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Nambu-Goldstone mechanism in real-time thermal field theory
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In a one-generation fermion condensate scheme of electroweak symmetry breaking, it is proved based on the
Schwinger-Dyson equation in real-time thermal field theory in the fermion bubble diagram approximation that,
at finite temperatureT below the symmetry restoration temperatureTc , a massive Higgs boson and three
massless Nambu-Goldstone bosons could emerge from spontaneous breaking of the electroweak group
SUL(2)3UY(1)→UQ(1) if the two fermion flavors in the one generation are mass degenerate; thus, the
Goldstone theorem is rigorously valid in this case. However, if the two fermion flavors have unequal masses,
owing to ‘‘thermal fluctuation,’’ the Goldstone theorem will be true only approximately for a very large
momentum cutoffL in the zero temperature fermion loop or for low energy scales. All possible pinch
singularities are proved to cancel each other, as expected in a real-time thermal field theory.
@S0556-2821~99!07404-4#
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I. INTRODUCTION

Spontaneous symmetry breaking at finite temperature
been investigated extensively@1–6#. However, most researc
by now has concentrated on the discussions of phase tr
tion and critical temperature based on the effective poten
approach at finite temperature, and relatively less work
reported about the theoretical exploration of the Nam
Goldstone theorem@7# at finite temperature, especially i
models of dynamical symmetry breaking such as
Nambu–Jona-Lasinio~NJL! model with four-fermion inter-
actions@7#. Research into the Nambu-Goldstone mechan
at finite temperature could provide us a deeper understan
of the spontaneous breaking of a continuous symmetry
finite temperature and is certainly quite interesting. The k
point of such research lies in verifying the existence
Nambu-Goldstone bosons, i.e., determining the phys
masses of the fermionic scalar and pseudoscalar bound s
which appear as the products of spontaneous symm
breaking. In a model of NJL form, the mass determinat
can be simply made by using Schwinger-Dyson equatio
i.e., calculating directly the gap equation of fermion ma
and the bound state propagators induced by the four-ferm
interactions. On the other hand, it is possible that a scala
pseudoscalar bound state is composed of fermions with
ferent masses or is a combination of the scalar or pseu
scalar bilinears of these fermions@8–10#. Although a con-
ventional effective potential approach is applicable to su
models if one introduces axialiary scalar fields and repla
the four-fermion interactions by Yukawa couplings betwe
axialiary scalar fields and fermion fields@6#, it is unknown,
by the introduction of axialiary scalar fields, whether o
could include the effect of the mass difference of the c
stituent fermions of a bound state. However, we believe
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the Schwinger-Dyson equation can surely do that. Theref
to determine directly the masses of the bound states an
examine fully the effect of the fermion mass difference
finite temperature, we prefer the Schwinger-Dyson equa
at finite temperature to a temperature effective potential.
the calculations will be conducted in the fermion bubble d
gram approximation which amounts to the leading order
the 1/N expansion.

Since the determination of physical masses of the bo
states is the key point of our research; it is certainly m
convenient to take the real-time formalism of thermal fie
theory@4# than the imaginary-time formalism. In this way w
will be able to avoid the cumbersome analytic continuat
which is necessary in the latter formalism. However, aga
because of the possible mass differences of the constit
fermions inside the bound states, the use of the real-t
formalism will present a new question, i.e., whether this f
malism is consistent with Nambu-Goldstone mechanism
a simple model with UL(N)3UR(N)-invariant four-fermion
interactions, it has been proved that in the real-time form
ism of thermal field theory the Nambu-Goldstone mechan
works indeed, but it is under the assumption that the fer
ons are of equal masses and equal chemical potentials@11#.
In this paper, among other things, to examine further
stated consistency, we will consider a more realis
model—a one-generation fermion condensate scheme
electroweak symmetry breaking@9#. The extension to the
many-generation case@10# is direct.

The paper is arranged as follows. In Sec. II we present
model, give its Lagrangian, and derive the gap equation
finite temperature. In Secs. III, IV, and V we will respe
tively calculate propagators of the scalar, the pseudosc
and the charged-scalar bound states at finite temperatur
means of the Schwinger-Dyson equations satisfied by
fermionic four-point Green functions, determine the bou
states’ masses, and discuss the pinch singularity prob
which is especially related to the real-time formalism of th
©1999 The American Physical Society07-1
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mal field theory. Finally, in Sec. VI we come to our concl
sions.

