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Four-point Green functions in the Schwinger model
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~Received 27 August 1998; published 12 February 1999!

The evaluation of the four-point Green functions in the 111 Schwinger model is presented both in momen-
tum and coordinate space representations. The crucial role in our calculations is played by two Ward identities:
~i! the standard one and~ii ! the chiral one. We demonstrate how the infinite set of Dyson-Schwinger equations
is simplified, and is so reduced that a givenn-point Green function is expressed only through itself and lower
ones. For the four-point Green function, with two bosonic and two fermionic external ‘‘legs,’’ a compact
solution is given both in momentum and coordinate space representations. For the four-fermion Green function
a self-consistent equation is written down in the momentum representation and a concrete solution is given in
the coordinate space. This exact solution is further analyzed and we show that it contains a pole corresponding
to the Schwinger boson. All detailed considerations given for various four-point Green functions are easily
generizable to higher functions.@S0556-2821~99!07304-X#

PACS number~s!: 11.10.Kk, 11.30.Rd
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I. INTRODUCTION

Massless quantum electrodynamics in 111 space-time di-
mensions, known as the Schwinger@1# model ~SM!, proved
to be a very fruitful example of quantum field theory. Than
to its symmetries it is a completely solvable model, a
therefore it is particularly well suited for studying nonpertu
bative effects.

One of the most important and well-known observatio
is that the initially massless boson, called hereafter a ‘‘p
ton’’ ~if one may think of ‘‘photons’’ in two dimensions!,
aquires a mass — the so-called Schwinger mass. As a
sequence of this, the electromagnetic potential becom
function exponentially decreasing in space and proportio
to e2muxu, wherem5e/Ap represents the Schwinger mass
the dressed photon. The vacuum polarization, which tot
shields the charge is responsible for this effect@2#. The effect
of charge screening is also known from perturbative calcu
tions in ordinary, four-dimensional QED, giving rise to
weak deviation from the Coulomb law, particularly for sma
distances@3#, while in the SM the change is dramatic. Th
interpretation of this massive state~composite versus el
ementary! depends on the particular field variables chosen
describe the model.

The photon mass generation mechanism appears alr
on the diagrammatical level, because the exact~nonperturba-
tive! vacuum polarization scalarP(k2) posesses a first orde
pole atk250, with the residuum equal tom2. This is com-
monly known as theSchwinger mechanism. On the other
hand, from the mathematical point of view, the nonzero p
ton mass results in the SM from the noninvariance of
path integral fermion measure with respect to the local ch
gauge transformations — the UA(1) group — which in turn
is a reflection of the presence of anomaly in the model@4–7#.

This vector meson mass generation through screening
fects is of interest in electroweak theory, where the ad
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tional, and still unobserved, Higgs field has to be introduc
‘‘by hand,’’ to ensure the simultaneous renormalizability
theory and the nonzero masses of the intermediate bo
W6 andZ0.

Another important property of the SM is the absence
the asymptotic fermionic states@2#. This in turn is interesting
from the point of view of hadron structure investigations@8#,
where the permanent quark confinement and asymptotic f
dom of QCD, giving rise to the nonperturbative mass sc
LQCD , as the necessary mathematical ingredient of the lo
rithmic falloff, also precludes the appearence of asympto
quark states. Yet another similarity between the SM a
QCD is the existence of a fermion condensate@9–11#,
though this requires considering a nontrivial instanton sec
The above features of the SM are also preserved in a ge
alization of the SM, by allowing fermions to have a nonze
mass@12,13#.

Thanks to its full solvability, the SM, on an equal footin
with other models, as for instance the Thirring model@14#,
may also be used to test various assumptions in nonpe
bative calculations in quantum field theories: For examp
~i! the postulated infrared form of the vertex function in fou
dimensional massive electrodynamics@15#, applied later in
the so-calledgauge technique@16# and other works in the
context of nonperturabative solutions of QED~for which the
transverse corrections may be found in the SM explic
@17#!, ~ii ! renormalization group methods@18#, or ~iii ! even
the very formulation of quantum field theory@9,19,20#. One
should also mention in this context generalized versions
the SM, formulated on the compact manifolds as a tw
sphere@10,21# or torus@22# instead of the flat space as we
as the light-cone formulation@23#.

