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Sachs-Wolfe effect: Gauge independence and a general expression
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We address two points concerning the Sachs-Wolfe effect:~i! the gauge independence of the observable
temperature anisotropy and~ii ! a gauge-invariant expression of the effect considering the most general situa-
tion of hydrodynamic perturbations. The first result follows because the gauge transformation of the tempera-
ture fluctuation at the observation event only contributes to the isotropic temperature change which, in practice,
is absorbed into the definition of the background temperature. Thus, we proceed without fixing the gauge
condition, and express the Sachs-Wolfe effect using the gauge-invariant variables.@S0556-2821~99!07104-0#

PACS number~s!: 98.70.Vc, 98.80.Hw
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The excess noise in the radio sky discovered by Pen
and Wilson in 1965@1# was immediately recognized as th
remnant of an early hot stage in our universe. We call it
cosmic microwave background radiation~CMBR!. Soon af-
ter its discovery, in a fundamental paper published in 19
@2# Sachs and Wolfe pointed out that the CMBR shou
show the temperature anisotropy caused by photons trave
in the perturbed metric which is associated with the lar
scale structure formation processes based on gravitationa
stability. The dipole and higher multipole anisotropies ha
now been discovered@3#. There have been many studies
the Sachs-Wolfe effect in the literature@4–8#. We notice,
however, the two points mentioned in the abstract may
deserve addressing. Despite its trivial nature, we found
first point has not always been well understood by worker
the field. We explain it below Eq.~10! and below Eq.~14!.
The general expression mentioned in the second point i
Eq. ~17! which is the main result in this Brief Report. W
now explain our notation and strategy.

As the metric we consider a spatially homogeneous
isotropic one with the most general spacetime-depend
perturbations~we setc[1):

ds252a2~112a!dh22a2~b ,a1bYa
~v !!dhdxa

1a2@gab
~3!~112w!12~g ,aub1cY~aub!

~v ! 1Cab
~ t ! !#dxadxb.

~1!

The four-velocity of the fluid isu0[a21(12a) and ua

[a21(2k21v (s)ua1v (v)Y(v)a). Ya
(v) andCab

(t) are based on
gab

(3) , and a vertical bar indicates the covariant derivat
based ongab

(3) . Ya
(v) is a ~transverse! vector harmonic func-

tion @9,10#. The ~transverse-tracefree! tensor-type perturba
tion Cab

(t) is invariant under the gauge transformation, and
can construct the gauge-invariant combinations for
vector-type perturbation@9#: v (v)2b[vv , v (v)1c8[vs ,
andvs2vv[C, where a prime denotes the time derivati
based onh. Due to the spatial homogeneity and isotropy
the background spacetime the three perturbation types
couple and evolve independently to the linear order.
0556-2821/99/59~6!/067302~4!/$15.00 59 0673
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The scalar-type variables depend on the gauge trans
mation. Our strategy concerning the gauge is to use the
eral available gauge conditions as an advantage for hand
problems. A certain gauge condition is suitable for handl
a certain aspect of the problem. But, usually we do not kn
which gauge is the suitable onea priori. Thus, it is desirable
to design the equations so that we can easily impose
fundamental gauge conditions@11,12#. We call it thegauge-
readyapproach, and the relativistic perturbation equations
the gauge-ready form needed in this work can be found
Ref. @13#.

Under the gauge transformationx̃a5xa1ja, the variables
transform as (j t[ajh) @12#

w̃5w2Hj t, x̃5x2j t, ṽ5v2 ~k/a! j t, ã5a2 j̇ t,

d̃5d13~11w!Hj t, dT̃5dT1HTj t, ~2!

where H[ȧ/a and an overdot denotes the derivative w
respect tot(dt[adh); w[p/m wherem andp are the en-
ergy density and the pressure, respectively.w, x[a(b
1g8), v[(v (s)1kb), andd[dm/m are perturbed parts o
the three-space curvature, shear, velocity, and relative d
sity variables, respectively; all these variables are spati
gauge invariant. For the temperatureT(x,t), we decompose
it into the background and perturbed parts as

T~x,t !5T̄~ t !1dT~x,t !, ~3!