II. ONE-GENERATION FERMION CONDENSATE MODEL
AND GAP EQUATION

In this model of electroweak symmetry breaking, we ha
one generation ofQ fermions forming a SUL(2)3UY(1)
doublet (U,D) and are assigned in the representationR of
the color group SUc(3) with the dimensiondQ(R). The
symmetry breaking is induced by the effective four-fermi
interactions among theQ fermions below some high momen
tum scaleL which, in real-time thermal field theory, ar
described by the Lagrangian@4,9,10#

L4F5L 4F
S 1L 4F

P 1L 4F
C . ~2.1!

The neutral scalar couplings

L 4F
S 5

1

4 (
a51

2

(
Q,Q8

~21!a11gQ8Q~Q8̄Q8!~a!~Q̄Q!~a!,

gQ8Q5gQ8Q8
1/2 gQQ

1/2 , Q,Q85U,D, ~2.2!

where a51 denotes physical fields anda52 ghost fields.
The physical fields and the ghost fields interact only throu
the propagators. The neutral pseudoscalar couplings

L 4F
P 5

1

4 (
a51

2

(
Q,Q8

~21!a11gQ8Q
8 ~Q8̄ig5Q8!~a!~Q̄ig5Q!~a!,

gQ8Q
8 5~21! I

Q8
3

2I Q
3
gQ8Q , Q,Q85U,D, ~2.3!

and I Q
3 denotes the third component of the weak isospin

the Q fermions. The charged scalar couplings

L 4F
C 5

G

2 (
a51

2

~21!a11~D̄G1U !~a!~ŪG2D !~a!,

G65
1

A2
@cosw2sinw6~cosw1sinw!g5#,

~2.4!

G5gUU1gDD , cos2w5gUU /G,

sin2w5gDD /G.

We indicate that Lagrangian~2.1! is the real-time therma
field theory version of the following zero-temperature fou
fermion Lagrangian forn51 @10#:
06500
e

h

f

L 4F
0 5

G

4
@~fS

0!21~fP
0 !212f1f2#, ~2.5!

where

fS
05cosw~ŪU !~1!1sinw~D̄D !~1!,

fP
0 5cosw~Ūig5U !~1!2sinw~D̄ig5D !~1!, ~2.6!

f25~ŪG2D !~1!, f15~D̄G1U !~1!

are, respectively, the configurations of the physical neu
scalar, neutral pseudoscalar, and charged scalar bound s
which are expressed by physical fermion fields w
a51. In zero-temperature field theory, one assumes
L 4F

S will lead to the vacuum expectation valu

(Q5U,DgQQ^(Q̄Q)(1)&Þ0 and this will induce spontaneou
breaking of electroweak group. At finite temperatureT and
in the real-time formalism of thermal field theory
we will assume the thermal expectation val
(Q5U,DgQQ^(Q̄Q)(1)&TÞ0, where only the physical fields
(a51) are considered@12#. We thus obtain the mass of th
Q fermion,

mQ~T,m![mQ52
1

2
gQQ

1/2 (
Q85U,D

gQ8Q8
1/2 ^~Q8̄Q8!~1!&T ,

~2.7!

which will lead to the relation

mQ /gQQ
1/2 5mQ8 /gQ8Q8

1/2 ~2.8!

and the gap equation at finite temperatureT,

15 (
Q5U,D

gQQI Q , ~2.9!

with

I Q52
1

2mQ
^~Q̄Q!~1!&T5

dQ~R!

2mQ
E d4l

~2p!4
tr@ iS11~ l ,mQ!#

52dQ~R!E d4l

~2p!4F i

l 22mQ
2 1 i«

22pd~ l 22mQ
2 !sin2u~ l 0,mQ!G , ~2.10!

where we have used the thermal propagator of fermion in
matrix form
7-2
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S iS11~ l ,mQ!, iS12~ l ,mQ!

iS21~ l ,mQ!, iS22~ l ,mQ!
D 5S i /~ ł 2mQ1 i«!, 0

0, 2 i /~ ł 2mQ2 i«!
D 22p~ ł 1mQ!d~ l 22mQ

2 !