Although a number of papers have already been devo
to the investigation of propagators in the SM, a relative
small interest, up to our knowledge, has been paid to hig
order Green functions@24#. In this paper we plan to fill the
gap with particular interest paid to the four-point function

In the following sections we show how they can syste
atically be found. In Sec. II we consider the Ward identiti
in momentum space and show how an infinite set of Dys
©1999 The American Physical Society10-1
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Schwinger equations can be reduced to only one, fully so
able equation. A particularly simple solution is given in Se
II B for the function corresponding to ‘‘Compton scatte
ing.’’ For the four-fermion Green function we derive in Se
II C the integral equation which has a closed form~it does
not contain any higher Green functions!. In Sec. III we con-
sider the same question in coordinate space. Follow
Schwinger in the quoted work@1#, we find explicit solutions
for both four-point Green functions: the four-fermion and t
two-photon–two-fermion one. Both of them are expressi
through the known scalar factors of the fermion propaga
For the most interesting case of four fermions we use
derived formula to show that the function contains a pole
p25m2, i.e., corresponding to the Schwinger boson. We a
give a formula for the form factor of the appropriate residu
In the Appendix we give definitions of all the Green fun
tions considered in the present work.

II. MOMENTUM SPACE FOUR-POINT GREEN
FUNCTIONS

In this section we are concentrating on the moment
space equations for the four-point Green functions. First,
deal with two-fermion–two-boson function. We recapitula
Ward identities which allow us to represent it as the app
priate combination of the three-point functions. These, ho
ever, are already known and expressible, once again du
Ward identities, through the full fermion propagator@25#.

Second, we consider four-fermion Green function. In t
case the situation is much more difficult since we do
have at our disposal any identity which would permit us
reduce the problem to lower functions. Therefore, we c
sider the Dyson-Schwinger equation which couples the fo
point function to a five-point one~with one boson and fou
fermion ‘‘legs’’!. Next, we apply both Ward identities to th
latter, and as a consequence obtain a self-consistent int
equation which contains only the four-fermion function~and
lower ones!.

A. Notation and definitions

The SM may be defined through the two-dimensional L
grangian density

L~x!5C̄~x!@ igm]m2eAm~x!gm#C~x!

2
1

4
Fmn~x!Fmn~x!2

l

2
@]mAm~x!#2, ~1!

wherel is the gauge fixing parameter. For our calculation
will be convenient to choose later the Landau gauge by
ting l→`. For the Dirac gamma matrices the followin
convention will be used,

g05S 0 1

1 0D , g15S 0 21

1 0D , g55g0g15S 1 0

0 21D ,

and for the metric tensor

g0052g1151.
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The totally antisymmetric symbol«mn is defined by

«0152«1051, «005«1150.

Definitions of all the Green function that appear in t
formulas below are collected together in the Appendix.

B. Calculation of the two-boson and two-fermion functions

We start this section with deriving Ward identities sat
fied by the relevant Green function. The standard proced
in this derivation is to perform, under the functional integr
~A1!, the following infintesimal local gauge transformation

Am~x!→Am~x!1]mv~x!,

C~x!→C~x!2 iev~x!C~x!, ~2!

C̄~x!→C̄~x!1 iev~x!C̄~x!,

and consider the resulting variational equation. Doing in t
way we get the relation satisfied by the generating functio
W(h,h̄,J):

2lhx]x
m dW

dJm~x!
2]x

mJm~x!2 ieh̄a~x!
dW

dh̄a~x!

1 ieha~x!
dW

dha~x!
50. ~3!

Now we have to functionally differentiate both sides of th
equation overJn(y), h̄b(z), andhc(u). After having put all
the external currents at zero value we obtain the follow
equation for the four-point Green functionGmn, defined in
the Appendix:

ilhx]x
mE d2w1d2w2d2w3d2w4Dma~x2w1!S~z2w3!

3Gab~w1 ,w2 ;w3 ,w4!S~w42u!Dbn~w22y!

52 ie2E d2w1d2w2d2w3S~z2w2!Ga~w1 ;w2 ,w3!

3S~w32u!Dan~w12y!@d~2!~x2z!2d~2!~x2u!#,

~4!

where we omitted the obvious spinor indices. If we no
make use of the well-known@26# Ward identity satisfied by
the photon propagator

lhx]x
mDmn~x2y!5]n

xd~2!~x2y!, ~5!

which stresses that only the transverse part ofDmn is influ-
enced by the interaction, and rewrite the expression in m
mentum space using the definitions of Fig. 1, we obtain, a
removing the common factors on both sides,
0-2
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FOUR-POINT GREEN FUNCTIONS IN THE SCHWINGER MODEL PHYSICAL REVIEW D59 065010
ikmS~p1q2k!Gmn~k,q,p!S~p!

5e2@S~p1q!Gn~q,p!S~p!2S~p1q2k!

3Gn~q,p2k!S~p2k!#. ~6!

Obviously, this equation does not defineGmn entirely, but
only its longitudinal part~in indexm!. Fortunately, as a resu
of the vanishing electron mass, the LagrangianL is invariant
also with respect to the localchiral gauge transformations. In
the infinitesimal version they read

Am~x!→Am~x!1«mn]nv~x!,

C~x!→C~x!2 iev~x!g5C~x!, ~7!

C̄~x!→C̄~x!2 iev~x!C̄~x!g5.

