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Anomalous gauge theories with antisymmetric tensor fields

Shinichi Deguchi*
Atomic Energy Research Institute, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan

Tomoaki Mukai and Tadahito Nakajima†

Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan
~Received 2 April 1998; published 2 February 1999!

We derive a dual theory of the four-dimensional anomalous U~1! gauge theory with a Wess-Zumino~WZ!
term and with a Stu¨ckelberg-type mass term by means of a duality transformation at each of the classical and
quantum levels. It is shown that in the dual anomalous U~1! gauge theory, theBF term with a rank-2
antisymmetric tensor field plays the role of the WZ term as well as the mass term of the U~1! gauge field. A
similar anomalous U~1! gauge theory with aBF term is considered in six dimensions by introducing a rank-4
antisymmetric tensor field. In addition to this theory, we propose a six-dimensional anomalous U~1! gauge
theory including an extendedBF term with a rank-2 antisymmetric tensor field, discussing the difference
between the two theories. We also consider a four-dimensional anomalous SU(2)3 U(1) gauge theory with a
BF term and recognize the crucial role of theBF term in cancelling the non-Abelian chiral anomaly.
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I. INTRODUCTION

The quantization of anomalous gauge theories has b
studied by many authors for about the past ten years@1–6#.
In particular, the chiral Schwinger model, an anomalous c
ral U~1! gauge theory in two dimensions, has been inve
gated in detail under advantageous conditions peculiar to
dimensions. A remarkable observation is that because o
chiral anomaly, a hidden physical degree of freedom occ
in the theory@1#. This is well understood by adding a sui
able Wess-Zumino~WZ! term @7# to the classical action o
the chiral Schwinger model so as to restore the gauge s
metry at the quantum level@2#. The origin of such a WZ term
can be assigned to the gauge-volume integration in the p
integral quantization@3#.

The idea of introducing a WZ term is, of course, app
cable to anomalous gauge theories in higher dimensions
fact, suggesting this idea, Faddeev and Shatashvili have
gued for correct quantization of an anomalous chiral ga
theory in four dimensions@4#. Since then, several autho
have particularly studied the case of the U~1! gauge group on
the reasonable assumption that the chiral gauge symmet
spontaneously broken~via the anomaly! @5,6#. The symmetry
breakdown makes the U~1! gauge field massive and enabl
us to adopt perturbative approaches. As an effective the
describing the broken phase, we can take the anoma
massive U~1! gauge theory in four dimensions whose acti
includes a WZ term and a Stu¨ckelberg-type mass term con
taining a WZ scalar field@6#. This theory is consistently
quantizable@5,6#; that is, by virtue of the presence of a W
term, the quantization can be performed in accordance w
the ordinary quantization methods for gauge theories, yie
ing normal canonical structures at the quantum level. Pow
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counting renormalizability of the resulting quantum theo
however, is spoiled owing to the WZ term.

Besides the Stu¨ckelberg formalism and the Higgs mode
there is an alternative massive gauge theory called the to
logically massive gauge theory, in which a topological te
called theBF term functions as mass terms of gauge fie
@8–11#. The topologically massive Abelian gauge theo
~TMAGT! in four dimensions consists of a U~1! gauge field
Am and a rank-2 antisymmetric tensor fieldBmn @8,9#. It has
been shown, both at the classical and quantum levels,
the TMAGT is a dual version of the Abelian Stu¨ckelberg
formalism @9#.

Taking this duality into account and noting that th
anomalous massive U~1! gauge theory involves the Abelia
Stückelberg formalism, we can find a theory that is dual
the anomalous massive U~1! gauge theory and that involve
the TMAGT. Such a dual theory will indeed be obtained
the next section with a suitable modification of the gau
transformation rule ofBmn defined in the TMAGT. After the
modification, theBF term plays the role of the WZ term a
well as the mass term ofAm ; Bmn contributes importantly to
cancelling the chiral anomaly. The modified gauge transf
mation rule agrees with the one found inN51 supergravity
coupled toN51 supersymmetric Maxwell theory in ten d
mensions@12#.

An anomaly-cancellation mechanism in which a rank
antisymmetric tensor field plays a crucial role has been
gued in superstring theories@13#. This mechanism, known a
the Green-Schwarz mechanism, works only if the gau
group is chosen to be SO~32! or E83E8. A non-Abelian
version of the modified gauge transformation rule is a
essential to the Green-Schwarz mechanism.

In this paper we would like to explain that anomaly ca
cellation due to an antisymmetric tensor field occurs not o
in superstring theories but also in~dual versions of! ordinary
anomalous gauge theories. We demonstrate thatBF terms
and their generalizations function as WZ terms when suita
©1999 The American Physical Society03-1
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gauge transformation rules are imposed on the antisymm
tensor fields.

The present paper is organized as follows. Section II
rives, at the classical level, a dual theory of the anomal
massive U~1! gauge theory in four dimensions. In Sec. I
the duality found in Sec. II is established at the quant
level by using the path-integral quantization based on
Becchi-Rouet-Stora-Tyutin~BRST! formalism. Section IV
considers two kinds of anomalous U~1! gauge theories in six
dimensions. One of them has theBF term with a rank-4
antisymmetric tensor field and is dual to the six-dimensio
anomalous U~1! gauge theory with a WZ term and
Stückelberg-type mass term. The other theory has theBF2

term, a generalizedBF term, with a rank-2 antisymmetric
tensor field. In each theory, the six-dimensional chi
anomaly vanishes by virtue of theBF or BF2 term. Section
V deals with an anomalous non-Abelian gauge theory in f
dimensions with the gauge group SU(2)3 U(1). The BF
term in this theory functions both as the WZ term for t
non-Abelian chiral anomaly and as the mass term of the U~1!
gauge field. Section VI is devoted to a summary and disc
sion.

