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Nambu—Jona-Lasinio model in a magnetic field with variable direction
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Homogeneous magnetic fields are known to act as strong catalysts of chiral symmetry breaking. The same
trend is observed for a large class of magnetic fields with constant direction. This sort of stability with respect
to the external field profile suggests that dynamical mass generation can really occur in some actual experi-
mental conditions. Obviously, in order to ascertain the reliability of such a scenario, one should go beyond the
simple background configurations that have been discussed up to now in the literature. Motivated by this
consideration, we study the Nambu—Jona-Lasinio model minimally coupled to a background magnetic field
with variable direction. For the chosen configuration we observe no trend to favor the massive phase. With
respect to the zero-field case a larger coupling constant is required to break the chiral symmetry of the model.
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I. INTRODUCTION notable result derived by Aharonov, Casher, and Jackiw
[14,19 (ACJ), according to which the existence of zero-
In the last decade, the influence of background fields omnergy modes is ensured for any magnetic field with a fixed
the mechanism of chiral symmetry breaking has receivedlirection. This feature has been used 12] to discuss the
much attention. This interest was partly motivated by theNJL model in the presence of the fieB,=0,B,=0,B,
anomalous*e” peaks observed in heavy-ion collisions by =B(y). As in the uniform case, the associated “gap equa-
the EPOS and ORANGE Collaborations at GEll In fact, a  tion” admits nontrivial solutions corresponding to a massive
number of author$2,3] attributed the origin of such struc- phase. Moreover, it turns o{iL6] that the presence of gra-
tures to the formation of a new phase of QED, in which thegients can be absorbed by simply introducing an effective
electron mass acquires a dynamical contribution; the transinagnetic field defined as the sum of the square moduli of the
tion from the conventional phase to the new one should b%round-state wave functions. As pointed out by Jadkifi,
triggered by the_ @ntense.fields surrounding the golliding ioNghe presence of zero-energy modes in the spectrum of a Dirac
(see[4] for a critical review and a somewhalt different per- harticle interacting with unidirectional magnetic fields is
spective. The actual existence of the narr@ve  peaksis . ainy due to a quantum-mechanical supersymmetry, that of

Szlgsljeng?b%egztgg ?mr)]td'reOfreCs:r:tS(taﬁ;hjnih)lljgogtitgﬂonv?/\;]vi Ct e second-order Dirac Hamiltonian describing the electronic
P P q otion in the transverse plane perpendiculaBtdf we con-

fits the experimental data. At any rate the physics of strong. : ! . .
fields, be it accompanied or not by a new phase, is an inte%'der an arbitrary external field, for which the separation of

esting subject by itself, and it may also have implications forvarlableg IS no longer possible, then we lose not only ”a’.‘s'

astrophysical phenomen®,6], such as the generation of Iatlo_nal invariance but also s_upers_ymmetry._From t_h|s p0|_nt

gamma ray bursts. of view, the backgrou_nd conflg_uratlon_s co_nadered in the I!t-_
In the literature, the dynamical generation of mass in the®rature appear as quite except_lonal situations. Therefore, it is

presence of electromagnetic background fields has been ifXtremely important to reconsider the question of spontane-

vestigated for QED and for some popular four-fermion inter-OUs mass generation under more general assumptions, where

actions, namely the Nambu—Jona-Lasinio mddéland the  the “fixed direction” hypothesis is relaxed and where new

Gross-Neveu ong8]. Generally speaking, it turns out that phenomena and new trends are very likely to appear. In order

magnetic fields act as strong catalysts for chiral symmetryo shed light on this point, we shall discuss the NJL model in

breaking[9—11]. In the Nambu—Jona-LasiniiNJL) model, the following axial symmetric background configuration:

for instance, one finds the interesting result that spontaneous

mass generation takes place even for arbitrarily small four-

fermion coupling constant&@lthough in this case the gener- o

ated mass is small as wellUp to now, the problem has been B,=B,=0, B,=—, D

usually analyzed for unidirectional magnetic fields. In the r

homogeneous field case, the breaking of chiral symmetry can

be understood10] as a consequence of the dimensional re-

ductionD— (D —2) in the dynamics of fermion pairing in a Where cylindrical coordinates are used ant a constantin

magnetic field. The occurrence of this dimensional reductionvhich we absorb the electric chajgét is well known that

is intimately connected with the fact that the lowest Landauthe Dirac equation can be exactly solved only for an ex-

levels form a degenerate ground state with zero enéirgy tremely limited class[17] of external magnetic fields.

