq1
2 ubW 11bW 3u!d~bW 2!,

hC~Dq2
,DG ,b2 ,b1!5K0~A2qq2

2 ubW 2u!

3K0~A2qG
2 ubW 12bW 2u!d~bW 11bW 3!,

hD~Dq3
,DG ,b2 ,b1!5K0~A2qq3

2 ubW 2u!

3K0~A2qG
2 ubW 12bW 2u!d~bW 11bW 3!,

~3.11!
5-6
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andK0 is the modified Bessel function of order zero.
For the scalesm appearing in formulas~3.10! and ~3.9!

we are going to take the largest mass scale in the partic
diagram:

tA5max~A2qG
2 ,A2qb

2,1/b1 ,1/b3!,

tB5max~A2qG
2 ,A2qq1

2 ,1/b1 ,1/b3!,

tC5max~A2qG
2 ,A2qq2

2 ,1/b1 ,1/b2!,

tD5max~A2qG
2 ,A2qq3

2 ,1/b1 ,1/b2!,

t loop5max~A2qG
2 ,1/b1!, ~3.12!
07400
lar

which ensures the reliable perturbative calculations with
small as coupling.

Performing trivialb integrations overd functions and per-
forming angular integrations by using Graph’s theorem:

f ~x,b1 ,b2!5E dfK0~xubW 16bW 2u!

52p@Q~b12b2!K0~xb1!I 0~xb2!

1Q~b22b1!K0~xb2!I 0~xb1!#, ~3.13!

one can finally write the total amplitude of theB2→p2f
decay as
M5^pfuHe f fuB&5
GF

A2
(

q5u,c
VqAq ,

Aq5H 3S c̄31 c̄52
1

2
~ c̄71 c̄9! D1 c̄41 c̄62

1

2
~ c̄81 c̄10!J ^Tf act&1S c̄42

1

2
c̄10D ^Tnon f act~O4!&1S c̄62

1

2
c̄8D ^Tnon f act~O6!&

2
aem

9p
~3c̄11 c̄2!•3^Tf act&S 10

9
2DG~mq

2 ,Mf
2 ,mb

2! D2
2aem

3p
c̄2^Tloop&q , ~3.14!

with the matrix elements

^Tf act&52
CF

3
f fMB

3r E dx1dx3E b1db1b3db3FB~x1 ,b1!Fp* ~x3 ,b3!3H as~ tA!

p
H~DG ,Db ,b1 ,b3!

3@„11x3~12r 2!…e•p3#e2„SB~ tA!1Sp~ tA!…1
as~ tB!

p
H~DG ,Dq1

,b3 ,b1!

3@x1~12r 2!e•p12x1e•p3#e2„SB~ tB!1Sp~ tB!…J ,

^Tnon f act~O4!&52
CF

3
f fMB

3r E @dx#E b1db1b2db2FB~x1 ,b1!
F̃f* ~x2 ,b2!

4p
Fp* ~x3 ,b1!

3H as~ tC!

p
H~Dq2

,Db ,b2 ,b1!@~12r 2!~12x12x2!e•p1#e2„SB~ tC!1Sf~ tC!1Sp~ tC!…ub35b1

1
as~ tD!

p
H~Dq3

,Db ,b2 ,b1!@„2x12x22x32r 2~x22x3!…e•p3#3e2„SB~ tD!1Sf~ tD!1Sp~ tD!…ub35b1J ,

^Tnon f act~O6!&52
CF

3
f fMB

3r E @dx#E b1db1b2db2FB~x1 ,b1!
F̃f* ~x2 ,b2!

4p
Fp* ~x3 ,b1!

3H as~ tC!

p
H~Dq2

,Db ,b2 ,b1!@„122x12x21x31r 2~12x22x3!…e•p3#e2„SB~ tC!1Sf~ tC!1Sp~ tC!…ub35b1

1
as~ tD!

p
H~Dq3

,Db ,b2 ,b1!@~12r 2!~x12x2!e•p1#e2„SB~ tD!1Sf~ tD!1Sp~ tD!…ub35b1J , ~3.15!
5-7
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where the Fourier-transformed expressions for the propa
tors in Eqs.~3.15! have the general form

H~D1 ,D2 ,b1 ,b2!5K0~A2D1b1! f ~A2D2,b1 ,b2!,
~3.16!

with the functionf as defined by~3.13!.
In Eq. ~3.14! we have also included the one-loop cont

butions from the diagrams of Figs. 3~c! and 3~d!. The matrix
elements receiving the contributions from the diagrams
Fig. 3~d! are

^Tloop&q52
CF

3
f fMB

3r E dx1dx3E b1db1FB~x1 ,b1!

3Fp* ~x3 ,b1!
1

Mf
2 H as~ t loop!

p
K0~A2qG

2 b1!

3@Tq
E1Tq

F#e2„SB~ t loop!1Sp~ t loop!…ub35b1J . ~3.17!

The expressions forTq
E and Tq

F are given explicitly in the
Appendix.

One should note that in the above expressions we h
pulled out the normalization factorf f /2A6 ( f f is the
f-meson decay constant! of the f wave function and we
denote the rest byF̃f in order to have the same prefactor
both factorizable and nonfactorizable contributions.