II. DUAL VERSION OF AN ANOMALOUS U „1…
GAUGE THEORY

Let us begin by discussing an anomalous massive U~1!
gauge theory in four dimensions@6# that is defined by the
Lagrangian

L̃5LA1Lf1LWZ1Lc , ~2.1!

with

LA52
1

4
FmnFmn, Fmn[]mAn2]nAm , ~2.2!

Lf5
1

2
~]mf2mAm!~]mf2mAm!, ~2.3!

LWZ52
k

4
emnrsfFmnFrs , ~2.4!

Lc5c̄ igmF]m2 ieAm

1

2
~12g5!Gc, ~2.5!

whereAm is a U~1! gauge field,f a WZ scalar field,c a
Dirac field, andm, k, ande are constants with suitable d
mensions.@Our metric has signature (1,2,2,2). The con-
vention for the Levi-Civita` symbol is e0123521. The g5

matrix is defined byg5(5g5
†)[ ig0g1g2g3.] The second

term Lf , which is the gauge-invariant mass term in t
Stückelberg formalism, is necessary for the anomalous m
sive U~1! gauge theory to make a dynamical field off so
that perturbative analysis can be applied to the theory.

LagrangianL̃ then describes a massive vector field intera

ing with chiral fermions. The WZ termLWZ is included inL̃
06500
ric
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to cancel the chiral anomaly arising from the quantum effe

of c; although the LagrangianL̃ itself is not invariant under
the gauge transformation

dAm5]ml, ~2.6a!

df5ml, ~2.6b!

dc5 iel
1

2
~12g5!c, ~2.6c!

dc̄52 ielc̄
1

2
~11g5!, ~2.6d!

the effective action

G̃@Am ,f#52 i lnE DcDc̄ expS i E d4xL̃D ~2.7!

with k5k0[e3/(24p2m) remains invariant due to the varia

tion of the path-integral measureDcDc̄ @4#. ~Here the value
of k was chosen for the cancellation of the ‘‘consisten
anomaly. If we discuss the cancellation of the ‘‘covarian
anomaly,k should be chosen to bek53k0 .) By virtue of the
WZ term LWZ , the U~1! gauge symmetry of the system
restored after quantizingc. As a result, we can construct

consistent quantum field theory based onL̃ @5,6#; that is, the
quantization can be performed in accordance with ordin
quantization methods for gauge theories, yielding normal
nonical structures at the quantum level. The quantum the
however, is power-counting nonrenormalizable owing
LWZ .

To find a dual theory of the anomalous massive U~1!
gauge theory, we now consider the first order Lagrangia

LU52
1

6
emnrsUmHnrs1

1

2
UmUm1LBF , ~2.8!

with the so-calledBF term

LBF5
m

4
emnrsBmnFrs . ~2.9!

Here Um is a vector field,Bmn is an antisymmetric tenso
field, and

Hmnr[Fmnr1kvmnr , ~2.10!

where

Fmnr[]mBnr1]nBrm1]rBmn , ~2.11!

vmnr[AmFnr1AnFrm1ArFmn . ~2.12!

The tensorvmnr is nothing but the Abelian Chern-Simon
three-form. FromLU we obtain the Euler-Lagrange equatio
for Bmn :

emnrs]r~Us2mAs!50, ~2.13!
3-2
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ANOMALOUS GAUGE THEORIES WITH ANTISYMMETRIC . . . PHYSICAL REVIEW D 59 065003
which can locally be solved as

Um5mAm2]mf. ~2.14!

@If spacetime has a trivial topology, Eq.~2.14! holds in all
spacetime, with a single scalar fieldf.] Substituting Eq.
~2.14! into Eq.~2.8! and removing total derivative terms, w
arrive atLf1LWZ . On the other hand, the Euler-Lagran
equation forUm is

Um5
1

6
emnrsHnrs. ~2.15!

After substituting Eq.~2.15! into Eq. ~2.8!, we haveLH
1LBF , with

LH5
1

12
HmnrHmnr. ~2.16!

Therefore the LagrangianLH1LBF is ‘‘classically’’ equiva-
lent to Lf1LWZ . The relationmAm2]mf5 1

6 emnrsHnrs

obtained from Eqs.~2.14! and ~2.15! shows the duality be-
tweenf andBmn @9#.

The field strengthHmnr is invariant under the gauge tran
formation

dAm5]ml, ~2.17a!

dBmn5]mjn2]njm2klFmn . ~2.17b!

The gauge transformation rule~2.17b! and the field strength
Hmnr agree with the ones found inN51 supergravity
coupled toN51 supersymmetric Maxwell theory in ten d
mensions@12#. ObviouslyLH is gauge invariant, whereas th
topological termLBF is not gauge invariant and transform
as

dLBF52
1

4
mkemnrslFmnFrs1total derivative.

~2.18!