3S sin2u~ l 0,mQ!,
1

2
ebmQ/2 sin 2u~ l 0,mQ!

2
1

2
e2bmQ/2 sin 2u~ l 0,mQ!, sin2u~ l 0,mQ!

D , ~2.11!
ie
l

d
er

en
n

-

d

n

with the chemical potentialmQ of the Q fermion and the
denotations

sin 2 u~ l 0,mQ!5
u~ l 0!

exp@b~ l 02mQ!#11

1
u~2 l 0!

exp@b~2 l 01mQ!#11
~2.12!

and b51/T. The gap equation~2.9! could be satisfied
merely at lower temperatureT than Tc , where Tc is the
critical temperature above which Eq.~2.9! is no longer valid
and thus electroweak symmetry restoration is impl
@12,13#. In view of this, in the following discussion we wil
assumeT,Tc so that the gap equation~2.9! can always be
used.

III. SCALAR BOUND STATE MODE

The propagators for fermionic bound states correspon
the four-point Green functions of the fermions. Since th
exist two types of four-fermion interaction vertices (a
51,2) in real-time thermal field theory, the four-point Gre
functions will also be a matrix with the row and the colum
denoted by the indexa. The four-point functions for the tran
sition from (Q̄Q)(a) to (Q8̄Q8)(b) can be denoted by

GS
Q8bQa(p); then, from Eq.~2.2!, they will obey the follow-

ing linear algebraic equations@10#:

(
c

(
Q9

GS
Q8bQ9c~p!@dQ9Qdca2NQ9

ca
~p!gQ9Q~21!a11#

5
i

2
gQ8Qdba~21!a11, Q8,Q5U,D, b,a51,2,

~3.1!

where p is the four-momentum of the bound state an
22iNQ

ca represents the contribution of theQ-fermion loop
with an a-type and ac-type scalar coupling vertex@Eq.
~2.2!#, i.e.,

NQ
ca~p!52

i

2
dQ~R!E d4l

~2p!4
tr@ iSca~ l ,mQ!iSac

3~ l 1p,mQ!#. ~3.2!
06500
d

to
e

Equations~3.1! have the solutions

GS
Q8bQa~p!5

i

2DS~p!
gQ8QH S db1F11(

Q
gQQNQ

22~p!G
2db2(

Q
gQQNQ

21~p! D da1

2S db2F12(
Q

gQQNQ
11~p!G

1db1(
Q

gQQNQ
12~p! D da2J ,

Q8,Q5U,D, b,a51,2, ~3.3!

where the coefficient determinant of Eqs.~3.1!,

DS~p!5F12(
Q

gQQNQ
11~p!GF11(

Q
gQQNQ

22~p!G
1F(

Q
gQQNQ

12~p!GF(
Q

gQQNQ
21~p!G . ~3.4!

The propagator for the physical scalar bound statefS
0 ex-

pressed in Eq.~2.6! is

GfS
0
~p!5cos2 wGS

U1U1~p!1sin2 wGS
D1D1~p!

1sinw cosw@GS
D1U1~p!1GS

U1D1~p!#

5 iGF11(
Q

gQQNQ
22~p!G Y 2DS~p!. ~3.5!

The problem is reduced to the calculation ofNQ
ab(p). By

using the formula

1

X1 i«
5

X

X21«2
2 ipd~X! ~3.6!

and through direct but rather lengthy derivation we obtai

NQ
11~p!5I Q1

1

2
~p224mQ

2 1 i«!@KQ~p!1HQ~p!2 iSQ~p!#

52@NQ
22~p!#* ,
7-3
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NQ
12~p!5NQ

21~p!52
i

2
~p224mQ

2 !RQ~p!, ~3.7!

where

KQ~p!522dQ~R!E id4l

~2p!4

1

~ l 22mQ
2 1 i«!@~ l 1p!22mQ

2 1 i«#

5
dQ~R!

8p2 E
0

1

dxS ln
L21MQ

2

MQ
2

2
L2

L21MQ
2 D , MQ

2 5mQ
2 2p2x~12x!, ~3.8!

with the four-dimension Euclidean momentum cutoffL,

HQ~p!54pdQ~R!E d4l

~2p!4H ~ l 1p!22mQ
2

@~ l 1p!22mQ
2 #21«2

1~p→2p!J d~ l 22mQ
2 !sin2 u~ l 0,mQ!

