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Gravitationally induced neutrino oscillation phases in static spacetimes
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~Received 29 September 1997; published 2 February 1999!

We critically examine the recent claim of a ‘‘new effect’’ of gravitationally induced quantum mechanical
phases in neutrino oscillations. Because this claim has generated some discussion in the literature we present
here a straightforward calculation of the phase and clarify some of the conceptual issues involved, particularly
in relation to the equivalence principle. When expressed in terms of the asymptotic energy of the neutrinosE
and Schwarzschild radial coordinatesr , the lowest order at which such a gravitational effect appears is
(GMDm4/\E3)ln(rB /rA). @S0556-2821~99!01204-7#

PACS number~s!: 95.30.Sf, 14.60.Pq
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Two years ago Ahluwalia and Burgard claimed to ha
discovered a ‘‘new effect from an hitherto unexplored int
play of gravitation and the principle of the linear superpo
tion of quantum mechanics,’’ in a static, spherically symm
ric gravitational potential@1#. In fact, the calculation of the
quantum mechanical phase of a particle propagating in
vacuum Schwarzschild geometry appears in several t
books on general relativity@2#. More to the point, the
claimed results in Eqs.~6! to ~8! of Ref. @1# appear to be a
variance with the standard treatment found in these te
Subsequently several authors have discussed the propag
of neutrinos including also the effects of matter@3# and non-
radial propagation@4#. Finally, the authors of Ref.@1# have
speculated on the relevance of the gravitational effect
neutrino oscillation phases for type-II supernovae@5#. Our
purpose in this Brief Report is to present a treatment of ph
interference in the Schwarzschild geometry in a manife
coordinate invariant way, clarifying the conceptual issu
raised by these works.

Let us begin by making some general remarks, first ab
quantum interference and second about the equivalence
ciple. Strictly speaking, in any quantum interference p
nomenon such as neutrino oscillations, one should alw
deal with coherent wave packets whose shape may ch
during the propagation from the point of creation A to t
point of detection B. The overlap of different components
the wave packet controls the visibility of the interferen
pattern at the spacetime point B. We will be concerned h
only with the phasenot the amplitude of the interference, an
therefore we can avoid an explicit discussion of wave pac
propagation. Of course no interference at all will be obse
able at B, unless the wave packet of a single neutrino cre
in a weak flavor eigenstate at A remains coherent for a t
long enough for the components of the wavepacket trans
ted from A at different velocities to interfere coherently at
As a first approximation we will assume that at the point
emission A the flavor of the neutrino is independent of tim
i.e. that the coherence time of the source is effectively i
nite. This assumption allows us to concentrate on the su
position of neutrino mass eigenstates at a definite monoc
matic energyE in the geometrical optics limit. A quantitativ
lower bound for the necessary coherence timeDt and there-
fore, an upper bound for the energy spread of the w
packet emitted by the source will emerge in Eq.~8! below.
0556-2821/99/59~6!/067301~4!/$15.00 59 0673
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Next we remark that the equivalence principle~EP! re-
quires that all reference to the gravitational potential can
ways be removed locally. Since the EP is built into the m
ric formulation of general relativity this means that there c
be no local observational consequences of a gravitatio
potential in Einstein’s theory. In this Brief Report we a
interested in neutrinos propagating between two differ
spacetime points A and B, which is not strictly a local pr
cess, and the natural variable in which to express our re
for the neutrinos’ phaseF is their conserved asymptotic en
ergy E, which is not strictly a local quantity. Hence a no
zero gravitational effect on the phase in terms ofE does not
contradict the EP. However, the equivalence principle d
guarantee that there is no effect of the local gravitatio
potential on any observable expressed entirely in terms
local quantitites. This fact alone should alert us to the imp
tance of defining the variables in which we express our re
for the phase precisely. Otherwise one can change to l
variables in which terms proportional to the gravitational p
tential necessarily disappear. Clearly, these changes of
ables can have no physical consequences on a measure
unlessone can define and measure the gravitational and n
gravitational contributions to the phaseindependently. In
other words when assessing whether or not we have a m
surable gravitational effect in the phase, the crucial ques
is: with respect to what?

In the geometrical optics limit the quantum mechanic
phase accumulated by a particle propagating from point A
point B in the gravitational field described by the metricgmn

is given by the action of the particle along its classical t
jectory, namely,

FAB5
1

\ E
A

B

mds5
1

\ E
A

B

pmdxm

5
1

\ E
A

B

~2Edt1pidxi ! ~1!

wherepm5mgmn(dxn/ds) is the four momentum conjugat
to xm andds is an element of proper length of the particle
worldline. The integrand of Eq.~1! is obviously invariant
under coordinate transformations. However, this line integ
does depend on coordinate changes at the end-points A
©1999 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW D 59 067301
B and therefore is not a physically meaningful quantity a
stands. Equation~1! is the same as Eq.~4! of Ref. @1# with
which those authors begin.

