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Nambu–Jona-Lasinio model in a magnetic field with variable direction

R. Ragazzon
Dipartimento di Fisica Teorica dell’Universita` di Trieste, Trieste, I-34014 Italy

~Received 8 September 1998; published 10 February 1999!

Homogeneous magnetic fields are known to act as strong catalysts of chiral symmetry breaking. The same
trend is observed for a large class of magnetic fields with constant direction. This sort of stability with respect
to the external field profile suggests that dynamical mass generation can really occur in some actual experi-
mental conditions. Obviously, in order to ascertain the reliability of such a scenario, one should go beyond the
simple background configurations that have been discussed up to now in the literature. Motivated by this
consideration, we study the Nambu–Jona-Lasinio model minimally coupled to a background magnetic field
with variable direction. For the chosen configuration we observe no trend to favor the massive phase. With
respect to the zero-field case a larger coupling constant is required to break the chiral symmetry of the model.
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I. INTRODUCTION

In the last decade, the influence of background fields
the mechanism of chiral symmetry breaking has recei
much attention. This interest was partly motivated by
anomalouse1e2 peaks observed in heavy-ion collisions b
the EPOS and ORANGE Collaborations at GSI@1#. In fact, a
number of authors@2,3# attributed the origin of such struc
tures to the formation of a new phase of QED, in which t
electron mass acquires a dynamical contribution; the tra
tion from the conventional phase to the new one should
triggered by the intense fields surrounding the colliding io
~see@4# for a critical review and a somewhat different pe
spective!. The actual existence of the narrowe1e2 peaks is
still under debate@5# and, of course, the hypothetical ne
phase of QED does not represent the unique scenario w
fits the experimental data. At any rate the physics of stro
fields, be it accompanied or not by a new phase, is an in
esting subject by itself, and it may also have implications
astrophysical phenomena@3,6#, such as the generation o
gamma ray bursts.

In the literature, the dynamical generation of mass in
presence of electromagnetic background fields has bee
vestigated for QED and for some popular four-fermion int
actions, namely the Nambu–Jona-Lasinio model@7# and the
Gross-Neveu one@8#. Generally speaking, it turns out tha
magnetic fields act as strong catalysts for chiral symme
breaking@9–11#. In the Nambu–Jona-Lasinio~NJL! model,
for instance, one finds the interesting result that spontane
mass generation takes place even for arbitrarily small fo
fermion coupling constants~although in this case the gene
ated mass is small as well!. Up to now, the problem has bee
usually analyzed for unidirectional magnetic fields. In t
homogeneous field case, the breaking of chiral symmetry
be understood@10# as a consequence of the dimensional
ductionD→(D22) in the dynamics of fermion pairing in
magnetic field. The occurrence of this dimensional reduct
is intimately connected with the fact that the lowest Land
levels form a degenerate ground state with zero energy~in
the massless limit!. The generalization to inhomogeneous b
unidirectional configurations@12,13# can be achieved using
0556-2821/99/59~6!/065006~5!/$15.00 59 0650
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notable result derived by Aharonov, Casher, and Jac
@14,15# ~ACJ!, according to which the existence of zer
energy modes is ensured for any magnetic field with a fix
direction. This feature has been used in@12# to discuss the
NJL model in the presence of the fieldBx50, By50, Bz

5B(y). As in the uniform case, the associated ‘‘gap equ
tion’’ admits nontrivial solutions corresponding to a massi
phase. Moreover, it turns out@16# that the presence of gra
dients can be absorbed by simply introducing an effect
magnetic field defined as the sum of the square moduli of
ground-state wave functions. As pointed out by Jackiw@15#,
the presence of zero-energy modes in the spectrum of a D
particle interacting with unidirectional magnetic fields
mainly due to a quantum-mechanical supersymmetry, tha
the second-order Dirac Hamiltonian describing the electro
motion in the transverse plane perpendicular toB. If we con-
sider an arbitrary external field, for which the separation
variables is no longer possible, then we lose not only tra
lational invariance but also supersymmetry. From this po
of view, the background configurations considered in the
erature appear as quite exceptional situations. Therefore,
extremely important to reconsider the question of sponta
ous mass generation under more general assumptions, w
the ‘‘fixed direction’’ hypothesis is relaxed and where ne
phenomena and new trends are very likely to appear. In o
to shed light on this point, we shall discuss the NJL mode
the following axial symmetric background configuration:

Bz5Br50, Bf5
a

r 2
, ~1!

