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Sachs-Wolfe effect: Gauge independence and a general expression
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We address two points concerning the Sachs-Wolfe effécthe gauge independence of the observable
temperature anisotropy arii) a gauge-invariant expression of the effect considering the most general situa-
tion of hydrodynamic perturbations. The first result follows because the gauge transformation of the tempera-
ture fluctuation at the observation event only contributes to the isotropic temperature change which, in practice,
is absorbed into the definition of the background temperature. Thus, we proceed without fixing the gauge
condition, and express the Sachs-Wolfe effect using the gauge-invariant varj&l856-282(199)07104-0

PACS numbe(s): 98.70.Vc, 98.80.Hw

The excess noise in the radio sky discovered by Penzias The scalar-type variables depend on the gauge transfor-
and Wilson in 1969 1] was immediately recognized as the mation. Our strategy concerning the gauge is to use the sev-
remnant of an early hot stage in our universe. We call it theeral available gauge conditions as an advantage for handling
cosmic microwave background radiaticBMBR). Soon af- problems. A certain gauge condition is suitable for handling
ter its discovery, in a fundamental paper published in 1964 certain aspect of the problem. But, usually we do not know
[2] Sachs and Wolfe pointed out that the CMBR shouldwhich gauge is the suitable omepriori. Thus, it is desirable
show the temperature anisotropy caused by photons travelirtg design the equations so that we can easily impose the
in the perturbed metric which is associated with the largefundamental gauge conditiof$1,12. We call it thegauge-
scale structure formation processes based on gravitational ineadyapproach, and the relativistic perturbation equations in
stability. The dipole and higher multipole anisotropies havethe gauge-ready form needed in this work can be found in
now been discovere[B]. There have been many studies of Ref.[13].
the Sachs-Wolfe effect in the literatufd—8]. We notice,  under the gauge transformatisA=x2+ £2, the variables
however, the two points mentioned in the abstract may stiltransform as ¢'=a¢”) [12]
deserve addressing. Despite its trivial nature, we found the
first point has not allwa_tys been well understood by workers ir}"D: o—HE, }=X— & v=v—(kla) &, a=a— 'gt,
the field. We explain it below Eq10) and below Eq(14).
The general expression mentioned in the second point is i
Eqg. (17) which is the main result in this Brief Report. We
now explain our notation and strategy. - o _

As the metric we consider a spatially homogeneous any/hereH=a/a and an overdot denotes the derivative with
isotropic one with the most general spacetime-dependefiESPect ta(dt=ad»); w=p/u wheren andp are the en-
perturbationgwe setc=1): ergy density and the pressure, respectivepy. y=a(B

+9"), v=(®+kpB), and 5= Sul/u are perturbed parts of
ds?=—a?(1+2a)dy?—a(B ,+bYV)dpdx* the three-space curvature, shear, velocity, and relative den-
sity variables, respectively; all these variables are spatially
+aZ[ g1+ 2¢)+2(y st CY (o 5+ Cip)1dx“dxP.  gauge invariant. For the temperattiFéx,t), we decompose
1) it into the background and perturbed parts as

B 5+3(1+w)H¢, sT=6sT+HTE, )

The four-velocity of the fluid isu’=a~*(1—a) and u® T(x,t)=T(t)+ T(x,1), 3

=a Y~k fOlet @y v andCl) are based on

g¥). and a vertical bar indicates the covariant derivativewhere an overbar indicates a quantity to the background or-
based orgfﬁ). Yfl”) is a (transversgvector harmonic func- der; we neglect it unless necessary. If vie reg'aaq; a scalar
tion [9,10]. The (transverse-tracefrggensor-type perturba- quantity, the_ perturbed part changes &&= 6T—T&, and
tion CS’B is invariant under the gauge transformation, and weconsideringT=a !, we have Eq.(2); some of the funda-
can construct the gauge-invariant combinations for themental gauge conditions we can recognize in @yare the
vector-type perturbatiof9]: v®—b=v,, v®+c'=v,, uniform-curvature gauged=0), the zero-shear gauge (
andv,—v,="V, where a prime denotes the time derivative=0), the comoving gaugev&O0), the uniform-density
based ony. Due to the spatial homogeneity and isotropy ingauge ¢=0), and the uniform-temperature gaugéT(

