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More on membranes in matrix theory
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We study noncompact and static membrane solutions in matrix theory. Demanding axial symmetry on a
membrane embedded in three spatial dimensions, we obtain a wormhole solution whose shape is the same with
the catenoidal solution of Born-Infeld theory. We also discuss another interesting class of solutions, mem-
branes embedded holomorphically in four spatial dimensions, which are 1/4 BPS.@S0556-2821~99!01306-5#

PACS number~s!: 11.25.Mj
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Matrix theory @1#, formulated from the U(N) gauge su-
persymmetric quantum mechanics describing motions oN
D0-branes, is now well established as a nonperturbative
mulation of M-theory. The basic properties ofM-theory
which could be readily checked were that it becomes
dimensional supergravity at low energy, it contains exten
objects such as a membrane and its magnetic dual five-br
and the dynamics ofD-particles of type-IIA superstring
theory converges to the supermembrane action in the l
cone frame, formulated in@2#. In addition to the rather trivial
flat branes, compact branes, in particular, with spherical
pologies, were obtained and studied also@3,4,5#. These
branes with finite size are not static, but oscillating in tim
Recently, an interesting class of static membrane solut
was presented in@6#, viz., holomorphically embedded mem
branes. In this Brief Report we investigate the possibility
another static solution of matrix theory. We find one emb
ded in three dimensions which describes wormhole me
branes, made by a string between branes and antibrane
similar system was already discussed using Born-Infeld~BI!
theory @7,8#, which is low-energy effective theory fo
Dp-branes. It is amusing to see that our solution has
same shape as the electrostatic solution of three-dimens
Born-Infeld theory, describing twoD2-branes connected b
a throat.

In this Brief Report it is sufficient to consider only th
bosonic sector of the matrix theory Lagrangian:

L5TrS 1

2g
~DtX

I !21
1

4g
~@XI ,XJ#2! D , ~1!

whereXI , I 51, . . . ,9, areN3N Hermitian matrices andg is
the string coupling constant.DtX[] tX2 i @A,X#, whereA
5X0 is the gauge field of our gauged quantum mechanic
is well known that matrix theory, in the large-N limit, con-
verges to the 11-dimensional supermembrane theory in
light cone frame. In other words, Eq.~1! becomes

L5
p11

2 E dp dq~DtX
I !21

1

4p11
E dp dq~$XI ,XJ%!2; ~2!

viz., the trace is approximated by integration over two va
ables and the matrix commutator byi times Poisson brackets
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$X~p,q!,Y~p,q!%[ i S ]X

]q

]Y

]p
2

]X

]p

]Y

]q D . ~3!

q,p are the world surface coordinates of the membrane.
equation of motion for the above Lagrangian is

Dt
2XI1@XJ,@XJ,XI ##50 ~4!

or, in the large-N limit,

Dt
2Xi1$Xj ,$Xj ,Xi%%50. ~5!

For simplicity, we set the coupling constants to 1 from no
on.

The simplest solution is the flat membrane

X15Aq

2
cosp,

X25Aq

2
sinp,

XJ50, JÞ1,2, ~6!

wherep is an angular variable andq can take any real num
ber. It is obvious that the above parametrization expands
entire range of the 12-plane. For matrix theory we take
ladder operatorsa, a† of the harmonic oscillator and setX1

5(a1a†)/&, X25 i (a2a†)/&. This basic membrane so
lution is 1/2 Bogomol’nyi-Prasad-Sommerfield~BPS! of ma-
trix theory.

Another interesting example is that of spherical shape

X15r ~ t !A12q2 cosp,

X25r ~ t !A12q2 sinp,

X35r ~ t !q,

XJ50, JÞ1,2,3. ~7!

We haveS2 with radius r (t), which is not a constant, bu
oscillates according to the equationr̈ 12r 350. Note that in
this case we can obtain a finite-dimensional representatio
the solution, i.e.,Xi5r (t)Ji ( i 51,2,3), whereJi are the
familiar angular momentum operators. But for the infin
flat membranes, we cannot satisfy the equation of motion
terms of matrices with finite size.
©1999 The American Physical Society01-1
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Lately, Cornalba and Taylor studied the problem of fin
ing static solutions in matrix theory@6#. They studied solu-
tions which can be represented by holomorphic curves,
membranes embedded holomorphically inC4. To define ho-
lomorphically embedded membranes, we introduce f
complex coordinates

Z15X11 iX2,

Z25X31 iX4,

Z35X51 iX6,

Z45X71 iX8, ~8!

and truncate the last spatial coordinateX950. By a holomor-
phic curve we mean they are all holomorphic functions
one complex variable,ZA5 f A(z). After quantization,z is
traded into an operator or matrix. In terms of the above co
plex variables, the potential term of the membrane the
can be written as

V52
1

16 (
A,B51,...,4

E dq dp~$ZA ,ZB%$Z̄A ,Z̄B%

1$ZA ,Z̄B%$Z̄A ,ZB%!. ~9!