5
1

16p2upY u E0

`du lYuu lYu
vQl

F ln
~p222vQlp

012u lYuupY u!21«2

~p222vQlp
012u lYuupY u!21«2

1~p0→2p0!G
3F 1

exp@b~vQl2mQ!#11
1

1

exp@b~vQl1mQ!#11G , vQl5AlY21mQ
2 , ~3.9!

SQ~p!54p2dQ~R!E d4l

~2p!4
d~ l 22mQ

2 !d@~ l 1p!22mQ
2 #@sin2 u~ l 01p0,mQ!cos2 u~ l 0,mQ!

1cos2 u~ l 01p0,mQ!sin2 u~ l 0,mQ!#, ~3.10!

and

RQ~p!52p2dQ~R!E d4l

~2p!4
d~ l 22mQ

2 !d@~ l 1p!22mQ
2 #sin 2u~ l 0,mQ!sin 2u~ l 01p0,mQ!. ~3.11!

In Eq. ~3.9! the limit «→0 will be taken only after the total calculations are completed. Substituting Eq.~3.7! into Eq. ~3.5!
and using the gap equation~2.9! and the relation

gQQ /G5mQ
2 /(

Q
mQ

2 ~3.12!

derived from Eq.~2.8!, we obtain

GfS
0
~p!52 i(

Q
mQ

2 Y H (
Q

~p224mQ
2 1 i«!mQ

2 @KQ~p!1HQ~p!2 iSQ~p!#

2

F(
Q

~p224m2!mQ
2 RQ~p!G2

(
Q

~p224m22 i«!mQ
2 @KQ~p!1HQ~p!1 iSQ~p!#

J . ~3.13!

The mass squaredmf
S
0

2
is determined by the pole’s position ofGfS

0
(p), i.e., by the equation

H(
Q

~p224mQ
2 !mQ

2 @KQ~p!1HQ~p!#J 2

1H(
Q

~p224mQ
2 !mQ

2 SQ~p!J 2

5H(
Q

~p224mQ
2 !mQ

2 RQ~p!J 2

. ~3.14!

We notice that, whenL2@MQ
2 ,
065007-4
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KQ~p!5
dQ~R!

8p2 S ln
L2

mQ
2

11D 2
dQ~R!

8p2 5 AlQ21arctan
1

AlQ21
if lQ.1,

A12lQ ln
11A12lQ

12A12lQ

, if lQ,1,

lQ54mQ
2 /p2. ~3.15!

HenceKQ(p) is real and positive definite. The same conclusion is true withHQ(p) andSQ(p) since the integrands in Eqs
~3.9! and ~3.10! are real and positive, but not applicable toRQ(p). In addition, we have the inequalities

SQ~p!6RQ~p!54p2dQ~R!E d4l

~2p!4
d~ l 22mQ

2 !d@~ l 1p!22mQ
2 #sin2@u~ l 01p0,mQ!6u~ l 0,mQ!#>0. ~3.16!

Let

(
Q

mQ
2 KQ~p!5k, (

Q
mQ

2 HQ~p!5h, (
Q

mQ
2 SQ~p!5s, (

Q
mQ

2 RQ~p!5r ,

(
Q

mQ
4 KQ~p!5 k̃, (

Q
mQ

4 HQ~p!5h̃, (
Q

mQ
4 SQ~p!5 s̃, (

Q
mQ

4 RQ~p!5 r̃ . ~3.17!

Then Eq.~3.14! can be rewritten as

@~k1h!p224~ k̃1h̃!#21~sp224s̃!25~rp224r̃ !2. ~3.18!

It has the solutions

p254
@~k1h!~ k̃1h̃!1ss̃2r r̃ #

~k1h!21s22r 2
$16A%, A5H 12

@~k1h!21s22r 2#@~ k̃1h̃!21 s̃22 r̃ 2#

@~k1h!~ k̃1h̃!1ss̃2r r̃ #2 J 1/2

. ~3.19!