We notice that, up to the total derivative term, the transf
mation behavior ofLBF is exactly the same as that ofLWZ .
The effective action

G@Am ,Bmn#52 i lnE DcDc̄ expS i E d4xLD ,

~2.19!

with the Lagrangian

L5LA1LH1LBF1Lc , ~2.20!

is thus gauge invariant ifk5k0 for the consistent anomal
~or if k53k0 for the covariant anomaly!. The LagrangianL
defines a dual theory of the anomalous massive U~1! gauge

theory described byL̃; these two theories are equivalent
the ‘‘classical’’ level, becauseLH1LBF is classically

equivalent toLf1LWZ . In the effective actionsG̃ and G,
only the Dirac fieldc is quantized, while the other fields ar
considered to be classical ones. Sincec is not coupled tof
06500
-

and Bmn , the classical equivalence persists between the
fective actions. As will be seen in the next section, t
equivalence ofLH1LBF andLf1LWZ holds after quantiz-
ing f andBmn , which we call the equivalence at the ‘‘quan
tum’’ level.

The LagrangianLA1LH1LBF with k50 is known as a
starting point of the topologically massive Abelian gau
theory in four dimensions@8,9#, in which the topological
termLBF makesAm massive. Here, we would like to empha
size that in the anomalous massive U~1! gauge theory de-
fined byL, theBF termLBF plays the role of the WZ term
as well as the mass term ofAm .

III. DUALITY AT THE QUANTUM LEVEL

In order to complete our discussion in Sec. II, we est
lish the equivalence ofLH1LBF andLf1LWZ at the ‘‘quan-
tum’’ level. To this end, let us start withLH1LBF and con-
sider the covariant quantization ofBmn using the BRST
formalism@14#. Noting the gauge transformation rule~2.17b!
and its reducibility, we now introduce the following gho
and auxiliary fields associated withBmn : anticommuting
vector fieldsrm and r̄m , a commuting vector fieldbm , an-
ticommuting scalar fieldsx and x̄, and commuting scala
fields s, w, and s̄. For our discussion, we also need a
anticommuting scalar ghost fieldc associated withAm . ~In
what follows,Am is treated as an external classical field, a
so it is not necessary to introduce further ghost and auxili
fields associated withAm .) The BRST transformationd is
defined forAm andBmn by replacing the gauge parametersl
andjm in Eqs.~2.17! by the ghost fieldsc andrm :

d Am5]mc,

d Bmn5]mrn2]nrm2kcFmn . ~3.1a!

The BRST transformation rules of the other fields are defin
so as to satisfy the nilpotency conditiond 250:

d c50,

d rm52 i ]ms, d s50,

d r̄m5 ibm , d bm50,

d s̄5x̄, d x̄50,

d w5x, d x50. ~3.1b!

The ghost numbers assigned to (Am ,c;Bmn ,rm ,r̄m ,
s,w,s̄;bm ,x,x̄) and d are (0,1;0,1,21,2,0,22;0,1,21)
and 1, respectively. To quantizeBmn , we have to introduce
gauge-fixing terms with ghost number zero. Now we take
following gauge-fixing terms:

LG152 i d @Bmn]mr̄n#, ~3.2!

LG25 i d @rm]ms̄1 r̄m~]mw1uAm1vemnrsvnrs!#,
~3.3!
3-3
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whereu andv are gauge parameters. Because of the nil
tency ofd, these gauge-fixing terms are invariant under
BRST transformation. The first termLG1 breaks the gauge
invariance ofLH explicitly. The second termLG2 is neces-
sary to break the invariance ofLG1 under thesecondary

gauge transformationdrm5]m«, dr̄m5]m«̄. The gauge-
fixing procedure for quantization ofBmn is complete with
LG11LG2. Carrying out the BRST transformation in Eq
~3.2! and ~3.3!, we obtain

LG11LG252bn~]mBmn1]nw1uAn1venmrsvmrs!

2 i r̄n
„hrn2]n]mrm2k]m~cFmn!1]nx1u]nc

13venmrsFmr]sc…2 irn]nx̄2s̄hs

1total derivative, ~3.4!

whereh[]m]m.
Let us now show the quantum equivalence ofLH1LBF

andLf1LWZ . Consider the vacuum-to-vacuum amplitud

Z5E DM expF i E d4x~LH1LBF1LG11LG2!G ,
~3.5!

with the path-integral measure

DM[DBmnDrmDr̄mDbmDxDx̄DsDs̄Dw. ~3.6!
06500
-
e
In the following discussions, we assume that spacetime h
trivial topology. We first notice that the integration overx

yields the delta function)xd(]nr̄n). This function enables
us to remove the two termsi r̄n]n]mrm and2 iu r̄n]nc from
the exponent in Eq.~3.5!. After removing them, we expres
the delta function)xd(]nr̄n) in the form of the integral over
x again. Then, the integration overrm and r̄m yields
(deth)4. After the integrations overx, x̄, s, and s̄, the
amplitudeZ can be written as

Z5N1~deth !3E DBmnDbmDw

3expF i E d4xH 2
1

4
BmnhBmn2

1

2
Bnr]r]mBmn

2
k

2
Bmn]rvrmn1

1

12
k2vmnrvmnr1

m

4
emnrsBmnFrs

2bn~]mBmn1]nw1uAn1venmrsvmrs!J G . ~3.7!

