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Anomalous gauge theories with antisymmetric tensor fields
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We derive a dual theory of the four-dimensional anomalo(l dauge theory with a Wess-Zumi@/Z)
term and with a Stckelberg-type mass term by means of a duality transformation at each of the classical and
guantum levels. It is shown that in the dual anomalou4)@auge theory, théBF term with a rank-2
antisymmetric tensor field plays the role of the WZ term as well as the mass term ofIhgauge field. A
similar anomalous (1) gauge theory with 8F term is considered in six dimensions by introducing a rank-4
antisymmetric tensor field. In addition to this theory, we propose a six-dimensional anomdtbugauge
theory including an extendeBF term with a rank-2 antisymmetric tensor field, discussing the difference
between the two theories. We also consider a four-dimensional anomalous>SU(2) gauge theory with a
BF term and recognize the crucial role of tlF term in cancelling the non-Abelian chiral anomaly.
[S0556-282199)05304-7

PACS numbd(s): 11.15.Bt, 14.70.Pw

[. INTRODUCTION counting renormalizability of the resulting quantum theory,
however, is spoiled owing to the WZ term.

The quantization of anomalous gauge theories has been Besides the Stikelberg formalism and the Higgs model,
studied by many authors for about the past ten yght®].  there is an alternative massive gauge theory called the topo-
In particular, the chiral Schwinger model, an anomalous chilogically massive gauge theory, in which a topological term
ral U(1) gauge theory in two dimensions, has been investicalled theBF term functions as mass terms of gauge fields
gated in detail under advantageous conditions peculiar to twB—11]. The topologically massive Abelian gauge theory
dimensions. A remarkable observation is that because of thdMAGT) in four dimensions consists of a(l) gauge field
chiral anomaly, a hidden physical degree of freedom occuré,, and a rank-2 antisymmetric tensor fiedg,, [8,9]. It has
in the theory[1]. This is well understood by adding a suit- been shown, both at the classical and quantum levels, that
able Wess-ZumingWz) term[7] to the classical action of the TMAGT is a dual version of the Abelian Bkelberg
the chiral Schwinger model so as to restore the gauge synfermalism[9].
metry at the quantum levg2]. The origin of such a WZ term Taking this duality into account and noting that the
can be assigned to the gauge-volume integration in the patl@nomalous massive () gauge theory involves the Abelian
integral quantizatioh3]. Stickelberg formalism, we can find a theory that is dual to

The idea of introducing a WZ term is, of course, appli- the anomalous massive(l gauge theory and that involves
cable to anomalous gauge theories in higher dimensions. ithe TMAGT. Such a dual theory will indeed be obtained in
fact, suggesting this idea, Faddeev and Shatashvili have aifie next section with a suitable modification of the gauge
gued for correct quantization of an anomalous chiral gaugéransformation rule oB,,, defined in the TMAGT. After the
theory in four dimension$4]. Since then, several authors modification, theBF term plays the role of the WZ term as
have particularly studied the case of thélJJgauge group on  well as the mass term &, ; B, contributes importantly to
the reasonable assumption that the chiral gauge symmetry @ancelling the chiral anomaly. The modified gauge transfor-
spontaneously brokevia the anomaly[5,6]. The symmetry mation rule agrees with the one foundNh=1 supergravity
breakdown makes the () gauge field massive and enables coupled toN=1 supersymmetric Maxwell theory in ten di-
us to adopt perturbative approaches. As an effective theomnensiong12].
describing the broken phase, we can take the anomalous An anomaly-cancellation mechanism in which a rank-2
massive 1) gauge theory in four dimensions whose actionantisymmetric tensor field plays a crucial role has been ar-
includes a WZ term and a Stkelberg-type mass term con- gued in superstring theori¢s3]. This mechanism, known as
taining a WZ scalar field6]. This theory is consistently the Green-Schwarz mechanism, works only if the gauge
quantizabld5,6]; that is, by virtue of the presence of a WZ group is chosen to be $8P) or EgXEg. A non-Abelian
term, the quantization can be performed in accordance witkrersion of the modified gauge transformation rule is also
the ordinary quantization methods for gauge theories, yieldessential to the Green-Schwarz mechanism.
ing normal canonical structures at the quantum level. Power- In this paper we would like to explain that anomaly can-

cellation due to an antisymmetric tensor field occurs not only

in superstring theories but also (dual versions gfordinary
*Email address: deguchi@phys.cst.nihon-u.ac.jp anomalous gauge theories. We demonstrate Bfatterms
TEmail address: nakajima@phys.cst.nihon-u.ac.jp and their generalizations function as WZ terms when suitable
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gauge transformation rules are imposed on the antisymmetrio cancel the chiral anomaly arising from the quantum effects

tensor fields. _ _ _ of 4; although the Lagrangiafi itself is not invariant under
The present paper is organized as follows. Section Il deg,e gauge transformation

rives, at the classical level, a dual theory of the anomalous

massive 1) gauge theory in four dimensions. In Sec. I, SA, =3\, (2.63
the duality found in Sec. Il is established at the quantum
level by using the path-integral quantization based on the Sp=m\, (2.6b

