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Nambu-Goldstone mechanism in real-time thermal field theory
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In a one-generation fermion condensate scheme of electroweak symmetry breaking, it is proved based on the
Schwinger-Dyson equation in real-time thermal field theory in the fermion bubble diagram approximation that,
at finite temperaturd below the symmetry restoration temperatdtg, a massive Higgs boson and three
massless Nambu-Goldstone bosons could emerge from spontaneous breaking of the electroweak group
SU, (2)XUy(1)—Ug(1) if the two fermion flavors in the one generation are mass degenerate; thus, the
Goldstone theorem is rigorously valid in this case. However, if the two fermion flavors have unequal masses,
owing to “thermal fluctuation,” the Goldstone theorem will be true only approximately for a very large
momentum cutoffA in the zero temperature fermion loop or for low energy scales. All possible pinch
singularities are proved to cancel each other, as expected in a real-time thermal field theory.
[S0556-282(199)07404-4

PACS numbss): 14.80.Mz, 11.10.Wx, 11.30.Qc, 12.15¢

[. INTRODUCTION the Schwinger-Dyson equation can surely do that. Therefore,
to determine directly the masses of the bound states and to
Spontaneous symmetry breaking at finite temperature hasxamine fully the effect of the fermion mass difference at
been investigated extensivdly—6]. However, most research finite temperature, we prefer the Schwinger-Dyson equation
by now has concentrated on the discussions of phase transit finite temperature to a temperature effective potential. All
tion and critical temperature based on the effective potentiathe calculations will be conducted in the fermion bubble dia-
approach at finite temperature, and relatively less work igram approximation which amounts to the leading order of
reported about the theoretical exploration of the Nambuthe 1N expansion.
Goldstone theorenj7] at finite temperature, especially in Since the determination of physical masses of the bound
models of dynamical symmetry breaking such as thestates is the key point of our research; it is certainly more
Nambu-Jona-LasiniéNJL) model with four-fermion inter- convenient to take the real-time formalism of thermal field
actions[7]. Research into the Nambu-Goldstone mechanisntheory[4] than the imaginary-time formalism. In this way we
at finite temperature could provide us a deeper understandingill be able to avoid the cumbersome analytic continuation
of the spontaneous breaking of a continuous symmetry awhich is necessary in the latter formalism. However, again,
finite temperature and is certainly quite interesting. The keyoecause of the possible mass differences of the constituent
point of such research lies in verifying the existence offermions inside the bound states, the use of the real-time
Nambu-Goldstone bosons, i.e., determining the physicalormalism will present a new question, i.e., whether this for-
masses of the fermionic scalar and pseudoscalar bound stateslism is consistent with Nambu-Goldstone mechanism. In
which appear as the products of spontaneous symmetry simple model with Y(N) X Ug(N)-invariant four-fermion
breaking. In a model of NJL form, the mass determinationinteractions, it has been proved that in the real-time formal-
can be simply made by using Schwinger-Dyson equationssm of thermal field theory the Nambu-Goldstone mechanism
i.e., calculating directly the gap equation of fermion massworks indeed, but it is under the assumption that the fermi-
and the bound state propagators induced by the four-fermioans are of equal masses and equal chemical poteptia]s
interactions. On the other hand, it is possible that a scalar dn this paper, among other things, to examine further the
pseudoscalar bound state is composed of fermions with difstated consistency, we will consider a more realistic
ferent masses or is a combination of the scalar or pseudenodel—a one-generation fermion condensate scheme of
scalar bilinears of these fermiofi8—10. Although a con- electroweak symmetry breakin®]. The extension to the
ventional effective potential approach is applicable to suchmany-generation cag&0] is direct.
models if one introduces axialiary scalar fields and replaces The paper is arranged as follows. In Sec. |l we present the
the four-fermion interactions by Yukawa couplings betweenmodel, give its Lagrangian, and derive the gap equation at
axialiary scalar fields and fermion fieldi6], it is unknown, finite temperature. In Secs. Ill, IV, and V we will respec-
by the introduction of axialiary scalar fields, whether onetively calculate propagators of the scalar, the pseudoscalar,
could include the effect of the mass difference of the con-and the charged-scalar bound states at finite temperature by
stituent fermions of a bound state. However, we believe thaineans of the Schwinger-Dyson equations satisfied by the
fermionic four-point Green functions, determine the bound
states’ masses, and discuss the pinch singularity problem
*Permanent address. which is especially related to the real-time formalism of ther-
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mal field theory. Finally, in Sec. VI we come to our conclu-