Similarly as it was done to obtain Eq.~3! we can derive the
following equation for the generating functionalW:

S hx1
e2

p D «mn]m
x dW

dJn~x!
2«mn]n

xJm~x!2 ieh̄a~x!

3g5
ab dW

dh̄b~x!
2 ieha~x!g5

ba dW

dhb~x!
50. ~8!

One important difference in comparison with Eq.~3!, which
should be noted here, is the presence of the mass equ
e2/p in the first term. This term results, as mentioned in
Introduction, from the noninvariance of the path integ
measure with respect to the group of transformations~7! and

FIG. 1. Definitions of arguments in the vertex function and fo
and five-point Green functions:~a! Gab

m (k,p), ~b! Gab,cd(p,q,l ), ~c!
Gab

mn(k,q,p), ~d! Gab;cd
m (k,p,q,l ).
06501
l to
e
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constitutes the well-known chiral anomaly@27,5,7#. Follow-
ing the same procedure as above, and using the chiral ver
of Eq. ~5!,

S hx1
e2

p D «mn]m
x Dna~x2y!52«an]x

nd~2!~x2y!, ~9!

we get, in momentum space,

i«makaS~p1q2k!Gmn~k,q,p!S~p!

5e2@g5S~p1q!Gn~q,p!S~p!1S~p1q2k!

3Gn~q,p2k!S~p2k!g5#. ~10!

This, together with Eq.~6!, determines uniquelyGmn because
in two dimensions there are only two independent space-t
two-vectors. Therefore we can write

gmn5
1

k2
~kmkn2«maka«nbkb!, ~11!

and as a consequence, any tensorAmn may be written as

Amn5gmlAl
n5

km

k2
~klAln!2

«maka

k2
~«lbkbAln!. ~12!

Applying this to the four-point functionGmn, we find

S~p1q2k!Gmn~k,q,p!S~p!

52
ie2

k2
@k”gmS~p1q!Gn~q,p!S~p!2S~p1q2k!

3Gn~q,p2k!k”gmS~p2k!#. ~13!

In deriving this equation we made use of the fact thatkm

2«makag55k”gm, as well as that the propagatorS is linear
in gamma matrices@1#, and consequently$S,g5%50 ~at least
in the zero-instanton sector to which we restrict ourselves
the present paper!. In that way the four-point function is
given in terms of the vertex function and the propagator. T
vertex function, however, thanks to the analogous W
identities, can be further reduced@17,25# to the form

Gn~q,p!5
1

q2
@S21~p1q!2S21~p!#q”gn. ~14!

Applying this, we obtain our final equation for the four-poi
Green function:

S~p1q2k!Gmn~k,q,p!S~p!

52
ie2

k2q2
k”gm@S~p!2S~p1q!2S~p2k!

1S~p1q2k!#gnq” . ~15!

From Eq.~15! we see that the four-point function is entire
expressible through two-point functions which are alrea
known. In the same way one can reduce to fermion propa

-

0-3
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TOMASZ RADOŻYCKI AND JÓZEF M. NAMYSŁOWSKI PHYSICAL REVIEW D 59 065010
tors, by successively applying both Ward identities, a
Green function with two fermion andn boson ‘‘legs.’’

One has to make use of a different approach while dea
with functions with more than two fermions, since only th
photon ‘‘legs’’ may be removed the above way. We consid
this question in the following paragraph.

The simple structure ofGmn(k,p,q) reflects the fact tha
in the Schwinger model the external photons~i.e., nonpertur-
bative, massive photons! are always coupled directly to th
electron line, without an intermediate fermion loop, sin
any loop with more than two external photons turns out to
zero, if we consider all possible permutations of vertices

C. Self-consistent equation for the four-fermion function

In the case of the four-fermion function the exploiting
the ordinary and the chiral Ward identities does not solve
problem completely~although it is still very useful!, since

FIG. 2. Graphic representation of the Dyson-Schwinger eq
tion for the four-point Green function:Gab;cd . Thick lines corre-
spond to full propagators and thin lines to free ones.
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we cannot reduce fermion ‘‘legs’’ anyway. However, we a
able to obtain a self-consistent equation for this function.
do so we start from the Dyson-Schwinger equation for
four-fermion function which can be derived in a standa
way. We consider the functional derivative over fieldC̄(x)
@3#, and write

E DCDC̄DA
d

dC̄~x!
expS i E d2x@L~x!1h̄~x!C~x!

1C̄~x!h~x!1Jm~x!Am~x!# D50. ~16!

This gives the following relation for the generating fun
tional:

igab
m ]x

m dW

dh̄b~x!
2e

dW

dJm~x!
gab

m dW

dh̄b~x!

1 iegab
m d2W

dJm~x!dh̄b~x!
1ha~x!50. ~17!