The authors of Ref.@1# address the radial propagation
relativistic neutrinos in the potential of a spherically sym
metric non-rotating star which is described by the Schwa
child line element,

ds252S 12
2GM

r Ddt21S 12
2GM

r D 21

dr21r 2dV2.

We note that the semiclassical phase for radial motion i
spherically symmetric background does not depend on
spin of the particle, as can be verified by explicit calculati
using the spin connection in the Dirac equation in this ba
ground@6#. Hence Eq.~1! applies equally well to neutrino
as to scalar particles in the case of radial motion, and
specialize to this case as it was the only one considere
Refs.@1# and @5#.

Because the Schwarzschild spacetime has a timelike K
ing vector,]/]t, the momentum conjugate tot is time inde-
pendent, i.e.

E[2pt5mS 12
2GM

r D dt

ds
5const. ~2!

The value of this constantE is the asymptotic energy of th
neutrino atr 5`. For radial motion, the mass shell constra
pmgmnpn1m250 is

2S 12
2GM

r D 21

E21S 12
2GM

r D pr
21m250 ~3!

from which we obtain

pr S 12
2GM

r D5AE22m21
2GMm2

r
. ~4!

Making use of the definitions,

pr5mS 12
2GM

r D 21 dr

ds
, ~5!

and Eq.~2!, we have also

dt

dr
5S 12

2GM

r D 22 E

pr
. ~6!

We regard the Schwarzschild radial coordinatesr A andr B as
fixed and express the phase in these coordinates:
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FAB5
1

\
E

r A

r BS 2E
dt

dr
1pr D dr

52
1

\
E

r A

r B m2dr

S 12
2GM

r
D pr

52
m2

\
E

r A

r B dr

AE22m21
2GMm2

r

. ~7!

This is just the standard expression for the phase@2#. How-
ever, sinceFAB is not invariant under coordinate changes
the endpoints we cannot apply this result directly witho
first carefully specifying the physical situation, and in pa
ticular, which variables are to be held fixed in a given inte
ference experiment.

Let us consider the case of neutrinos produced at fi
asymptotic energyE in a weak flavor eigenstate that is
linear superposition of mass eigenstates,m1 and m2 . Since
the energy is fixed but the masses are different, if interf
ence is to be observed at the same final spacetime p
(r B ,tB), the relevant components of the wave function cou
not both have started from the same initial spacetime p
(r A ,tA), in the geometrical optics approximation. Instead t
lighter mass~hence faster moving! component must eithe
have started at the same time from a spatial locationr
,r A , or started from the same locationr A at a later time
tA1Dt. Since the source is located atr A and has been as
sumed monochromatic at fixedE for all times it is the latter
situation which applies. Hence, there is an additional ph
difference between the two mass components due to the
lag Dt, quite apart from the phaseFAB in Eq. ~7!. This
additional initial phase difference may be taken into acco
by treating the spatial coordinatesr A andr B as fixed and the
time of transit,

Dt5tB2tA5E
A

B

dt5E
r A

r B dt

dr
dr ~8!

as the dependent variable through Eqs.~4! and ~6!. The dif-
ference of this time of transit between the two mass eig
states, multiplied byE is precisely the additional phase,EDt
which we must add toDFAB to obtain the correct relative
phase between the two mass components of the same s
neutrino wave function which interfere at (r B ,tB) with fixed
energy E. We note that the Collela-Overhauser-Wern
~COW! experiment@7# may be treated by similar reasonin
and that many other neutrino oscillation scenarios wh
may be envisaged lead to the same result.

This additional phaseEDt enters for clear kinematic rea
sons due to the different times of transit of the classical
jectories from A to B of the different mass components a
allows us to treat the cases of relativistic and nonrelativis
neutrinos at once and on an equal footing in contrast to
‘‘light ray’’ approach of Ref.@4#, which applies only in the
1-2
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BRIEF REPORTS PHYSICAL REVIEW D 59 067301
relativistic limit E@m. It is also thisDt that determines the
lower bound on the coherence time of the wave train emi
at A, for if the coherence time is less thanDt the components
of the wave function corresponding to the two differe
masses could never interfere coherently at B. Thus a ne
sary condition for interference to be observed at B is that
neutrino emission at A must have an energy widthG
,\/Dt, which is the maximum extent that our assumpti
of monochromatic neutrino energy can be relaxed.

