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The evaluation of the four-point Green functions in thellSchwinger model is presented both in momen-
tum and coordinate space representations. The crucial role in our calculations is played by two Ward identities:
(i) the standard one anld) the chiral one. We demonstrate how the infinite set of Dyson-Schwinger equations
is simplified, and is so reduced that a givepoint Green function is expressed only through itself and lower
ones. For the four-point Green function, with two bosonic and two fermionic external “legs,” a compact
solution is given both in momentum and coordinate space representations. For the four-fermion Green function
a self-consistent equation is written down in the momentum representation and a concrete solution is given in
the coordinate space. This exact solution is further analyzed and we show that it contains a pole corresponding
to the Schwinger boson. All detailed considerations given for various four-point Green functions are easily
generizable to higher functiongS0556-282(99)07304-X]

PACS numbgs): 11.10.Kk, 11.30.Rd

I. INTRODUCTION tional, and still unobserved, Higgs field has to be introduced
“by hand,” to ensure the simultaneous renormalizability of
Massless quantum electrodynamics illspace-time di- theory and the nonzero masses of the intermediate bosons
mensions, known as the Schwindé&l model (SM), proved  W=* andZ°.
to be a very fruitful example of quantum field theory. Thanks  Another important property of the SM is the absence of
to its symmetries it is a completely solvable model, andthe asymptotic fermionic statgg]. This in turn is interesting
therefore it is particularly well suited for studying nonpertur- from the point of view of hadron structure investigatig8$
bative effects. where the permanent quark confinement and asymptotic free-
One of the most important and well-known observationsjom of QCD, giving rise to the nonperturbative mass scale
is that the initially massless boson, called hereafter a “pho-AQCD, as the necessary mathematical ingredient of the loga-
ton” (if one may think of “photons” in two dimensions  rithmic falloff, also precludes the appearence of asymptotic
aquires a mass — the so-called Schwinger mass. As a coguark states. Yet another similarity between the SM and
sequence of this, the electromagnetic potential becomes @CD is the existence of a fermion condensfge-11],
function exponentially decreasing in space and proportionahough this requires considering a nontrivial instanton sector.
toe “X, whereu= e/ /7 represents the Schwinger mass of The above features of the SM are also preserved in a gener-
the dressed photon. The vacuum polarization, which totallyalization of the SM, by allowing fermions to have a nonzero
shields the charge is responsible for this eff@jt The effect mass[12,13.
of charge screening is also known from perturbative calcula- Thanks to its full solvability, the SM, on an equal footing
tions in ordinary, four-dimensional QED, giving rise to a with other models, as for instance the Thirring mofisd],
weak deviation from the Coulomb law, particularly for small may also be used to test various assumptions in nonpertur-
distanced 3], while in the SM the change is dramatic. The bative calculations in quantum field theories: For example,
interpretation of this massive stateomposite versus el- (i) the postulated infrared form of the vertex function in four-
ementary depends on the particular field variables chosen talimensional massive electrodynamids], applied later in
describe the model. the so-calledgauge techniquél6] and other works in the
The photon mass generation mechanism appears alreadgntext of nonperturabative solutions of QEr which the
on the diagrammatical level, because the exachperturba- transverse corrections may be found in the SM explicitly
tive) vacuum polarization scaldi (k?) posesses a first order [17]), (ii) renormalization group method48], or (iii) even
pole atk?=0, with the residuum equal ta?. This is com- the very formulation of quantum field theof9,19,2Q. One
monly known as theSchwinger mechanisnOn the other should also mention in this context generalized versions of
hand, from the mathematical point of view, the nonzero phothe SM, formulated on the compact manifolds as a two-
ton mass results in the SM from the noninvariance of thesphere[10,21] or torus[22] instead of the flat space as well
path integral fermion measure with respect to the local chirahs the light-cone formulatiof23].
gauge transformations — the,(L) group — which in turn Although a number of papers have already been devoted
is a reflection of the presence of anomaly in the m¢del7].  to the investigation of propagators in the SM, a relatively
This vector meson mass generation through screening eémall interest, up to our knowledge, has been paid to higher
fects is of interest in electroweak theory, where the addiorder Green functiong24]. In this paper we plan to fill the
gap with particular interest paid to the four-point functions.
In the following sections we show how they can system-
*Electronic mail: torado@fuw.edu.pl atically be found. In Sec. Il we consider the Ward identities
TElectronic mail: jmn@fuw.edu.pl in momentum space and show how an infinite set of Dyson-

0556-2821/99/5%)/06501@10)/$15.00 59 065010-1 ©1999 The American Physical Society



TOMASZ RADOZYCKI AND JOZEF M. NAMYSEOWSKI PHYSICAL REVIEW D 59 065010

Schwinger equations can be reduced to only one, fully solvThe totally antisymmetric symbal*” is defined by
able equation. A particularly simple solution is given in Sec.