From the expression for̂Tf act& in Eq. ~3.15! it is easy to
essentially recognize the factorization structure in which
matrix element of a four-quark operator factorizes in t
product of two current matrix elementŝfu( s̄s)V2Au0&
•^p2(p3)u(d̄b)V2AuB2(p1)&; f fem

•(Ap1
m1Bp3

m), and the
f-meson wave function integrates out. The current ma
element ^p2(p3)u(d̄b)V2AuB2(p1)& exactly describes the
B→p transtion form factor at the momentum transferp2

5(p12p3)25Mf
2 . In Sec. IV we use this form factor to

select mesonic wave functions.
The expressions for the Sudakov exponentsSp , Sf , and

SB in Eqs.~3.15! and ~3.17! are given in Sec. IV.

IV. MESONIC WAVE FUNCTIONS AND SUDAKOV
FACTORS

The calculation of the matrix elements requires t
knowledge of the scalar meson wave functionsF. The had-
ronic wave functions represent the most speculative par
the perturbative approach. They are of nonperturbative or
and should be a universal, process-independent quantity

However, even for the most theoretically and experim
tally exploited hadron, namely, the pion there are contrad
tory conclusions about the specific form ofFp . Theoretical
calculations performed by using the QCD sum-rule meth
@17# and on the lattice@18# cannot distinguish between th
most promising forms of the pion wave function, th
asymptotic one
07400
a-

n

ve

a
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of
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Fp
as~x!56x~12x!

f p

2A6
, ~4.1!

and the Chernyak-Zhitnitsky~CZ! wave function@17#

Fp
CZ~x!530x~12x!~122x!2

f p

2A6
, ~4.2!

both normalized to satisfy the experimentally obtained va
for the pion decay constantf p50.133 GeV. In addition, any
comparison between theoretically calculable processes
existing experiments cannot provide an unambiguous de
mination between them@19#.

What we are going to regard as the CZ wave funct
throughout the paper is the CZ form in which the evoluti
from the hadronic scalem0;0.5 GeV to some scalem1 is
included@20#:

Fp
CZ~x,m1!56x~12x!F11„5~122x!221…

3S as~m1!

as~m0! D
50/81G f p

2A6
, ~4.3!

and, in the modified perturbative approach, the scalem1 is
taken to be 1/b @21#.

If we are going to retain the intristicb dependence of the
wave functionsF in the expressions for the matrix elemen
then we are faced with even more uncertainties coming fr
the ambiguity in the form of the wave functionb-part as well
as in the values of some new parameters.

The constituent quark model of the wave function asso
ates some Gaussian exponential to theb-dependent part@22#,
so that

Fp
as~x,b!56x~12x!4p exp„2x~12x!b2/~4aas

2 !…
f p

2A6
~4.4!

and

Fp
CZ~x,b,m1!56x~12x!

3F11„5~122x!221…S as~m1!

as~m0! D
50/81G

34p exp„2x~12x!b2/~4aCZ
2 !…

f p

2A6
,

~4.5!

where the pion’s transverse parametersaas andaCZ are fixed
from the p→gg process to beaas50.846 GeV21 and
aCZ50.655 GeV21, respectively@23#.

For a B-meson wave function there exist a few mode
@24#. We consider two forms that have been proved in
calculations of various nonleptonicB decays. The first one is
@25#
5-8
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FB
~1!~x,kW !5N~1!FC1

mb
2

12x
1

kW2

x~12x!
G22

, ~4.6!

whose Fourier transform gives

FB
~1!~x,b!5

N~1!

4p

bx2~12x!2

AMB
2x1Cx~12x!

3K1„AMB
2x1Cx~12x!b…, ~4.7!

with the approximationmb.MB55.28 GeV. K1 is the
modified Bessel function of order one. Neglecting theb de-
pendence leads to

FB
~1!~x!5

N~1!

16p2

x~12x!2

MB
21C~12x!

. ~4.8!

For the constantsN(1) andC we have used the fitted param
eters N(1)5604.34 GeV3 and C5227.5 GeV2, which
have been proved in other calculations@26#.

Another model is the oscillatorlike wave function o
Bauer, Stech, and Wirbel@27#:

FB
~2!~x,b!5

N~2!

2p
Ax~12x!expS 2

MB
2

2v2
x2D expS 2

v2

2
b2D ,

~4.9!

with the constantsN(2)5156.34 GeV andv50.4 GeV.
Both wave functions, Eqs.~4.7! and ~4.9!, are normalized
with f B5200 MeV.

The vector-meson wave functions are modeled in
QCD sum-rule calculations@17,28#. Since the form of the
f-meson wave function is still questionable, we have
cided to use the asymptotic form

Ff~x!56x~12x!
f f

2A6
, f f50.233 GeV, ~4.10!

without including anyb dependence. We believe that owin
to the lack of better experimental data to which transve
parameters can be fixed, an unrealisticb-dependent part may
produce more questionable results than by neglecting it.