Now, one has to differentiate the above equation over
fermionic currentshd(w), hc(z), andh̄e(y), and at the end
set all the currentsh, h̄, J equal to zero. The result is

-

and thin
rse, the
f at least
d of the

point
and we
2 igab
m ]m

x ~2 i !E d2w1d2w2d2w3d2w4Sb f~x2w1!Seg~y2w2!G f g;rs~w1 ,w2 ;w3 ,w4!Src~w32z!Ssd~w42w!

5e2E d2w1d2w2d2w3Dmn~x2w1!Se f~y2w2!G f g
n ~w1 ;w2 ,w3!Sgc~w32z!gab

m Sbd~x2w!

2e2E d2w1d2w2d2w3Dmn~x2w1!Se f~y2w2!G f g
n ~w1 ;w2 ,w3!Sgd~w32w!gab

m Sbc~x2z!

1 iegab
m E d2w1d2w2d2w3d2w4d2w5Dmn~x2w1!Sb f~x2w2!Seg~y2w3!G f g;rs

n ~w1 ;w2 ,w3 ;w4 ,w5!

3Src~w42z!Ssd~w52w!. ~18!

A schematical representation of this equation is shown in Fig. 2. There the thick lines correspond to full propagators
lines to free ones. This equation indicates that the four-point function depends on the five-point one which is, of cou
typical behavior of the set of Dyson-Schwinger equations, since the interacting Lagrangian contains always terms o
third order in fields, resulting in an infinite interlacement of Green functions. We can, however, use here the metho
previous paragraph and get rid of the five-point function from the right hand side. Equation~18!, transformed into momentum
space according to the definitions of Fig. 1, reads

ip” abSb f~p!Seg~q1 l 2p!G f g;rs~p,q,l !Src~q!Ssd~ l !

5e2Se f~q1 l 2p!G f g
n ~ l 2p,q!Sgc~q!Dmn~p2 l !gab

m Sbd~ l !2e2Se f~q1 l 2p!G f g
n ~q2p,l !Sgd~ l !Dmn~p2q!

3gab
m Sbc~q!1 iegab

m E d2k

~2p!2
Dmn~k!Sb f~p2k!Seg~q1 l 2p!G f g;rs

n ~k,p2k,q,l !Src~q!Ssd~ l !. ~19!

Since the verticesGab
m are perfectly known, what we need is only a relation which would allow us to express the five-

functionGab;cd
m through the four-point one. The method is analogous to that shown in detail in the previous paragraph,

do not repeat it here. The result is
0-4
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S~p! ^ S~q1 l 2p2k!•Gn~k,p,q,l !•S~p! ^ S~ l !

52
ie

k2
$@k”gnS~p1k!# ^ S~q1 l 2p2k!•G~p1k,q,l !•S~q! ^ S~ l !1S~p! ^ @k”gnS~q1 l 2p!#•G~p,q,l !•S~q!

^ S~ l !2S~p! ^ S~q1 l 2p2k!•G~p,q,l 2k!•S~q! ^ @k”gnS~ l 2k!#

2S~p! ^ S~q1 l 2p2k!•G~p,q2k,l !•@k”gnS~q2k!# ^ S~ l !%, ~20!

where, for abbreviation, we have used the obvious notationS(1)
^ S(2)

•G•S(3)
^ S(4) for defining an object:

Sae
(1)Sb f

(2)Ge f;ghSgc
(3)Shd

(4) . If we substitute Eq.~20!, together with Eq.~14!, into Eq. ~19!, we obtain the final equation

ip” abSb f~p!Seg~q1 l 2p!G f g;rs~p,q,l !Src~q!Ssd~ l !

5
e2

~ l 2p!2
$~ l”2p” !gn@S~q!2S~q1 l 2p!#%ecDmn~p2 l !gab

m Sbd~ l !2
e2

~q2p!2
$~q”2p” !gn@S~ l !2S~q1 l 2p!#%ed

3Dmn~p2q!gab
m Sbc~q!1e2gab

m E d2k

~2p!2

Dmn~k!

k2
$@k”gnS~p!#b fS~q1 l 2p!egG f g;rs~p,q,l !Src~q!Ssd~ l !

1S~p2k!b f@k”gnS~q1 l 2p1k!#egG f g;rs~p2k,q,l !Src~q!Ssd~ l !2S~p2k!b fS~q1 l 2p!egG f g;rs~p2k,q,l 2k!

3Src~q!@k”gnS~ l 2k!#sd2S~p2k!b fS~q1 l 2p!egG f g;rs~p2k,q2k,l !@k”gnS~q2k!# rcS~ l !sd%, ~21!
d.
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in which only the four- and two-point functions are involve
This derivation shows how the infinite series of coupl

Dyson-Schwinger equations may be reduced to only one
tegral equation, which in principle might be solved. Becau
of the complicated tensor structure ofGab;cd ~it requires in-
troducing several scalar coefficient function! and perplexing
mathematical form of Eq.~21!, we do not try to solve it here
and will rather concentrate on finding an explicit form of t
four-fermion Green function in coordinate space.