G
sions. Lor=7[(89%+(dp)7+26"¢7], (29

Il. ONE-GENERATION FERMION CONDENSATE MODEL where
AND GAP EQUATION

In this model of electroweak symmetry breaking, we have $2=cosp(UU)V+sing(DD)V,
one generation of) fermions forming a SY(2)XUy(1)
doublet U,D) and are assigned in the representafidof o o
the color group SK3) with the dimensiondg(R). The #3=cose(UiysU)V—sing(DiysD)Y, (2.6
symmetry breaking is induced by the effective four-fermion
interactions among th® fermions below some high momen-
tum scaleA which, in real-time thermal field theory, are ¢>‘=(UF‘D)<1), ¢+=(5F+U)(l)
described by the Lagrangidd,9,10

are, respectively, the configurations of the physical neutral
£4F:£§F+£Z’F+£§F_ (2.2 scalar, neutral pseudoscalar, and charged scalar bound states
which are expressed by physical fermion fields with
a=1. In zero-temperature field theory, one assumes that
L3 will lead to the vacuum expectation value

3 0-u.0900{(QQ)™)#0 and this will induce spontaneous
ﬁf; 2 E (1) a+1gQ Q(Q Q' )(a)(QQ)(a) breaking of electroweak group. At finite temperatdrand

The neutral scalar couplings

a=1q.q’ in the real-time formalism of thermal field theory,
we will assume the thermal expectation value
S 0-u 900 (QQ)M)1+0, where only the physical fields
12 _1/2 r_ Q=U,DYQQ T
90'¢=9qq' 900, Q.Q'=U.D, (2.2 (a=1) are considereftL?]. We thus obtain the mass of the

Q fermion,
wherea=1 denotes physical fields aral=2 ghost fields.
The physical fields and the ghost fields interact only through

the propagators. The neutral pseudoscalar couplings ——,
Propagd P Pind mo(T, ) =mq ggg 2 9el@R) M),

(2.7)

which will lead to the relation

12 . _
=22 E (=1)*g5,o(Q'175Q) @ (QiysQ)®,
=1 QQ’

1/2
gé'Q:(—l)'Z"'%QQ'Q’ Q.Q'=U,D, (2.3 Mo/906=Mor /9qrg: 238

andl% denotes the third component of the weak isospin ofand the gap equation at finite temperatiire
the Q fermions. The charged scalar couplings

G & _ _ 1= %, 9edles (2.9
LG=% 2 (~1)* DI "U)A(UI D),
at with
-_1 ino- i ( ) [ d4
r —E[coswsm@—(008<p+sm<p)75], lo=— <(QQ)<1>> f . )4tr[,511(| mo)]
2.9 (
—2d !
G=guutOop, CcoSe=0gyy/G, a Q(R)J (27 ) 2—md+ie
i’ ¢=gop/G. —2m8(12=mp)sirfo(1%, uo) |, (2.10

We indicate that Lagrangiaf®.1) is the real-time thermal
field theory version of the following zero-temperature four- where we have used the thermal propagator of fermion in the
fermion Lagrangian fon=1 [10]: matrix form
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iSH(I,mg), iS*I,mg)\ [il(}—mg+ie), 0
iS?(I,mg), iS*1,mg) ( 0, —il(t—mg—ie) 2 (t+mg) (1" =mg)
. 1
sirf (1%, ug), EeB”Q/ZSiHZG(IO,,u,Q)
X 1 , (2.11
- Eef%’? sin20(1°, o), sirto(1°, uq)

with the chemical potentiaky of the Q fermion and the Equations(3.1) have the solutions
denotations

Q'bQa, _ i
0(1°) IS P =33 1p) gQ'Q[(ém
exd B(1%=ng)]+1
0(—1°
+
exi{B(~ 1%+ pg)]+1