Becchi-Rouet-Stora-TyutifBRST) formalism. Section IV
considers two kinds of anomaloug1) gauge theories in six 1
dimensions. One of them has ti&F term with a rank-4 Sy=ier5 (1= ys)¢, (2.60
antisymmetric tensor field and is dual to the six-dimensional

anomalous (1) gauge theory with a WZ term and a . 1

Stickelberg-type mass term. The other theory hasBRé Sy=—ieny=(1+vs), (2.60
term, a generalize@®F term, with a rank-2 antisymmetric 2
tensor field. In each theory, the six-dimensional chiral
anomaly vanishes by virtue of tH&F or BF? term. Section

V deals with an anomalous non-Abelian gauge theory in four _ _ _
dimensions with the gauge group SU&)J(1). The BF I'fA,,d]=—i Ini Dtz//ex;iiJ' d*x L
term in this theory functions both as the WZ term for the

non-Abelian chiral anomaly and as the mass term of ttle U with k= kOEeS/(dezm) remains invariant due to the varia-

auge field. Section VI is devoted to a summary and discus- —
giong y tion of the path-integral measufyDys [4]. (Here the value

of k was chosen for the cancellation of the *“consistent”
anomaly. If we discuss the cancellation of the “covariant”
Il. DUAL VERSION OF AN ANOMALOUS U (1) anomaly k should be chosen to Bbe=3k;.) By virtue of the
GAUGE THEORY WZ term Lyz, the U1) gauge symmetry of the system is
Let us begin by discussing an anomaious massi([b) U restored aﬂel’ quantiZing. As a I’esu|t,~We can construct a
gauge theory in four dimensiorj$§] that is defined by the consistent quantum field theory based®f5,6]; that is, the

the effective action

2.7

Lagrangian gquantization can be performed in accordance with ordinary
guantization methods for gauge theories, yielding normal ca-
L=La+ Lo+ Lwz+Ly, (2.1)  nonical structures at the quantum level. The quantum theory,

however, is power-counting nonrenormalizable owing to

To find a dual theory of the anomalous massivél)U

1 gauge theory, we now consider the first order Lagrangian
La=—5F, F* F,=d,A,—d,A

2Fur w22
1 oo 1
1 EU:_EE’U' P U,LLHVp()'+ EUMU#—FCBF! (28)
Ly==(d,06—MA,)(H*d—mA*), 2.3
¢ " with the so-calledBF term
k LI
Lwz=— Ze’””"q&FMFW, (2.9 Eszze“ P7BF por - (2.9
o 1 Here U, is a vector field,B,, is an antisymmetric tensor
Ly= iy aM—ieAﬂz(l— vs) |, (2.5 field, and
H,,,=F,,tko,,,, (2.10
whereA,, is a U1) gauge field,¢ a WZ scalar fieldy a S
Dirac field, andm, k, ande are constants with suitable di- where
mensions[Our metric has signatureH{,—,—,—). The con-
vention for the Levi-Civitasymbol is e’*?*= —1. The ys Frunp=0.B,,+3,B,,+3,B,,, (211
matrix is defined byys(=yH)=iy°y*y?y%.] The second
term £,, which is the gauge-invariant mass term in the 0, =AF AR, AR, (2.12

Stickelberg formalism, is necessary for the anomalous mas- ) ) ) )
sive U1) gauge theory to make a dynamical field ¢fso The tensorw,,,, is nothing k_Jut the Abelian Chern-Slmolns
that perturbative analysis can be applied to the theory. Thgwree-fqrm. Fromy, we obtain the Euler-Lagrange equation

o~ . . N B,,:
Lagrangianl then describes a massive vector field interact- O Buv
ing with chiral fermions. The WZ termiyy; is included inL €“"?9,(U,—mA;)=0, (2.13
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which can locally be solved as andB,,, the classical equivalence persists between the ef-
fective actions. As will be seen in the next section, the
Uy=mA,—d,é. (2.14 equivalence ofl,;+ Lgg and L, + Ly holds after quantiz-
ing ¢ andB ,,, which we call the equivalence at the “quan-
tum” level.