In order to suppress the soft contributions in the h
scattering amplitudes~3.15!, ~3.17!, we have included the
Sudakov factors@13#. They ensure that the hard scatteri
amplitude receives contributions only from the exchange
hard gluons, suppressing the contributions of soft glu
from the largeb region. The Sudakov suppression is co
prised by the hadron wave function redefinition

FB→FB~x1 ,b1!exp„2SB~ t !…,

Ff→Ff~x2 ,b2!exp„2Sf~ t !…,

Fp→Fp~x3 ,b3!exp„2Sp~ t !…. ~4.11!
07400
e
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e
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-

The Sudakov exponentials exhibit the result of all-ord
resummation of double logs appearing from the overlap
collinear and soft divergences@29#. In our case,

SB~ t !5s~x1p1
2 ,b1 ,t !21/b0 lnS ln~ t/LQCD!

ln„1/~b1LQCD!…D ,

Sf~ t !5s~x2p2
1 ,b2 ,t !1s@„~12x2!p2

1
…,b2 ,t#

21/b0 lnS ln~ t/LQCD!

ln„1/~b2LQCD!…D ,

Sp~ t !5s~x3p3
2 ,b3 ,t !1s@„~12x3!p3

2
…,b3 ,t#

21/b0 lnS ln~ t/LQCD!

ln„1/~b3LQCD!…D , ~4.12!

where b05(3322nf)/12 and nf54. For LQCD we have
used the valueLQCD50.2 GeV throughout the paper. Th
last term in the above expressions accounts for the renor
ization from the IR scale 1/b to the some renormalization
scalet, which we are going to take to be one of the sca
from Eq. ~3.12!, depending on the diagram considered.

The full expressions for the Sudakov function
s(xi ,bi ,t), together with the usual approximations used in
numerical treatment, can be found in@30#.

Note that we have also associated the Sudakov func
s(x1p1

2 ,b1 ,t) with the light antiquark of the B meson. Th
heavyb quark, having a finite mass, does not produce c
linear divergences and its Sudakov function is zero.

Use of the above mentioned diversity of the wave fun
tions would certainly diminish the capability of perturbativ
calculations for giving reliable predictions for theB2

→p2f branching ratio andCP asymmetry, having in mind
that the effects of the large reduction of the results owing
the intrinsicb dependence in the wave functions as well
the large difference in the predictions depending on theB
andp meson wave function employed, has already been
served in other perturbative calculations@31#. We have
checked that this is also the case in the calculation of thB
→pf decay.

Owing to the specific character of theB→pf decay gov-
erned by theb→dss̄ transition where the strange quar
antiquark pair has to form the finalf-meson state, we can
assume that theB→pf process is determined predom
nantly by theB→p transition at the energyp25Mf

2 .
Therefore, we can try to make a selection among the w

functions by comparing the results for theB→p transition
form factor obtained from the QCD sum rule@32# and lattice
calculations@33# summarized in

F1
B→p~0!50.2520.35, ~4.13!

with those estimated in our modified perturbative approa
The expression for the form factor in the perturbative a

proach has the form
5-9
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F1
B→p~h!5

CF

2
MB

2E dx1dx3E b1db1b3db3FB~x1 ,b1!

3Fp* ~x3 ,b3!H as~ tA!

p
H~DG ,Db ,b1 ,b3!

3@11x3h#e2„SB~ tA!1Sp~ tA!…

1
as~ tB!

p
H~DG ,Dq1

,b3 ,b1!

3@2x1~12h!#e2„SB~ tB!1Sp~ tB!…J , ~4.14!

which can be easily recognized in the expression for
factorizable part of theB→pf decay, Eq.~3.15!. The pa-
rameterh is the fraction of the energy of thep meson and at
the momentum transferp250 or p25Mf

2 we haveh51 or
h512Mf

2 /MB
2512r 2, respectively.

Estimating theB→p transition form factor at the momen
tum transferp250 using different forms of theB and p
meson wave functions taken from above, we achieve pre
tions which are far from the values obtained in the QCD s
rule and lattice calculations~4.13!, except if we assume th
oscillatorlike model for the B meson wave function
FB

(2)(x), Eq. ~4.9!, and the CZ type of the pion wave func
tion ~4.3!, both being intrinsicb independent. Our predicte
value for theB→p form factor obtained with these wav
functions is

Fpert
B→p~0!50.282. ~4.15!

Both, FB
(2)(x) and Fp

CZ(x,m1) are more end-point concen
trated wave functions than their alternative forms,FB

(1)(x)
~4.8! and Fp

as(x) ~4.1!, respectively. This indicates a nee
for the enhancement of the soft contributions in order
match the predictions~4.13! for the B→p form factor esi-
mated by nonperturbative methods.

Comparable calculations of theB→p form factor in the
modified perturbative approach have also been performe
@22,31# and, similarly, the results obtained have exibit
strong dependence on the mesonic wave functions used,
firming that the wave functions represent the weakest p
in the calculation ofB-meson decays in the perturbative a
proach.

V. NUMERICAL RESULTS AND DISCUSSIONS

Now we are going to discuss the branching ratioBR and
the CP asymmetry in theB2→p2f decay numerically.

The decay rate is given as

G~B2→p2f!5
1

16p

l1/2~MB ,Mf,0!