the background spacetime the three perturbation types de=0). Each one of these gauge conditions fixes the temporal
couple and evolve independently to the linear order. gauge transformation property completélye., £=0) and,
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thus, each variable in these gauge conditions is equivalent &) we may decompose thebservediemperature along the
a corresponding gauge-invariant combination. The synchrasingle ray into the background and perturbed parts as
nous gauge imposes=0 and fails to fix the gauge mode _
completely; i.e., we still havé'= ¢'(x). T(Xo,to:€0)=T(Xo,to)+ 6T(Xo, to:60).  (10)
We proposed to write the gauge-invariant variables as
Although we used similar notations in Eq®), (10), it is

8,=8+3(1+w) (aH/K)v, ¢, =¢—Hy, axza_)'(, desirable to notice the difference: E) decomposed the
temperature at spacetime points, whereas (£ decom-
v,=v—(kla) x, ¢,=¢— (aH/k)v, etc. (4) posed the observed temperature along different direcégns

_ _ _ at observer’s locatioxg . Up to this point, the decomposi-
d, becomess in the comoving gaugev(=0), etc. In this  tion in Eqg.(10) still has arbitrariness as the one in Eg). In
manner, using Eq(2), we can systematically construct the the observations, however, we often take the background
corresponding gauge-invariant combination for any variableemperature as an averaged temperature all around the sky at
based on a gauge condition which flxes_: the temporal 9augRe observer's location, i-e-T(XOytO)E<T(XOatO;eO)>eO-
transformation property completely. A given variable evalu- . o L .
[n this way the arbitrariness is fixed, and the remainifig

ated in different gauges can be considered as different var e ; D
ables, and they show different behaviors in general. over the sky apparently coincides with the an_gular variation
The background universe is described by of observed temperature. ThusT |, should be mdepende_nt

of the gauge conditioimposed at the observer’'s spacetime
H2=(87G/3) w— (K/a?) + (A/3), u=—3H(u+p), (5 position. Let us explain this Iist_point below. In the tempo-

rally evolving background, T=T(t), éT is a gauge-
whereK andA are the three-space curvature and the cosmodependent quantity. The gauge dependencéToshould be
logical constant, respectively. Later, it is convenient to haveconsidered in handling fluctuations at the last scattering era

the following equations, derived in RdfL3]: E. However, fordT evaluated at the observation evéhtthe
) ) effect of the gauge transformatidaé'(x,t) evaluated aD
[(k*=3K)/a"] ¢, =47Gud,, ®  will show no angular dependence, thus carabsorbednto

. our definition of the background temperature, and is irrel-
¢y tHe,=—4mG(pn+p)(a/k)v,—8mGHo, (7)  evant for the temperature anisotropy; thus, the observable
temperatureanisotropy is a conceptindependent of the
a,=—¢,—87Go, (80 gauge conditiorused[14]. Equivalently, sinceH&!|o terms

- . . cancel, the difference of observed temperatures in two dif-
whereo(X,t) indicates the anisotropic pressure. ferent directions is gauge invariant

The CMBR has a black-body distribution and the photons Perturbation analyses of the null equatiddk,=0), the
are redshifted during their travel from last scattering to the, . J4asic equationkt: ,k®=0), and Eq.(9) providé the
observer. After the last scattering, the photons are effectivel)(‘}I . 'b ' ' —
collision-free and non-self-gravitating, thus follow the geo_eq_uatlons_WE need. To_the_bac_kground order, we have:
desic path in the giveriperturbed metric. The null vector *vxa ', e“e,=1, ande® =e“ze’. To the perturbed or-
tangent to the geodesjé()\) with an affine paramet@{ is der, we haVQfor Convenience, we consider the contributions
ka=dx?/d\. We define the null energy-momentum four- from three perturbation types separately &8 o= 6T

— v t .
vectork?® to the perturbed order dd=a~'(v+ 6v) andk® STWo+8TYo]:

=- va‘l(e‘-’+ 6e%). The temperatures of the CMBR gt two (STOIT)|o= (STIT)|g—(1/K) v aea|g

different points © andE) along a single null-geodesic ray '

in a given observational direction jg] o

+f [—¢' +a.e%—(1l/a) X,ame“eﬁ]dy,

TolTe = (Kua)of (K°Up)e, €] -

11

where O is the observed event here and now dhds the o

emitted event at the intersection of the ray and the last scaf-—() _ (v) pe|O_ (V) napB

tering surfaceu, at O andE are the local four velocities of aE(ST IMlo=vaYe el JE VYol peterdy, 12

the observer and the emitter, respectively. In the large angu- o

lar scale we are con5|der|r(@rger than the horizon size at (5-|-<t>/T)|O: _J ng'eaeﬁdy, (13)

the last scattering era which subtends aboy)3 degree by E

an observer todaythe detailed dynamics at last scattering is .

not important. The physical processes of last scattering arehered/dy=d/dn—e“dl x* [thus, the integral is along the

important in the small angular scale where we need to solveay’s null-geodesic paih The temperature fluctuation in the

the Boltzmann equation for the photon distribution functionlast scattering eraT/T|g, contributes to the scalar-type per-

[8]. turbation. Equations(12), (13) are apparently gauge-
The observed temperature along the single ray may denvariant. Equatior(11) is written in a gauge ready form, so

pend on the location of the obserwes (cosmic variancg  that we can impose any gauge condition we want. Each term

and the direction of the observed rgy. Similarly as in Eq. on the right hand sidéRHS) of Eq. (11) depends on the
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temporal gauge transformation and the gauge invariance dhe movement of the photon-emitting plasma along the line-
the terms altogether is not obvious; using EB. we can of-sight, the Sachs-WolféSW) effect, and the integrated
show that the RHS alone is not gauge invari@gparently, Sachs-Wolfe(ISW) effect, respectively]16].
the LHS is not also gauge invariant, so that the overall equa- Now, we reexpress the SW and the ISW terms using
tion is gauge invariant Shortly, we will see that the observ- which has the close analogy with the Newtonian gravita-
able contributions to anisotropy can be expressed in terms dional potential. In order to relate the temperature fluctuation
gauge-invariant variables. with the coexisting matter &, we take an ansatz

Now, we concentrate on the scalar-type contribution in
Eq. (11). In hydrodynamic perturbation based on Einstein (STMe=(3(1+w) ]} +erle, (16)
gravity, it is known that Only certain variables in certain WhereeT(X,t) is apparenﬂy gauge invariant and can be re-
gauge conditions correctly reproduce the Newtonian behavgarded as the deviation of the temperature fluctuation from
iors in the pressureless limit: the density perturbation varithe adiabaticity with the coexisting matter fluctuation; we
able in the comoving gauge5(), and the perturbed potential may call it the entropic temperature fluctuatidry]. By con-
and the perturbEd VEIOCity variables in the zero shear gau%deringe_r we can handle the effects from the mu|tic0mp0-
(¢, andv,) show the correct behavior of the correspondingnent hydrodynamic situatiofi.8].
Newtonian one$15,9]. These correspondences applygam- Using Eqs(5)—(8) we can express the SW and ISW terms
eral scaleg(including the superhorizon scaleonsidering the  in Eq. (15) using @,
generalK andA [13]: v, dv, — ¢, 6P, wheredv and

o® are the Newtonian velocity and potential fluctuations, §T(s-SW.ISW 2 :
respectively. —_— =) -1+ 17G(at D) (¢, +87Go
Using these variables Eq11) can be written in a more o mG(utp)
suggestive form: N H2 /¢x . K2— .
ho'¢ @ e
(STOIT)|o=(8TIT)|e— (1/K) v €% — (a, +Hx)|E 47G(u+p)\ H = 3a”HZ "X " TT] |
(0] (¢]
+ fE (ay—@,) dy. (14 —ZJ’E (¢, +47Go)'dy. (17