It is a common feature of the Schwinger model that co
dinate space solutions are much simpler than momen
space ones. In this case it will be even possible to exp
Gab;cd through the electron propagator, similarly as was do
for Gmn in Eq. ~15!. This problem will constitute the subjec
of the next section.

The method of the present paragraph allows also to fin
self-consistent equation for any higher Green function.
particular, a function with 2nf fermionic legs andnb bosonic
legs should first be reduced, thanks to the consecutivenb
applications of both Ward identities, to a purely fermion
2nf-point function, and then the self-consistent equation
the latter can be obtained.

III. FOUR-POINT GREEN FUNCTIONS
IN COORDINATE SPACE

In this section we find the explicit formulas for the fou
point Green functions in coordinate space. In this case
the four-fermion function may be given a compact for
instead of having it as a solution of an integral equation l
Eq. ~21!. Below we follow the way somehow similar to tha
of the original Schwinger’s work@1#, but extend it also to
higher functions.
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A. Two-boson and two-fermion function

As is known the generating functionalZ(h,h̄,J) may be
given the following form:

Z~h,h̄,J!5expF2 i E d2xd2yh̄~x!S~x,y;d/ idJ!h~y!G
3expF2

i

2E d2xd2yJm~x!Dmn~x2y;e2/p!

3Jn~y!G , ~22!

whereS(x,y,A) is the classical electron propagator in th
external electromagnetic fieldA m, and is given by the for-
mula

S~x,y,A!5S0~x2y!exp$2 i @f̃~x,A!2f̃~y,A!#%,
~23!

with

f̃~x,A!5eE d2yD~x2y!gngm]mAn~y!, ~24!

S0 being the free propagator. In the Landau gauge which
now use,Dmn takes the form

Dmn~x2y,m2!5E d2z@gmnd~2!~x2z!2]x
m]x

nD~x2z!#

3D~z2y;m2!, ~25!
0-5
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TOMASZ RADOŻYCKI AND JÓZEF M. NAMYSŁOWSKI PHYSICAL REVIEW D 59 065010
where D(x,m2) and D(x) are, respectively, Klein-Gordon
and d’Alambert propagators. For the exponential factor
Eq. ~23! one often uses the abbreviated and useful form

f̃~x,A!2f̃~y,A!52E d2zA m~z!Jm~z;x,y!, ~26!

with the ~nonconserved! currentJ m satisfying
06501
n
]z

mJm~z;x,y!5e@d~2!~x2z!2d~2!~y2z!#. ~27!

This current has sources at every point, where charged
ticles are created or annihilated, and is closely related w
the notion of the so-called ‘‘compensating current’’@28#.
Now the four-point Green function, considered in Sec. II
~for functions with no external ‘‘legs’’ amputated we reser
symbolG with appropriate indices!, is given by
of

h

ction
Gab
mn~x1 ,x2 ;x3 ,x4!5

d4

dJm~x1!dJn~x2!dh̄a~x3!dhb~x4!
Z~ h̄,h,J!ucurrents50

connected , ~28!

where we have explicitly written that only connected graphs are considered. This gives

Gab
mn~x1 ,x2 ;x3 ,x4!5 i

d2

dJm~x1!dJn~x2!
Sab~x3 ,x4 ;d/ idJ!expF2

i

2E d2xd2yJa~x!Dab~x2y;e2/p!Jb~y!GU
J50

connected

. ~29!

If we make use of the explicit form ofS, given in Eqs.~23!, ~24!, leading to the representation in the form of a series
derivatives, and note that exp(zd/dx)f(x)5f(x1z), we can write

Gab
mn~x1 ,x2 ;x3 ,x4!5 i

d2

dJm~x1!dJn~x2!
S 0

ac~x32x4!expF2
i

2E d2xd2y@Ja~x!1J a~x;x3 ,x4!#Dab~x2y;e2/p!@Jb~y!

1J b~y;x3 ,x4!#G
cb
U

J50

connected

. ~30!

Since the currentsJ defined in Eq.~26! have the matrix structure of the formA1Bg5, which means that they commute wit
each other, the differentiation may be easily performed, and we obtain

Gab
mn~x1 ,x2 ;x3 ,x4!5S 0

ac~x32x4!Dmn~x12x2 ;e2/p!expF2
i

2E d2xd2yJ a~x;x3 ,x4!Dab~x2y;e2/p!J b~y;x3 ,x4!G
cb

2 iS 0
ac~x32x4!E d2zd2wDml~x12w;e2/p!J cd

l ~w;x3 ,x4!Dnr~x22z;e2/p!J de
r ~z;x3 ,x4!