1+§ 9ooNF(p)

sin20(1% uo) =
_5b2§ gQQNle(p)) 5a1

(2.12

_<5b2{1_% 9ooNg(p)
and B=1/T. The gap equation2.9) could be satisfied

merely at lower temperatur@ than T., where T, is the b1 12 5

critical temperature above which E@.9) is no longer valid +o EQ: 9ooNg(P) &

and thus electroweak symmetry restoration is implied

[12,13. In view of this, in the following discussion we will 'O=UD. ba=12 33
assumel <T, so that the gap equatioi2.9) can always be Q.Q=U.D. ba=12 33

used. where the coefficient determinant of Eq3.1),

I1l. SCALAR BOUND STATE MODE Ad(p)
s\p)=
The propagators for fermionic bound states correspond to

the four-point Green functions of the fermions. Since there

exist two types of four-fermion interaction vertices ( +
=1,2) in real-time thermal field theory, the four-point Green

functions will also be a matrix with the row and the column .
denoted by the indea. The four-point functions for the tran- The propagator for the physical scalar bound stafeex-
siton from QQ)@ to (Q'Q")® can be denoted by Pressedin Eq2.6)is

r''®Q%(p); then, from Eq(2.2), they will obey the follow-
ing linear algebraic equatio40]:

1—% 9ooNG(p) 1+§ 9ooN&(P)

. (3.9

% gQQNéz(p) % gQQchgl(p)

0 .
I'*s(p) = cog eI'¢™(p) +sir? ¢I'2*°*(p)
+sing cose[ T2V (p)+T'¢*P(p)]

by g IS °Y(p)[ 81032~ NG (P)ggro( — 1)**1]

-iG / 2A4p). (3.5

1+§ 9ooN&(P)

i
=500 —-1)*!, Q',Q=UD =1,2
5900 (~D™%  QLQ=UD, ba=12, The problem is reduced to the calculation M§’(p). By

(3.1) using the formula

where p is the four-momentum of the bound state and 1

—2iN(°ga represents the contribution of th@-fermion loop X+ie X2+ g2 —imd(X) 3.6
with an a-type and ac-type scalar coupling vertekEq.
(2.2], ie., and through direct but rather lengthy derivation we obtain
ca i d*l . . 11, 1 2 2 .
Ng(p)=— EdQ(R)J 2 )4tr[|S°a(l,mQ)|Sa° No(P)=lg+ 5 (p°—4mg+ie)[Kq(p)+Hq(p)~iSq(p)]
a

X (I+p,mg)]. (3.2) =—[NZ(P)1*,
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NE(p) =N\(p) = — 5(p?~ 4m)Ro(p), 37
where

1
2—mj+ie)[(I+p)2—mi+ie]

id4l
KQ(p):_ZdQ(R)I (2m* (1

AZ+ME A2

_ do(R)
- 2 A2 2
M3 A%+M3E

872

x| In

M%=mg—p?x(1-x), (3.9

with the four-dimension Euclidean momentum cutdff

(14 p)?2—mZ _
Ho(P)= 47TdQ(R)f 2m) [[(|+p)z 2 ]2Q+ 2 (pﬂ—p)}é(lz—mé)smz 0(1° o)
Q

+(p°——p°

wg=VIZ+m3, (3.9

f dIIIIII 2—2wqip®+2|1]|p)?+ &2
~ 1677p| wq | 2—2wqp°+2|1]|p|)%+ 2

1
% eXl{ﬁ(le_MQ)]+1 T e Blogt o)1+ 1)’

4

) d
SolP)=47%dg(R) | oo

+cos 0(1°+p°, ug)sir? 6(1%,ug)1, (3.10

8(12=md) 8 (I +p)?—m3 ][ sir? 6(1°+ p°, ug)cos 6(1°, o)

and

Ro(p)=2m —m3) 8 (1 +p)2—ma]sin 20(1%, wg)sin 20(1°+ p°, ). (3.11)

In Eqg. (3.9 the limit e —0 will be taken only after the total calculations are completed. Substituting3g.into Eq. (3.5
and using the gap equatidB.9) and the relation

gQQ/G=mg/% m3 (3.12

derived from Eq(2.8), we obtain

Is(p =—|% m3 %: (p?—4mg+ig)mg[Ko(p) +Hq(p) —~iSq(p)]