The Lagrangian+ £+ Lgg with k=0 is known as a
starting point of the topologically massive Abelian gauge
theory in four dimension$8,9], in which the topological
term Lgr makesA,, massive. Here, we would like to empha-

1 size that in the anomalous massivéllJgauge theory de-
Uuzgewva vpa, (215  fined by L, the BF term Lgg plays the role of the WZ term
as well as the mass term #f, .

[If spacetime has a trivial topology, E¢R.14) holds in all pvr
spacetime, with a single scalar fielfl.] Substituting Eq.

(2.19 into Eq.(2.8 and removing total derivative terms, we
arrive atL,+ Lyz. On the other hand, the Euler-Lagrange

equation forJ , is

After substituting Eq.(2.195 into Eq. (2.8), we have L
+ Lgg, with ll. DUALITY AT THE QUANTUM LEVEL

In order to complete our discussion in Sec. Il, we estab-
H~vP, (2.16  lishthe equivalence of,;+ Lgg andL 4+ L,y at the “quan-
tum” level. To this end, let us start witi,, + Lgg and con-

Therefore the Lagrangiafi, + Lgr is “classically” equiva- sider the covariant quantization @&,, using the BRST

lent to L4+ Lyz. The relationmA,— g, ¢= le Hvee  formalism[14]. Noting the gauge transformation ru17h
obtained from Eqs(2.14 and (2.15)Msh0\7vs the éapaality be- and its reducibility, we now introduce the following ghost

£H:1_2HMVP

tweend andB,, [9] and auxiliary fields associated witB,,: anticommuting
mv . . - . .
The field strengti ., is invariant under the gauge trans- vector fieldsp, andp,,, a commuting vector fielgs,,, an-
formation ticommuting scalar fieldyy and xy, and commuting scalar

fields o, ¢, and o. For our discussion, we also need an
anticommuting scalar ghost fieldassociated wittA,, . (In

oB,,=d,&—d,& —K\F, . (2.17H what follows, A, is treated as an external classical field, and

R mr S0 it is not necessary to introduce further ghost and auxiliary

The gauge transformation rui@.17b and the field strength fields associated witth,.) The BRST transformatiod is
H,,, agree with the ones found ilN=1 supergravity defined forA, andB,,, by replacing the gauge parametars
coupled toN=1 supersymmetric Maxwell theory in ten di- and¢, in Egs.(2.17) by the ghost fielde andp,,
mensiong12]. Obviously £, is gauge invariant, whereas the

SA, =3\, (2.173

topological termLgr is not gauge invariant and transforms OA,=3,C,
as
6B,,=d,.p,—d,p,—KCF,,. (3.139
SLgr=— EmkeleU)\F F 4 total derivative. The BRST transformation rules of the other fields are defined
4 pv' o po . . H™ —N-
(2.18 so as to satisfy the nilpotency conditidt=0:
. L 6c=0,
We notice that, up to the total derivative term, the transfor-
mation behavior _ofCBF is exactly the same as that 6fy,. ép,=—id,o, 85=0,
The effective action
. o6p,=iB,, 6B,=0,
I'[A,.B,,]=—i Inf D:,//Dz,/fexp{if d"’xE), - o
(2.19 o=y, ox=0,
with the Lagrangian Sp=x, ox=0. (3.1b
L=Lpa+Ly+ Lapt Ly, (220 The ghost numbers assigned t0A,(C;B,, 0. 04,

o,0,0:8,,x,x) and & are (0,1;0,1+1,2,0-2;0,1-1)
and 1, respectively. To quanti®&,,, we have to introduce
gauge-fixing terms with ghost number zero. Now we take the

following gauge-fixing terms:

is thus gauge invariant ik=k, for the consistent anomaly
(or if k=3k, for the covariant anomaly The LagrangiarC
defines a dual theory of the anomalous massivé) dauge

theory described b)z; these two theories are equivalent at
the *“classical” level, becausely+ Lgg is classically L= _ig[BMVa,u;V]' (3.2
equivalent toL,+ Ly . In the effective actiond” and T, o

only the Dirac fieldy is quantized, while the other fields are Lep=i6[p"d,0+p"(d,0+UA,+VE,,,,0"7)],
considered to be classical ones. Sirgcés not coupled top 3.3
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whereu andv are gauge parameters. Because of the nilpoin the following discussions, we assume that spacetime has a
tency of §, these gauge-fixing terms are invariant under therivial topology. We first notice that the integration over
BRST transformation. The first terifig, breaks the gauge yields the delta functioril,8(3"p,). This function enables
invariance ofLy explicitly. The second ternfg; is neces- < t5 remove the two termgjavaﬂp and —iu;”ayc from

sary to break the invariance afg, under thesecondary e eynonent in Eq3.5). After removing them, we express

gauge transformatiorbp,=d,e, 5p,=d,e. The gauge-  he gelta functioril,8(4”p,) in the form of the integral over

fixing procedure for quantization d8,, is complete with in. Th the int i 45 vield