3expF2
i

2E d2xd2yJ a~x;x3 ,x4!Dab~x2y;e2/p!J de
b ~y;x3 ,x4!G

eb
Uconnected

. ~31!

Now we recall that the full propagatorS has the form@1#

Sab~u2w!5S 0
ac~u2w!expF2

i

2E d2xd2yJ a~x;u,v !Dab~x2y;e2/p!J b~y;u,v !G
cb

. ~32!

This allows us to write Eq.~31! in the form

Gab
mn~x1 ,x2 ;x3 ,x4!5S0

ab~x3 ,x4!Dmn~x12x2 ;e2/p!2 iSac~x3 ,x4!E d2zd2wDml~x12w;e2/p!J cd
l ~w;x3 ,x4!

3Dnr~x22z;e2/p!J de
r ~z;x3 ,x4!uconnected. ~33!

The first term, constituting the nonconnected contribution, should now be rejected. For the amputated Green funG

considered in Sec. II B, with the use of the definitions ofJ and f̃, as well as the fact thatSgmgn5gngmS, we obtain

E d2ud2wS~x32u!Gmn~x1 ,x2 ;u,w!S~w2x4!52 ie2]” x1
@D~x32x1!2D~x42x1!#gmS~x32x4!gn]” x2

@D~x32x2!

2D~x42x2!#, ~34!
0-6
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where we have omitted the spinor indices. One can easily verify that this is the coordinate space representation of E~15!. It
is a common feature of all two-fermion Green functions that they can be represented through the fermion propagato
coordinate and momentum spaces. As was mentioned this is possible since the external photons are coupled dire
incoming and outgoing electron lines, and no intermediate fermions loops are possible, apart from those producing th
masse2/p. On the other hand, for the four-fermion function we deal with in the following section, a much more compl
structure appears and an explicit and compact expression is possible to be given only in coordinate space.

B. Four-fermion function

Now, instead of Eq.~28!, we have

Gab;cd~x1 ,x2 ;x3 ,x4!5
d4

dh̄a~x1!dh̄b~x2!dhc~x3!dhd~x4!
Z~ h̄,h,J!ucurrents50

connected5@Sac~x1 ,x3 ;d/ idJ!Sbd~x2 ,x4 ;d/ idJ!

2Sad~x1 ,x4 ;d/ idJ!Sbc~x2 ,x3 ;d/ idJ!#Z~J!uJ50
connected. ~35!

The differentiations over external currentJ, hidden in propagatorsS, can be performed similarly as it was done to obtain E
~30!, although it must be done with greater care than before due to the tensor structure ofJ. In particular, using the notation
of Sec. II C we find

S~x1 ,x3 ;d/ idJ! ^S~x2 ,x4 ;d/ idJ!•Z~J!5S0~x12x3! ^S0~x22x4!•Z@1^ 1•J1J~x1 ,x3! ^ 111^J~x2 ,x4!#, ~36!

where for abbreviation we have not explicitly written the first argument of the currentsJ over which the integration in the
generating functionalZ is taken@see Eqs.~22!, ~24!,~26!#. Now, we concentrate only on the last factor of the above expres
(Z), which, after settingJ50, takes the form

Z@J~x1 ,x3! ^ 111^J~x2 ,x4!#5expF2
i

2E d2xd2y@J m~x;x1 ,x3! ^ 111^J m~x;x2 ,x4!#Dmn~x2y;e2/p!@J n~y;x1 ,x3!

3 ^ 111^J n~y;x2 ,x4!#G . ~37!

The expressions for bothJm and Dmn are known, and so it is only a matter of patience to get the formula for the a
exponential. Thanks to the fact that in two dimensionsgmgngm50 ‘‘diagonal’’ terms of the kindJ m

^ 1•Dmn•J n
^ 1 produce

only expressions of the tensor structure1^ 1, whereas mixed terms such asJ m
^ 1•Dmn•1^J n give both 1^ 1 and g5

^ g5. We skip this calculation here to save the reader’s time, and give below only the final result:

Z@J~x1 ,x3! ^ 111^J~x2 ,x4!#5
1

2
~1^ 11g5

^ g5!exp$ ie2@b~x12x2!2b~x12x3!2b~x12x4!2b~x22x3!2b~x22x4!

1b~x32x4!#%1
1

2
~1^ 12g5

^ g5!exp$ ie2@2b~x12x2!2b~x12x3!1b~x12x4!

1b~x22x3!2b~x22x4!2b~x32x4!#%, ~38!

where the functionb is defined by

b~x!5E d2p

~2p!2
~12eipx!