2

[% (p2—4m?%)m3Rq(p)

(3.13
2 (p*=4m—ie)mg[Kq(p) +Ho(P) +iSq(P)]
The mass squaremio is determined by the pole’s position Bff’g(p), i.e., by the equation
S
2 2 2
% (p?—4m3)m3[Ko(p)+Hg(p)]} + % <p2—4mé>méso<p>J =[§ (PP—4mi)miRo(p)f - (3.14

We notice that, wher ?>M3,
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1
VAo— larctan—= if Ag>1,
K of )—dQ(R) In A2+1 _%(R) ) Mot No=4mZ/p? (3.19
P | e 8’ 1+VI-xg TP '
ViAo In ———, if No<1,
1-J1-)g

HenceKq(p) is real and positive definite. The same conclusion is true Wiglip) and Sy(p) since the integrands in Egs.
(3.9 and(3.10 are real and positive, but not applicableRg(p). In addition, we have the inequalities

d4l
So(P) =Ro(p) =4W2dQ(R)f 2 8(12=md) o[ (1 +p)?—masirf[ 6(1°+ p°, o) = 6(1°, ) 1=0. (3.16

Let

% m3Kq(p) =k, % m3Ho(p)=h, % m3So(p)=Ss, % m3Ro(P) =T,

% mKo(p) =Kk, % mgHo(p)=h, % mgSo(P) =S, % MRo(P)=T. (3.17)

Then Eq.(3.14) can be rewritten as

[(k+h)p?—4(k+h)]2+ (sp?—4s)%=(rp?—4r)>. (3.18

It has the solutions

_ Lkt h(&+h)+ss—rr]

_ [(kK+h)2+s2—r2][(k+h)2+s2=T2] 1/2
(K+h)2+s2—r2 {1xA}, A={1-

[(k+h)(k+h)+ss—rr]?

2

(3.19

Equation(3.19 shows that we could obtain two differelmtio. However, we indicate that, first of all, in the special case where
S

only single-flavorQ fermions exist(e.g., in the top-quark condensate sché¢Bi¢ or all themg, are equalmass degenerate
the A will be identical to zero and we still have only a singfe,,g. Next, in general case, if the momentum cutaffis large

enough, then, considering E.16), we always have
(k+h)?>s?—r?2>0, (k+h)’>>s?-12>0, (k+h)(k+h)>ss—rr,

and thusA~0. In fact,A+# 0 can be explained as thermal fluctuation of the squared maﬁ%.dﬁ any way, we may consider
that physically the mass 0;6% is determined by the equation

A(k+h) (K+F) +2[(s+1)(5=T)+(5+T)(s—1)]|

4
2 _ 2 ~ ~ ~ ~ _
m’o=p°=—————[(k+h)(k+h)+ss—rr —m2. = .
P Gz ez (U Tloz=niy (kth)?+s2—r2 .
¢

(3.20

.

Based on Eq(3.16) we haves—r=0 ands—r=0; thusitis and the maximal mass among tQeermions. The limitation
deduced from Eq(3.20 that (3.2)) is formally the same as the one at zero temperature
[10], but it should be understood thatg=mq(T,uq) is
now theQ-fermion mass at #0.

Whenp—0, by Eq.(3.9), Ho(p) =0 and, by Eqs(3.10
and(3.11), So(p) andRq(p) contain the pinch singularities.
where Mg)min @and (Mg) max are, respectively, the minimal However, we obtain from E¢3.16 that

2(mQ)mins mqsgsz(mQ)max- (3-2])
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[So(P) —Rq(P)1|p-0=0

and this will make the pinch singularities contained in the

. 0 . .
denominator of"#s(p) cancel each other. This result is just
expected in real-time thermal field theory.

In addition, we also indicate that it is easy to verify by Eq.
(3.3) that, similar to the zero-temperature case, for the or-

thogonal combination t@2,
$2=—sinp(UU)M+cose(DD) Y, (3.23

its propagato#S(p) =0, i.e., the configuratio?, does

not exist. We only have the single neutral scalar bound state

#2 left.