MB
3

uMu2, ~5.1!

wherel1/2(MB ,Mf,0)5MB
2(12r 2) and the total amplitude

M is given by Eq.~3.14!. CP asymmetry in terms of theAu
andAc amplitudes, Eq.~3.14!, reads
07400
e

c-

o

in

on-
nt

aCP5
22Vc Im~Vu!Im~AuAc* !

„uVuu2uA uu21uVcu2uA cu212Vc Re~Vu!Re~AuAc* !…
.

~5.2!

The products of the CKM matrix elements may be writt
in the Wolfenstein parametrization as

Vu5Vud* Vub5Al3~12l2/2!~r2 ih![Al3~ r̄2 i h̄ !,

Vc5Vcd* Vcb52Al3. ~5.3!

We use the following values of the parametersr̄ and h̄:

r̄50.16, h̄50.33, ~5.4!

which correspond to their central values obtained by the u
tarity fit @34#. Since recent measurements disfavor the ne
tive values for ther parameter@35#, the CP asymmetries
will be presented in figures by takingr̄ in the range

0<r̄<0.25 ~5.5!

and using the central value for theh̄ parameter from Eq.
~5.4!, the minimum and the maximum allowed values@34#

h̄50.27,

h̄50.38, ~5.6!

respectively. The other Wolfenstein CKM parameters us
areA50.823 andl50.2196.

Following Ref.@36#, we are going to take the constitue
quark masses in the loop expressions, Eqs.~2.4! and ~3.17!,
with particular valuesmu50.2 GeV andmc51.5 GeV.

For the Wilson scale-independent coefficients at
renormalization scale m5mb54.8 GeV@as(MZ)
50.118,aem(MZ)51/128# we take@37#

c̄1520.324, c̄251.15,

c̄350.017, c̄4520.038,

c̄550.011, c̄6520.047,

c̄7521.0531025, c̄8523.8431024,

c̄9520.0101, c̄1051.9631023. ~5.7!

One can note from expression~5.2! that some absorptive
part in the amplitude is essential for nonvanishingCP asym-
metry.

As in the BSW factorization approach, the necessary
sorptive part comes from the cut in the penguinlike diagra
in Fig. 3~c!, residing in the termDG(mq

2 ,Mf
2 ,m2). From

expression~2.4! it is easy to see that the absorptive part
developed for the virtual photon momentumq such thatq2

>4mq
2 , q5u,c. Owing to the specific momentum distribu

tions in theB2→p2f process, the imaginary part emerg
5-10
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only from the diagram with au quark in the loop. In numeri-
cal calculations we use the approximation of Eq.~2.4!,

DGapp~mq
2 ,Mf

2 ,m2!5
2

3F5

3
1

4

z
1S 11

2

zDR~z!2 ln
mq

2

m2G ,

~5.8!

where by defininga5Au124/zu, we have

R~z!5H 2ap12a arctan~a!, z5~Mf /mc!
2,

iap1a ln
12a

11a
, z5~Mf /mu!2.

~5.9!

In addition, in the perturbative approach there are abso
tive parts connected with the cuts in the propagators of
tual partons in each of the diagrams in Fig. 3. The expres
for H, Eq. ~3.16!, can develop the imaginary part for some
the values of the fractionsxi in the integration for which the
denominators of the gluon or quark propagators under
square root become negative@see Eqs.~3.5!, ~3.8!#. In this
case we take

K0~ iyb!5
ip

2
H0

~1!~yb! ~5.10!

and

f ~ iy ,b1 ,b2!5
ip

2
@Q~b12b2!H0

~1!~yb1!J0~yb2!

1Q~b22b1!H0
~1!~yb2!J0~yb1!#.

~5.11!

Having selected the B meson wave functionFB
(2)(x), Eq.

~4.9!, in the preceding section:

FB
~2!~x!5

1

4p
FB

~2!~x,0!5
N~2!

8p2
Ax~12x!expS 2

MB
2

2v2
x2D ,

~5.12!

and theFp
CZ(x,1/b) Eq. ~4.3! for the p meson wave func-

tion, we can now continue along the lines developed in
preceding sections and give reliable predictions for theB2

→p2f branching ratio andCP asymmetry in the modified
perturbative approach, using the NLO weak Hamiltonian

The results are presented in Tables I and II, together w
the predictions estimated in the BSW factorization approa
both being calculated with the preferred values of the CK
parameters,r̄50.16 andh̄50.33.

Calculations of theB2→p2f branching ratio and asym
metry in the BSW factorization approach have been p
formed by many authors@3–6#. In order to be able to clearly
assign the role of nonfactorizable contributions in the dec
we have recalculated the BSW factorization predictions
ing our values of the Wilson coefficientsc̄i ~5.7! and the
CKM parametersr̄ and h̄.

The decay amplitude in the BSW approach can be dire
compared with the complete expression for theB→pf am-
07400
p-
r-
n

e

e

th
h,

r-

y,
-

ly

plitude given by Eq.~3.14! by neglecting nonfactorizable
parts and numerically suppressed contributions emerg
from the diagrams in Fig. 3~d!. The matrix element in the
strict factorization approach is proportional to th
FB→p(Mf

2 ) form factor which we calculate in the single
pole approximation as

FBSW
B→p~Mf

2 !5
FBSW

B→p~0!