Equation~3.19! shows that we could obtain two differentmf
S
0

2
. However, we indicate that, first of all, in the special case wh

only single-flavorQ fermions exist~e.g., in the top-quark condensate scheme@8#! or all themQ are equal~mass degenerate!,
the A will be identical to zero and we still have only a singlemf

S
0. Next, in general case, if the momentum cutoffL is large

enough, then, considering Eq.~3.16!, we always have

~k1h!2@s22r 2.0, ~ k̃1h̃!2@ s̃22 r̃ 2.0, ~k1h!~ k̃1h̃!@ss̃2r r̃ ,

and thusA'0. In fact,AÞ0 can be explained as thermal fluctuation of the squared mass offS
0 . In any way, we may conside

that physically the mass offS
0 is determined by the equation

mf
S
0

2
5p2.

4

~k1h!21s22r 2
@~k1h!~ k̃1h̃!1ss̃2r r̃ #up25m

fS
0

2 5
4~k1h!~ k̃1h̃!12@~s1r !~ s̃2 r̃ !1~ s̃1 r̃ !~s2r !#

~k1h!21s22r 2 U
p25m

fS
0

2

.

~3.20!
l

ure

.

Based on Eq.~3.16! we haves2r>0 ands̃2 r̃>0; thus it is
deduced from Eq.~3.20! that

2~mQ!min<mf
S
0<2~mQ!max, ~3.21!

where (mQ)min and (mQ)max are, respectively, the minima
06500
and the maximal mass among theQ fermions. The limitation
~3.21! is formally the same as the one at zero temperat
@10#, but it should be understood thatmQ[mQ(T,mQ) is
now theQ-fermion mass atTÞ0.

Whenp→0, by Eq.~3.9!, HQ(p)50 and, by Eqs.~3.10!
and~3.11!, SQ(p) andRQ(p) contain the pinch singularities
However, we obtain from Eq.~3.16! that
7-5
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@SQ~p!2RQ~p!#up→050 or ~ s̃2 r̃ !up→050
~3.22!

and this will make the pinch singularities contained in t

denominator ofGfS
0
(p) cancel each other. This result is ju

expected in real-time thermal field theory.
In addition, we also indicate that it is easy to verify by E

~3.3! that, similar to the zero-temperature case, for the
thogonal combination tofS

0 ,

f̃S
052sinw~ŪU !~1!1cosw~D̄D !~1!, ~3.23!

its propagatorGf̃S
0
(p)50, i.e., the configurationf̃S

0 , does
not exist. We only have the single neutral scalar bound s
fS

0 left.

IV. PSEUDOSCALAR BOUND STATE MODE

The calculation of the propagator for pseudoscalar bo
state is similar to the one for scalar bound state. The fo
point function for transition from (Q̄ig5Q)(a) to

(Q8̄ig5Q8)(b) is denoted byGP
Q8bQa ; then from Eq.~2.3!

they will obey the linear algebraic equations@10#

(
c

(
Q9

GP
Q8bQ9c~p!@dQ9Qdca2NQ95

ca
~p!gQ9Q

8 ~21!a11#

5
i

2
gQ8Q
8 dba~21!a11, Q8,Q5U,D, b,a51,2.

~4.1!

We have used the denotation

NQ5
ca ~p!52

i

2
dQ~R!E d4l

~2p!4

3tr@ ig5iSca~ l ,mQ!ig5iSac~ l 1p,mQ!#,

~4.2!

and 22iNQ5
ca (p) represents the contribution of th

Q-fermion loop with ana-type and ac-type pseudoscala
coupling vertex@Eq. ~2.3!#. By comparing Eqs.~3.1! with
Eqs. ~4.1!, it is easy to find that the solutions of Eqs.~4.1!
can be obtained from the solutions~3.3! by the substitutions

NQ
ca~p!→NQ5

ca ~p!, gQ8Q→gQ8Q
8 .
06500
.
r-

te

d
r-

Thus

GP
Q8bQa~p!5

i

2DS~p!
gQ8Q
8 H S db1F11(

Q
gQQNQ5

22 ~p!G
2db2(

Q
gQQNQ5

21 ~p! D da1

2S db2F12(
Q

gQQNQ5
11 ~p!G

1db1(
Q

gQQNQ5
12 ~p! D da2J ,

Q8,Q5U,D, b,a51,2, ~4.3!

where

DP~p!5F12(
Q

gQQNQ5
11 ~p!GF11(

Q
gQQNQ5

22 ~p!G
1F(

Q
gQQNQ5

12 ~p!GF(
Q

gQQNQ5
21 ~p!G . ~4.4!