Lg1+ L. Carrying out the BRST transformation in Egs. X agaLn. en, .e n eg_”a lon ovey, and p, yelos

(3.2) and (3.3, we obtain (detd)”. After the integrations ovex, x, o, ando, the
amplitudeZ can be written as

‘C’G1+£G2:_ﬁv(&MBﬂv+&vQD+ UAV+UE a)'“p")

vupo

i — 3
_ipy(Dpv_ﬁvaﬂpM_kO’W(CF,u,V)—FO’)VX'i‘U(;,,C Z_Nl(dea) fDB#VDBMD¢

+3v E,,MPUF:“P& c)—ip'd,x—olao Xexr{i j d4X[ —_ %BW,D B®Y — %BVP(;paMBMV
+ total derivative, (3.9
= 1 k v 1 2 v m v
where[0=4,d". _ - EBMVapwP” + 1—2k 0P+ Ze“ PIBLF por
Let us now show the quantum equivalenceff+ Lgg
and L,+ Ly . Consider the vacuum-to-vacuum amplitude
—BY(3"B,,+d,0+ UAﬁUGmw“’MM)H- 3.7

sz DM exp{if d*X(Ly+ L+ Lot LsD) |
3.5 Here and hereafteN; (i=1,2,3) denote normalization con-
' stants. Since the integration ovgy, yields the delta function
with the path-integral measure Iy ,0(0*B,,+d,o+UA,+vE,, 07, we replace
o o o d*B,, in the second term of the exponent by(d,¢+UA,
DM=DB,,,Dp,Dp,DB,DxDxDoDaDe. (3.6 +ve,,,-0"*?). Then, the integration oveB,,, leads to

1
+ E(ﬁ“ﬂﬂ)m_lﬂv(—ﬁ,ﬂ' uA,

) 1 u v
Z= sz DB, Dy exp[u J d4x{ - E,BM,B“—B"“( Du®F SALT 5 €unpo™”

1/1 3 1
F0 € pe ")+ 7 Zuz—mz) Fu O R =R | SuuF ) Ot AL+ kaD_lﬂ)‘w)\,w)
1 2q9p -1 ouy 1 2 2 vp 9 2 _Kk\pv -1/ _mport
+Zk w07 70,07" +1—2(k +%)w,,,0" — 3V HYE oF O (€™ F L F oo 1 |- (3.8

Since the integration ovep yields the delta functiorl,&(d#B,), the terms proportional tég,, can be removed from the
exponent in Eq(3.8). Carrying out the integration oveg,, , we obtain

. 4 1 u
Z=N; | Doexpi dxiaf“ﬁ_iA“

ot o AH 23 errProF , F +E Eu2—m2 F,,O0 Fer
¢ 2 4U ® uvt o po 4 nv

4
1 A -1 vpo 1 2 2\ _K\puv =1/ _mpoT
—§(2mk+3m})a AO™H(e""P7F ,)F o) + 3—2(k —90°) eME G\F L0 (e™TF L Fo) | (3.9
|
where we have used the following formulas: Eﬂvpﬂakw)\l‘yD*leaz aAAngl(fuvprrFWFpU)
) 1. ou wp + total derivative. (3.1)
Pwp,, 70,0 +§w/wpw

The first formula is due to the identitye,,,,e"™""
1 =-46,175,,5,75,. The second formula is derived from
=§e“’”FKAFWDﬂ(e”"”FWFM)+total derivative, (O 'A))e***979,w,,,=0. (Here the bracket§ ] indi-
cate a total antisymmetrization with respect to all indices put
(3.10 between the brackejs.
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The amplitudeZ is independent of the gauge parameters SA,=d,\, (4.63
andv, as might be expected; the result of functional integra-
tion in Eqg. (3.9) does not include these parameters. Taking
into account the gauge independenc&pive now choose 5B _ }(9 ¢ lR)\F
andv to beu=—2m andv=k/3 so that all the nonlocal wrpo= g Nubupo) = KN (uaF o
terms in Eq.(3.9) can vanish. Then Ed3.9 becomes