12Mf
2 /MBp

2 ~12!
, ~5.13!

whereMBp
2 (12)55.32 GeV andFBSW

B→p(0)50.33 @7#. It is
worth mentioning that the prediction for theB→p form fac-
tor estimated in the perturbative approach, Eq.~4.15!, is
somewhat smaller than theFBSW

B→p(0) value.
All results estimated in the factorization approach are

tained by taking the virtual photon momentum squared eq
to q25Mf

2 . We have already stated that, in general, info
mation about theq2 value is lost by factorizing hadronic
matrix elements, except in the strict factorization, when n

TABLE I. Branching ratios for theB2→p2f decay calculated
for different penguin contributions, by taking only the factorizab
parts or the complete expression into account. The first colu
contains the predictions obtained in the BSW factorization appro
by using ^q2&5Mf

2 ~see text!. Columns I and II give predictions
calculated in the modified perturbative approach by employing
meson wave functionsFB

(2)(x), Eq. ~5.12! and Fp
CZ(x,1/b), Eq.

~4.3!, and by using the Wilson coefficientsc̄k(mb) ~5.7! in column

I and c̄k
(0)(t) ~5.16! in column II. The CKM parameters used ar

r̄50.16 andh̄50.33.

Penguin contributions BR

BSW I II

QCD-factorizable 0.20310210 0.14310210 1.06310210

QCD-all 2.51310210 0.73310210

QCD1QED-factorizable 0.3431028 0.3831028 0.8931028

QCD1QED-all 0.4431028 0.8531028

TABLE II. CP asymmetries for theB2→p2f decay calcu-
lated for the QCD and QED penguin contributions together,
taking only the factorizable parts or the complete expression
account. The first column contains the predictions obtained in
BSW factorization approach by usinĝq2&5Mf

2 ~see text!. Col-
umns I and II give predictions calculated in the modified pertur
tive approach by employing the meson wave functionsFB

(2)(x), Eq.
~5.12! andFp

CZ(x,1/b), Eq. ~4.3!, and by using the Wilson coeffi-

cientsc̄k(mb) ~5.7! in column I andc̄k
(0)(t) ~5.16! in column II. The

CKM parameters used arer̄50.16 andh̄50.33.

Penguin contributions aCP/1022

BSW I II

QCD1QED-factor of two factorizable 21.9 14.6 15.4
QCD1QED-all 16.1 16.3
5-11



ne

th
ra
ic

vy

ct

o

a-

f

by
rs

tor-
ales
son
ic
k

the
le-
n
d by
or-

tion

ts,
er

n

in
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factorizable and/or strong final-state interactions are
glected. Therefore, considering possible nonfactorizable
final-state corrections, after the factorization procedure,
q2 is usually considered as a free parameter, whose ave
value is constrained by some simple, general kinemat
reasons to be@38#

mb
2/4<^q2&<mb

2/2, ~5.14!

and usually assumed to be valid for all nonleptonic hea
to-light transitions.

The dependence of the branching ratio andCP asymme-
try on the ^q2& as a function of ther̄ CKM-parameter is
shown in Fig. 4. The branching ratio appears to be pra
cally independent of the value of the^q2&. Such behavior is
due to the cancellation which occurs between the Wils

FIG. 4. Branching ratio andCP asymmetry in theB2→p2f
decay calculated in the BSW factorization approach as a functio

the CKM parameterr̄ and for the central value ofh̄50.33. The
solid, long dashed, and dot-dashed lines denote predictions obta
by taking ^q2&5Mf

2 , ^q2&5mb
2/2, and ^q2&5mb

2/4, respectively
~see text!.
07400
-
or
e
ge
al

-
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n

coefficients multiplying the one-loop QED penguinlike m
trix element, Eq.~3.14!, because of the relation

3c̄1~mb!.2 c̄2~mb!. ~5.15!

On the contrary,CP asymmetry exibits a large reduction o
up to 70% if higher̂ q2&-values are taken.

The results in column II in Tables I and II are obtained
calculation inspired by the papers of Li and collaborato
@26,39#, in which them scale-setting ambiguity of Wilson
coefficients is moderated by applying the three-scale fac
ization theorem. Their theorem keeps trace of all three sc
characterizing the nonleptonic weak decay, the W-bo
massMW , the typical scalet of the process, and the hadron
scale ;LQCD , and proves for the leading-order wea
Hamiltonian that Wilson coefficients should be taken at
scalet, a typical scale in a particular decay. The matrix e
ments of the operatorsOk and Wilson coefficients are the
both calculated at the same scale. The scale is determine
the dynamics of the process, contrary to the arbitrary ren
malization scalem taken to be a constant,mb , for the c̄k
coefficients, Eq.~5.7!.

Under the assumption that the three-scale factoriza
theorem is also valid for the NLO weak Hamiltonian~2.1!
we have taken the explicit form of the Wilson coefficien
calculated directly atMW and then rescaled to some low
scalet @3#:

c̄1
~0!~ t !5O„as~ t !…1O~aem!,

c̄2
~0!~ t !511O„as~ t !…1O~aem!,

c̄3
~0!~ t !52

as~ t !