Hence we are led to compute instead ofDFAB ,

DFE[DFAB1
E

\
Dt5

1

\
DE

r A

r B
prdr ~9!

where theD refers to the difference of the phase for the tw
mass eigenstatesm1 andm2 . Evidently, thisDFE may also
be rewritten as the line integral around theclosed loop C
pictured in Fig. 1, i.e.

DFE5 R
C
pmdxm, ~10!

wherepm(x;mi) is to be regarded as a vector field that d
pends on the mass componentmi for the legs ofC wherer is
varying butpt52E is constant along the return leg whe
r 5r A . In this closed loop representation it is clear thatDFE
is a completely coordinate invariant, physically measura
phase difference which must vanish linearly in bothDr
[r A2r B andDm[m12m2 .

From Eqs.~4! and ~9!, we obtain

DFE5
1

\
DE

r A

r B
AE22m21

2GMm2

r

S 12
2GM

r D dr. ~11!

In the weak field expansion this becomes

FIG. 1. The spacetime closed contour over which the line in
gral for the phaseDFE is to be evaluated in Eq.~10!.
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DFE.
1

\ F ~r B2r A!12GM lnS r B

r A
D GDAE22m2

1
GM

\
lnS r B

r A
DD

m2

AE22m2
1¯ . ~12!

Specializing now to the caseE@mi the phase difference be
tween two mass eigenstates of relativistic neutrinos w
fixed E created atr A and interfering atr B is

DFE.
~Dm2!c3

2\E
~r B2r A!1

~Dm4!c7

4\E3 ~r B2r A!

2
~Dm4!c5

2\E3 GM lnS r B

r A
D1¯ , ~13!

where c has been restored to facilitate numerical calcu
tions. We note that in the relativistic limit this result is ju
minus half of the equivalent quantity computed from t
phaseFAB . The first term (DFE

0) in Eq. ~13! is the standard
flat space result, well known in both neutrino and stran
ness oscillations. The leading order (GDm2) correction to
this familiar result has cancelled in the relativistic limit an
we are left only with the latter higher order terms in Eq.~13!.
The second term is a special relativistic correction to
phase which is usually neglected for light neutrinos, and
last term is the effect of the gravitational field of the star
static Schwarzschild coordinates which enters only at
same higher order inDm4/E3. Numerically its magnitude is

3.7431029S M

M (
D S Dm4

eV4 D S MeV

E D 3

lnS r B

r A
D ~14!

which is negligibly small for light neutrinos in typical astro
physical applications.

The authors of Ref.@1# claim to find an effect on the
phase, first order inG, of the form

GMc

\ F E
A

B dr

r G Dm2

E
. ~15!

No derivation is given to support this claim, the coordina
dependence ofFAB is not discussed and the quantity ‘‘E’’ is
never defined in Refs.@1# or @5#. If E is the constant of
motion defined by Eq.~2!, this claim disagrees with the stan
dard result~13! rederived here, and is therefore incorrect. O
the other hand, if ‘‘E’’ is to be identified with Elocal

5E/A2gtt, then it cannot be removed from the integral, a
Eq. ~15! is incorrect for that reason.

There is a sense in which thefirst (DFE
0) term of Eq.~13!

has a contribution similar in form to Eq.~15!. Let

Ēlocal[
1

r B2r A
E

A

B Edr

A12
2GM

r

.E1
EGM

r B2r A
lnS r B

r A
D
~16!

in the weak field limit. Hence we can write

-

1-3
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DFE
0.

Dm2c3

2\Ēlocal

~r B2r A!1
Dm2GMc

2Ēlocal

lnS r B

r A
D ~17!

which is of the form reported in Ref.@1#. However~and this
is the point!, this result depends critically on the precise de
nition of the variableĒlocal. Expressing the same physic
phase difference~12! or ~13! in terms of any other variable
~such as the local energy of the emitter atr A or the detector
at r B) will give different expressions again. Moreover b
changing to both a local energy and local distance meas
Dr local[*A

BAgrr dr we can reabsorb the ‘‘new gravitation
effect’’ completely into these redefinitions and rewrite E
~17! in the form,

DFE
0.

~Dm2!c3

2\Ēlocal

Dr local. ~18!

In fact, for the case of radial motion in general static co
dinates for whichgrt50, the expression for each of th
phases in Eq.~9! can be rewritten as

FE52
m2c4

\ E
A

B dtlocal

Elocal
1

1

\ E
A

B

dtlocalElocal ~19!

wheredtlocal5A2gttdt andElocal was defined above. Equa
tion ~19! is a statement of the EP, and completely in acc
with our general discussion at the start of this note, since
reference to the gravitational potential has been abso
into integrals of local quantities.