(4.6b

ffl) is also invariant, while the six-dimensionBIF term
(6)

6

L
L gr, transforms as

(3.12

Z=N3f D¢ exp[if d*X(Ly+ Lwz) |,

where¢ has been replaced by. Therefore the vacuum-to-
vacuum amplitude based of,,+ Lgg+ Lg1+ Lgo can be
written as that based ofi,+ Ly, which demonstrates the 4.7
equivalence ofCy+ Lge and L+ Ly, at the “quantum”

level. The two anomalous gauge theories characterizel by This transformation behavior is essential to cancellation of
and £ are thus dual to each other not only at the classicathe six-dimensional chiral anomaly due to the quantum ef-
level but also at the quantum level. Duality between the tofects of the Dirac fieldy; the six-dimensional analogue of
pologically massive Abelian gauge theory and the Abeliangq, (2.19 with the LagrangianC {* is gauge invariant, ik is
Stickelberg formalism is now obvious by settikg=0 [9]. chosen to b&=k,=e?/(963m) for the consistent anomaly

(or k=4k, for the covariant anomaly

1
LS, = —1—6mke””’"”)\F JF__F,.+total derivative.

wp' oT

IV. ANOMALOUS U (1) GAUGE THEORIES Similarly to the case of four dimensions, we can represent
IN SIX DIMENSIONS LEO+LE, asﬁff)+ £{E) by means of a duality transfor-

We now consider the six-dimensional version of the La-mation at each of the classical and quantum levels, where
grangian(2.20: £ ) is the six-dimensional analogue of B§.3) and £{f), is
the WZ term in six dimensions:

LP=L@P+Lo+Leh+cp, (4.2
k
whereﬁff) and Eff) are the six-dimensional analogues of L',(G) =— Ee“””””cﬁF WFapFor (4.8
LxandL,, respectively. The remaining two terms are given
by
The gauge theory defined b§{®) is dual to the anomalous
1 massive W1) gauge theory defined by the Lagrangidf®
(6) _ vpoT
£H1_2><5!H/wp(rer' par, (4.2 +£$)+£\([€%+£$)_
In six dimensions, we can also consider an anomalous
m U(1) gauge theory with a topological term consistingrgf,
L@ = 78 ™ BusnpF o (43  and, instead oB,,,,, an antisymmetric tensor fielB,,,
obeying the gauge transformation r¢&17h. This theory is
characterized by the Lagrangian
with a totally antisymmetric tensor field,,, , and
H/LVpUTEF;LVpUT+ kw,u,vpo-rv (44) £(26)2£5A6)+£=_|62)+£E36F)2+£(;). (49)

wherek is a constant and
Here £ (%) has the same form as E@.16), and £ §}, is the

BF? term, a generalizeBF term,

F B

uvpoT— E(}][,u vporT]

£® =£|Ze#”ﬂ‘”s JF_F (4.10
BF2 16 mp' OT? .

1
W yvpor gA[MF F(TT] (45)

vp

[The conventions for the metric signature and the Le wherel is a constant. Under the gauge transformatii?),

venti ic si u Vi- -~ (6) (6)
L transforms in a similar manner y¢,, namely,

Civita symbol are ¢,—,—,—,—,—) and €%1?%4%=—1] BF2 BF1 y

The tensorw,,,,,, is known as the Abelian Chern-Simons

five-form. The LagrangianC(® describes an anomalous ©® _ Lo umpor

massive 1) gauge theory in six dimensions. Since the field oL gr2= 16I ke AFuuF pF o total derivative.

strengthH - is invariant under the gauge transformation (4.1)
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Hence, the six-dimensional analogue of E&.19 with the 5 pirac field ¢ belonging to the fundamental representation

. (6) . . . . N N
Lagrangianl 3’ is also gauge invariant, K is chosen to_be of SU(2), we consider the Lagrangiab,-+ Z., with

k=ko=e€%(967°12) for the consistent anomalfor k= 4k,
for the covariant anomaly . 1 .~ -

The two anomalous gauge theories definedd§ and La=— g Fu P = ulF L, B, (5.9
£® are substantially different. The Lagrangiah® de-
scribes a massive vector field interacting with chiral fermi- R 1 R
ons; the only physical degree of freedom Bf,,,, is ob- Ly=iy" d,—i(eA,o0+ gAM)E(l_Ys)}‘lfy
served as the longitudinal mode of the massive vector field. (5.2
TheBF term £ §, functions both as the WZ term and as the '
mass term ofA, . In contrast, the Lagrangiaﬁ(26) describes  where
a massless vector field interacting with chiral fermions and

with a massless rank-2 antisymmetric tensor field. All the Fu=0,A,—d,A,, (5.3
physical degrees of freedom Bf,, are observed as its own
massless modes. Although(&), plays the role of the WZ F=0,A,~a,A,~ig[A, Al (5.4)

term, it does not function as a mass term.

