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More on membranes in matrix theory
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We study noncompact and static membrane solutions in matrix theory. Demanding axial symmetry on a
membrane embedded in three spatial dimensions, we obtain a wormhole solution whose shape is the same with
the catenoidal solution of Born-Infeld theory. We also discuss another interesting class of solutions, mem-
branes embedded holomorphically in four spatial dimensions, which are 1/4[B8%66-282(199)01306-5

PACS numbeps): 11.25.Mj

Matrix theory[1], formulated from the U{) gauge su- X dY X 07Y) 3
. 3

persymmetric quantum mechanics describing motionsl of {X(p,a),Y(p,a)}=i (E 0 apaq
DO0-branes, is now well established as a nonperturbative for-

mulation of M-theory. The basic properties dVl-theory q,pare the world surface coordinates of the membrane. The
which could be readily checked were that it becomes 1lequation of motion for the above Lagrangian is

dimensional supergravity at low energy, it contains extended

objects such as a membrane and its magnetic dual five-brane, DEX'+[X,[X?,X']]=0 4

and the dynamics oD-particles of type-lIA superstring
theory converges to the supermembrane action in the lig
cone frame, formulated if2]. In' additiqn to the_rather triyial DtZXi_f_{Xj,{Xj!Xi}}:O_ (5)

flat branes, compact branes, in particular, with spherical to-

pologies, were obtained and studied al4,5. These For simplicity, we set the coupling constants to 1 from now
branes with finite size are not static, but oscillating in time.gn.

Recently, an interesting class of static membrane solutions The simplest solution is the flat membrane

was presented if6], viz., holomorphically embedded mem-

branes. In this Brief Report we investigate the possibility of 1 \ﬁ

another static solution of matrix theory. We find one embed- X*=1\/ 5 cosp,

ded in three dimensions which describes wormhole mem-

HRr: in the largeN limit,

branes, made by a string between branes and antibranes. A q

similar system was already discussed using Born-InfBld X2= \[Esinp,

theory [7,8], which is low-energy effective theory for

Dp-branes. It is amusing to see that our solution has the X=0, J#1.2 (6)

same shape as the electrostatic solution of three-dimensional
Born-Infeld theory, describing twd 2-branes connected by wherep is an angular variable amgican take any real num-

a throat. ber. It is obvious that the above parametrization expands the
In this Brief Report it is sufficient to consider only the entire range of the 12-plane. For matrix theory we take the
bosonic sector of the matrix theory Lagrangian: ladder operators, a' of the harmonic oscillator and s¥t

=(a+a')/v2, X?=i(a—a")/v2. This basic membrane so-

1 1 lution is 1/2 Bogomol'nyi-Prasad-S figlPS of ma-
S N2 = (ryl ydi2 yi-Prasad-Sommerfigl@PS of ma
L=Tr Zg(D‘X) +4g([>< X Js D yrix theory.
Another interesting example is that of spherical shape:

whereX', =1, ...,9, areNx N Hermitian matrices and is 1
the string coupling constanDX=3,X—i[A,X], where A X'=r(t)y1-q?cosp,
=XC is the gauge field of our gauged quantum mechanics. It )
is well known that matrix theory, in the largédimit, con- X?=r(t)y1-q”sinp,

verges to the 11-dimensional supermembrane theory in the

3_
light cone frame. In other words, El) becomes X*=r(ta,

XI=0, J#1,2,3. (7)
_Pu

1\2 1 I yd1)2.
2 f dp dgDX)"+ mf dpda{X,XH% 2 \we haveS? with radiusr(t), which is not a constant, but
oscillates according to the equatior 2r=0. Note that in

viz., the trace is approximated by integration over two vari-this case we can obtain a finite-dimensional representation of

ables and the matrix commutator b§imes Poisson brackets, the solution, i.e.X'=r(t)J; (i=1,2,3), whereJ; are the
familiar angular momentum operators. But for the infinite
flat membranes, we cannot satisfy the equation of motion in

*Email address: nakwoo@phya.snu.ac.kr terms of matrices with finite size.
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Lately, Cornalba and Taylor studied the problem of find-we are interested in static BPS solutions without a nontrivial
ing static solutions in matrix theorf]. They studied solu- gauge field background, the first term vanishes. Assume we
tions which can be represented by holomorphic curves, i.ehave a membrane solution holomorphically embedded jn
membranes embedded holomorphicallyCth To define ho-  viz., Z=X*+iX2, W=X3+iX?,
lomorphically embedded membranes, we introduce four

complex coordinates [Z,W]=[Z,W]=0, (14)
Z,=X+iX?,
and expand the second term of Ef3):
Z,=X3+iX4
1 i — _
Z3=X5+iX6, ZFU[Xl,XJ]G: 7(T1idZ,Z]+ T3 W, W])e
Z,=X"+iX8, (8)