II B for the function corresponding to “Compton scatter- g0l=—gl0=1  g00—gll_q,
ing.” For the four-fermion Green function we derive in Sec.
Il C the integral equation which has a closed fofindoes Definitions of all the Green function that appear in the

not contain any higher Green functionin Sec. Ill we con-  formulas below are collected together in the Appendix.
sider the same question in coordinate space. Following

Schwinger in the quoted woll], we find explicit solutions
for both four-point Green functions: the four-fermion and the
two-photon—two-fermion one. Both of them are expressible We start this section with deriving Ward identities satis-
through the known scalar factors of the fermion propagatorfied by the relevant Green function. The standard procedure
For the most interesting case of four fermions we use thén this derivation is to perform, under the functional integral
derived formula to show that the function contains a pole atAl), the following infintesimal local gauge transformation,
p2= w2, i.e., corresponding to the Schwinger boson. We also

B. Calculation of the two-boson and two-fermion functions

give a formula for the form factor of the appropriate residue. AH(X) = A#(X) + d* w(X),
In the Appendix we give definitions of all the Green func-
tions considered in the present work. T(X)—W(X)—iew(X)V(X), 2
Il. MOMENTUM SPACE FOUR-POINT GREEN W(X)— W (X)+ieo(x)¥(x),
FUNCTIONS

In th|s Section we are Concentrating on the momentun‘ﬁnd consider the resulting variational equation. DOing in this
space equations for the four-point Green functions. First, wavay we get the relation satisfied by the generating functional
deal with two-fermion—two-boson function. We recapitulate W( », 1,J):
Ward identities which allow us to represent it as the appro-
priate combination of the three-point functions. These, how-

ever, are already known and expressible, once again due to —aO,0% — 95 J ,(X) —ieny(X) _5W

Ward identities, through the full fermion propagaf@s). 0J*(x) 0ma(X)
Second, we consider four-fermion Green function. In this

case the situation is much more difficult since we do not +ien,(X) =——= 3

have at our disposal any identity which would permit us to 87a(X)

reduce the problem to lower functions. Therefore, we con-

sider the Dyson-Schwinger equation which couples the fourNow we have to fungtionally differentiate both sides of this
point function to a five-point onéwith one boson and four equation oved”(y), 7,(z), andz(u). After having put all
fermion “legs”). Next, we apply both Ward identities to the the external currents at zero value we obtain the following
latter, and as a consequence obtain a self-consistent integduation for the four-point Green functidi*”, defined in
equation which contains only the four-fermion functi@nd  the Appendix:

lower ones.

A. Notation and definitions ”\Dx&ff d?w; d?w,d?wd?w,D (X —W;) S(z—Ws)

The SM may be defined through the two-dimensional La- < B . _ _
grangian density P (W, Wp W3, W4) S(Ws—U)D g, (W —Y)

LO)=T ([ 73, — eA“(X)y,]¥(X) =—ie? f d?w;d?W,d?W3S(z—wo) I *(Wy; W5, W3)

X S(W3=U)D 4, (Wy = Y)[ 6P (x—2) = 6'Z (x—u)],

1 nv A 2
“IFPOF L0 S [0A 0 ) "

where is the gauge fixing parameter. For our calculations it

will be convenient to choose later the Landau gauge by setvhere we omitted the obvious spinor indices. If we now
ting A—. For the Dirac gamma matrices the following make use of the well-know[26] Ward identity satisfied by

convention will be used, the photon propagator

o 0 1 - 0 -1 6 o1 1 0 AOx4D , (X—Y) = 2562 (x~Yy), (5)
Y 1 0/ Y 1 0/ Y=Y 0o -1/
which stresses that only the transverse paméf is influ-
and for the metric tensor enced by the interaction, and rewrite the expression in mo-
mentum space using the definitions of Fig. 1, we obtain, after
g%=—g'=1. removing the common factors on both sides,
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k, p I+q—p, b q, ¢ constitutes the well-known chiral anomdlg7,5,7. Follow-
ing the same procedure as above, and using the chiral version
of Eq. (5),