The propagator of the physical neutral pseudoscalar bo
statefP

0 defined in Eq.~2.6! is

GfP
0
~p!5cos2 wGP

U1U1~p!1sin2wGP
D1D1~p!

2sinw cosw@GP
D1U1~p!1GP

U1D1~p!#

5 iGF11(
Q

gQQNQ5
22 ~p!G Y 2DP~p!. ~4.5!

For the orthogonal combinationf̃P
0 to fP

0 , we have

Gf̃P
0
~p!50, f̃P

0 5sinw~Ūig5U !~1!1cosw~D̄ig5D !~1!;
~4.6!

hence, only the single neutral pseudoscalar bound statefP
0

exists. The calculations ofNQ5
ab in Eq. ~4.2! are similar to the

ones ofNQ
ab in Eq. ~3.2! and the results can be obtained b

the substitutions

NQ5
ab ~p!5NQ

ab~p!up224m
Q
2→p2. ~4.7!

By means of the gap equation~2.9! and the relation~3.12!
we obtain from Eqs.~4.5!, ~4.4!, ~4.7!, and~3.7! that
GfP
0
~p!52 i(

Q
mQ

2 Y ~p21 i«!H (
Q

mQ
2 @KQ~p!1HQ~p!2 iSQ~p!#2

F(
Q

mQ
2 RQ~p!G2

(
Q

mQ
2 @KQ~p!1HQ~p!1 iSQ~p!#

J
52 i(

Q
mQ

2 Y ~p21 i«!S k1h2 is2
r 2

k1h1 isD . ~4.8!
7-6
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We notice that whenp→0, h50 and s5r based on Eq.
~3.21!; so the terms containing the pinch singularities in t

denominator of Eq.~4.8! will cancel each other andGfP
0
(p)

becomes finite. The expression~4.8! shows thatp250 is a

single pole of the propagatorGfP
0
(p) and thusfP

0 is a mass-
less neutral pseudoscalar composite particle.

It is interesting to indicate that whenp250, SQ(p)
5RQ(p)50 in Eqs.~3.10! and ~3.11! since the constraints
l 25mQ

2 ,(l 1p)25mQ
2 , and p250 could not be submitted

simultaneously and in addition, based on Eq.~3.9!, also
HQ(p)50; so we will have

GfP
0
~p!52 i(

Q
mQ

2 Y ~p21 i«!k, if p2→0, ~4.9!

which has the identical form to the propagator for the neu
pseudoscalar bound state atT50 @10#, except that the
Q-fermion massmQ(T50) is replaced bymQ(T,mQ). The
result implies that the mass offP

0 is not affected by a finite
temperature completely.

V. CHARGED SCALAR BOUND STATE MODE

For the calculation of the propagator for charged sca
bound state, a new feature is that the fermion loop is con
tuted by the propagators of theU and D fermions possibly
with different masses. Denote the four-point function for t
transition from (ŪG2D)(a) to (D̄G1U)(b) by Gf2

ba (p); then,
based on Eq.~2.4!, they will obey the linear algebraic equa
tions

(
c51,2

Gf2
bc

~p!@dca2Lca~p!G~21!a11#

5 i
G

2
dba~21!~a11!, b,a51,2, ~5.1!

where
06500
l

r
ti-

Lca~p!52
i

2
dQ~R!E d4l

~2p!4

3tr@G2iSca~ l ,mU!G1iSac~ l 1p,mD!# ~5.2!

and 22iL ca(p) represents the contribution of the fermio
loop composed ofU-fermion and D-fermion propagators
with ana-typeG1 coupling vertex and ac-typeG2 coupling
vertex. The solutions of Eqs.~5.1! are

Gf2
ba

~p!5
iG

2DC~p!
„$@11GL22~p!#db12GL21~p!db2%da1

2$@12GL11~p!#db21GL12~p!db1%da2
…, ~5.3!

where

DC~p!5@12GL11~p!#@11GL22~p!#1G2L12~p!L21~p!.
~5.4!