Here and hereafter,Ni ( i 51,2,3) denote normalization con
stants. Since the integration overbm yields the delta function
)x,nd(]mBmn1]nw1uAn1venmrsvmrs), we replace
]mBmn in the second term of the exponent by2(]nw1uAn

1venmrsvmrs). Then, the integration overBmn leads to
Z5N2E DbmDw expF i E d4xH 2
1

2
bmbm2bmS ]mw1

u

2
Am1

v
2

emnrsvnrsD1
1

2
~]mbm!h21]n~2bn1uAn

1venlrsvlrs!1
1

4S 1

4
u22m2DFmnh21Fmn2emnrsFmnS 3

8
uvFrsh21]lAl1

1

4
mkh21]lvlrsD

1
1

4
k2]rvrmnh21]svsmn1

1

12
~k219v2!vmnrvmnr2

9

32
v2eklmnFklFmnh21~eprstFprFst!J G . ~3.8!

Since the integration overw yields the delta function)xd(]mbm), the terms proportional to]mbm can be removed from the
exponent in Eq.~3.8!. Carrying out the integration overbm , we obtain

Z5N3E Dw expF i E d4xH 1

2S ]mw1
u

2
AmD S ]mw1

u

2
AmD2

3

4
vemnrswFmnFrs1

1

4S 1

4
u22m2DFmnh21Fmn

2
1

8
~2mk13uv !]lAlh21~emnrsFmnFrs!1

1

32
~k229v2!eklmnFklFmnh21~eprstFprFst!J G , ~3.9!
put
where we have used the following formulas:

]rvrmnh21]svsmn1
1

3
vmnrvmnr

5
1

8
eklmnFklFmnh21~eprstFprFst!1total derivative,

~3.10!
emnrs]lvlmnh21Frs5]lAlh21~emnrsFmnFrs!

1total derivative. ~3.11!

The first formula is due to the identityeklmneprst

52dk
[pdl

rdm
sdn

t] . The second formula is derived from
(h21Al)e [lmnr]s]]mvnrs50. ~Here the brackets@ # indi-
cate a total antisymmetrization with respect to all indices
between the brackets.!
3-4
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The amplitudeZ is independent of the gauge parameteru
andv, as might be expected; the result of functional integ
tion in Eq. ~3.9! does not include these parameters. Tak
into account the gauge independence ofZ, we now chooseu
and v to be u522m and v5k/3 so that all the nonloca
terms in Eq.~3.9! can vanish. Then Eq.~3.9! becomes

Z5N3E Df expF i E d4x~Lf1LWZ!G , ~3.12!

wherew has been replaced byf. Therefore the vacuum-to
vacuum amplitude based onLH1LBF1LG11LG2 can be
written as that based onLf1LWZ , which demonstrates th
equivalence ofLH1LBF and Lf1LWZ at the ‘‘quantum’’
level. The two anomalous gauge theories characterized bL
and L̃ are thus dual to each other not only at the class
level but also at the quantum level. Duality between the
pologically massive Abelian gauge theory and the Abel
Stückelberg formalism is now obvious by settingk50 @9#.

IV. ANOMALOUS U „1… GAUGE THEORIES
IN SIX DIMENSIONS

We now consider the six-dimensional version of the L
grangian~2.20!:

L 1
~6!5L A

~6!1LH1
~6!1L BF1

~6! 1L c
~6! , ~4.1!

whereL A
(6) andL c

(6) are the six-dimensional analogues
LA andLc , respectively. The remaining two terms are giv
by

LH1
~6!5

1

235!
HmnrstH

mnrst, ~4.2!

L BF1
~6! 5

m

48
emnprstBmnprFst , ~4.3!

with a totally antisymmetric tensor fieldBmnpr and

Hmnrst[Fmnrst1 k̃vmnrst , ~4.4!

wherek̃ is a constant and

Fmnrst[
1

4!
] [mBnrst] ,

vmnrst[
1

8
A[mFnrFst] . ~4.5!

@The conventions for the metric signature and the Le
Cività symbol are (1,2,2,2,2,2) and e012345521.]
The tensorvmnrst is known as the Abelian Chern-Simon
five-form. The LagrangianL 1

(6) describes an anomalou
massive U~1! gauge theory in six dimensions. Since the fie
strengthHmnrst is invariant under the gauge transformati
06500
-
g

l
-
n

-

-

dAm5]ml, ~4.6a!

dBmnrs5
1

6
] [mjnrs]2

1

8
k̃lF [mnFrs] , ~4.6b!

LH1
(6) is also invariant, while the six-dimensionalBF term
L BF1

(6) transforms as

dL BF1
~6! 52

1

16
mk̃emnprstlFmnFprFst1total derivative.

~4.7!

This transformation behavior is essential to cancellation
the six-dimensional chiral anomaly due to the quantum
fects of the Dirac fieldc; the six-dimensional analogue o
Eq. ~2.19! with the LagrangianL 1

(6) is gauge invariant, ifk̃ is

chosen to bek̃5 k̃0[e4/(96p3m) for the consistent anomaly
~or k̃54k̃0 for the covariant anomaly!.

Similarly to the case of four dimensions, we can repres
LH1

(6)1L BF1
(6) asL f

(6)1LWZ
(6) by means of a duality transfor

mation at each of the classical and quantum levels, wh
L f

(6) is the six-dimensional analogue of Eq.~2.3! andLWZ
(6) is

the WZ term in six dimensions:

LWZ
~6! 52

k̃

16
emnprstfFmnFprFst . ~4.8!