The gauge-dependent terms on the RHS are identified: tH8 this form, we considered the genetdJA, andp(y) in
first andHy terms are gauge dependent. Since thew, € background, and the genek,t) (the entropic pres-
+Hy) term evaluated at Ohere and nowdoes not show sure, o, andey in the perturbation. In an ideal flui@thus, .
the angular dependence, it can dlesorbedinto the defini- ©=0=¢), the general super-sound-horizon scale solution
tion of the background temperature; this point was noted ifo" ¢y iS presented in Ref13]

Ref. [6]. The combination of remaining two gauge- H (ta(u+p)
dependent variables,5T/T+Hy)|g, is a gauge-invariant <pX(x,t)=47-rGC(x)E a7
combination 5TX/T|E. As a matter of fact, by moving 0
—(a,THx)lo to the left-hand sidéLHS) we can make a whereC(x) andd(x) are integration constants indicating the
gauge-invariant form §T®/T+a,)|o. However, since the relatively growing and decaying modes, respectively. Re-
added terms only contribute to the isotropic temperaturgnarkably, this solution iwalid on scales larger than Jeans
changes those do not contribute to trE observed angulacale for the gener#l, A, and generally time-varying(u).
variation of temperature in Eq10) (with T defined as the In the near flat caséthus, ignoringK terms, we have a
all-sky averagg equivalently, the variation of the observed powerful conserved quantity in the super-sound-horizon
temperature with directions is gauge invariant. Similarly, onescale ¢, (x,t) =C(x), with the vanishing leading decaying
can evaluate Eg14) in any gauge condition with the same mode. The structural seed originated from the quantum fluc-
“observable” anisotropy. In this sense tlibservable tem- tuation during the inflation era provides the initial condition
perature anisotropyon the LHS of Eq.(14) is gauge inde- for C(x) and it is conserved during the super-sound-horizon

d H
t+ Ed(x), (19

pendent scale evolution independently of changing equation of state,
Absorbing the isotropic contributions t8(xg,to), we  changing gravity theories, and the horizon crosging, 19.
have For K=0=A andw=const, the growing mode a$, in
Eqg. (18) remains constanfwe ignorede and o). Thus, ig-
(5TOIT)|o=— kflvx %0+ (1/k)v, €% noring the decaying mode, we have
STOT fo » STESW 1+3w =~ 2 [k 2 .
ey oTMlet | (e dy. T 3w Te@rwlan) (AT
(15 (19

The RHS is apparently gauge invariant. In the literature, theand the ISW term vanishes. The large observed angular scale
four terms on the RHS are often called: the Doppler effectorresponds to the superhorizon scale at the time of last scat-
due to the observer's movement, the Doppler effect due teering, and the effect fromk(aH)? term becomes subdomi-
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nant. Thus, in the large angular scale, assuming the pressunglain the result in Eq(20) in pedagogic ways, e.g., R¢R2],

less era aE, and ignoringer|g, we finally have usually involve gauge-dependent interpretati¢@8] with
(5. 5W) . L limited implications, and should be read with due caution.
(6TESIT) o= — 3¢,le=3 6P|, (20 Many works in the literature start by fixing a certain gauge

which is the commonly quoted result derived in REg].  condition [2,4,5 or by using combinations of the gauge-
Notice, however, the various levels of assumptions used tivariant variable$6,7,21). The final results for the observed
have Eq(20): we assumed, a single component, pressureles§mperature anisotropy are bound to be the same as ours,
(p=0), adiabatic ¢;=0), ideal fluid €=0=0¢), with K because, as we have shown, the concembiservationally
=0= A, and vanishing transient mode&for the SW term, gauge independent
and along the ray’s path frofa to O for the ISW term. We thank Professors K. Subramanian and A.skios
Equation(17) expresses the SW and the ISW effects infor useful discussions, and Professor S. D. M. White for
the very general situatiof20]. In addition to this, we also careful comments and the invitation to MPA. We wish to
have two Doppler terms in E¢15) and the vector and tensor acknowledge the financial support of the Korea Research
contributions in Eqs(12), (13). These altogether contribute Foundation.
to the observed temperature anisotrggy. Attempts to ex-
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