It has been shown that in the two theories defined:l@ o9 Is the 2<X2 unit matrix, ande and g are constants. The
and £, the six-dimensional chiral anomaly vanishes by LagrangianZ+ L, is invariant under the gauge transforma-
virtue of the topological termg £, and £ §2, with suitable  tion
coefficients. We can thus construct consistent quantum field

theories based of {®) and £ . OA,=3d N\, (5.59
In higher dimensions, the varieties of generaliZé& . .
terms increase: for example, imalimensions, we can con- 5AM=(9MX—ig[AM Al (5.5b
struct aBF term andn—2 generalizedF terms,
N ~ 1 -
€M1 M2phap+1M2p+2° H2n—1M2n 5¢: i (e)\0-0+ g)\) E(]__ 75) ,p, (55@
X B#l' : '#ZpFM2p+l/"'2p+2. o F/"Zn—llu“Zn

~ =~ ~ 1
(p=1,2,3...n—1), (4.12 5‘//:_il/f(e)\00+g7\)§(1+75)1 (5.50

where B, ... is a totally antisymmetric tensor field of ~ ~ -
Bt Bp y Y where\ is represented as=;\%c,.

rank 2p. Imposing an appropriate gauge transformation rule

In the chiral gauge theory defined bS/ +L , a non-
such as Eqs(2.17h and (4.6b on B , we can make . . : SOAT &y
ast B (4.6 B Hop Abelian chiral anomaly arises necessarily due to the quantum

the BF and generalize®F terms(4.12 function as the WZ N ; .
term for the chiral 1) anomaly in 21 dimensions. effects ofyy. We can find the anomaIAy in the gauge transfor-
mation of the effective actiofW[A,,A,] defined from the
V. ANOMALOUS NON-ABELIAN GAUGE THEORY path integral of exp{d“x&w) over ¢ and . The gauge

I,gansformation ofW is systematically calculated using the

We next discuss an anomalous non-Abelian gauge theo ) ! ; .
erturbative or nonperturbative method with suitable regular-

n four.d|men5|ons whosg gauge group 1S SU(&)I(_l). ln- ization procedures for ill-defined quantitigk5]. Adopting a
troducing a W1) gauge fieldA,, a SU2) gauge fieldA,  certain regularization procedure, we obtain the “consistent”
=%Aﬂaoa [0, (a=1,2,3) denote the Pauli matridegand  anomaly; in the case at hand, it can be written as

1 i
_ 4 vpo.
SW= f A%, et Aaﬂ(AyapAa— EAVA,,AUH
4 1 nvpo 1 3 2 5 A I < A A
=|d X5a2€ e NF,,F oo+ €0PF NG A, ]~ Eeg:"tr[)\(?M(A,,ApA(,)]
+eg?\tr aM(AvapAg— S9AAA, +gdtr mﬂ(AvapAg— EgAyApAJ)“, (5.6
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whereA,=eA,oo+gA, andA=e\a,+gh. The last term

PHYSICAL REVIEW D 59 065003

of N=1 supergravity coupled tdN=1 supersymmetric

that does not contaia vanishes because of a property of the Yang-Mills theory in ten dimension$16]. Recently, Eq.
Pauli matrices. The remainder of the integrand can be ex5.10 and H,,, have also been obtained in Yang-Mills

pressed as
1 vpo 3 3 oA

522" 3 ENF L F ot Eeng,“,tr[)\apA(,] — dw

+ total derivative, (5.7

with

_ 1 2 _uvpo A A | o~n
W= mzeg € Autrl AL AG— EgA,,ApAU .

(5.9

In Eq. (5.7), — 6w is considered to be a “trivial” violation

of gauge symmetry, since it can be removed by adding th

“local” functional [d*xw to the effective actioV. (The
trivial violation — éw is due to the regularization procedure

adopted here, and so does not alter the anomalous content of

the theory) We thus arrive at the anomaly written in the
following form:

1
4 — 4 Mvpo
5(W+fd XW fd x—2247_r €

1
se\F

X
2

F

uv' opo

3 A
+ EengWtr[mpAU] .
(5.9
The right-hand side of Eq5.9) can never be written in the

form of the gauge variation of a local functional only Ay,

and AM. For this reason, we cannot find a gauge-invarian
effective action without introducing extra physical degrees o
freedom.