1 _
+ 3 (Pist I ([ZW]H[Z,W]) e
and truncate the last spatial coordinXfe=0. By a holomor-
phic curve we mean they are all holomorphic functions of i -
one complex variableZ,=fA(z). After quantization,z is +g (M= T ([ZW]-[Z,W]e. (19
traded into an operator or matrix. In terms of the above com-
plex variables, the potential term of the membrane theor)NOW if we have
can be written as ’

1 o F1r2F3F46:_€, (16)
V:_1_6 > f dq dp({Za.ZgHZa Zg} ) _ _
AB=1..4 the second and third terms vanish. Now applying the BPS
== condition, Eq.(12),
HZn ZoHZn Za)). ©) 412
Assuming{z,z}=F(z,z) and minimizing the potential, we [2,2]+[W.W]=C, (17)
have
v we obtain an additional condition for the supersymmetric
F(ZE)(E fA(Z)Uﬁ)) =C, (19~ solution:
A
1
whereC is a constant. Note that this condition means 7 Clet e’ =0. (18
> {Za.Za =2, {fa(2).fa(@D}=C. (11)  With Egs.(16) and(18), we see that 1/4 of the supersymme-
A A

try is conserved by a holomorphic membrane solution of

This was introduced as gauge conditiorin [6], but as we matrix theqry when it is embedded . . .
have seen from above this can be obtained as a result of the A the S'mp'?‘St example, we can consider membranes in-
equation of motion for the membrane theory, and we carférsecting at a right angigrl)e, representgdeyz, \.N.: Vz. We
show that even in matrix theory, wheZa, become noncom- t@ke the ansaz=f(q)e’ and{q,p}=i. Then it s straight-
mutative, this condition makes the equation of motion trivi—forWaerI that Eq/(11) means
ally satisfied. So we admit the following is a BPS condition ,
for a static membrane in matrix theory: 2_ i _

( f2) C. (19

> [Za.Zal=C. (12 o | . .
A Solving it, we have the following solution for a static mem-

brane:
In fact, this condition guarantees preservation of some pro-

portion of supersymmetry. Consider the supersymmetry 22 .
transformation of fermion fields in matrix theory, 1 Ca+VCg°+4
Xt= fcosp, (20)

1 i
50= ErlotxJe+ ZF,J[x',xJ]E+ €, (13
Cq+VC?%g*+4
where I';;=3[I',,I';] and I';, I=1,...,9 are nine- X?="\/ ————sinp,
dimensional gamma matrices which satisfyI";+ 1" ;T 2
=8,31i6x16. There are two 16-component supersymmetry

parameterg, €'; the former is an ordinary dynamic super- —Cq+ '/C2q2+4
symmetry parameter, while the latter is called a kinematic X3= cosp,
one, which is common in light cone formulations. Since here 2
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o_
\/—Cq+ Vc2g?+4 X=ha),

X*= 5 sinp, X1=f(q)cosp,
X2=1(qg)sinp,

X'=0, 1#£1,2,3,4. (@)sinp
X3=g(q),

As q—, the membrane lies on the 12-plane, while in the
limit g— —oo it lies on the 34-plane. Thus this solution rep- x'=0, 1+0,1,2,3. (249
resents membranes intersecting at a point, and the fact th
this is 1/4 BPS is consistent with the general resulf3f

EJtsing the equation of motion, the functiofig,h should sat-
which studied supersymmetric intersecting brane conﬁgura'—s

fy

tions of matrix theory. 1., o '
Because of the ordering problem, the above solution in 5 (F)"=(g")"=(h")%,
itself does not turn out to be useful in obtaining a solution of
matrix theory directly. Instead, we get a hint from the flat (f2g")' =(f?h")'=0, (25)
membrane solution, E@6), and its interpretation in terms of ) ] o ]
harmonic oscillator operators. We set where a prime denotes differentiation with respect to the

variableqg. Being autonomous, this set of coupled nonlinear
L1 differential equations is easily integrated. We have
Xt= 5(5i,j+1xj+5i,j—1xi),

Cdf
g==
, i k2f2_(C2_D2)
X :§(5i,j+1xj_5i,j—1xi), (21 c
=+—log[f+ f>—(C>*—D?/K?], (26)
and X3, X* according to the curve equatioh'=1/Z. Now k
we solve the equation of motion from the matrix theory La-
grangian to obtain the following difference equation: h=+ Ddf
k2f2_(CZ_ D2)
X2 ! =x? ! +C (22)
i+17 2 =X~ 2tL, D
X X = = log[ f+ /= (C7=D?)/i?, 27)

which is obviously thequantizedversion of the membrane
equation(19). With a constanC and initial value ofx;, we 2 f2df

can calculate every term of the array recursively. Calculatind! = k22— (C2_D?)
the eigenvalues of the coordinates, we note that

CZ_ D2
k2

1
1 =_ 22N k2
(X4 (X?)?= 5 Diag(... Xy 17, ..), k(l‘Jf (C?-D?)/k

1 , , X log[ f + f2—(C?—D?)/k%] |, (28)
(X3)2+(XH?%= 5 Diag(... x5+ %% ). (23

whereC,D k are integration constants.