where cylindrical coordinates are used anda is a constant~in
which we absorb the electric charge!. It is well known that
the Dirac equation can be exactly solved only for an e
tremely limited class@17# of external magnetic fields
Among those with variable direction, our choice~1! is noth-
ing but the simplest one.
©1999 The American Physical Society06-1
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II. GENERAL FORMALISM

Before entering the details of the computation, we find
appropriate to recall some general considerations abou
NJL model in the presence of external electromagnetic fie
Our starting point is the gap equation which has the fo
@7,9#

m52ig tr SA~x,x;m!, ~2!

whereSA(x,x;m) is the fermion propagator in the prescribe
four vector potentialAm(x). Strictly speaking, the gap equa
tion should be considered as a functional equation in
unknown function m(x). Accordingly, the propagato
SA(x,x;m) should be computed in terms of the arbitra
space-dependent massm(x). To avoid such a difficult task
we follow @12# by keepingm fixed while computing the
closed fermion loop involved in the gap equation. Using
‘‘proper time’’ formalism introduced by Schwinger, the trac
of the Green’s functionSA(x,x) can be written as

tr SA~x,x;m!52 i E
1/L2

`

dse2m2s
m

4p2
F~s;x!. ~3!

Here 1/L2 is a small-s cutoff which regularizes the ultravio
let divergence of the closed fermion loop andF(s;x) is a
weighted sum over the eigenfunctions of the system:

F~s;x!5
2p3/2

As
(

n
Cn

†~x!Cn~x!e2en
2s, ~4!

en
2 being the eigenvalue of the second-order Dirac Ham

tonian. For a free fermion we have

F0~s;x!5
1

s2
, ~5!

whereas a fermion interacting with a uniform magnetic fie
B corresponds to

Fconst~s;x!5
1

s2
eBscoth~eBs!. ~6!

For s small F(s;x) behaves as 1/s2 in both cases. This is
quite natural since the small-s regime corresponds to ultra
violet contributions to the trace of the fermion propagator.
order to separate this ultraviolet divergence, the gap equa
will be written in the form

m52gE
1/L2

`

dse2m2s
m

4p2FF~s;x!2
1

s2G
12gE

1/L2

` ds

s2
e2m2s

m

4p2
, ~7!

which gives
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2p2

g
5E

1/L2

`

dse2m2sFF~s;x!2
1

s2G
1L2e2m2/L2

2m2E1~m2/L2!, ~8!

that is

2p2

gL2
512

m2

L2
log

L2

m2
1

1

L2E0

`

dse2m2s

3FF~s;x!2
1

s2G1O~m2/L2!. ~9!

In the zero-field case the third term in the right-hand s
~RHS! of this equation disappears, thereby giving the we
known result of the original NJL model. In the constant fie
case we are faced with a completely different behavior
F(s;r ) in the large-s domain. More precisely, fors@1/eB,
we see that

Fconst~s;x!;
eB

s
. ~10!

This feature has a dramatic consequence in the compet
between massless and massive phases. Indeed,
asymptotic behavior of Eq.~10! corresponds to the following
contribution to the trace of the fermion propagator:

tr SA~x,x;m!;2 i
meB

4p2
lnS eB

m2D . ~11!

Inserting this in the gap equation, one obtains

2p2

gL2
.11

eB

L2
ln

eB

m2
. ~12!

Now the RHS is logarithmically divergent asm→0, so that
we can find nontrivial solutions to the gap equation even
arbitrarily small four-fermion coupling constant. A simila
result is obtained for any unidirectional background ma
netic field, where the separation of motion along the fie
direction enables us to write

F~s;x!5
p

s
f ~s;x!. ~13!

Here f (s;x) is a weighted sum over the wave functions d
scribing the electronic motion in the transverse plane (x,y):

f ~s;x!5(
h

ch
†~x!ch~x!e2eh

2s, ~14!

ch being the solution of the following eigenvalue equatio

@~px2eAx!
21~py2eAy!22eB~x,y!S3#ch5eh

2ch .
~15!

The factor 1/s in Eq. ~13! appears after integration overpz .
From the works of Aharonov, Casher, and Jackiw@14,15# we
6-2
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know that Eq.~15! admits a set of zero-energy modes who
number is proportional to the total magnetic flux. Moreov
when this flux is infinite, there exists an energy gap sepa
ing the excited levels from the degenerate ground state. F
these lowest energy levels the functionF(s;x) receives a
contribution proportional to 1/s. On the opposite side, th
excited states are exponentially suppressed by the Gau
weight appearing in Eq.~14!. As a consequence, for sma
values ofm the RHS of the gap equation~9! still exhibits a
logarithmic divergence which results in the breaking of c
ral symmetry in the small-g regime.