2
e
(DX+; eMTD ,o(X—Y) = —£4,05 0P (x—Y), (9)

ptk a P b p, a L, d .
we get, in momentum space,

b .
(@ ®) e, keS(p+q—K)T#(k,q,p)S(p)
=e[y*S(p+q)T'*(q,p)S(p) +S(p+g—k)
by p GV lyqop-kb ku g X T*(q,p—K)S(p—k)y°]. (10

This, together with Eq(6), determines uniquell/*” because
in two dimensions there are only two independent space-time
two-vectors. Therefore we can write

1
p+ag—Fk a p, b p, a l,d g/"":E(k’ukV—S/"akab?V'gkﬁ): (11

(© (d
o . . and as a consequence, any tens6t may be written as
FIG. 1. Definitions of arguments in the vertex function and four-

and five-point Green functionga) I'4(k,p), (b) I'ap ca(p.a,l1), (©) K# ek,
T45(k,a,p), (A Thycq(k,p,a1). A*‘”=g“A;=P(kAAM)— 2 (expkPAN). (12)
ik, S(p+a-kI*(k,q,p)S(p) Applying this to the four-point functiod™**, we find
XT*(q,p—K)S(p—Kk)]. (6) a2

e
. . . . _ =——[ky*S(p+a)I'*(q,p)S(p) = S(p+q—k)
Obviously, this equation does not defifié” entirely, but k

only its longitudinal partin index ). Fortunately, as a result ”
of the vanishing electron mass, the Lagrangfais invariant XTI (a,p—k)ky*S(p—K)]. (13
also with respect to the locahiral gauge transformations. In

L . In deriving this equation we made use of the fact tkét
the infinitesimal version they read

—gM% y>=Kvy*, as well as that the propagatBris linear
in gamma matricefl], and consequentlS, y°} =0 (at least

AH(X)—=AH(X) + 470, w(X), in the zero-instanton sector to which we restrict ourselves in
the present paperin that way the four-point function is
P (x) =V (x)—iew(x)y¥(X), (7) given in terms of the vertex function and the propagator. The

vertex function, however, thanks to the analogous Ward

\I_’(X)H\I_’(x)—iew(x)\l_f(x) ¥, identities, can be further reduc¢ti7,25 to the form

1
Similarly as it was done to obtain E¢3) we can derive the I'"(q,p)= —Z[S_l(p—}—q)—s_l(p)]q'y”_ (14
following equation for the generating functionat q

Applying this, we obtain our final equation for the four-point

2

e — S

DX+ ; ek );/,5\]], —s“”&iJM(X)—iEna(X) Green function:
0 S(p+aq—K)T**(k,q,p)S(p)
oW
X Y2 ——— —je . (x)y22 =0. 8 ie2
AL R PN Y ® S ACUSCUIREIR
One important difference in comparison with E8), which +S(p+g—k)]y"4. (15

should be noted here, is the presence of the mass equal to

e/ in the first term. This term results, as mentioned in theFrom Eq.(15) we see that the four-point function is entirely
Introduction, from the noninvariance of the path integralexpressible through two-point functions which are already
measure with respect to the group of transformati@m@nd  known. In the same way one can reduce to fermion propaga-
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we cannot reduce fermion “legs” anyway. However, we are
X — K _ >< + X able to obtain a self-consistent equation for this function. To
do so we start from the Dyson-Schwinger equation for the
four-fermion function which can be derived in a standard

way. We consider the functional derivative over f|el'dx)

FIG. 2. Graphic representation of the Dyson-Schwinger equa[3] and write

tion for the four-point Green function,p,. 4. Thick lines corre-
spond to full propagators and thin lines to free ones.

f DYDVDA _5 exp(if d?X[ L(x) + p(X) W (X)

tors, by successively applying both Ward identities, any oW (x)

Green function with two fermion and boson “legs.”
One has to make use of a different approach while dealing +W(x) n(X)+I4X)AL(X)] ] =

with functions with more than two fermions, since only the

photon “legs” may be removed the above way. We conS|der

this question in the following paragraph.