the massless limit The generalization to inhomogeneous butAmong those with variable direction, our choi¢® is noth-

unidirectional configurationl2,13 can be achieved using a ing but the simplest one.
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Il. GENERAL FORMALISM 2.2 w 1
— —M-°s )
Before entering the details of the computation, we find it g L/Azdse F(six) g2
appropriate to recall some general considerations about the
NJL model in the presence of external electromagnetic fields. + A2 MAZ_ m2E,(m?/A?), 8
Our starting point is the gap equation which has the form
[7,9] that is
m=2ig tr Sx(x,x;m), 2 272 m2 A2 1 (= 2

—=1-——log—+—| dse "
. . . _ gA? A? % A%Jo
whereS,(x,x;m) is the fermion propagator in the prescribed

four vector potential ,(x). Strictly speaking, the gap equa-

tion should be considered as a functional equation in the X

unknown function m(x). Accordingly, the propagator

Sa(x,x;m) should be computed ir_‘ terms of .the arbitrary | the zero-field case the third term in the right-hand side
space-dependent masgx). To avoid such a difficult task, (rHs) of this equation disappears, thereby giving the well-

we follow [12] by keepingm fixed while computing the . qwn result of the original NJL model. In the constant field
closed fermion loop involved in the gap equation. Using theaqe e are faced with a completely different behavior of
“proper time” formalism introduced by Schwinger, the trace F(s:r) in the larges domain. More precisely, fos> 1/eB,

of the Green’s functiorB,(x,x) can be written as we see that

1
F(six)—— +0(m?/A?). 9
S

» m eB
tr Sp(X,X;m)= —i l/Azdse*mZSFF(s;x). (3 Fcons(s;x)~?. (10
an
This feature has a dramatic consequence in the competition
between massless and massive phases. Indeed, the
asymptotic behavior of Eq10) corresponds to the following
contribution to the trace of the fermion propagator:

232 + _ s meB [ eB
N EV P (xX)P (x)e” <°, (4) trSA(x,x;m)~—iF|n( )

€% being the eigenvalue of the second-order Dirac Hamilinserting this in the gap equation, one obtains
tonian. For a free fermion we have

Here 1A 2 is a smalls cutoff which regularizes the ultravio-
let divergence of the closed fermion loop aRds;x) is a
weighted sum over the eigenfunctions of the system:

m2

F(s;x)= (11

—=14+—In—. (12
1 m

Fo(six)=—, ©)

0

Now the RHS is logarithmically divergent as— 0, so that
we can find nontrivial solutions to the gap equation even for
arbitrarily small four-fermion coupling constant. A similar
result is obtained for any unidirectional background mag-
netic field, where the separation of motion along the field
6) direction enables us to write

whereas a fermion interacting with a uniform magnetic field
B corresponds to

1
Feonst $iX) = —2eBscotr’(eBs).
S

. _ F(s:)= —f(s:%). (13
For s small F(s;x) behaves as 47 in both cases. This is S

quite natural since the smallregime corresponds to ultra-
violet contributions to the trace of the fermion propagator. In
order to separate this ultraviolet divergence, the gap equatiorf
will be written in the form

Heref(s;x) is a weighted sum over the wave functions de-
ribing the electronic motion in the transverse plaxg:

s =2 ¢, (e, (14)
% 7
m=2g dse‘mzsi F(S'x)—i . . . . .
1/A2 472 ' 52 ¥, being the solution of the following eigenvalue equation:
©ds_ ,.om [(px—eA)?+(py—eA)?—eB(x.Y)Za]i,= €4,
+ —e "t —, (7) (15
A2 g2 472
The factor 18 in Eq. (13) appears after integration ovpy.
which gives From the works of Aharonov, Casher, and Jacki#,15 we
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know that Eq(15) admits a set of zero-energy modes whosey,_,=2(2u+1)(2pr)* 1?2
number is proportional to the total magnetic flux. Moreover,
when this flux is infinite, there exists an energy gap separat- Xexp(—ipr)®(u—ivg,2u,2ipr). (22)
ing the excited levels from the degenerate ground state. From .
these lowest energy levels the functiéifs:x) receives a USing Egs.(16)—(22), the weighted sunF(s;r) over the
contribution proportional to & On the opposite side, the €igenfunctions of the system can be cast in the form
excited states are exponentially suppressed by the Gaussian 02 B NZ.(p k)
weight appearing in Eq14). As a consequence, for small F(sir)= ™ f dpJ’ I AL P.K3