III. RESULTS FOR THE GAP EQUATION

We are now in a position to understand the discussion
the NJL model in the magnetic-field profile given by Eq.~1!,
for which the ACJ result is not applicable any more. In c
lindrical coordinates, the properly normalized eigenfunctio
with energyk0 can be written as follows~see@17# for de-
tails!:

C5
1

2p
e2 i ~k2u1k3z!

11 iS3

A2
eiS3u/2

Nl ,z~p,k3!

2Amk0

c~r !,

~16!

where

k25 l 2
1

2
, m5Ak2

21a2, p5Ak0
22m22k3

2. ~17!

Here l is an integer and

Nl ,z~p,k3!5Ap

p

uG~m2 in0!u
2~2m11!G~2m!

3F p2~m21n0
2!

c21p2~m21n0
2!

G 1/2

e2p n0/2 ~18!

with

n05
ak3

p
, c5k2k32zmAk3

21p2. ~19!

The four components spinor functionc(r ) can be written as

c~r !5S Ak01m

zAk02m
D S f 1~r !

f 2~r !
D , ~20!

wherez561,Ak06m are 232 matrices and

f 1~r !5Am1k2c1~r !1Am2k2c21~r !,

f 2~r !5Am2k2c1~r !2Am1k2c21~r !. ~21!

Finally, the functionsc1 andc21 can be expressed in term
of the confluent hypergeometric functions:

c15
c

mp
~2pr !m11/2exp~2 ipr !F~m2 in011,2m12,2ipr !,
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c2152~2m11!~2pr !m21/2

3exp~2 ipr !F~m2 in0,2m,2ipr !. ~22!

Using Eqs.~16!–~22!, the weighted sumF(s;r ) over the
eigenfunctions of the system can be cast in the form

F~s;r !5
2p3/2

As
E

0

`

dpE
2`

`

dk3(
l ,z

Nl ,z
2 ~p,k3!

4p2

3~ uc21~r !u21uc1~r !u2!e2s~p21k3
2
!. ~23!

For smalls we expect thatF(s;r );1/s2, therefore the sepa
ration of the ultraviolet divergence made in Eq.~7! is still
appropriate~see below!. For moderate values ofs, one
should resort to numerical computations. However, from
physical point of view, it is much more interesting to stud
the large-s behavior ofF(s;r ), which is directly connected
to the competition between the massless and the mas
phase in the weak- coupling regime, that is, for small valu
of g. In particular, the magnetic field will do act as a cataly
only if the decrease ofF(s,r ) is not faster than 1/s @see Eqs.
~10! and~11!#. Fortunately, some analytic estimates are p
sible in the large-s regime, where the leading contribution t
F(s;r ) comes from the lowest-lying energy levels. In pa
ticular we can neglectc1 with respect toc21 and set

c21~r !;2~2m11!~2pr !m21/2. ~24!

This leads to

F~s;r !5
1

2p3/2As
E

0

`

pdpE
2`

`

dk3(
ł ,z

F p2~m21n0
2!

c21p2~m21n0
2!

G
3UG~m2 in0!

G~2m!
U2

e2pn0~2pr !2m21e2s~p21k3
2
!. ~25!

Now, by means of the trivial change of variables

p5
z

As
cosf, k35

z

As
sinf, 2

p

2
,f,

p

2
, ~26!

we can easily extract thes dependence in Eq.~25!; moreover,
the integration overf is decoupled from that onz which
simply gives a Gamma function. The final result is

F~s;r !5(
l

a~m;r !G~m11!

G2~2m!

1

sm13/2
~27!

with

a~m;r !5
~2r !2m21

8m p3/2 E2p/2

p/2

df~cosf!2m

3Fm2cos2f1a2 sin2f

m2k2 sinf G
uG~m2 i a tanf!u2e2p a tanf. ~28!
6-3
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R. RAGAZZON PHYSICAL REVIEW D 59 065006
Recalling thatm5A( l 21/2)21a2, we see that the decreas
of F(s;r ) is faster than 1/s2. This means that no divergenc
emerges from them→0 limit in RHS of the gap equation
~9!. To say it in a different way, we recover the convention
scenario in which chiral symmetry breaking is a stron
coupling phenomenon requiring a four-fermion coupli
constant above a certain threshold.