The propagator for physical charged scalar bound statef2 is

Gf2
~p![Gf2

11
~p!5 iG/2F12GL11~p!1G2

L12~p!L21~p!

11GL22~p!
G ,

~5.5!

and for the orthogonal combinationf̃2 to f2 we have

Gf̃2
~p!50,

f̃25
1

A2
Ū@cosw1sinw1~cosw2sinw!g5#D, ~5.6!

sinceL 4F
C contains no configurationf̃2. It is noticed that

f2 and its Hermitian conjugatef1 have the same propaga
tor and they become the only two charged scalar bo
states. Direct calculations give
L11~p!5
1

G (
Q

gQQI Q1
~p21 i«!

2
@KUD~p!1HUD~p!2 iSUD~p!#1

1

2FEUD~p!1 i
~mU

2 2mD
2 !2

mU
2 1mD

2
SUD~p!G52@L22~p!#* ,

L12~p!52
i

2F p22
~mU

2 2mD
2 !2

mU
2 1mD

2 GRUD~p!exp@b~mU2mD!/2#, ~5.7!

L21~p!52
i

2F p22
~mU

2 2mD
2 !2

mU
2 1mD

2 GRUD~p!exp@2b~mU2mD!/2#,

where

KUD~p!5
dQ~R!

4p2 E
0

1

dx
mU

2 ~12x!1mD
2 x

mU
2 1mD

2 F ln
L21MUD

2 ~p!

MUD
2 ~p!

2
L2

L21MUD
2 ~p!

G , MUD
2 ~p!5mU

2 ~12x!1mD
2 x2p2x~12x!,

~5.8!
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HUD~p!54pdQ~R!E d4l

~2p!4H ~ l 1p!22mD
2

@~ l 1p!22mD
2 #21«2

d~ l 22mU
2 !sin2 u~ l 0,mU!1~p→2p,mU↔mD ,mU↔mD!J ,

~5.9!

EUD~p!54pdQ~R!
mU

2 2mD
2

mU
2 1mD

2 E d4l

~2p!4H @~ l 1p!22mU
2 #@~ l 1p!22mD

2 #

@~ l 1p!22mD
2 #21«2

d~ l 22mU
2 !sin2 u~ l 0,mU!

2~p→2p,mU↔mD ,mU↔mD!J , ~5.10!

SUD~p!54p2dQ~R!E d4l

~2p!4
d~ l 22mU

2 !d@~ l 1p!22mD
2 #$sin2 u~ l 0,mU!cos2 u~ l 01p0,mD!

1cos2u~ l 0,mU!sin2u~ l 01p0,mD!%, ~5.11!

RUD~p!52p2dQ~R!E d4l

~2p!4
d~ l 22mU

2 !d@~ l 1p!22mD
2 #sin 2u~ l 0,mU!sin 2u~ l 01p0,mD!. ~5.12!

Considering the gap equation~2.6! we obtain from Eqs.~5.5! and ~5.7! the propagator forf2:

Gf2
~p!52 i Y H ~p21 i«!@KUD~p!1HUD~p!2 iSUD~p!#1EUD~p!1 iM̄ 2SUD~p!

2
~p22M̄2!2RUD

2 ~p!

~p22 i«!@KUD~p!1HUD~p!1 iSUD~p!#1EUD~p!2 iM̄ 2SUD~p!
J , ~5.13!
f
t

u

e
ha

m

u-
res-

e
s

.

le

is
with

M̄25~mU
2 2mD

2 !2/~mU
2 1mD

2 !. ~5.14!

The mass off2(f1) will be determined by the zero point o
the denominator ofGf2

(p). An interesting question is tha
under what conditionsp2→0 is the pole ofGf2

(p) so that
f2 and f1 would become massless bound states. Let
discuss this problem in two cases.

~1! mU5mD5mQ . That is, the two fermion flavors in on
generation are mass degenerate. In this case, we
KUD(p)5KQ(p), HUD(p)5HQ(p), SUD(p)5SQ(p),
RUD(p)5RQ(p), EUD(p)50, andM̄250. Thus

Gf2
~p!52 i Y ~p21 i«!FKQ~p!1HQ~p!2 iSQ~p!

2
RQ

2 ~p!