— o0 |,é‘

values ofm the RHS of the gap equatid®) still exhibits a Js Jo 47?

logarithmic divergence which results in the breaking of chi- .

ral symmetry in the smali regime. X ([g_1(D)[P+]| g (r)]|P) e sPHka) (23
lll. RESULTS FOR THE GAP EQUATION For smalls we expect thaF(s;r)~1/s?, therefore the sepa-

ration of the ultraviolet divergence made in H@) is still

We are now in a position to understand the discussion offPPropriate (see below. For moderate values of, one
the NJL model in the magnetic-field profile given by Eg), shou_ld resort to nu_merl_ca}l computations. Howeyer, from the
for which the ACJ result is not applicable any more. In cy-Physical point of view, it is much more interesting to study
lindrical coordinates, the properly normalized eigenfunctiondhe larges behavior ofF(s;r), which is directly connected

with energyk, can be written as followssee[17] for de- to the competition between the massless and the massive
tails): phase in the weak- coupling regime, that is, for small values

of g. In particular, the magnetic field will do act as a catalyst
1 e IFiSs N; ((p,ks) only if the decrease d#(s,r) is not faster than s/[see Egs.
=5—e 1(kz0+ks?) el >afl2— (), (10) and(11)]. Fortunately, some analytic estimates are pos-
& V2 Zm sible in the larges regime, where the leading contribution to
(16) F(s;r) comes from the lowest-lying energy levels. In par-
where ticular we can negleci; with respect toy_; and set

Yoa(r)~2(2u+1)(2pr)» Y2 (24)

1
ko=1=5, p=\ka+a? p=yVkg—m*~ki. (17)
Herel is an integer and
F(sin=—o IR
Ny k)=\ﬁ_|r(“‘i”o)| SRRPPEENI PR B e
(P Ks 7 22u+ T (2p)

1/2 X’
e 7 vol2 (18)

This leads to

pA(p’+ vp)
c?+p?(u®+ vj)

2

Clu—i
M e~ wwo(Zpr)z"_le_s(pZJrkg’)- (25

I'(2u)

Now, by means of the trivial change of variables

pA( 2+ vh)
e+ pA(p2+13)

with
2 cos, ka=—=sing, ——<d<m, (26
K p=-—=cos¢, ky=—=sing, ——= =,
vo="37 e=koks— (uKG PP (19 Vs Vs 2 2

. ) , we can easily extract thedependence in E@25); moreover,
The four components spinor functiaf(r) can be written as o integration overp is decoupled from that om which

simply gives a Gamma function. The final result is

( Vko+m fl(r)) 0
ry= , 20
) {Vko—m) | f2(r) a(u;NT(p+1) 1
F(sin=2 2 w302 (27)
where{=+1,\k,=m are 2x 2 matrices and ! “2p) s
Fa(r) = Vit kot (1) + u—katr_4(1), with
2r)2n=1 rap
fa(r)=vu—kothy(r) =V +Katp_4(r). (21) a( ;r):L dé(cose)?#
g 8u 72 J—nr
Finally, the functions}; and#_, can be expressed in terms 5 5
of the confluent hypergeometric functions: M coS ¢+ a® sif ¢
. pn—Kkssing
_ w112 i i ;
U Mp(Zpr) exp(—ipr)®(u—ivyg+1,2u+2,2pr), ID(—i atan¢)|2e*”“ta“¢’. 28)
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In(r*F) (larger with respect to the homogeneous case, but smaller
. 8 than 27%/A?) could be interpreted as an artifact of our ap-
S proximations. In particular, we have to keep in mind that a
N 6 constant mass has been used in the computation of the closed
AN 4 fermion loop involved in the gap equation. Since this loop
S~ ) probes a region of space in which the magnetic field rapidly
RN decays as tf, one can suspect that the “generated mass” is
- e - Inls/r®) an average quantity which underestimates the effect of the
- ~—~ local field. Fortunately, such a possible drawback does not
RN affect our main conclusion, for the effect of fie{d) turns
-4 TeaNT out to be opposite to that induced by unidirectional configu-
-6 e rations. Finally, we find it appropriate to make a brief com-