The gauge theory defined byL 1
(6) is dual to the anomalous

massive U~1! gauge theory defined by the LagrangianL A
(6)

1L f
(6)1LWZ

(6) 1L c
(6) .

In six dimensions, we can also consider an anomal
U~1! gauge theory with a topological term consisting ofFmn

and, instead ofBmnrs , an antisymmetric tensor fieldBmn

obeying the gauge transformation rule~2.17b!. This theory is
characterized by the Lagrangian

L 2
~6!5L A

~6!1LH2
~6!1L BF2

~6! 1L c
~6! . ~4.9!

HereLH2
(6) has the same form as Eq.~2.16!, andL BF2

(6) is the
BF2 term, a generalizedBF term,

L BF2
~6! 5

1

16
l 2emnprstBmnFprFst , ~4.10!

wherel is a constant. Under the gauge transformation~2.17!,
L BF2

(6) transforms in a similar manner toL BF1
(6) , namely,

dL BF2
~6! 52

1

16
l 2kemnprstlFmnFprFst1total derivative.

~4.11!
3-5
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Hence, the six-dimensional analogue of Eq.~2.19! with the
LagrangianL 2

(6) is also gauge invariant, ifk is chosen to be

k5 k̄0[e4/(96p3l 2) for the consistent anomaly~or k54k̄0
for the covariant anomaly!.

The two anomalous gauge theories defined byL 1
(6) and

L 2
(6) are substantially different. The LagrangianL 1

(6) de-
scribes a massive vector field interacting with chiral ferm
ons; the only physical degree of freedom ofBmnrs is ob-
served as the longitudinal mode of the massive vector fi
TheBF termL BF1

(6) functions both as the WZ term and as t
mass term ofAm . In contrast, the LagrangianL 2

(6) describes
a massless vector field interacting with chiral fermions a
with a massless rank-2 antisymmetric tensor field. All t
physical degrees of freedom ofBmn are observed as its ow
massless modes. AlthoughL BF2

(6) plays the role of the WZ
term, it does not function as a mass term.

It has been shown that in the two theories defined byL 1
(6)

and L 2
(6) , the six-dimensional chiral anomaly vanishes

virtue of the topological termsL BF1
(6) andL BF2

(6) with suitable
coefficients. We can thus construct consistent quantum fi
theories based onL 1

(6) andL 2
(6) .

In higher dimensions, the varieties of generalizedBF
terms increase: for example, in 2n dimensions, we can con
struct aBF term andn22 generalizedBF terms,

em1•••m2pm2p11m2p12•••m2n21m2n

3Bm1•••m2p
Fm2p11m2p12

•••Fm2n21m2n

~p51,2,3, . . . ,n21!, ~4.12!

where Bm1•••m2p
is a totally antisymmetric tensor field o

rank 2p. Imposing an appropriate gauge transformation r
such as Eqs.~2.17b! and ~4.6b! on Bm1•••m2p

, we can make

theBF and generalizedBF terms~4.12! function as the WZ
term for the chiral U~1! anomaly in 2n dimensions.

V. ANOMALOUS NON-ABELIAN GAUGE THEORY

We next discuss an anomalous non-Abelian gauge the
in four dimensions whose gauge group is SU(2)3 U(1). In-

troducing a U~1! gauge fieldAm , a SU~2! gauge fieldÂm

5 1
2 Âm

asa @sa (a51,2,3) denote the Pauli matrices#, and
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a Dirac fieldĉ belonging to the fundamental representati

of SU~2!, we consider the LagrangianL̂A1L̂c with

L̂A52
1

4
FmnFmn2

1

4
tr@ F̂mnF̂mn#, ~5.1!

L̂c5 c̄̂ igmF]m2 i ~eAms01gÂm!
1

2
~12g5!G ĉ,

~5.2!

where

Fmn[]mAn2]nAm , ~5.3!

F̂mn[]mÂn2]nÂm2 ig@Âm ,Ân#, ~5.4!

s0 is the 232 unit matrix, ande and g are constants. The

LagrangianL̂A1L̂c is invariant under the gauge transform
tion

dAm5]ml, ~5.5a!

dÂm5]ml̂2 ig@Âm ,l̂ #, ~5.5b!

dĉ5 i ~els01gl̂ !
1

2
~12g5!ĉ, ~5.5c!

dc̄̂52 i c̄̂~els01g l̂ !
1

2
~11g5!, ~5.5d!

wherel̂ is represented asl̂5 1
2 l̂asa .