Assuming$z,z̄%5F(z,z̄) and minimizing the potential, we
have

F~z,z̄!S (
A

f A8 ~z! f A8 ~ z̄! D 5C, ~10!

whereC is a constant. Note that this condition means

(
A

$ZA ,Z̄A%5(
A

$ f A~z!, f A~ z̄!%5C. ~11!

This was introduced as agauge conditionin @6#, but as we
have seen from above this can be obtained as a result o
equation of motion for the membrane theory, and we c
show that even in matrix theory, whereZA become noncom-
mutative, this condition makes the equation of motion tri
ally satisfied. So we admit the following is a BPS conditi
for a static membrane in matrix theory:

(
A

@ZA ,Z̄A#5C. ~12!

In fact, this condition guarantees preservation of some p
portion of supersymmetry. Consider the supersymme
transformation of fermion fields in matrix theory,

du5
1

2
G IDtX

Je1
i

4
G IJ@Xl ,XJ#e1e8, ~13!

where G IJ5 1
2 @G I ,GJ# and G I , I 51, . . . ,9 are nine-

dimensional gamma matrices which satisfyG IGJ1GJG I
5d IJ116316. There are two 16-component supersymme
parameterse, e8; the former is an ordinary dynamic supe
symmetry parameter, while the latter is called a kinema
one, which is common in light cone formulations. Since h
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we are interested in static BPS solutions without a nontriv
gauge field background, the first term vanishes. Assume
have a membrane solution holomorphically embedded inC2,
viz., Z5X11 iX2, W5X31 iX4,

@Z,W#5@ Z̄,W̄#50, ~14!

and expand the second term of Eq.~13!:

1

4
G IJ@XI ,XJ#e5

i

4
~G12@Z,Z̄#1G34@W,W̄# !e

1
1

8
~G131G24!~@Z,W̄#1@ Z̄,W# !e

1
i

8
~G142G23!~@Z,W̄#2@ Z̄,W# !e. ~15!

Now, if we have

G1G2G3G4e52e, ~16!

the second and third terms vanish. Now applying the B
condition, Eq.~12!,

@Z,Z̄#1@W,W̄#5C, ~17!

we obtain an additional condition for the supersymmet
solution:

2
1

4
CG12e1e850. ~18!

With Eqs.~16! and~18!, we see that 1/4 of the supersymm
try is conserved by a holomorphic membrane solution
matrix theory when it is embedded inC2.

As the simplest example, we can consider membranes
tersecting at a right angle, represented byZ5z, W51/z. We
take the ansatzz5 f (q)eip and$q,p%5 i . Then it is straight-
forward that Eq.~11! means

S f 22
1

f 2D 8
5C. ~19!

Solving it, we have the following solution for a static mem
brane:

X15ACq1AC2q214

2
cosp, ~20!

X25ACq1AC2q214

2
sinp,

X35A2Cq1AC2q214

2
cosp,
1-2
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BRIEF REPORTS PHYSICAL REVIEW D 59 067901
X45A2Cq1AC2q214

2
sinp,

XI50, IÞ1,2,3,4.

As q→`, the membrane lies on the 12-plane, while in t
limit q→2` it lies on the 34-plane. Thus this solution re
resents membranes intersecting at a point, and the fact
this is 1/4 BPS is consistent with the general result of@9#,
which studied supersymmetric intersecting brane configu
tions of matrix theory.

Because of the ordering problem, the above solution
itself does not turn out to be useful in obtaining a solution
matrix theory directly. Instead, we get a hint from the fl
membrane solution, Eq.~6!, and its interpretation in terms o
harmonic oscillator operators. We set

X15
1

2
~d i , j 11xj1d i , j 21xi !,

X25
i

2
~d i , j 11xj2d i , j 21xi !, ~21!

and X3, X4 according to the curve equationW51/Z. Now
we solve the equation of motion from the matrix theory L
grangian to obtain the following difference equation:

xi 11
2 2

1

xi 11
2 5xi

22
1

xi
2 1C, ~22!

which is obviously thequantizedversion of the membrane
equation~19!. With a constantC and initial value ofxi , we
can calculate every term of the array recursively. Calculat
the eigenvalues of the coordinates, we note that

~X1!21~X2!25
1

2
Diag~ ...,xi 11

2 1xi
2,...!,

~X3!21~X4!25
1

2
Diag~ ...,xi 11

22 1xi
22,...!. ~23!

WhenC is positive,xi
2→` as i→` andxi

2→0 asi→2`;
so theD0-branes with labeli very large are confined near th
origin of the 34-plane, but very far from the origin of th
12-plane, and oppositely wheni goes to negative infinity.
This again leads us to interpret the solution as intersec
membranes.