24p FE0~xt!1
2

3
log

t2

MW
2

2
10

9 G
1

aem

6p

1

sin2 QW

@2B0~xt!1C0~xt!#,

c̄4
~0!~ t !5

as~ t !

8p FE0~xt!1
2

3
log

t2

MW
2

2
10

9 G ,

c̄5
~0!~ t !52

as~ t !

24p FE0~xt!1
2

3
log

t2

MW
2

2
10

9 G ,

c̄6
~0!~ t !5

as~ t !

8p FE0~xt!1
2

3
log

t2

MW
2

2
10

9 G ,

c̄7
~0!~ t !5

aem

6p F4C0~xt!1D0~xt!1
4

9
log

t2

MW
2

2
20

27G ,

c̄8
~0!~ t !50,

of

ed
5-12
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c̄9
~0!~ t !5

aem

6p F4C0~xt!1D0~xt!1
4

9
log

t2

MW
2

2
20

27G
1

aem

3p

1

sin2 QW

@5B0~xt!22C0~xt!#,

c̄10
~0!~ t !50, ~5.16!

wherext5mt
2/MW

2 . The functionsB0 , C0 , D0 , andE0 are
the Inami-Lim functions@40#.

These coefficients are only an approximation of the W
son coefficientsc̄k(m5mb), Eq. ~5.7! obtained by perform-
ing the renormalization-group analysis@14# and used
throughout the paper, but we hope that possible uncertain
involved in the calculation by using the coefficients in E
~5.16! are covered within the accuracy of our model. In t
numerical estimates we have also taken into accountO(as)
corrections in c̄1

(0) and c̄2
(0) in order to have the prope

O(asaem) calculation.
By taking the Wilson coefficientsc̄k

(0) at one of the scales
~3.12!, depending on the diagram involved as a contribut
of the operatorOk , we obtain the results given in column
in Tables I and II. The results are estimated again with
selected wave functionsFB

(2)(x) andFp
CZ(x,1/b).

Let us now discuss the results from Tables I and II a
emphasize their general characteristics. One can note tha
B2→p2f process is clearly dominated by the EW pengu
contributions, in both the factorization and the perturbat
approaches and the predicted branching ratio for theB2

→p2f decay is of orderO(1028).
It is obvious that EW nonfactorizable contributions a

small, being directly proportional to the small Wilson coe
ficients c̄8 and c̄10. For nonfactorizable contributions o
QCD penguin operators there is no such apparent rea
because the Wilson coefficients multiplying the operatorsc̄4

and c̄6 , are in absolute magnitude even larger than the co
ficient c̄9 , which dominates theB2→p2f decay~5.7!. The
influence of the QCD nonfactorizable contributions is notic
able, especially in the perturbative results based on the W
son coefficients taken from Eq.~5.7! and represented in col
umn I. For this case, by comparing the third and fourth ro
in Table I, we can see that nonfactorizabile corrections
account for some 14% of the final result. However, af
taking the Wilson coefficients in the convolution with th
hadronic matrix elements at the same scale, as it is don
obtaining the results in column II, nonfactorizable contrib
tions become negative, and small, and can be consid
negligible, lowering the final result by some 4%. Negligib
nonfactorizable corrections in this model indicate that, b
suitably chosen scale which truly makes the product of
Wilson coefficients and the hadronic matrix elements sc
independent, it is possible to account for the almost st
factorization in theB2→p2f decay, which would be na
ively expected by the ‘‘color transparency argument’’@8#.

Further general behavior of the results from column II c
be summarized in the statement that the branching ra
07400
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calculated using the Wilson coefficientsc̄k
(0)(t) are enlarged

by some factor two in comparison with the estimations o
tained by usingc̄k(m5mb). In addition, CP asymmetries
are predicted to be about 16%, similarly as in the mode
column I, wherec̄k(mb) are used.

The predicted asymmetries are much larger than th
obtained from the BSW factorization model, and they are
an opposite sign. The reason for such an enlargement ofCP
asymmetry are absorptive contributions due to the on-s
effects in the propagators of virtual partons appearing in
perturbative calculation. They are also present in the fac
izable amplitudê Tf act& which multiplies the penguin loop
Neglecting of the imaginary parts coming from the on-sh
effects in the propagators would give predictions forCP
asymmetry comparable with that obtained in the factori
tion approach.

Figure 5 shows the impact of different choices of CK
parameters on our predictions for the branching ratios
CP asymmetry in theB2→p2f decay. The predicted
asymmetries calculated by using the Wilson coefficie
c̄k(mb) andc̄k

(0)(t) are almost the same. Therefore, we sh
explicitly only the CP asymmetry obtained by usin
c̄k

(0)(t) coefficients. One can note that the predicitedCP
asymmetry can be enlarged up to 22%.

VI. CONCLUSIONS

In this paper we have calculated the branching ratio a
CP asymmetry of the penguin-inducedB2→p2f decay in
the modified perturbative approach by applying the NLO
fective weak Hamiltonian. Working in the framework of th
modified perturbative approach we have included the tra
verse momentum dependence and the Sudakov form fac
The modified perturbative approach also enables us to ca
late nonfactorizable contributions.