1

~p22e2/p1 i e!~p21 i e!
55

i

2e2F2
ip

2
1gE1 lnAe2x2/4p1

ip

2
H0

~1!~Ae2x2/p!G x timelike,

i

2e2
@gE1 ln A2e2x2/4p1K0~A2e2x2/p!# x spacelike,

~39!

and is in fact a function ofx2 only. gE is here the Euler constant, and the functionsH0
(1) andK0 are the Hankel function of

the first kind and Basset function respectively@29#. Since we have@1#

S~x!5S0~x!exp@2 ie2b~x!#, ~40!

we can write down the final formula for the four-fermion Green function:
065010-7
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Gab;cd~x1 ,x2 ;x3 ,x4!5
1

2
@Sac~x12x3!Sbd~x22x4!1@S~x12x3!g5#ac@S~x22x4!g5#bd#exp$ ie2@b~x12x2!2b~x12x4!

2b~x22x3!1b~x32x4!#%1
1

2
$Sac~x12x3!Sbd~x22x4!2@S~x12x3!g5#ac@S~x22x4!g5#bd%

3exp$2 ie2@b~x12x2!2b~x12x4!2b~x22x3!1b~x32x4!#%2H x3↔x4

c↔d J . ~41!
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We see that in coordinate space both four-point functi
~four-fermion and two-boson–two-fermion! may perfectly be
found and are given by compact formulas. Sinceb ’s are
related to the full fermion propagatorS, one can say tha
knowing S one knows ‘‘everything.’’ The calculation o
higher functions may be led very much similarly to what w
given in this section, and one will always obtain a product
electron propagators and exponentials ofb function.

The exact expression for the four-fermion function w
have obtained allows an analysis of its analytical propert
We concentrate below on the presence of the fermi
antifermion pole (t channel! corresponding to the Schwinge
boson. Let us denote the first two terms on the right ha
side of Eq.~41! by Gab;cd

1 andGab;cd,
2 respectively. The re-

maining terms represented by the curly brackets can con
ute to the eventual pole in theu channel only, and therefor
we omit them in the present discussion.

While looking for a pole we first identify the ‘‘in’’ and
‘‘out’’ coordinates~in the t channel! of fermion and antifer-
mion,u[x15x3 , v[x25x4 , and next consider the expre
sion Fourier transformed in the variablez[v2u. The iden-
tification has to be performed with care, for instance, in
following way.

~1! For the time coordinates we put

x1
05x3

0→u0 and x2
05x4

0→v0.

~2! For the spacial coordinates we assume

x1
1→u1, x3

1→u11«, x2
1→v1, x4

1→v11h.

~3! For the function depending on« and h we take the
fully symmetric limit

lim
«→0
h→0

sym

f ~«,h![
1

4
lim
«→0
h→0

@ f ~«,h!1 f ~2«,h!1 f ~«,2h!

1 f ~2«,2h!#.

In that limit G1 and G2 become onlyz dependent. For in-
stance, forG1 we have
06501
s

f

s.
-

d

b-

e

G1~z!5
1

8p2
~g0

^ g01g1
^ g1! lim

«→0
h→0

1

«h
exp$ ie2@b~z!

2b~0,«!2b~z0,z11h!2b~z0,z12«!2b~0,h!

1b~z0,z12«1h!#%, ~42!

where, when it was necessary, we wrote explicitly both
efficients of the two-vector argument of theb function

b~x!5b~2x![b~x0,x1!.

The symmetric limit above may be performed in
straightforward way, since theb function is perfectly known,
and we obtain

G1~z!52
ie2

8p2
~g0

^ g01g1
^ g1!

d2

dz2
b~z!. ~43!

The same limit forG2 gives

G2~z!52
ie2

8p2
~g0

^ g02g1
^ g1!

d2

dz2
b~z!. ~44!

If we now apply explicitly the definition ofb given by Eq.
~39!, and perform the Fourier transform overz, we find the
following expression for the ‘‘polar’’ part ofG:

Gpolar~k!52
ie2

4p2
g0

^ g0
~k1!2

~k22e2/p1 i e!~k21 i e!

→2
i

4p
g0

^ g0
~k1!2

~k22e2/p1 i e!
, ~45!

from which a pole corresponding to the Schwinger bos
may clearly be seen.

It should be noted that a similar analysis, although mu
more complicated, may be done without identyfing the ‘‘in
and ‘‘out’’ coordinates. One can, for example, introduce t
new c.m. variables

u5
1

2
~x11x3!, v5

1

2
~x21x4!,

and the relative ones

x5x12x3 , y5x22x4 .
0-8
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The Fourier transform ofG performed overz5v2u dis-
plays now much richer analytical structure~branch points at
k25n2e2/p, n52,3, . . . ) and theresidue in the Schwinge
pole depends on the relative coordinatesx andy:

Gpolar~x,y;k!524ip@S~x!g5# ^ @S~y!g5#

3
sin@kx/2#sin@ky/2#

~k22e2/p1 i e!
, ~46!

whereS is given by Eq.~40!. For x,y→0 ~in a symmetrical
way! we reproduce the result given by Eq.~45!. It may be
noted that the form factorF(x);S(x)g5sinkx/2 is square
normalizable in the sense*2`

` dx1uF(0,x1)u2.