ment on ther dependence of the gap equation. Using the
FIG. 1. Numerical computation d#(s;r). The dotted line rep-  scaling property29), one can easily show that the third term
resents the logarithm of the dimensionless functitia(s;r) versus  jn the RHS of the gap equatid®) is a monotonic function
the logarithm ofs/r2. The solid line and the dashed line are drawn of r going to zero as tends to infinity. As a consequence,
as a cross check for the numerical computation and the analyticqhe generated mass is an increasing functiorr afhose
approximatigns used in the paper. Solid line: zero-field case gy mpiotic value is nothing but the mass scale of the NJL
Fo(sir)=1/s". Dashed line: large- approximation ofF(s,r) as 54| in the zero-field case. Obviously, this behavior is ex-
given by Eqs(27) and (28). actly what we expect from a background field which tends to

inhibit the formation of a massive phase.
Recalling thatu= \/(I — 1/2)?+ o, we see that the decrease P

of F(s:r) is faster than K. This means that no divergence
emerges from then—0 limit in RHS of the gap equation IV. SUMMARY
(9). To say it in a different way, we recover the conventional
scenario in which chiral symmetry breaking is a strong- i :
coupling phenomenon requiring a four-fermion coupling Iyst_s for chiral symmetry bre_akmg. Several works shpw_that
constant above a certain threshold. a similar trend is present for inhomogeneous magnetic fields,
In order to check our estimates and approximations warovided that their dir_ection is kept fixeq. Naive_ly_, this fact
have performed a numerical computation Ffs:;r) as a suggests 'ghat dynamical mass generation exh!blts a sort of
function of s for a=1. As far as the dependence is con- stability Wlth 'respect to the extgrnal field proﬂlg. .In turp,
cerned, it suffices to exploit the scaling property su_ch a stability would _make _rehable the scenario in which
chiral symmetry breaking is induced by sufficiently strong
fields which may be produced in laboratory conditions. Ac-
1 s tually, one easily realizes that magnetic fields with fixed di-
F(s;gr)= —F(—,r), (29)  rection are extremely special configurations, since they all
7t \ 7? share a supersymmetry: that of the second-order Dirac
Hamiltonian describing the electronic motion in the trans-
which follows from simple dimensional arguments or from averse plang15]. Moreover, such a supersymmetry seems to
direct inspection of the wave functions and their normaliza-be a crucial ingredient to obtain a dynamically generated
tion constants. Our results are shown in Fig. 1. The dotteehass. Thus, it is of fundamental importance to reconsider the
line represents the logarithm of the dimensionless functiomuestion of spontaneous mass generation under more general
rF(s;r) versus the logarithm o§/r2, while the solid line assumptions, where the “fixed direction” hypothesis is re-
corresponds to the zero-field cafg(s;r)=1/s*>. As ex- laxed. Motivated by these considerations, we have discussed
pected, we see thdt(s,r) behaves agq(s,r) for small  the NJL model in the background configuratiéh) repre-
values ofs. The dashed line is the larges approximation of  senting one of the few examples of divergenceless magnetic
F(s,r) as given by Eqs(27) and(28). Once again the agree- field with variable direction for which the Dirac equation can
ment is satisfactory. From the numerical computation it fol-be analytically solved. By taking advantage of the exact

Homogeneous magnetic fields are known to act as cata-

lows the important result that wave functions and energy levels we have estimated the
leading contribution to the trace of the electron propagator
F(s;r)<1/s°. (300 which, in turn, determines the main features of the gap equa-

tion. As a first result, we recover the conventional scenario
As a consequence, the third term in the RHS of the gapvhere chiral symmetry breaking is a strong-coupling phe-
equation(9) is negative. Obviously, this confirms that we nomenon requiring a four-fermion coupling constant above a
need a larger coupling constant to form the massive phase iertain threshold. This is in striking contrast with the con-
the presence of the magnetic figlt). More precisely, in- stant field case in which the massive phase is formed at the
equality (30) means that the required value ofis greater weakest attractive interaction between fermions. Further-
than 27%/A?, the threshold corresponding to the zero-fieldmore, via a numerical computation, we observe that the ex-
case. From the point of view of our approximate treatmenternal field (1) tends to restore the chiral symmetry of the
this result is welcome. In fact, an intermediate valuegof model: that is, we need a larger coupling constant to form the
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massive phase. These conclusions corroborate our conjectutggoes without saying that we need further investigations to
according to which the dynamical generation of mass is notlearly understand the role of the field gradients, with par-
so universal as one would expect by extrapolating the resulticular attention to those gradients which destroy the super-
obtained for homogeneous or unidirectional magnetic fieldssymmetry shared by all unidirectional field profiles.
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