In order that the gauge symmetry may be restored to the

theory, let us introduce thBF term (2.9) with B,,, obeying
the gauge transformation rule

8B,,=d,&,~ 3,&,—K\F ,,—ktr[Xa,A,] (5.10

instead of Eq.2.17D. Herek and k are constants. At the

same time, we modify the field strength,,, in Eq. (2.10

theory in loop space with the affine gauge grddjg]. Since
H,,, is gauge invariant,

N
L= o (5.13

is also invariant, while th&F term (2.9) transforms as

F

uv' po

1 R o
SLar=— 7 me """ (kNF +2kF , t{Rd,A,])

+total derivative. (5.19
omparing Eq(5.14 with Eq. (5.9, we see that the non-
belian analogue of Eq2.19 with the Lagrangian
is gauge invariantup to the trivial violation— éw), if k and

k are chosen to be=e%/(127°m) andk=eg?/(87°m). In

this case, th8F term Lz plays the role of the WZ term for
the non-Abelian chiral anomaly as well as the mass term of

A, . Consequently, the SU(X)U(1) gauge symmetry is re-
stored at the quantum level, though théllygauge fieldA,,

becomes massivgThe SU2) gauge fieIdAM remains mass-
less] We can thus construct a consistent quantum theory

based onC.
Through the first-order Lagrangian that is defined by re-

placingH ,,, in Eg. (2.8 With H,.,, we can easily verify

;Ihe classical equivalence @f,+ Lgr and

A 1 . -
L'=Ly+ Log— gMke P AL0,,,

(5.1

where L, is given by Eq.(2.3) and ﬁwz is the WZ term

1 A A a
Lywz=— Ze”Vp‘Tfﬁ(kFWFp(,—i- kKtr[F,.F,.1). (5.17)

so that it is invariant under the gauge transformation defined’he equivalence of -+ Lz and £’ holds also at the quan-

by Egs.(5.5 and (5.10. The field strength modified satis-
factorily is found to be

H,p=F upt Ko, +Kko,,,, (5.12)
whereF,,, and w,,, have been given in Eq$2.11) and
(2.12, and Zuw,p is the non-Abelian Chern-Simons three-
form:

ww,pEtr A[ﬂﬁyAp]_§|gA[MAyAp] . (512

The gauge transformation rul®.10 and the field strength
I:iwp were first found by Chapline and Manton in the study

tum level. To show this, it is necessary to introduce an anti-

commuting scalar ghost field= ¢, associated witiA,,
in addition to the ghost and auxiliary fields introduced in
Sec. lll. From the gauge transformation rul@&s53, (5.5b),

and(5.10, the BRST transformation rules &,, A,, and
B, are determined to be

O0A,=4d,C,
6A,=d,c—ig[A,,c],

0B, =

y2%

9Py 3up,,—KCF,,—ktr cap, Al
(5.183
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Here the ghost number 1 has been assigned the BRST VI. SUMMARY AND DISCUSSION
transformation rule o€ is determined from the nilpotency of In this paper we have studied anomalous gauge theories in
6, which also demands some modifications of the BRSTfour and six dimensions that contain antisymmetric tensor
transformation rules op,, and o given in Eq.(3.10 [18].  fields. It has been shown that in the anomalou4)tand
We thus have SU(2) X U(1) gauge theories in four dimensions, tB&
term with an antisymmetric tensor fieR),, plays the role of
dc=igc?, the WZ terms as well as the mass term of th@)Ugauge
field A, by imposing suitable gauge transformation rules on

] P B,,. By virtue of theBF term, the chiral anomalies are
Op,=—id,o—igktrcA,], canceled and the gauge symmetries are recovered to the
theories.
1. . We have demonstrated, both at the classical and quantum
50:—§9ktr[03]- levels, that the four-dimensional anomaloug1l gauge

(5.189 theory withBF term is dual to the four—dimensipnal anoma-
lous U1) gauge theory with a WZ term and a Skelberg-
type mass term ofA,. Similar duality has also been dis-
Cussed in the six-dimensional anomaloud ) Wauge theory
with BF term and in the four-dimensional anomalous
SU(2)xX U(1) gauge theory witBBF term.