IV. SUMMARY

Below we would like to recapitulate the results we o
tained in the present work. At first, in Sec. II, we consider
Ward identities in momentun space satisfied by the four-
five-point Green functions. Thanks to the local chiral sy
metry of the Lagrangian, apart from ordinary gauge inva
ance, we derived two identities. In the two-dimension
world these two identities suffice to entirely describe t
considered Green function, and express it through lo
ones. Each application of these identities allows us to red
the number of external photons by 1. Following that a
proach we were able to reduce the two-boson–two-ferm
function to the well-known electron propagator. In the ca
of the four-fermion function the situation turned out to
much more severe since we have no photon ‘‘legs’’ to
duce. An alternative approach was, therefore, introduce
Sec. II C. The starting point was here the Dyson-Schwin
equation which, on one hand, introduces the five-point fu
tion, but on the other permits one to reduce it to the funct
we are looking for. This leads to a self-consistent integ
06501
d
d
-
-
l

r
ce
-
n
e

-
in
r
-

n
l

equation which contains, apart from the unknown functio
only propagators which are perfectly known. We were, u
fortunately, unable to solve this integral equation becaus
its complicated mathematical character, which is not un
pected since in the Schwinger model even the fermion pro
gator cannot be given an explicit form in momentum spa
The self-consistent equation obtained in this section m
however, be a starting point for an analysis in moment
space constituting an alternative for taking the six-varia
~two integrations may be separated out to give the Di
delta function! Fourier transform.

In Sec. III we considered the same functions in coordin
space. We used the generating functional which had alre
been found in Schwinger’s original work@1#. The Green
functions are, of course, given as the appropriate derivat
of this functional over external currents. The problem whi
one only has to take care of is the tensor structure of
functions. Final compact expressions for all four-point fun
tions were found and are shown to be expressible through
fermion propagator. All the methods of this, as well as of t
preceding section, may easily be generalized to any hig
Green functions.

For the most interesting case — the four-fermion functi
— we were able to show that Eq.~41! contains a pole, in
the fermion-antifermion channel, corresponding to t
Schwinger boson. It is interesting to note that the form fac
in the residue of the pole turns out to be normalizable in
one-space direction if we set the relative time to zero. Ho
ever, we do not treat this observation as any ‘‘proof’’ that t
Schwinger boson is a ‘‘bound electron-positron state,’’ as
here and there suggested@2#.
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APPENDIX: DEFINITIONS OF THE GREEN FUNCTIONS

In this appendix we give the definitions of various Green functions used in the formulas of Secs. II and III. If we intr
the generating functionalsZ andW by the formula

Z~h,h̄,J!5expiW~h,h̄,J!5E DCDC̄DA expH i E d2x@L~x!1h̄~x!C~x!1C̄~x!h~x!1Jm~x!Am~x!#J , ~A1!

we can define the connected Green functions through derivatives of the functional over the external currents as foll

d2W

dh̄a~x!dhb~y!
U

currents50

5Sab~x2y!, ~A2!

d2W

dJm~x!dJn~y!
U

currents50

52Dmn~x2y!, ~A3!

d3W

dJm~x!dh̄a~y!dhb~z!
U

currents50

52eE d2w1d2w2d2w3Dmn~x2w1!Sac~y2w2!

3Gcd
n ~w1 ;w2 ,w3!Sdb~w32z!. ~A4!

We also need the four- and five-point functions
0-9
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d4W

dh̄a~x!dh̄b~y!dhc~z!dhd~u!
U

currents50

52 i E d2w1d2w2d2w3d2w4Sae~x2w1!Sb f~y2w2!Ge f;gh~w1 ,w2 ;w3 ,w4!

3Sgc~w32z!Shd~w42u!, ~A5!

d4W

dJm~x!dJn~y!dh̄a~z!dhb~u!
U

currents50

52 i E d2w1d2w2d2w3d2w4Dma~x2w1!Sac~z2w3!

3Gcd
ab~w1 ,w2 ;w3 ,w4!Sdb~w42u!Dbn~w22y!, ~A6!

d5W

dJm~x!dh̄a~y!dh̄b~z!dhc~u!dhd~w!
U

currents50

5E d2w1d2w2d2w3d2w4d2w5Dma~x2w1!Sae~y2w2!Sb f~z2w3!

3Ge f;gh
a ~w1 ;w2 ,w3 ;w4 ,w5!Sgc~w42u!Shd~w52w!. ~A7!

Thanks to the translational invariance of the theory, these functions depend in fact only on the differences of argume
corresponding definitions in momentum space, after having pulled apart the Dirac delta function of the whole two-mom
are given on Fig. 1.
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