Hence, we cannot agree with Ref.@8# that we have ‘‘re-
derived’’ the effect claimed in the original paper@1#, since
expressed entirely in terms of Schwarzschild or local co
dinates there isno effect to orderGDm2. Likewise the order
GDm2 term obtained in Eq.~40! of @4# arises from these
authors’ use ofElocal at the point of detectionr B instead of
Ēlocal and it too can be removed by a simple change of v
ables.

The only indication of the basis for the claim of the resu
~15! in Refs.@1# or @5#, is a reference to a paper by Stodols
@9#. However, as Stodolsky himself notes, the split betwe
‘‘flat’’ and ‘‘curved’’ space effects in Eq.~2.3! of his paper
is coordinate dependent. Hence there is no invariant mea
to the splitting of the phase into these two pieces, and su
splitting is completely misleading for the present applicatio
. D
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just as is the splitting ofDFE
0 into the two pieces in Eq.~17!

above. In addition, the time component of the quantity St
olsky calls the ‘‘usual four-momentum of special relativity
is not a constant of motion and cannot be removed fr
integrals over r . Thus Stodolsky’s paper must be rea
closely to avoid potential pitfalls and sources of confusio
In any case since Stodolsky starts with precisely the sa
phaseFAB of Eq. ~1! the sumof his two pieces is precisely
equal to the same result~7! rederived here, as may b
checked directly from the definitions in Ref.@9#.

The essential point is that there is no physical meaning
decomposing the result into gravitational and no
gravitational contributions such as Eq.~17!, unlesssuch a
decomposition is invariant under coordinate transformatio
in which case the two contributions should be measura
separately. The standard redshift of clocks in a gravitation
field satisfies this criterion because one can measure
clock rate at two different locations and compare them. A
cordingly, the difference in the clock times at the two loc
tions can be expressed as a line integral,*ds, over a closed
contour which is a rectangle with sides at fixedr A , r B , t1
andt2 . Hence the difference in the elapsed times on the t
clocks is a coordinate invariant physically measurable effe
Grossman and Lipkin have considered this time delay eff
first order inGDm2, on neutrino oscillations due to a grav
tating mass~such as the moon! intervening between the
source and the detector@10#, in which case the interferenc
can be measured in principle both with and without the
ternal body present. This is a completely different situat
from that considered in Refs.@1,5# in which there isno non-
gravitational reference experiment~even in principle! rela-
tive to which the gravitational time delay effect on the pha
can be measured.

The physical effects of neutrino oscillations on ener
transport in supernova explosions are quite indifferent to
cal redefinitions of length, time and energy scales. If all c
culations are done in a relativistically covariant framewo
there are no observable consequences for supernova e
tion to be deduced from the decomposition in Eq.~17!, and
even genuine nonlocal gravitational effects such as Eq.~14!
are accounted for automatically. Of course, if one doesnot
use a relativistically covariant framework for all the calcul
tions, the error made will be of the order of the second te
in Eq. ~17!, which is the order of the standard redshift
clocks in a gravitational field, and not a new effect.
ev.
@1# D. V. Ahluwalia and C. Burgard, Gen. Relativ. Gravit.28,
1161 ~1996!.

@2# C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation
~Freeman, San Francisco, 1973!, Box 25.4B, p. 649; L. D.
Landau and E. M. Lifshitz,The Classical Theory of Fields
~Pergamon, Oxford, 1985!, p. 306.

@3# C. Y. Cardall and G. M. Fuller, Phys. Rev. D55, 7960
~1997!.

@4# N. Fornengo, C. Giunti, C. W. Kim, and J. Song, Phys. Rev
56, 1895~1997!.
@5# D. V. Ahluwalia and C. Burgard, Phys. Rev. D57, 4724
~1998!.

@6# D. R. Brill and J. A. Wheeler, Rev. Mod. Phys.29, 465~1957!.
@7# R. Colella, A. W. Overhauser, and S. A. Werner, Phys. R

Lett. 34, 1472~1975!; A. W. Overhauser and R. Colella,ibid.
33, 1237~1974!.

@8# D. V. Ahluwalia and C. Burgard, gr-qc/9606031.
@9# L. Stodolsky, Gen. Relativ. Gravit.11, 391 ~1979!.

@10# Y. Grossman and H. J. Lipkin, Phys. Rev. D55, 2760~1997!.
1-4