We have used theB→p transition form factor to selec
mesonic wave functions by comparing our result with t
predictions estimated in the QCD sum rule and lattice cal
lations. The comparable prediction has been obtained o
for the intrinsicb independent, more end-point concentrat
wave functions for bothB andp mesons,FB

(2)(x) ~5.12! and
Fp

CZ(x,1/b) ~4.3!, respectively.
Using the NLO weak Hamiltonian and the selected wa

functions we have first worked with the renormalizatio
scheme-independent coefficients and have been able to
culate the EW penguin contributions properly, proving th
dominance in theB2→p2f decay.

In addition, we have examined the assumption of tak
the Wilson coefficients to be convolution functions in th
starting factorization formula~2.5! instead of taking them as
constants at some arbitrary scalem. The Wilson coefficients
then enter into the factorization formula in the convoluti
with the matrix elements at the same scalet, typical of the
process and that resolves the problem of different renorm
ization scales for the short-distance part~Wilson coefficients!
and the long-distance part~matrix elements of the four-quar
operators! in the amplitude of the weak Hamiltonian. Est
mations based on this assumption have produced the bra
5-13
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ing ratios about factor two larger than those calculated w
the conventional Wilson coefficients.

Besides, if the Wilson coefficients are considered to
functions of the scale, the same one which appears in

FIG. 5. Branching ratio andCP asymmetry in theB2→p2f
decay calculated in the modified perturbative approach as a func

of the CKM parameterr̄. The solid, long dashed, and dot-dash

lines correspond to the values of the CKM parameterh̄50.33,h̄

50.27, andh̄50.38, respectively. Predictions obtained by usi

the Wilson coefficientsc̄k(mb) ~5.7! and c̄k
(0)(t) ~5.16! are denoted

by labels I and II, respectively.
07400
h

e
he

hadronic matrix elements, then the nonfactorizable Q
penguin contributions appear to be negligible, as is the c
with the obviously very small nonfactorizable contributio
of the EW penguin operators.

Therefore, our results for the branching ratio appear to
in agreement with previous calculations performed in
BSW factorization approach, predicting the branching ra
to be of orderO(1028), dominated by the EW penguin op
erators. On the other side, the predictedCP asymmetry dif-
fers a lot from that estimated in the BSW factorization a
proach, being as large as 16% and having an opposite
for the preferred values of the CKM parametersr̄50.16 and
h̄50.33. The largeCP asymmetry estimated in the pertu
bative approach is the result of large on-shell effects of
virtual propagators involved in the calculation.

The strong reduction of the results obtained with the
trinsic b dependence of the wave functions indicates t
mesonic wave functions still need further investigation
Presently,B-meson wave functions suffer from uncertaint
involved in the models from which they are derived as w
as from uncertaintes coming from the fit to experimen
data, and ask for a more refined treatment in their derivat

Provided that theB-meson wave function could be bette
determined, the formalism of this paper may be successf
applied to similar penguin-induced decays, of whichB2

→K2f and B2→vf are particularly interesting owing to
recent experimental measurements and their role in the
termination of the values of some CKM matrix elemen
These topics will be the subject of our future investigatio
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APPENDIX

The results of the calculation of diagramsE andF, shown
in Fig. 3~d!, are given here explicitly. In the calculation w
have neglected the transverse momenta in the loops.
general expression for the contribution of the diagrams
be written as

Tq
i 5Ci1I q

i 1Hq
i 1Gq

i , i 5E,F. ~A1!

The results are presented as integrals over Feynman pa
eters and the particular contributions are found to be

on
CE5~2 !
1

6
@2~12r 2!~122x1!e•p11„11r 224x112x3~12r 2!…e•p3#,

I q
E5E

0

1

duE
0

12u

dv~2 !
MB

2

M̄E
2
„u1v~12x1!…„12u2v~12x1!…

3@12u2v1~12v !~22x11x3!1r 2
„12u2v2x3~12v !…#@~12r 2!e•p12e•p3#, ~A2!
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Hq
E5E

0

1

duE
0

12u

dv
mq

2

M̄E
2 @~12r 2!„u1v~12x1!…e•p11„122u22v22x1~12v !1x3~12r 2!…e•p3#,

~A3!

Gq
E5E

0

1

duE
0

12u

dv ln
M̄E

2

m2
†~12r 2!„122u22v~12x1!…e•p1

2@12u2v22x1~12v !1x3~12v !1r 2
„12u2v2x3~12v !…#e•p3‡, ~A4!

and

CF5~2 !
1

6
@~12r 2!~122x1!e•p112„11r 224x112x3~12r 2!…e•p3#,

I q
F5E

0

1

duE
0

12u

dv
MB

2

M̄F
2

$~12r 2!„2ux11v~12x1!…†„v~12x1!1x1~12u!…„~12v !~12x1!1ux1…e•p1

1$@v~12v !1x1„12u23v12v~u1v !…#~12r 2!22„~12u!~12u22v !1v2
…x1x3

1@2~u2v !1~u1v !22„~12u!~12u22v !1v2
…r 2#x3

2%e•p3‡%, ~A5!