(16)

This gives the following relation for the generating func-

The simple structure oF #”(k,p,q) reflects the fact that tional:
in the Schwinger model the external photdhs., nonpertur-
bative, massive photopare always coupled directly to the s gt oW e oW “ oW
electron line, without an intermediate fermion loop, since ab®x 5;b(x) SIH(X) Yab 5%()()
any loop with more than two external photons turns out to be
zero, if we consider all possible permutations of vertices. 5°W
tieyhy ————=—-t+t7a(¥)=0. (17
0K (X) S7p(X)

C. Self-consistent equation for the four-fermion function
In the case of the four-fermion function the exploiting of Now, one has to differentiate the above equation over the

the ordinary and the chiral Ward identities does not solve thdermionic currentsyq(w), 7¢(2), and 76(y), and at the end
problem completelyalthough it is still very usefy) since set all the currents), 7, J equal to zero. The result is

_i?’gbﬁft(_i)J d2W1d2W2d2W3d2W4Sbf(X_Wl)Seg(y_WZ)ng;rs(Wl1W2;W3rW4)Src(W3_Z)SSd(W4_W)
:ezf d2W1d2W2d2W3Dﬂv(X_Wl)Sef(y_WZ)F;}g(Wl;W21W3)Sgc(w3_z)ygbsbd(x_w)
_GZJ’ deleWZdZWSD,uu(X_Wl)Sef(y_WZ)F;}g(Wl;WZvWS)Sgd(WS_W) YhoS(X—2)

+ ie')’gbj d?w, d?w,d?wad?w,d?WsD , (X —W1) Sye(X— W2) Seg(Y = W3) I'fg.rs (W1 ;Wo W33 Wy, W)

X Src(Wg—2) Ssg( W5 —W). (18

A schematical representation of this equation is shown in Fig. 2. There the thick lines correspond to full propagators and thin
lines to free ones. This equation indicates that the four-point function depends on the five-point one which is, of course, the
typical behavior of the set of Dyson-Schwinger equations, since the interacting Lagrangian contains always terms of at least
third order in fields, resulting in an infinite interlacement of Green functions. We can, however, use here the method of the

previous paragraph and get rid of the five-point function from the right hand side. Equi8iptransformed into momentum

space according to the definitions of Fig. 1, reads

iwabsbf(p)seg(q+|_ p)rfg;rs(pvqal)src((])ssd(l)
=eSer(q+1 = P)T{(1 = P,a) Sye(A)D 1, (P— 1) YhpSpa(l) — €7Ser(q+1=p)T5(d—p,1) Sgq(1)D . (P~ )

2

et [
Yabnc(d ab (277)2

Since the vertice$'s,, are perfectly known, what we need is only a relation which would allow us to express the five-point

functionI'4y, .4 through the four-point one. The method is analogous to that shown in detail in the previous paragraph, and we
do not repeat it here. The result is

D ,(K)Sp(P=K) Seg(q+1=p)Ltg,rs(K,p =K, Q1) Sic () S (19
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S(p)@S(q+1—p—k)-I'"(k,p,q,l)-S(p)®@S(1)
ie
=—F{[kv”s(p+k)]®5(q+l—p—k)-F(p+k,q,|)~S(q)®5(|)+5(p)®[k7”5(q+|—p)]T(p,q,l)S(q)

®S(1)—S(p)®S(q+1—p—k)-I'(p,q,I —=k) - S(q) ®[ky"S(I = k)]
—S(p)®S(q+1—p—k)-I'(p,g—k,1)-[ky"S(g—k)]® S(1)}, (20)

where, for abbreviation, we have used the obvious notat8W®S?).T.S®eS® for defining an object:
SYSIT er.gnSPSHY . If we substitute Eq(20), together with Eq(14), into Eq.(19), we obtain the final equation

i¢absbf(p)seg(q+ (e p)rfg;rs(pqul )Src(q)ssd(l)
2 2

{UI=p)y'1S(a) = S(a+1=p)JfecD (P~ 1) YapSna(l) — (C:W{(ﬁ— P)y'1S(1) = S(q+1=p)]fed

e

(1-p)?

d%k D,,(K)
(2m)? Kk
+S(p_k)bf[k'}’vs(q+l_ p+k)]egrfg;rs(p_ k,q,I)S,C(q)Ssd(I)—S(p— k)be(C{‘H - p)egrfg;rs(p_k-qvl —k)
X Sre([Kky"S(I =K) ]sq= S(P—K)psS(q+1 = p)egrfg;rs(p_kvq_kal)[kyvs(q_k)]rcs(l)sd}y (21