Now we turn to finding a membrane embedded nonho
morphically in three spatial dimensions. As an ansatz
demand axial symmetry, and this time we try a solution w
nontrivial excitation of the gauge field. Since matrix theo
describesM theory in the light cone frame, the time comp
nent of the gauge field corresponds to the excitation of
membrane in theX2 direction. This should be exactly th
way to get a fundamental string fromM theory in DLCQ
~discrete light cone quantization! formalism. We will find
that our solution corresponds to the BI solution of fundam
tal string attached to aD-brane:
06790
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X05h~q!,

X15 f ~q!cosp,

X25 f ~q!sinp,

X35g~q!,

XI50, IÞ0,1,2,3. ~24!

Using the equation of motion, the functionsf,g,h should sat-
isfy

1

2
~ f 2!95~g8!22~h8!2,

~ f 2g8!85~ f 2h8!850, ~25!

where a prime denotes differentiation with respect to
variableq. Being autonomous, this set of coupled nonline
differential equations is easily integrated. We have

g56E Cd f

Ak2f 22~C22D2!

56
C

k
log@ f 1Af 22~C22D2!/k2#, ~26!

h56E Dd f

Ak2f 22~C22D2!

56
D

k
log@ f 1Af 22~C22D2!/k2#, ~27!

q5E 2 f 2d f

Ak2f 22~C22D2!

5
1

k S fAf 22~C22D2!/k22
C22D2

k2

3 log@ f 1Af 22~C22D2!/k2# D , ~28!

whereC,D,k are integration constants.
Let us have a look at the supersymmetry transformat

rule, Eq.~13!, under the ansatz, Eq.~24!:

du52
1

2
f h8~sinpG12cospG2!e2

1

2
f f 8G12e

2
1

2
f g8 sinpG13e1

1

2
f g8 cospG23e1e8. ~29!

WhenC5D, the solution simplifies into

f 5Akq,

g5h56
C

2k
logq, ~30!

and it is straightforward to see that whenC5D the solution
is 1/4 BPS with the following condition of unbroken supe
symmetry:
1-3
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~11G3!e50,

2
k

4
G12e1e850. ~31!

TheM-theory membrane is dual to theD2-brane of type-IIA
string theory. Since Born-Infeld theory describes the lo
energy effective dynamics ofD-branes, we expect that bot
theories may allow the same solutions.1 In @7,8# solutions
with transverse excitations with electromagnetic charge w
found:

X~r !5E
r

` B

Ar 2p222r 0
2p22

dr, ~32!

E5F0r5
A

Ar 2p222r 0
2p22

, ~33!

where X represents one of the transverse directions of
p-brane andE is the radial component of the electric field.r
is the radial coordinate on the world volume,r 0

2p225B2

2A2, and the BPS condition corresponds toA/B→1 or r 0
→0. Whenr 050 this solution represents a string attach
on D-branes, while whenr 0Þ0 we have a catenoidal solu
tion of the brane antibrane bound state. We find that the fo
of Eqs. ~32!,~33! is the same as Eqs.~26!,~27!, and further-
more in the same limit of the point charge solution, the t
solutions become BPS, as expected.

For the matrix representation we follow the same reas
ing which was used for the holomorphic curveW51/Z, and
set

X15d i , j 11xj1d i , j 21xi , ~34!

X25 i ~d i , j 11xj2d i , j 21xi !,

X35d i , j yi ,

X05d i , j zi ,

1This fact was noted also in@10#, that the three-dimensional Born
Infeld action can be derived from the action of relativistic me
brane moving inR3 through gauge fixing.
y
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XI50, IÞ0,1,2,3,

and try to solve the equation of motion for the static config
ration. We have the following coupled differential equatio
for xi , yi , zi :

xi 11
2 22xi

21xi 21
2 5

1

2
~yi 112yi !

22
1

2
~zi 112zi !

2,

xi
2~yi 112yi !5xi 21

2 ~yi2yi 21!,

xi
2~zi 112zi !5xi 21

2 ~zi2zi 21!. ~35!

It is evident that this is just the discretized version of t
coupled differential equations~25!; so it is reasonable to ad
mit the solution of the above difference equations as a qu
tized version of the continuum solution. The above equati
can be rewritten as

xi 11
2 52xi

22xi 21
2 12

C22D2

xi
4 ,

yi 115yi1
C

xi
2 ,

zi 115zi1
D

xi
2 . ~36!

This matrix solution also becomes BPS whenC5D.
It would be excellent if we repeat the study of dynam

issues treated in@7# with the matrix theory solution and find
coincidence with supergravity again. But unfortunately t
BI theory result is claimed to be incompatible with the s
pergravity calculation except forD3 andD4-branes@11#.

One interesting topic for further study is the extension
higher-dimensional branes. In@5# four-dimensional spherica
branes in matrix theory were constructed using SO~5!
gamma matrices. It would be exciting if we could obta
four-dimensional static solutions which have the same sh
as (411)-dimensional Born-Infeld theory solutions. Since
that case the result of BI fluctuation studies is identical to
supergravity result, we might do the same calculation
terms of matrix theory and check if it is consistent with B
theory or supergravity.
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