IV. PSEUDOSCALAR BOUND STATE MODE

The calculation of the propagator for pseudoscalar bound Ap(p)=
state is similar to the one for scalar bound state. The four-

point function for transiton from QiysQ)® to
(Q'iy5Q")® is denoted byI'S'®??; then from Eq.(2.3)
they will obey the linear algebraic equatiofi]

2 % Fg’bQ”C(p)[anQéca_ Ngz;‘ls(p)g(,?//Q(_l)aJrl]

i

_ ! b 1 ’ _ _

_EgQ’Q(S a(_:l')a+ ’ Q 1Q_U1D1 bya_lyz
(4.1

We have used the denotation
NEA(p) = - dQ<R)f oo
X tri ysi S°A(1,mq)i ysiSA(1 + p,mg)],

(4.2

and —2iNgz(p) represents the contribution of the
Q-fermion loop with ana-type and ac-type pseudoscalar
coupling vertex[Eq. (2.3)]. By comparing Eqgs(3.1) with
Egs.(4.)), it is easy to find that the solutions of Edqg.1)
can be obtained from the solutiof.3) by the substitutions

NG(P)—N&s(P), 9oo—9g0-

r¢3<p>=—i§ mé/<p2+is> % ma[Ko(p) +Ho(p) —iSe(p)]1-

r2

:—i% mg/ (p2+is)(k+h—|s

"~ k+h+is/)’
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Thus

3'pQa(p) =

i
mgé@[(ﬁ 1+% gQQNézs(p)}

—5b22 9ooNBs(p) | 87

—(5”[1—% gQQNé%;(p)}

+6 12 gQQN (p)>5a2]

Q',Q=U,D, b,a=1,2, 4.3

where

{1—% 9ooNos(P) 1+§ gQQNé%w)}

(4.9

+ % JooNes(P) % JooN&s(P) |-

The propagator of the physical neutral pseudoscalar bound
state? defined in Eq.(2.6) is

T%(p)=cog eT'Y1V(p) + sir2eI B1°%(p)

—sing cose[I'p*"*(p)+T'p*°*(p)]
=ig[1+3 gQQNé%(m}/zAp(p). (4.5

For the orthogonal combinatio#® to ¢3, we have
T%(p)=0, $3=sing(UiysU) Y+ cose(DiysD)Y;
(4.6)

hence, only the single neutral pseudoscalar bound ai%te
exists. The calculations clNIa% in Eq. (4.2 are similar to the
ones ofo‘gb in Eq. (3.2) and the results can be obtained by
the substitutions

NG5(P) = NG (P)] p2—am2 — p2- (4.7

By means of the gap equatid2.9) and the relation3.12
we obtain from Eqs(4.5), (4.4), (4.7), and(3.7) that

2

[% mM3Ro(P)

% m3[Ko(p)+Ho(p) +iSe(p)]

4.9
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We notice that whemp—0, h=0 ands=r based on Egq.
(3.21); so the terms containing the pinch singularities in the

denominator of Eq(4.8) will cancel each other anﬂ¢g(p)
becomes finite. The expressith.8) shows thatp?=0 is a

single pole of the propagatwg(p) and thus¢>g is a mass-
less neutral pseudoscalar composite particle.

It is interesting to indicate that whep?=0, Sa(p)
=Rq(p)=0 in Egs.(3.10 and(3.11) since the constraints
12=mg,(I+p)?=mj, and p?=0 could not be submitted
simultaneously and in addition, based on H8.9), also
Ho(p)=0; so we will have

Lo%(p) =~ 50(R) |

% (p)

B iIG
¢ ~ 2Ac(p)

rdf%(p):_i% mé/ (p*+ie)k, if p?—0, (4.9

which has the identical form to the propagator for the neutra\Nhere
pseudoscalar bound state @t=0 [10], except that the
Q-fermion massng(T=0) is replaced bymg(T,uq). The
result implies that the mass eﬁg is not affected by a finite
temperature completely.