XD, (P—0) Y5pSpe(a) + ezys‘bf {[ky"S(P)16tS(A+1 = P)egl tg:rs(P,A:1) Src () Sso(1)

in which only the four- and two-point functions are involved. A. Two-boson and two-fermion function
This derivation shows how the infinite series of coupled As is k th ting functional ». 7.J b
Dyson-Schwinger equations may be reduced to only one in-. S IS known the gengra ing functiona( z, ,J) may be
tegral equation, which in principle might be solved. Becausd'Ve" the following form:
of the complicated tensor structure B, .4 (it requires in- _ _
troducing several scalar coefficient functiaand perplexing Z(mn, n,J)=exr{ —iJ’ d?xd?y p(x)S(x,y; 61 83) p(y)
mathematical form of E¢21), we do not try to solve it here
and will rather concentrate on finding an explicit form of the i
four-fermion Green function in coordinate space. Xex;{ - Ef d2xd?y 3, (X) A#*(x—y; e )
It is a common feature of the Schwinger model that coor-
dinate space solutions are much simpler than momentum
space ones. In this case it will be even possible to express XJV(Y)} (22)
I"ap:.cq through the electron propagator, similarly as was done

for I'*” in Eq. (15). This problem will constitute the subject where S(x,y, A) is the classical electron propagator in the

of the next section. o o
., external electromagnetic field “, and is given by the for-
The method of the present paragraph allows also to find fhula g ld 9 y

self-consistent equation for any higher Green function. In
particular, a function with 8; fermionic legs anch, bosonic e -
legs should first be reduced, thanks to the consecutjye S(x,y, A)=So(x—y)exp[ —i[ d(x,A) — ¢(y, A) ]},

applications of both Ward identities, to a purely fermionic (23
2n¢-point function, and then the self-consistent equation for
the latter can be obtained. with

lll. FOUR-POINT GREEN FUNCTIONS Tﬁ(x,A)=ef d?yA(X—Y)y"y*d,A(Y), (24

IN COORDINATE SPACE

In this section we find the explicit formulas for the four- Sy being the free propagator. In the Landau gauge which we
point Green functions in coordinate space. In this case alsnow use A*” takes the form
the four-fermion function may be given a compact form,
instead of having it as a solution of an integral equation like
Eq. (21). Below we follow the way somehow similar to that ~ A**(x—y,m?)= f d?z[g*"8'% (x—2) — dk xA(x—2)]
of the original Schwinger's work1l], but extend it also to
higher functions. XA(z—y;m?), (25)
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where A(x,m?) and A(x) are, respectively, Klein-Gordon 8§Jﬂ(z;x,y)=e[5(2)(x—z)—5<2)(y—z)]. (27
and d’Alambert propagators. For the exponential factor in

Eq. (23) one often uses the abbreviated and useful form  This current has sources at every point, where charged par-
ticles are created or annihilated, and is closely related with

~ ~ ) the notion of the so-called “compensating curreni28].
d(x,A)— Py, A)= _f d°zA*(2) 7(z:x,y), (26)  Now the four-point Green function, considered in Sec. Il B
(for functions with no external “legs” amputated we reserve
with the (nonconservedcurrent 7 satisfying symbol G with appropriate indicesis given by

5
83,,(X1) 83,(X2) 87a(X3) S7p(Xa)

where we have explicitly written that only connected graphs are considered. This gives

Ghp(X1,X2;X3,X4) = Z(n,m,J) gﬁﬁgﬁﬁgg (28)

2 i
34 . —i YH _ 2v A2\, 1@ a2 B
GLp(X1,X2:X3,X4) |—MM(Xl)5JV(X2)Sab(x3,x4,5/|5J)exp{ Zf dxdyJ*(X)A o p(x—Yy;e%m)I7(Y)

connected

. (29

J=0

If we make use of the explicit form af, given in Egs.(23), (24), leading to the representation in the form of a series of
derivatives, and note that exg(dx)f(x)=f(x+2), we can write

LS""%X —Xg)€x —i—f d2xd2y[J¥(X) + T“(X;X3,X4) 1A o g(X—y; €21 )[IA(y)
83, (X1)83,(xp) 70 73 74 2 y 1 X3,X4) JA o g(X—Y; y

connected

Ghp(X1,X2;X3,Xq) =1

+TP(y:%3,%4)] (30

cbl j=0

Since the currents defined in Eq(26) have the matrix structure of the forA+ By°, which means that they commute with
each other, the differentiation may be easily performed, and we obtain

i
Ggg(xl1X2?Xs1X4)=SSC(X3_X4)A“V(X1_X2;92/7T)9XF{ - EJ d2xd?y T (X X3, Xa) A (X — Y3 €71 ) TP(Yi X5, %X4)
cb