where an overbar indicates a quantity to the background
der; we neglect it unless necessary. If we regardT as a scalar
quantity, the perturbed part changes asdT̃5dT2Ṫj t, and
consideringT̄}a21, we have Eq.~2!; some of the funda-
mental gauge conditions we can recognize in Eq.~2! are the
uniform-curvature gauge (w[0), the zero-shear gauge (x
[0), the comoving gauge (v[0), the uniform-density
gauge (d[0), and the uniform-temperature gauge (dT
[0). Each one of these gauge conditions fixes the temp
gauge transformation property completely~i.e., j t50) and,
©1999 The American Physical Society02-1
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thus, each variable in these gauge conditions is equivale
a corresponding gauge-invariant combination. The synch
nous gauge imposesa50 and fails to fix the gauge mod
completely; i.e., we still havej t5j t(x).

We proposed to write the gauge-invariant variables as

dv[d13~11w! ~aH/k! v, wx[w2Hx, ax[a2ẋ,

vx[v2 ~k/a! x, wv[w2 ~aH/k! v, etc. ~4!

dv becomesd in the comoving gauge (v[0), etc. In this
manner, using Eq.~2!, we can systematically construct th
corresponding gauge-invariant combination for any varia
based on a gauge condition which fixes the temporal ga
transformation property completely. A given variable eva
ated in different gauges can be considered as different v
ables, and they show different behaviors in general.

The background universe is described by

H25~8pG/3! m2 ~K/a2! 1 ~L/3! , ṁ523H~m1p!, ~5!

whereK andL are the three-space curvature and the cos
logical constant, respectively. Later, it is convenient to ha
the following equations, derived in Ref.@13#:

@~k223K !/a2# wx54pGmdv , ~6!

ẇx1Hwx524pG~m1p! ~a/k! vx28pGHs, ~7!

ax52wx28pGs, ~8!

wheres(x,t) indicates the anisotropic pressure.
The CMBR has a black-body distribution and the photo

are redshifted during their travel from last scattering to
observer. After the last scattering, the photons are effectiv
collision-free and non-self-gravitating, thus follow the ge
desic path in the given~perturbed! metric. The null vector
tangent to the geodesicxa(l) with an affine parameterl is
ka5dxa/dl. We define the null energy-momentum fou
vectorka to the perturbed order ask0[a21( n̄1dn) andka

[2 n̄a21(ēa1dea). The temperatures of the CMBR at tw
different points (O andE) along a single null-geodesic ra
in a given observational direction is@2#

TO/TE 5 ~kaua!O/~kbub!E , ~9!

whereO is the observed event here and now andE is the
emitted event at the intersection of the ray and the last s
tering surface.ua at O andE are the local four velocities o
the observer and the emitter, respectively. In the large an
lar scale we are considering~larger than the horizon size a
the last scattering era which subtends about 2AV0 degree by
an observer today! the detailed dynamics at last scattering
not important. The physical processes of last scattering
important in the small angular scale where we need to so
the Boltzmann equation for the photon distribution functi
@8#.

The observed temperature along the single ray may
pend on the location of the observerxO ~cosmic variance!,
and the direction of the observed rayeO . Similarly as in Eq.
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~3! we may decompose theobservedtemperature along the
single ray into the background and perturbed parts as

T~xO ,tO ;eO!5T̄~xO ,tO!1dT~xO ,tO ;eO!. ~10!

Although we used similar notations in Eqs.~3!, ~10!, it is
desirable to notice the difference: Eq.~3! decomposed the
temperature at spacetime points, whereas Eq.~10! decom-
posed the observed temperature along different directioneO
at observer’s locationxO . Up to this point, the decomposi
tion in Eq.~10! still has arbitrariness as the one in Eq.~3!. In
the observations, however, we often take the backgro
temperature as an averaged temperature all around the s
the observer’s location, i.e.,T̄(xO ,tO)[^T(xO ,tO ;eO)&eO

.