V. CHARGED SCALAR BOUND STATE MODE o

e (
For the calculation of the propagator for charged scalar
bound state, a new feature is that the fermion loop is consti-

tuted by the propagators of thé and D fermions possibly

p)=T, (p)=iG/2| 1-GL™(p)+G

PHYSICAL REVIEW D 59 065007

d4l

(2m)*

Xt T 7iS3(1,my) T *iS2(1+p,mp)] (5.2
and —2iL°%(p) represents the contribution of the fermion
loop composed ofU-fermion and D-fermion propagators

with ana-typeI'" coupling vertex and a-typeI' ~ coupling
vertex. The solutions of Eq$5.1) are

({[1+GLX(p)]8°r—GLH(p) 5%} 52!

—{[1-GL¥(p)]s"*+GL(p) "1} 6°%), (5.3

Ac(p)=[1-GL™(p)I[1+GL*(p)]+G*L*Ap)L*(p).

(5.9

The propagator for physical charged scalar bound gtatés

L)L)

1+GL#ZAp) |
(5.9

with different masses. Denote the four-point function for theand for the orthogonal combinatiah™ to ¢~ we have

transition from UI'"D)® to (DI *U)® by FZ‘?(p); then,

based on Eq(2.4), they will obey the linear algebraic equa- I’ (p)=0,
tions
¢~ =—=U[cosp+sine+ —si .
2 cm_(p)[éca_ Lo3(p)G(—1)2*1] b \/EU[COS(,D sing+(cose—sing)ys]D, (5.6
c=1.2
G .. (a+1) sinceL‘,f,fF contains no configuratiog~. It is noticed that
= 55 (=1 , ba=12, (5.1 ¢~ and its Hermitian conjugateé™* have the same propaga-
tor and they become the only two charged scalar bound

where states. Direct calculations give

1 (p®+ie) _ 1 (m3—
L“(p)=52 doglo™ T[Kuo(p)+HUD(p)_'SUD(D)]+E Eup(p)+i Lzl
Q U
i- (mZ_mZ)Z-
L*(p)= 5 P*~ —5———Rup(P)ex A1y~ ko) 2],
I mg+mp |
i- (m2_m2)2-
LZ(p) =~ 5| PP~ ——5—— Rup(P)exH — Blru~ ko)/2],
I my+mp |
where
do(R) (1, mi(1-x)+mdx[ AZ+MEp(p) A2
Kup(p)= 2 f dx 2 2 2 - ) )
4 my+mp { Mip(P) A“+M{p(p)

065007-7
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D

(5.7)
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d [ (+p?-m}

(277_)41 [ +p)2—m%]2+82 5(|2_mL2J)Sin2 9(|01Mu)+(p—’_pvaHmD VU D) [

Hup(p)=4mdo(R) f

(5.9
2 2 4 2 2 2 2
mu_me dl [[(+p2-mil[(I+p)2-md] .
E =4mdo(R 8(12— e 6(1°,
un(P)=4mdqg( )m6+m§, (277)41 [+ )= P+ o2 (1°=mg)sin” 6(17, ny)
—(p——p,my<=mp 'MUHMD)}, (5.10
d*l 2 2 i
SUD(p):4772dQ(R)J 2 )45(|2—mu)5[(l+p)2—mD]{sm2 0(1° y)cos 6(1°+p°, up)
o
+¢c0g6(1°%, wy)sirfo(1°+p°, up)}, (5.12)
d4 . .
RUD(p)=2w2dQ(R)J 2 )45(I2—m6)5[(l+p)2—m2D]S|n20(I°,,uU)S|n20(I0+p0,MD). (5.12
o
Considering the gap equatidB.6) we obtain from Eqgs(5.5 and(5.7) the propagator fogp™:
F¢(p)=—i/ {(p2+i8)[KUD(p)+HUD(p)_iSUD(p)]+EUD(p)+iMZSUD(p)
(p?~M?)?Rgp(p)
PR . — , (5.13
(p“—ie)[Kyp(p)+Hup(p) +iSyp(p)]+Eyp(p) —iM“Syp(p)
|
with when p—0 the pinch singularities appearing 8y(p) and
Ro(p) also cancel each other.
M2=(m3—m3)2/(m3+m3). (5.14 (2) my#mp . In this case, we notice that no pinch singu-

larity could appear. This may also be seen from the expres-
The mass ofp~ (¢ ) will be determined by the zero point of SiOIQS (5-21]) and (52-12) gf Sup(P) and Ryp(p) in which
the denominator of ¢ (p). An interesting question is that (“=mg) dL(I+p)°—mp] in the integrands will be equal to

under what conditionp?— 0 is the pole of"® (p) so that be zero ifp=0 andmy# mp . Therefore, we could calculate