- iSSC(x3—x4)f d2ZAPWA ) (X, — W; €% ) Tpg(W;X3,X0) A, (X2 — 2,62 ) Tho( Z:X3,X4)

i connected
xex;{ - EJ dedzyja(X§X3aX4)Aaﬁ(X_y;ezlw)jge(y;xs,X4) " (31)
Now we recall that the full propagat& has the form{1]
Sab(u—w)=83°(u—w)ex;{— %f d?xd?y T(X;u,0) A 4 g(x—y; €% ) TP(y;u,0) . (32
This allows us to write Eq(31) in the form
Gg‘é(xlyxz;Xe.,le)=S‘Sb(xs,x4)A"V(X1—Xz;62/W)—iSac(X3,X4)f dZZdZWAm(Xl_Wiez/W)j)c\d(Wixs:X4)
XA, (Xo—2;€%1 ) T5(Z:X3,Xg) |00 (33

The first term, constituting the nonconnected contribution, should now be rejected. For the amputated GreenIfunction
considered in Sec. Il B, with the use of the definitiongénd ¢, as well as the fact th&y*y”= y*y*S, we obtain

f d2ud®WS(X3— U)T#"(Xq, X2 U, W) S(W—X,) = — iezﬂxl[A(x3—xl) —A(Xg=X1)]¥*S(X3—Xa) 7V¢9x2[A(X3_X2)
—A(Xg=X2) ], (34)
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where we have omitted the spinor indices. One can easily verify that this is the coordinate space representatid®)oftEq.

is a common feature of all two-fermion Green functions that they can be represented through the fermion propagator in both
coordinate and momentum spaces. As was mentioned this is possible since the external photons are coupled directly to the
incoming and outgoing electron lines, and no intermediate fermions loops are possible, apart from those producing the photon
masse?/ . On the other hand, for the four-fermion function we deal with in the following section, a much more complicated
structure appears and an explicit and compact expression is possible to be given only in coordinate space.

B. Four-fermion function

Now, instead of Eq(28), we have

5t
57a(X1) 876(X2) 877¢(X3) 8774(X4)
— Sad(X1,X4; 811 83)Spe(Xp,X5; 811 83)]Z(J)| SO mected (35

Gab:cd(X1,X2;X3,Xg) = Z(7,7,3)|SoeCted — [ SaclX1,Xg; 811 63) Syl X2, X4; 811 83)

The differentiations over external currehthidden in propagators§, can be performed similarly as it was done to obtain Eg.
(30), although it must be done with greater care than before due to the tensor structréngdarticular, using the notation
of Sec. Il C we find

S(X1,X3; 011 83)@S(X9,X4;6l18d) - Z(J) = Sp(X1—X3) @ Sp(Xo—X4) - Z[1® 1- I+ J(X1,X3) 1+ 1® J(X2,X4)],  (36)

where for abbreviation we have not explicitly written the first argument of the curg@miger which the integration in the
generating functional is taken[see Eqs(22), (24),(26)]. Now, we concentrate only on the last factor of the above expression
(2), which, after settingl=0, takes the form

Z[ J(X1,X3) ® 1+ 1®j(x2,x4)]=eX[{ - Iff d?Xd2y[ T#(X;X1,X3) ® 1+ 1@ T*(X; X2, Xa) 1A, (X—Y; €21 m)[ T* (Y5 X1, X3)

X®1+10 T (Y, X2,X4) ]| (37

The expressions for botly,, andA ,, are known, and so it is only a matter of patience to get the formula for the above
exponential. Thanks to the fact that in two dimensiofig”y, =0 “diagonal” terms of the kind7#®1-A ,,- 7"® 1 produce

only expressions of the tensor structure 1, whereas mixed terms such @&‘®1-A,,-1® 7" give both1®1 and y°

®y°. We skip this calculation here to save the reader’s time, and give below only the final result:

1
Z[ J(X1,X3) ® 1+ 18 J(X2,X4) | = §(1® 1+ y°® y°)explie? B(X1—Xz) — B(X1—X3) — B(X1—X4) = B(Xa—X3) — B(Xo—Xy)

1
+B(Xs—x4) ]} + 5(1@’ 1-y’® y?)expie? — B(X;—X2) — B(X1—X3) + B(X1—X,)
+ B(Xa—X3) = B(Xa—X4) = B(X3—X4) I}, (38
where the functiorB is defined by

i i i L
pye i ye+Inye?x /4w+?H§)l)(\/e7xz/Tr) x timelike,
e

d? . 1
poo- [ —La-em

(2m)? (PP—elntie)pitie)

i .
>o? [ve+In V—exX?4m+Ko(\— X2 m)] x spacelike,
e

(39

and is in fact a function ok? only. yg is here the Euler constant, and the functidﬂfé) andK, are the Hankel function of
the first kind and Basset function respectivEd@]. Since we havél]