KQ~p!1HQ~p!1 iSQ~p!
G , ~5.15!

which has a form similar to the propagator~4.8! of pseudo-
scalar bound state except that now no sum ofQ with the
weight mQ

2 exists. Therefore, it follows from Eq.~5.14! that

p250 is the single pole ofGf2
(p) andf2 andf1 will be

exactly massless charged bound states — charged Na

Goldstone bosons. In addition, similar to the case ofGfP
0
,

06500
s

ve

bu-

when p→0 the pinch singularities appearing inSQ(p) and
RQ(p) also cancel each other.

~2! mUÞmD . In this case, we notice that no pinch sing
larity could appear. This may also be seen from the exp
sions ~5.11! and ~5.12! of SUD(p) and RUD(p) in which
d( l 22mU

2 )d@( l 1p)22mD
2 # in the integrands will be equal to

be zero ifp50 andmUÞmD . Therefore, we could calculat
the propagator forf2 on the condition that the ghost field
with a52 are omitted completely and obtain

Gf2
~p!5 iG/2@12GL11~p!#

52 i /$~p21 i«!@KUD~p!1HUD~p!2 iSUD~p!#

1EUD~p!1 iM̄ 2SUD~p!%. ~5.16!

Equation ~5.16! may be obtained approximately from Eq
~5.13! by assuming that the momentum cutoffL in KUD(p)
is large enough to neglect terms containingRUD

2 (p). The

pole of Gf2
(p) is determined by the equation

p252
EUD~p!1 iM̄ 2SUD~p!

KUD~p!1HUD~p!2 iSUD~p!
. ~5.17!

Equation~5.17! shows that at finite temperature it is possib
that the single pole ofGf2

(p), is not atp250 and thus the
masses off2 andf1 are not equal to zeros. However, it
7-8
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seen from the right-hand side of Eq.~5.17! that as long as the
momentum cutoffL is large enough, the single pole o
Gf2

(p) could still be approximately atp250. In particular,
we notice that whenp250 and p05upY u→0, both EUD(p)
and SUD(p) in the numerator of the right-hand side of E
~5.17! will approach zeros. This means that at a low ene
scale, f2 and f1 could still be considered as massle
bound states and identified with charged Nambu-Goldst
bosons.

VI. CONCLUSIONS

We have expounded electroweak symmetry breaking
finite temperature in a one-generation fermion conden
scheme in the real-time formalism of thermal field theo
and in the fermion bubble approximation. It is proved
means of direct calculations of the propagators for bou
states that, at the temperatureT below the symmetry restora
tion temperatureTc , it is always possible to obtain a massiv
neutral scalar bound statefS

0 , a massless neutral pseud
scalar bound statefP

0 , and two massless charged sca
bound statesf2 andf1 if the two flavors of the one gen
eration of fermions are mass degenerate. In this case, we
precisely identifyfS

0 with the Higgs boson andfP
0 , f7

with the three Nambu-Goldstone bosons which appear as
products of the spontaneous breaking of electroweak gr
SUL(2)3UY(1)→UQ(1). In other words, the Goldston
theorem is valid rigorously in the fermion-mass-degener
case. On the other hand, when the two fermion flavors h
unequal masses, we have seen that the Higgs boson
,

06500
y

e

at
te

d

r

an

he
p

te
e
ill

show double masses due to the effect of ‘‘thermal fluct
tion’’ except one of the two flavors being massless, and
two charged scalar bosonsf7 will also not be exactly mass
less. However, we find that as long as the momentum cu
L of the zero-temperature sectors of the fermion loops
sufficiently large or one is dealing with low energy scales
the bound states, then it is still possible approximately
obtain a single-Higgs-boson mass and almost masslessf7.
In this case we can say that the Goldstone theorem is o
valid approximately at a finite temperature. The well-know
top-quark condensate scheme@8# certainly belongs to the lat
ter case. Whether the appearance of such a situation o
nates from the real-time formalism itself of thermal fie
theory deserves to be examined further. Nevertheless,
discussions have shown that all possible pinch singulari
cancel each other and do not emerge from the final exp
sions and this is just the result expected in a real-time th
mal field theory. It is worth researching further if the abo
results based on the Schwinger-Dyson equation in the r
time formalism of thermal field theory could also appear
the imaginary-time formalism or in an effective potential a
proach.
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