6~ and ¢* would become massless bound states. Let ughe propagator fogp~ on the condition that the ghost fields
discuss this problem in two cases ’ with a=2 are omitted completely and obtain

(1) my=mp=mq. Thatis, the two fermion flavors in one by 1"
generation are mass degenerate. In this case, we havel = (P)=IG/21-GL™(p)]

Kuo(P)=KoP).  Hup(P)=HolP),  Sun(P)=Selp). — —il{(p?+12)[Kup(P) + Hup(P) = iSup(P)]
Rup(P)=Ro(P), Eyp(p)=0, andM?=0. Thus -
+Eyp(p) +iM“Syp(p)}. (5.19

Ko(p)+Hq(p)—iSq(p) Equation (5.16 may be obtained approximately from Eq.
(5.13 by assuming that the momentum cutdffin Kp(p)

I'Y (p)=-—i / (p?+ie)

R(zg(P) is large enough to neglect terms containiRg,(p). The
 Ko(p)+Ho(p)+iSo(p) ]’ (5.19 pole of ' (p) is determined by the equation
which has a form similar to the propagai@r.8) of pseudo- ) Eupn(p)+iM2Syp(p) (5.17
scalar bound state except that now no sunQofvith the p*= Kuo(P)+Huo(P)—iSun(p) .

weight mé exists. Therefore, it follows from Ed5.14) that

p2=0 is the single pole of ¢ (p) and¢~ and¢* will be Equation(5.17) shows that at finite temperature it is possible
exactly massless charged bound states — charged Nambat the single pole oF ¢ (p), is not atp?=0 and thus the
Goldstone bosons. In addition, similar to the casd é?, masses ofp~ and¢ ™' are not equal to zeros. However, it is
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seen from the right-hand side of E&.17) that as long as the show double masses due to the effect of “thermal fluctua-
momentum cutoffA is large enough, the single pole of tion” except one of the two flavors being massless, and the
I'* (p) could still be approximately g2=0. In particular, ~two charged scalar bosogs™ will also not be exactly mass-

we notice that wherp?=0 and p°=|p|—0, both Eyp(p) less. However, we find that as long as the momentum cutoff
and S,p(p) in the numerator of the right-hand side of Eq. A o_f _the zero-temperature sef:tors.of the fermion loops is
(5.17) will approach zeros. This means that at a low energysufficiently large or one is dealing with low energy scales of
Sca|el¢7 and ¢+ could still be considered as mass|essthe bound States, then it is still pOSSible approximately to

bound states and identified with charged Nambu-Goldston@btain a single-Higgs-boson mass and almost masgiess
bosons. In this case we can say that the Goldstone theorem is only

valid approximately at a finite temperature. The well-known
top-quark condensate schen® certainly belongs to the lat-
ter case. Whether the appearance of such a situation origi-
We have expounded electroweak symmetry breaking atates from the real-time formalism itself of thermal field
finite temperature in a one-generation fermion condensattheory deserves to be examined further. Nevertheless, our
scheme in the real-time formalism of thermal field theorydiscussions have shown that all possible pinch singularities
and in the fermion bubble approximation. It is proved bycancel each other and do not emerge from the final expres-
means of direct calculations of the propagators for boundgions and this is just the result expected in a real-time ther-
states that, at the temperatdrdelow the symmetry restora- mal field theory. It is worth researching further if the above
tion temperaturd .., it is always possible to obtain a massive results based on the Schwinger-Dyson equation in the real-

VI. CONCLUSIONS

neutral scalar bound sta#2, a massless neutral pseudo- time formalism of thermal field theory could also appear in
scalar bound state®, and two massless charged scalarthe imaginary-time formalism or in an effective potential ap-
bound stategh~ and ¢ " if the two flavors of the one gen- Proach.

eration of fermions are mass degenerate. In this case, we can

precisely identify 2 with the Higgs boson and2, ¢*
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