S(x) = So(x)exd —ie?B(x)], (40)

we can write down the final formula for the four-fermion Green function:
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) 1 5 5 L2
Gab:cd(X1,X2:X3,X4) = E[Sac(xl_XS)de(XZ_X4)+[S(Xl_X3)'y lad S(X2—X4) ¥ Ipalexplie B(X1—Xz) — B(X1—Xy4)

1
— B(Xp—X3) + B(Xg—Xq) I} + E{Sac(xl_x3)sbd(xz_x4) —[S(X1—X3) ¥*Jad S(X2—X4) ¥*Ipd}

. X3<—>X4
><exp{—|e2[ﬁ(x1—x2)—ﬂ(x1—x4)—ﬂ(xz—x3)+,8(x3—x4)]}—[ cd ] (4)
|

We see that in coordinate space both four-point functions 1 1
(four-fermion and two-boson—two-fermipmay perfectly be  G'(z)= —(y°®y°+y'®y") lim —exgie’ B(2)
found and are given by compact formulas. Sings are 87 Hg en
related to the full fermion propagat® one can say that ”ﬂ
knowing S one knows “everything.” The calculation of —B(0,e)—B(2°, 2+ n)— B(°,z2t—¢)— B(0,n)
higher functions may be led very much similarly to what was 0.1 42
given in this section, and one will always obtain a product of +B(Zz —et )]} (42)
electron propagators and exponentialgsofunction. where, when it was necessary, we wrote explicitly both co-

The exact expression for the four-fermion function We gficjents of the two-vector argument of tigefunction
have obtained allows an analysis of its analytical properties.

We concentrate below on the presence of the fermion- B(x)=B(—x)=B(x°xY).
antifermion pole { channel corresponding to the Schwinger
boson. Let us denote the first two terms on the right hand The symmetric limit above may be performed in a
side of Eq.(41) by G;b;cd and ng;cd, respectively. The re- Straightforward way, since the function is perfectly known,
maining terms represented by the curly brackets can contritand we obtain
ute to the eventual pole in thechannel only, and therefore 02 &
we omit them in the present discussion. Trne 0 0 lo 1D

While looking for a pole we first identify the “in” and G(2)= 87.,2(7 By Tyey )dzz B2. (43
“out” coordinates(in thet channel of fermion and antifer-
mion,u=x;=Xz, V=X,=X,, and next consider the expres-  The same limit forG? gives
sion Fourier transformed in the varialdesv —u. The iden-
tification has to be performed with care, for instance, in the ) ie? 0. 0 1.1 d?
f0||owing way. G (Z): - p()’ QY —Yv®Y )FB(Z) (44)

. . iy z

(1) For the time coordinates we put

If we now apply explicitly the definition of8 given by Eq.
(39), and perform the Fourier transform overwe find the

0_,0 0 0_,0 0
X3=Xz—Uu" and X;=Xxz—v". following expression for the “polar” part of:
(2) For the spacial coordinates we assume Gpolar(K) 1 0g 0 (H*
i i w u =——+'0 % : .
polar 4r? (K2—em+ie)(k2+ie)
H 1\2
xi—>u1, x%—>u1+s, x%—wl, xi—>vl+ 7. = l_,yo® ,yo(k—), (45)
4 (K>—e?/m+ie)

(3) For the function depending o and 5 we take the from which a pole corresponding to the Schwinger boson

fully symmetric limit may clearly be seen.
It should be noted that a similar analysis, although much

more complicated, may be done without identyfing the “in”

sym 1 and “out” coordinates. One can, for example, introduce the
lim f(8,77)EZ lim [f(e,p)+f(—e,p)+f(e,—7n) new c.m. variables
e—0 e—0
=0 70 1 1
+f(—e,— 7). U=§(X1+X3), v=§(Xz+X4),

- . and the relative ones
In that limit G* and G2 become onlyz dependent. For in-

stance, foiG! we have X=X1—Xz, Y=Xo—X4.
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The Fourier transform ofs performed overz=v—u dis-  equation which contains, apart from the unknown function,
plays now much richer analytical structuiranch points at only propagators which are perfectly known. We were, un-
k?=n2e?/mr, n=2,3,...) and theesidue in the Schwinger fortunately, unable to solve this integral equation because of

pole depends on the relative coordinatesndy: its complicated mathematical character, which is not unex-
] pected since in the Schwinger model even the fermion propa-

Gpolar(X,Y:K) = —4i [ S(x) y*1©[S(y) ¥°] gator cannot be given an explicit form in momentum space.