In the chiral gauge theory defined byL̂A1L̂c , a non-
Abelian chiral anomaly arises necessarily due to the quan
effects ofĉ. We can find the anomaly in the gauge transfo

mation of the effective actionW@Am ,Âm# defined from the

path integral of exp(i*d 4xL̂c) over ĉ and c̄̂. The gauge
transformation ofW is systematically calculated using th
perturbative or nonperturbative method with suitable regu
ization procedures for ill-defined quantities@15#. Adopting a
certain regularization procedure, we obtain the ‘‘consisten
anomaly; in the case at hand, it can be written as
dW5E d4x
1

24p2 emnrstrFL]mSAn]rAs2
i

2
AnArAsD G

5E d4x
1

24p2 emnrsH 1

2
e3lFmnFrs1eg2Fmntr@ l̂]rÂs#2

i

2
eg3tr@ l̂]m~AnÂrÂs!#

1eg2ltrF]mS Ân]rÂs2
i

2
gÂnÂrÂsD G1g3trF l̂]mS Ân]rÂs2

i

2
gÂnÂrÂsD G J , ~5.6!
3-6
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whereAm[eAms01gÂm andL[els01gl̂. The last term
that does not containe vanishes because of a property of t
Pauli matrices. The remainder of the integrand can be
pressed as

1

24p2 emnrsH 1

2
e3lFmnFrs1

3

2
eg2Fmntr@ l̂]rÂs#J 2dw

1total derivative, ~5.7!

with

w[
1

24p2 eg2emnrsAmtrF Ân]rÂs2
i

2
gÂnÂrÂsG .

~5.8!

In Eq. ~5.7!, 2dw is considered to be a ‘‘trivial’’ violation
of gauge symmetry, since it can be removed by adding
‘‘local’’ functional *d4xw to the effective actionW. ~The
trivial violation 2dw is due to the regularization procedu
adopted here, and so does not alter the anomalous conte
the theory.! We thus arrive at the anomaly written in th
following form:

dS W1E d4xwD5E d4x
1

24p2 emnrs

3H 1

2
e3lFmnFrs1

3

2
eg2Fmntr@ l̂]rÂs#J .

~5.9!

The right-hand side of Eq.~5.9! can never be written in the
form of the gauge variation of a local functional only inAm

and Âm . For this reason, we cannot find a gauge-invari
effective action without introducing extra physical degrees
freedom.

In order that the gauge symmetry may be restored to
theory, let us introduce theBF term ~2.9! with Bmn obeying
the gauge transformation rule

dBmn5]mjn2]njm2klFmn2 k̂ tr@ l̂] [mÂn] # ~5.10!

instead of Eq.~2.17b!. Here k and k̂ are constants. At the
same time, we modify the field strengthHmnr in Eq. ~2.10!
so that it is invariant under the gauge transformation defi
by Eqs.~5.5! and ~5.10!. The field strength modified satis
factorily is found to be

Ĥmnr[Fmnr1kvmnr1 k̂v̂mnr , ~5.11!

where Fmnr and vmnr have been given in Eqs.~2.11! and
~2.12!, and v̂mnr is the non-Abelian Chern-Simons thre
form:

v̂mnr[trF Â[m]nÂr]2
2

3
igÂ[mÂnÂr] G . ~5.12!

The gauge transformation rule~5.10! and the field strength
Ĥmnr were first found by Chapline and Manton in the stu
06500
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e
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of N51 supergravity coupled toN51 supersymmetric
Yang-Mills theory in ten dimensions@16#. Recently, Eq.
~5.10! and Ĥmnr have also been obtained in Yang-Mil
theory in loop space with the affine gauge group@17#. Since
Ĥmnr is gauge invariant,

L̂H5
1

12
ĤmnrĤmnr ~5.13!

is also invariant, while theBF term ~2.9! transforms as

dLBF52
1

4
memnrs~klFmnFrs12k̂Fmntr@ l̂]rÂs#!

1total derivative. ~5.14!

Comparing Eq.~5.14! with Eq. ~5.9!, we see that the non
Abelian analogue of Eq.~2.19! with the Lagrangian

L̂5L̂A1L̂H1LBF1L̂c ~5.15!

is gauge invariant~up to the trivial violation2dw), if k and
k̂ are chosen to bek5e3/(12p2m) and k̂5eg2/(8p2m). In
this case, theBF termLBF plays the role of the WZ term for
the non-Abelian chiral anomaly as well as the mass term
Am . Consequently, the SU(2)3 U(1) gauge symmetry is re
stored at the quantum level, though the U~1! gauge fieldAm

becomes massive.@The SU~2! gauge fieldÂm remains mass-
less.# We can thus construct a consistent quantum the

based onL̂.
Through the first-order Lagrangian that is defined by

placing Hmnr in Eq. ~2.8! with Ĥmnr , we can easily verify

the classical equivalence ofL̂H1LBF and

L85Lf1L̂WZ2
1

6
mk̂emnrsAmv̂nrs , ~5.16!

whereLf is given by Eq.~2.3! and L̂WZ is the WZ term

L̂WZ52
1

4
emnrsf~kFmnFrs1 k̂ tr@ F̂mnF̂rs#!. ~5.17!

The equivalence ofL̂H1LBF andL8 holds also at the quan
tum level. To show this, it is necessary to introduce an a

commuting scalar ghost fieldĉ5 1
2 ĉasa associated withÂm

in addition to the ghost and auxiliary fields introduced
Sec. III. From the gauge transformation rules~5.5a!, ~5.5b!,

and ~5.10!, the BRST transformation rules ofAm , Âm , and
Bmn are determined to be

d Am5]mc,

d Âm5]mĉ2 ig@Âm ,ĉ#,

d Bmn5]mrn2]nrm2kcFmn2 k̂ tr@ ĉ] [mÂn] #.
~5.18a!
3-7
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Here the ghost number 1 has been assigned toĉ. The BRST
transformation rule ofĉ is determined from the nilpotency o
d, which also demands some modifications of the BR
transformation rules ofrm and s given in Eq.~3.1b! @18#.
We thus have

d ĉ5 igĉ2,

d rm52 i ]ms2 igk̂ tr@ ĉ2Âm#,

d s52
1

3
gk̂ tr@ ĉ3#.