In this way the arbitrariness is fixed, and the remainingdTuO
over the sky apparently coincides with the angular variat
of observed temperature. Thus,dTuO should be independen
of the gauge condition~imposed at the observer’s spacetim
position!. Let us explain this last point below. In the temp
rally evolving background,T̄5T̄(t), dT is a gauge-
dependent quantity. The gauge dependence ofdT should be
considered in handling fluctuations at the last scattering
E. However, fordT evaluated at the observation eventO, the
effect of the gauge transformationHj t(x,t) evaluated atO
will show no angular dependence, thus can beabsorbedinto
our definition of the background temperature, and is irr
evant for the temperature anisotropy; thus, the observa
temperatureanisotropy is a concept independent of the
gauge conditionused@14#. Equivalently, sinceHj tuO terms
cancel, the difference of observed temperatures in two
ferent directions is gauge invariant.

Perturbation analyses of the null equation (kaka50), the
geodesic equation (ka;bkb50), and Eq. ~9! provide the
equations we need. To the background order, we haveT̄

}n̄}a21, ēaēa51, and ēa85ēa
ubēb. To the perturbed or-

der, we have@for convenience, we consider the contributio
from three perturbation types separately asdTuO5dT(s)uO
1dT(v)uO1dT(t)uO]:

~dT~s!/T!uO5 ~dT/T!uE2~1/k! v ,aeau E
O

1E
E

O

@2w81a ,aea2 ~1/a! x ,aubeaeb#dy,

~11!

~dT~v !/T!uO5vvYa
~v !eauE

O2E
E

O

CY~aub!
~v ! eaebdy, ~12!

~dT~ t !/T!uO52E
E

O

Cab
~ t !8eaebdy, ~13!

whered/dy[]/]h2ēa]/]xa @thus, the integral is along the
ray’s null-geodesic path#. The temperature fluctuation in th
last scattering eradT/TuE , contributes to the scalar-type pe
turbation. Equations~12!, ~13! are apparently gauge
invariant. Equation~11! is written in a gauge ready form, s
that we can impose any gauge condition we want. Each t
on the right hand side~RHS! of Eq. ~11! depends on the
2-2
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temporal gauge transformation and the gauge invarianc
the terms altogether is not obvious; using Eq.~2! we can
show that the RHS alone is not gauge invariant@apparently,
the LHS is not also gauge invariant, so that the overall eq
tion is gauge invariant#. Shortly, we will see that the observ
able contributions to anisotropy can be expressed in term
gauge-invariant variables.

Now, we concentrate on the scalar-type contribution
Eq. ~11!. In hydrodynamic perturbation based on Einste
gravity, it is known that only certain variables in certa
gauge conditions correctly reproduce the Newtonian beh
iors in the pressureless limit: the density perturbation v
able in the comoving gauge (dv), and the perturbed potentia
and the perturbed velocity variables in the zero shear ga
(wx andvx) show the correct behavior of the correspondi
Newtonian ones@15,9#. These correspondences apply ingen-
eral scales~including the superhorizon scale! considering the
generalK andL @13#: vx↔dv, 2wx↔dF, wheredv and
dF are the Newtonian velocity and potential fluctuation
respectively.

Using these variables Eq.~11! can be written in a more
suggestive form:

~dT~s!/T!uO5~dT/T!uE2 ~1/k! vx,aeauE
O2~ax1Hx!uE

O

1E
E

O

~ax2wx!8dy. ~14!

The gauge-dependent terms on the RHS are identified:
first and Hx terms are gauge dependent. Since the2(ax

1Hx) term evaluated at O~here and now! does not show
the angular dependence, it can beabsorbedinto the defini-
tion of the background temperature; this point was noted
Ref. @6#. The combination of remaining two gauge
dependent variables, (dT/T1Hx)uE , is a gauge-invarian
combination dTx /TuE . As a matter of fact, by moving
2(ax1Hx)uO to the left-hand side~LHS! we can make a
gauge-invariant form (dTx

(s)/T1ax)uO . However, since the
added terms only contribute to the isotropic temperat
changes those do not contribute to the observed ang
variation of temperature in Eq.~10! ~with T̄ defined as the
all-sky average!; equivalently, the variation of the observe
temperature with directions is gauge invariant. Similarly, o
can evaluate Eq.~14! in any gauge condition with the sam
‘‘observable’’ anisotropy. In this sense theobservable tem-
perature anisotropyon the LHS of Eq.~14! is gauge inde-
pendent.

Absorbing the isotropic contributions toT̄(xO ,tO), we
have

~dT~s!/T!uO52 k21 vx,aeauO1 ~1/k!vx,aeauE

1~ax1dTx
~s!/T!uE1E

E

O

~ax2wx!8dy.