. . The self-consistent equation obtained in this section may,

sin kx/2]sin ky/2] (4¢) however, be a starting point for an analysis in momentum

(K2—e¥m+ie) space constituting an alternative for taking the six-variable

(two integrations may be separated out to give the Dirac
whereSis given by Eq.(40). Forx,y—0 (in a symmetrical  delta function Fourier transform.
way) we reproduce the result given by E@5). It may be In Sec. lll we considered the same functions in coordinate
noted that the form factoF (x)~S(x) y°sinkx/2 is square space. We used the generating functional which had already
normalizable in the sensg’ . dx!|F(0xY)|2. been found in Schwinger's original worKkl]. The Green
functions are, of course, given as the appropriate derivatives
IV. SUMMARY of this functional over external currents. The problem which
) ) one only has to take care of is the tensor structure of the
_Below we would like to recapitulate the results we ob- fnctions. Final compact expressions for all four-point func-
tained in the present work. At first, in Sec. Il, we considered;ions were found and are shown to be expressible through the
Ward identities in momentun space satisfied by the four- angarmion propagator. All the methods of this, as well as of the

five-point Green functions. Thanks to the local chiral sym-preceding section, may easily be generalized to any higher
metry of the Lagrangian, apart from ordinary gauge invari-green functions.

ance, we derived two identities. In the two-dimensional  For the most interesting case — the four-fermion function
world these two identities suffice to entirely describe the__ \ve were able to show that E¢41) contains a pole, in

considered Green function, and express it through lowefhe fermion-antifermion channel, corresponding to the
ones. Each application of these identities allows us to reducgchwinger boson. It is interesting to note that the form factor
the number of external photons by 1. Following that ap-in the residue of the pole turns out to be normalizable in the
proach we were able to reduce the two-boson—two-fermioRyne.space direction if we set the relative time to zero. How-
function to the well-known electron propagator. In the caseeyer, we do not treat this observation as any “proof” that the

of the four-fermion function the situation turned out to be Schwinger boson is a “bound electron-positron state,” as is
much more severe since we have no photon “legs” to ref,gre and there suggestga.

duce. An alternative approach was, therefore, introduced in

Sec. I.I C. The starting point was here the Dyspn-Schwmger ACKNOWLEDGMENTS

equation which, on one hand, introduces the five-point func-

tion, but on the other permits one to reduce it to the function The authors would like to thank very much Dr. K. Meiss-
we are looking for. This leads to a self-consistent integraher for interesting and valuable discussions.

APPENDIX: DEFINITIONS OF THE GREEN FUNCTIONS

In this appendix we give the definitions of various Green functions used in the formulas of Secs. Il and Ill. If we introduce
the generating functionald andW by the formula

Z(n,Z,J)zexpiW(n,Z,J)zf D‘I’D\I_fDAexp[ifd2x[£(x)+;(x)\lf(x)+\l_f(x)n(x)+J“(x)AM(x)] . (A

we can define the connected Green functions through derivatives of the functional over the external currents as follows:

W
—_— = ab(X_y)' (A2)
57]a(x) 577b(y) currents=0
5°W
P =~ Du(x=y), *
5~]'U'(X) 6J (Y) currents=0
W
5 _ _ef d2W1d2W2d2W3D,uv(X_Wl)SaC(y_WZ)
6JH(X) 577a(y) 57713(2) currents=0

XTI gg(W1;Wa,W3) Syp(W3—2). (A4)
We also need the four- and five-point functions
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S*'W
81a(X) 575(Y) 81c(2) 574(u)

:_if d2W1d2W2d2W3d2W4Sae(X_Wl)sbf(y_Wz)ref;gh(wl1W2;W31W4)

currents=0

X Sye(W3—2) Spg(Wy—u), (A5)

S*W
8IH(X) 83*(y) 67a(2) 57p(U)

= —if d?w, d2W,od?Wad?WyD |, (X —W1) Sae(Z—W3)

currents=0
XT 25 (W1 Wy ;Wa,Wg) Sgp(Ws—U)D g, (W~ Y), (A6)
W
8IM(X) 8774(Y) 5775(2) S7c(U) (W)

:f d2W1d2W2d2W3d2W4d2W5DW(X_Wl)sae(y_Wz)sbf(Z_Wa)

currents=0

XT gf.gh(W1;Wo , W3, Wy ,Ws5) Sgc(Ws—U) Shg(Ws—W). (A7)

Thanks to the translational invariance of the theory, these functions depend in fact only on the differences of arguments. The
corresponding definitions in momentum space, after having pulled apart the Dirac delta function of the whole two-momentum,
are given on Fig. 1.
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