~5.18b!

The other ghost and auxiliary fields obey the transformat
rules in Eq.~3.1b!. Now we take the gauge-fixing terms~3.2!
and, instead of Eq.~3.3!,

L̂G25 i d @rm]ms̄1 r̄m~]mw1uAm

1vemnrsvnrs1 v̂emnrsv̂nrs!#, ~5.19!

with the gauge parametersu, v, and v̂. Starting with the

vacuum-to-vacuum amplitudeẐ, with the LagrangianL̂H

1LBF1LG11L̂G2, and by following the same procedur
that we used in Sec. III, we can rewriteẐ as the vacuum-to-
vacuum amplitude with a Lagrangian consisting of cert
local and nonlocal terms. Since the amplitudeẐ is indepen-
dent of the gauge parameters, we choose them to bu

522m, v5k/3, and v̂5 k̂/3; then all the nonlocal term
vanish andL8 alone remains as a Lagrangian definingẐ.

This result demonstrates the quantum equivalence ofL̂H

1LBF and L8. Needless to say, the LagrangianL̂A1L8

1L̂c defines a dual theory of the anomalous gauge the

described byL̂.
Adding a gauge variation of any local functional in gau

fields to an anomaly does not alter the anomalous conten
the theory. In other words, an anomaly is unique up to ga
variations of local functionals in gauge fields, and so m
take various forms. In the theory under consideration, add
the local functional*d4x(w2 1

6 mk̂emnrsAmv̂nrs) to the ef-
fective actionW, we obtain a form of the anomaly that
completely canceled with the gauge variation of the WZ

tion *d4xL̂WZ . Hence, it is possible to construct a consiste

quantum theory based on the LagrangianL̂A1Lf1L̂WZ

1L̂c .
Without any essential modification, our discussion in t

section is applicable to the anomalous gauge theory with
gauge groupG3U(1) whenever the generatorsTa of G sat-
isfy the conditions tr@Ta#50 and tr@Ta$Tb ,Tc%#50 @19#.
For example, the generators of SO(n) (n>3, nÞ6) satisfy
these conditions.
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VI. SUMMARY AND DISCUSSION

In this paper we have studied anomalous gauge theorie
four and six dimensions that contain antisymmetric ten
fields. It has been shown that in the anomalous U~1! and
SU(2) 3 U(1) gauge theories in four dimensions, theBF
term with an antisymmetric tensor fieldBmn plays the role of
the WZ terms as well as the mass term of the U~1! gauge
field Am by imposing suitable gauge transformation rules
Bmn . By virtue of the BF term, the chiral anomalies ar
canceled and the gauge symmetries are recovered to
theories.

We have demonstrated, both at the classical and quan
levels, that the four-dimensional anomalous U~1! gauge
theory withBF term is dual to the four-dimensional anom
lous U~1! gauge theory with a WZ term and a Stu¨ckelberg-
type mass term ofAm . Similar duality has also been dis
cussed in the six-dimensional anomalous U~1! gauge theory
with BF term and in the four-dimensional anomalo
SU(2)3 U(1) gauge theory withBF term.

In six dimensions, we have considered the anomal
U~1! gauge theory withBF2 term. This theory is substan
tially different from the six-dimensional anomalous U~1!
gauge theory withBF term; theBF term functions both as
the WZ term and as the mass term ofAm , while the BF2

term functions only as the WZ term. In each theory, theBF
or BF2 term restores the U~1! gauge symmetry at the quan
tum level.

TheBF terms are known as generalizations of the Che
Simons term in three dimensions; the anomalous gauge t
ries with BF terms might be formulated to be highe
dimensional analogues of the three-dimensional anoma
gauge theory in which the Chern-Simons term restores
gauge symmetry at the quantum level@20#.

Power-counting renormalizability of the four-dimension
anomalous U~1! gauge theory with WZ term is spoiled ow
ing to the WZ term, because it has a proportional const
with dimensions of length. On the other hand, theBF term
has a proportional constant with dimensions of mass,
though it functions as the WZ term. This is desirable
renormalizability of the four-dimensional anomalous U~1!
gauge theory withBF term. However, instead of theBF
term, the Chern-Simons three-form included in the fie
strengthHmnr has a proportional constant with dimensions
length. Consequently, the four-dimensional anomalous U~1!
gauge theory withBF term is also power-counting nonreno
malizable. The same can be said of the four-dimensio
anomalous SU(2)3 U(1) gauge theory withBF term.

Recently, Gomis and Weinberg have studied renorma
ability of gauge theories that are not renormalizable in
power-counting sence@21#. It would be interesting to inves
tigate renormalizability of the anomalous gauge theories w
BF term in accordance with the method proposed by Go
and Weinberg.

The anomalous SU(2)3 U(1) gauge theory withBF term
seems to be applicable to constructing an electroweak m
in which anomalies due to quarks and leptons do not can
among these particles. An anomalous SU(2)3 U(1) gauge
theory with WZ term has indeed be applied to the descript
3-8
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of electroweak model that lacks the top quark@22#. In our
theory, however, only the U~1! gauge fieldAm becomes mas

sive, while the SU~2! gauge fieldÂm remains massless. Thi
is due to the fact that the only Abelian antisymmetric ten
field Bmn has been introduced into the theory. The gau

fields Am and Âm ~or their linear combinations! cannot be
identified with the gauge bosons in the Weinberg-Sal
model without considering further physical degrees of fr
dom. If we describe those gauge bosons in terms of
anomalous SU(2)3 U(1) gauge theory withBF term, it will
.