~15!

The RHS is apparently gauge invariant. In the literature,
four terms on the RHS are often called: the Doppler eff
due to the observer’s movement, the Doppler effect due
06730
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the movement of the photon-emitting plasma along the li
of-sight, the Sachs-Wolfe~SW! effect, and the integrated
Sachs-Wolfe~ISW! effect, respectively,@16#.

Now, we reexpress the SW and the ISW terms usingwx

which has the close analogy with the Newtonian gravi
tional potential. In order to relate the temperature fluctuat
with the coexisting matter atE, we take an ansatz

~dT/T!uE[„$d/@3~11w!#%1eT…uE , ~16!

whereeT(x,t) is apparently gauge invariant and can be
garded as the deviation of the temperature fluctuation fr
the adiabaticity with the coexisting matter fluctuation; w
may call it the entropic temperature fluctuation@17#. By con-
sideringeT we can handle the effects from the multicomp
nent hydrodynamic situation@18#.

Using Eqs.~5!–~8! we can express the SW and ISW term
in Eq. ~15! usingwx

dT~s,SW,ISW!

T U
O

5H F211
H2

4pG~m1p!G~wx18pGs!

1
H2

4pG~m1p!
S ẇx

H
1

k223K

3a2H2 wxD 1eTJ U
E

22E
E

O

~wx14pGs!8dy. ~17!

In this form, we considered the generalK,L, and p(m) in
the background, and the generale(x,t) ~the entropic pres-
sure!, s, andeT in the perturbation. In an ideal fluid~thus,
e505s), the general super-sound-horizon scale solut
for wx is presented in Ref.@13#

wx~x,t !54pGC~x!
H

a E0

ta~m1p!

H2 dt1
H

a
d~x!, ~18!

whereC(x) andd(x) are integration constants indicating th
relatively growing and decaying modes, respectively. R
markably, this solution isvalid on scales larger than Jean
scale for the generalK, L, and generally time-varyingp(m).
In the near flat case~thus, ignoringK terms!, we have a
powerful conserved quantity in the super-sound-horiz
scalewv(x,t)5C(x), with the vanishing leading decayin
mode. The structural seed originated from the quantum fl
tuation during the inflation era provides the initial conditio
for C(x) and it is conserved during the super-sound-horiz
scale evolution independently of changing equation of st
changing gravity theories, and the horizon crossing@13,19#.

For K505L andw5const, the growing mode ofwx in
Eq. ~18! remains constant~we ignorede and s). Thus, ig-
noring the decaying mode, we have

dT~s,SW!

T U
O

5H F2
113w

3~11w!
1

2

9~11w!S k

aHD 2Gwx1eTJ U
E

,

~19!

and the ISW term vanishes. The large observed angular s
corresponds to the superhorizon scale at the time of last s
tering, and the effect from (k/aH)2 term becomes subdomi
2-3
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nant. Thus, in the large angular scale, assuming the pres
less era atE, and ignoringeTuE , we finally have

~dT~s,SW!/T!uO52 1
3 wxuE5 1

3 dFuE , ~20!

which is the commonly quoted result derived in Ref.@2#.
Notice, however, the various levels of assumptions use
have Eq.~20!: we assumed, a single component, pressure
(p50), adiabatic (eT50), ideal fluid (e505s), with K
505L, and vanishing transient mode atE for the SW term,
and along the ray’s path fromE to O for the ISW term.

Equation~17! expresses the SW and the ISW effects
the very general situation@20#. In addition to this, we also
have two Doppler terms in Eq.~15! and the vector and tenso
contributions in Eqs.~12!, ~13!. These altogether contribut
to the observed temperature anisotropy@2#. Attempts to ex-
.
,

e,

er

.

r
s
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plain the result in Eq.~20! in pedagogic ways, e.g., Ref.@22#,
usually involve gauge-dependent interpretations@23# with
limited implications, and should be read with due cautio
Many works in the literature start by fixing a certain gau
condition @2,4,5# or by using combinations of the gauge
invariant variables@6,7,21#. The final results for the observe
temperature anisotropy are bound to be the same as o
because, as we have shown, the concept isobservationally
gauge independent.
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