In order to check our estimates and approximations
have performed a numerical computation ofF(s;r ) as a
function of s for a51. As far as ther dependence is con
cerned, it suffices to exploit the scaling property

F~s;hr !5
1

h4
FS s

h2
,r D , ~29!

which follows from simple dimensional arguments or from
direct inspection of the wave functions and their normali
tion constants. Our results are shown in Fig. 1. The do
line represents the logarithm of the dimensionless func
r 4F(s;r ) versus the logarithm ofs/r 2, while the solid line
corresponds to the zero-field caseF0(s;r )51/s2. As ex-
pected, we see thatF(s,r ) behaves asF0(s,r ) for small
values ofs. The dashed line is the large2s approximation of
F(s,r ) as given by Eqs.~27! and~28!. Once again the agree
ment is satisfactory. From the numerical computation it f
lows the important result that

F~s;r !,1/s2. ~30!

As a consequence, the third term in the RHS of the g
equation~9! is negative. Obviously, this confirms that w
need a larger coupling constant to form the massive phas
the presence of the magnetic field~1!. More precisely, in-
equality ~30! means that the required value ofg is greater
than 2p2/L2, the threshold corresponding to the zero-fie
case. From the point of view of our approximate treatm
this result is welcome. In fact, an intermediate value og

FIG. 1. Numerical computation ofF(s;r ). The dotted line rep-
resents the logarithm of the dimensionless functionr 4F(s;r ) versus
the logarithm ofs/r 2. The solid line and the dashed line are draw
as a cross check for the numerical computation and the analy
approximations used in the paper. Solid line: zero-field c
F0(s;r )51/s2. Dashed line: large-s approximation ofF(s,r ) as
given by Eqs.~27! and ~28!.
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~larger with respect to the homogeneous case, but sm
than 2p2/L2) could be interpreted as an artifact of our a
proximations. In particular, we have to keep in mind tha
constant mass has been used in the computation of the cl
fermion loop involved in the gap equation. Since this lo
probes a region of space in which the magnetic field rapi
decays as 1/r 2, one can suspect that the ‘‘generated mass’
an average quantity which underestimates the effect of
local field. Fortunately, such a possible drawback does
affect our main conclusion, for the effect of field~1! turns
out to be opposite to that induced by unidirectional config
rations. Finally, we find it appropriate to make a brief com
ment on ther dependence of the gap equation. Using t
scaling property~29!, one can easily show that the third ter
in the RHS of the gap equation~9! is a monotonic function
of r going to zero asr tends to infinity. As a consequenc
the generated mass is an increasing function ofr whose
asymptotic value is nothing but the mass scale of the N
model in the zero-field case. Obviously, this behavior is
actly what we expect from a background field which tends
inhibit the formation of a massive phase.

IV. SUMMARY

Homogeneous magnetic fields are known to act as c
lysts for chiral symmetry breaking. Several works show th
a similar trend is present for inhomogeneous magnetic fie
provided that their direction is kept fixed. Naively, this fa
suggests that dynamical mass generation exhibits a so
stability with respect to the external field profile. In tur
such a stability would make reliable the scenario in wh
chiral symmetry breaking is induced by sufficiently stro
fields which may be produced in laboratory conditions. A
tually, one easily realizes that magnetic fields with fixed
rection are extremely special configurations, since they
share a supersymmetry: that of the second-order D
Hamiltonian describing the electronic motion in the tran
verse plane@15#. Moreover, such a supersymmetry seems
be a crucial ingredient to obtain a dynamically genera
mass. Thus, it is of fundamental importance to reconsider
question of spontaneous mass generation under more ge
assumptions, where the ‘‘fixed direction’’ hypothesis is r
laxed. Motivated by these considerations, we have discus
the NJL model in the background configuration~1! repre-
senting one of the few examples of divergenceless magn
field with variable direction for which the Dirac equation ca
be analytically solved. By taking advantage of the ex
wave functions and energy levels we have estimated
leading contribution to the trace of the electron propaga
which, in turn, determines the main features of the gap eq
tion. As a first result, we recover the conventional scena
where chiral symmetry breaking is a strong-coupling ph
nomenon requiring a four-fermion coupling constant abov
certain threshold. This is in striking contrast with the co
stant field case in which the massive phase is formed at
weakest attractive interaction between fermions. Furth
more, via a numerical computation, we observe that the
ternal field ~1! tends to restore the chiral symmetry of th
model: that is, we need a larger coupling constant to form

al
e
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massive phase. These conclusions corroborate our conje
according to which the dynamical generation of mass is
so universal as one would expect by extrapolating the res
obtained for homogeneous or unidirectional magnetic fie
s

v

na

06500
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It goes without saying that we need further investigations
clearly understand the role of the field gradients, with p
ticular attention to those gradients which destroy the sup
symmetry shared by all unidirectional field profiles.
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