WhenC is positive,xiz—mo asi_soo andxi2—>0 asi— —oo: Let us have a look at the supersymmetry transformation

so theDO-branes with labei very large are confined near the U1, EQ.(13), under the ansatz, E@4):

origin of the 34-plane, but very far from the origin of the 1 1
12-plane, and oppositely whengoes to negative infinity. 60=— th’(sionl—cospI‘z)e— Eff’l“lze
This again leads us to interpret the solution as intersecting
membranes. 1 _ 1
Now we turn to finding a membrane embedded nonholo- —5fg' sinpl'yze+ 5 g’ cosplpgete’. (29

morphically in three spatial dimensions. As an ansatz we

demand axial symmetry, and this time we try a solution withwhenC=D, the solution simplifies into

nontrivial excitation of the gauge field. Since matrix theory

describesM theory in the light cone frame, the time compo- f= \/k_q

nent of the gauge field corresponds to the excitation of the I

membrane in theX™ direction. This should be exactly the g=h=*—logq, (30)
way to get a fundamental string frod theory in DLCQ 2k

(discrete light cone quantizatipformalism. We will find 414 it is straightforward to see that wher=D the solution
that our solution corresponds to the Bl solution of fundamenis 1/4 BPS with the following condition of unbroken super-
tal string attached to B-brane: symmetry:
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(1+T3)e=0, X'=0, 1#0,1,2,3,
, and try to solve the equation of motion for the static configu-
- ZF12€+ €'=0. (3D ration. We have the following coupled differential equations
for x;, vyi, z:

The M-theory membrane is dual to tie2-brane of type-lIA 5 s 5 1 , 1 )
string theory. Since Born-Infeld theory describes the low- Xit1— 2% +Xi71:§(yi+l_yi) _E(Zwl_zi) )
energy effective dynamics db-branes, we expect that both
theories may allow the same solution#n [7,8] solutions
with transverse excitations with electromagnetic charge were
found:

XA(Yir1— YD) =X 1 (Yi—Yi-1),
Xi2(2i+1_zi):Xi271(zi_Zifl)- (35

o B
X(r)= fr \/mdr’ (32 |t is evident that this is just the discretized version of the
0 coupled differential equation®5); so it is reasonable to ad-

A mit the solution of the above difference equations as a quan-

E=Fg = , (33 tized versioq of the continuum solution. The above equations
N T can be rewritten as
2 2
where X represents one of the transverse directions of the X2, =2X2— X2 +2 ¢ _4D ,
p-brane anck is the radial component of the electric field. X
is the radial coordinate on the world volumes” 2= B?
— A2, and the BPS condition correspondsAtB—1 orr, _ c
—0. Whenry=0 this solution represents a string attached Yier=Vit X2’
on D-branes, while whemy#0 we have a catenoidal solu-
tion of the brane antibrane bound state. We find that the form D
of Egs.(32),(33) is the same as Eq$26),(27), and further- Zi 1=27+ 2 (36)
I

more in the same limit of the point charge solution, the two

Smlgto"r)rtﬁebri;?:2<e£ Pri.%((:lr?taet)i((g)r:a (\:/:{/idfiollow the same reason-—rhis matrix solution also becomes BPS wi@r D.
P It would be excellent if we repeat the study of dynamic

ing which was used for the holomorphic cué=1/Z, and issues treated ifi7] with the matrix theory solution and find

set coincidence with supergravity again. But unfortunately the

X1= 6 |1+ 8 j-1Xi (34 BI theory result is claimed to be incompatible with the su-

. pergravity calculation except fa3 andD4-braneqd11].
XE=1(8ij+1%— 6i,j-1%i), One interesting topic for further study is the extension to

3 higher-dimensional branes. |B] four-dimensional spherical
X°=6i Yi branes in matrix theory were constructed using (80

0 gamma matrices. It would be exciting if we could obtain
X"=6iz, four-dimensional static solutions which have the same shape

as (4+ 1)-dimensional Born-Infeld theory solutions. Since in
that case the result of Bl fluctuation studies is identical to the
This fact was noted also i10], that the three-dimensional Born- supergravity result, we might do the same calculation in
Infeld action can be derived from the action of relativistic mem-terms of matrix theory and check if it is consistent with Bl
brane moving inR® through gauge fixing. theory or supergravity.
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