Hq
F5E

0

1

duE
0

12u

dv
mq

2

M̄F
2
†~12r 2!x1e•p12@„v~12x3!1x3~12u!…~12r 2!1r 2#e•p3‡, ~A6!

Gq
F5E

0

1

duE
0

12u

dv ln
M̄F

2

m2
$~12r 2!„v2x1~u1v !…e•p1

1@2~x12x3!~12u2v !2r 2
„122v22x3~12u2v !…#e•p3%. ~A7!

The functionsM̄E
2 andM̄F

2 depend on the quark mass in the loopmq
2 and are given by

M̄E
25mq

22MB
2@u~12u!r 21v~12v !~12x1!„2~x12x3!1r 2~12x3!…2uv„2~x12x3!1r 2~22x12x3!…# ~A8!

and

M̄F
25mq

22MB
2@u~12u!x1~x12x31r 2x3!1v~12v !~12x1!„2~x12x3!1r 2~12x3!…

2uv„~x12x3!~122x1!1r 2~x11x322x1x3!…#. ~A9!
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BLAŽENKA MELIĆ PHYSICAL REVIEW D 59 074005
@15# R. Fleischer, Z. Phys. C58, 483 ~1993!.
@16# H. Simma and D. Wyler, Phys. Lett. B272, 395 ~1994!.
@17# V. L. Chernyak and A. R. Zhitnitsky, Nucl. Phys.B201, 492

~1982!; Phys. Rep.112, 173 ~1984!; V. L. Chernyak, I. R.
Zhitnitsky, and A. R. Zhitnitsky, Nucl. Phys.B204, 477
~1982!.

@18# S. Gottlieb and A. S. Kronfeld, Phys. Rev. Lett.55, 2531
~1985!; Phys. Rev. D33, 227 ~1986!; G. Martinelli and C. T.
Saharadja, Phys. Lett. B217, 319~1989!; D. Daniel, R. Gupta,
and D. G. Richards, Phys. Rev. D43, 3715~1991!.

@19# T. Huang, B.-Q. Ma, and Q.-X. Shen, Phys. Rev. D49, 1490
~1994!.

@20# S. J. Brodsky and G. P. Lepage, Phys. Rev. D24, 1808~1981!.
@21# H.-n. Li, Phys. Rev. D48, 4243~1993!; D. Tung and H.-n. Li,

Chin. J. Phys.35, 651 ~1997!.
@22# M. Dahm, R. Jakob, and P. Kroll, Z. Phys. C68, 595 ~1995!.
@23# J. Bolz, P. Kroll, and G. A. Schuler, Eur. Phys. J. C2, 705

~1998!.
@24# S. J. Brodsky and C.-R. Ji, Phys. Rev. Lett.55, 2257~1985!;

R. Akhoury, G. Sterman, and Y.-P. Yao, Phys. Rev. D50, 358
~1994!.

@25# F. Schlumpf, Report No. SLAC-PUB-6335~1993! and
hep-ph/9308301~unpublished!.

@26# T.-W. Yeh and H.-n. Li, Phys. Rev. D56, 1615~1997!.
@27# M. Bauer and M. Wirbel, Z. Phys. C42, 671 ~1989!.
07400
@28# M. Benayoun and V. L. Chernyak, Nucl. Phys.B329, 285
~1990!.

@29# J. Botts and G. Sterman, Nucl. Phys.B325, 62 ~1989!.
@30# C.-Y. Wu, T.-W. Yeh, and H.-n. Li, Phys. Rev. D53, 4982

~1996!.
@31# H.-n. Li and H.-L. Yu, Phys. Rev. D53, 2480 ~1996!; Phys.

Rev. Lett.74, 4388 ~1998!; H.-n. Li, Phys. Lett. B348, 597
~1995!.

@32# A. Khodjamirian, R. Ru¨ckl, S. Weinzierl, and O. Yakovlev,
Phys. Lett. B410, 275 ~1997!; E. Bagan, P. Ball, and V. M.
Braun, ibid. 417, 154 ~1998!.

@33# APE Collaboration, C. R. Alltonet al., Phys. Lett. B345, 513
~1995!; UKQCD Collaboration, L. Del Debbioet al., Nucl.
Phys. B~Proc. Suppl.! 63, 383 ~1998!.

@34# F. Parodi, P. Roudeau, and A. Stocchi, Report No. LAL-98-
and hep-ph/9802289.

@35# CLEO Collaboration, R. Godanget al., Phys. Rev. Lett.80,
3456 ~1998!.

@36# A. Ali, J. Chay, C. Greub, and P. Ko, Phys. Lett. B424, 161
~1998!.

@37# G. Kramer and W. F. Palmer, Phys. Rev. D52, 6411~1995!.
@38# N. G. Deshpande and J. Trampetic´, Phys. Rev. D41, 2926

~1990!.
@39# C.-H. V. Chang and H.-n. Li, Phys. Rev. D55, 5577 ~1997!;

H.-n. Li and B. Tseng,ibid. 57, 443 ~1998!.
@40# T. Inami and C. S. Lim, Prog. Theor. Phys.65, 297~1981!; 65,

1772 ~1981!.
5-16