. B

. D
l.

06500
r
e

-
e

be necessary to introduce non-Abelian antisymmetric ten
fields of rank 2@10,11# and to consider their interactions wit

the gauge fieldsAm and Âm .

ACKNOWLEDGMENTS

We are grateful to Professor S. Naka and other memb
of the Theoretical Physics Group at Nihon University f
their encouragements and useful comments. This work
supported in part by the Nihon University research grant
ui-

-

@1# R. Jackiw and R. Rajaraman, Phys. Rev. Lett.54, 1219~1985!;
54, 2060~E! ~1985!.

@2# N. V. Krasnikov, Nuovo Cimento A89, 308 ~1985!; 95, 325
~1986!; I. G. Halliday, E. Rabinovici, A. Schwimmer, and M
Chanowitz, Nucl. Phys.B268, 413 ~1986!; M. S. Chanowitz,
Phys. Lett. B171, 280 ~1986!; S. Miyake and K. Shizuya,
Phys. Rev. D36, 3781~1987!; 37, 2282~1988!.

@3# O. Babelon, F. A. Schaposnik, and C. M. Viallet, Phys. Lett
177, 385 ~1986!; K. Harada and I. Tsutsui,ibid. 183, 311
~1987!; Prog. Theor. Phys.78, 878 ~1987!.

@4# L. D. Faddeev and S. L. Shatashvili, Phys. Lett.167B, 225
~1986!.

@5# R. Rajaraman, Phys. Lett. B184, 369 ~1987!; A. Andrianov,
A. Bassetto, and R. Soldati, Phys. Rev. Lett.63, 1554~1989!;
S. Miyake and K. Shizuya, Mod. Phys. Lett. A4, 2675~1989!.

@6# A. Della Selva, L. Masperi, and G. Thompson, Phys. Rev
37, 2347~1988!; T. Fujiwara, Y. Igarashi, and J. Kubo, Nuc
Phys.B341, 695 ~1990!.

@7# J. Wess and B. Zumino, Phys. Lett.37B, 95 ~1971!; E. Witten,
Nucl. Phys.B223, 422 ~1983!.

@8# E. Cremmer and J. Scherk, Nucl. Phys.B72, 117 ~1974!; A.
Aurilia and Y. Takahashi, Prog. Theor. Phys.66, 693 ~1981!;
I. Oda and S. Yahikozawa,ibid. 83, 991 ~1990!; R. Amorim
and J. Barcelos-Neto, Mod. Phys. Lett. A10, 917 ~1995!.

@9# T. J. Allen, M. J. Bowick, and A. Lahiri, Mod. Phys. Lett. A6,
559 ~1991!; A. Lahiri, ibid. 8, 2403 ~1993!; H. Sawayanagi,
ibid. 10, 813 ~1995!.

@10# D. Z. Freedman and P. K. Townsend, Nucl. Phys.B177, 282
~1981!.
@11# J. Barcelos-Neto, A. Cabo, and M. B. D. Silva, Z. Phys. C72,
345 ~1996!; D. S. Hwang and C. Y. Lee, J. Math. Phys.38, 30
~1997!; A. Lahiri, Phys. Rev. D55, 5045~1997!; J. Barcelos-
Neto and S. Rabello, Z. Phys. C74, 715 ~1997!.

@12# E. Bergshoeff, M. de Roo, B. de Wit, and P. van Nieuwenh
zen, Nucl. Phys.B195, 97 ~1982!.

@13# M. B. Green, J. H. Schwarz, and E. Witten,Superstring Theory
~Cambridge University Press, New York, 1987!, Vol. 2.

@14# T. Kimura, Prog. Theor. Phys.64, 357 ~1980!; H. Hata, T.
Kugo, and N. Ohta, Nucl. Phys.B178, 527 ~1981!; J. Thierry-
Mieg and L. Baulieuibid. B228, 259~1983!; M. Henneaux and
C. Teitelboim,Quantization of Gauge Systems~Princeton Uni-
versity Press, Princeton, 1992!; J. Gomis, J. Paris, and S. Sam
uel, Phys. Rep.259, 1 ~1995!.

@15# R. A. Bertlmann,Anomalies in Quantum Field Theory~Oxford
University Press, New York, 1996!.

@16# G. F. Chapline and N. S. Manton, Phys. Lett.120B, 105
~1983!.

@17# S. Deguchi and T. Nakajima, Mod. Phys. Lett. A12, 111
~1997!.

@18# L. Baulieu, Phys. Lett.126B, 455 ~1983!; Nucl. Phys.B227,
157 ~1983!.

@19# H. Georgi and S. L. Glashow, Phys. Rev. D6, 429 ~1972!.
@20# A. N. Redlich, Phys. Rev. Lett.52, 18 ~1984!; Phys. Rev. D

29, 2366~1984!.
@21# J. Gomis and S. Weinberg, Nucl. Phys.B469, 473 ~1996!.
@22# T. Fujiwara and S. Kitakado, Mod. Phys. Lett. A8, 1639

~1993!.
3-9