In six dimensions, we have considered the anomalous

The other ghost and auxiliary fields obey the transformatio
rules in Eq.(3.1b. Now we take the gauge-fixing terni3.2)
and, instead of Eq.3.3),

szzig[puaM;jL;u(aM‘ﬁuAﬂ U(1) gauge theory wittBF? term. This theory is substan-
R R tially different from the six-dimensional anomalous(1y
FV€,,pe0"P V€07 7)], (5.19  gauge theory wittBF term; theBF term functions both as

the WZ term and as the mass term Af , while the BF?

with the gauge parametets v, and?. Starting with the term fgncUons only as the WZ term. In each theory, Bie

T oA or BF~ term restores the (1) gauge symmetry at the quan-
vacuum-to-vacuum amplitudg, with the Lagrangianly  tym level.
+Lge+ Lg1+ L2, and by following the same procedure  TheBF terms are known as generalizations of the Chern-
that we used in Sec. Ill, we can rewrifeas the vacuum-to- Simons term in three dimensions; the anomalous gauge theo-
vacuum amplitude with a Lagrangian consisting of certainfies with BF terms might be formulated to be higher-
local and nonlocal terms. Since the amplitdtiés indepen- dimensional analogues of the three-dimensional anomalous
dent of the gauge parémeters we choose them tai be 92uge theory in which the Chern-Simons term restores the

B _ NP gauge symmetry at the quantum ley20].
=—2m, v=Kki3, andv=ki/3; then all the nonlocal terms ™ p\yer_counting renormalizability of the four-dimensional

vanish andZ’ alone remains as a Lagrangian definAﬁg anomalous (1) gauge theory with WZ term is spoiled ow-
This result demonstrates the quantum equivalence,pf ing to the WZ term, because it has a proportional constant

+Lge and £'. Needless to say, the Lagrangiafhﬁﬁ’ with dimensions of length. On the other hand, BIE term
BF ' ' has a proportional constant with dimensions of mass, al-

+L, defines a dual theory of the anomalous gauge theoryhoygh it functions as the WZ term. This is desirable to
described byL. renormalizability of the four-dimensional anomaloug1)J

Adding a gauge variation of any local functional in gaugegauge theory withBF term. However, instead of thBF
fields to an anomaly does not alter the anomalous content @érm, the Chern-Simons three-form included in the field
the theory. In other words, an anomaly is unique up to gaugstrengthH ,,,, has a proportional constant with dimensions of
variations of local functionals in gauge fields, and so maylength. Consequently, the four-dimensional anomalo(® U
take various forms. In the theory under consideration, addingauge theory witlBF term is also power-counting nonrenor-
the local functionalfd“x(w—émT(e“VP”AMZoVM) to the ef- malizable. The same can be said of the four-dimensional
fective actionW, we obtain a form of the anomaly that is anomalous SU(2x U(1) gauge theory wittBF term.

completely canceled with the gauge variation of the WZ ac- Recently, Gomis and Weinberg have studied renormaliz-
tion fd“xZiWZ. Hence, it is possible to construct a consistentablllty of gauge theories that are not.renorm'allzab!e in the
- N power-counting sence?l]. It would be interesting to inves-
quantum theory based on the Lagrangidp+Ly+Lwz  tigate renormalizability of the anomalous gauge theories with
+Ly. BF term in accordance with the method proposed by Gomis
Without any essential modification, our discussion in thisand Weinberg.

section is applicable to the anomalous gauge theory with the The anomalous SU(2) U(1) gauge theory witl8 F term
gauge groups X U(1) whenever the generatofg of G sat-  seems to be applicable to constructing an electroweak model

isfy the conditions fiT,]=0 and tfT,{Ty,T.}]=0 [19]. in which anomalies due to quarks and leptons do not cancel
For example, the generators of SQ((n=3, n#6) satisfy among these particles. An anomalous SU{2)(1) gauge
these conditions. theory with WZ term has indeed be applied to the description
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of electroweak model that lacks the top qu@d]. In our  be necessary to introduce non-Abelian antisymmetric tensor
theory, however, only the (1) gauge fieldA , becomes mas- fields of rank 210,11 and to consider their interactions with

sive, while the S(R) gauge fieldA,, remains massless. This the gauge field\,, andA,L.
is due to the fact that the only Abelian antisymmetric tensor
field B,, has been introduced into the theory. The gauge

fields A, and A, (or their linear combinationscannot be
identified with the gauge bosons in the Weinberg-Salam We are grateful to Professor S. Naka and other members
model without considering further physical degrees of free-of the Theoretical Physics Group at Nihon University for
dom. If we describe those gauge bosons in terms of théheir encouragements and useful comments. This work was
anomalous SU(2¥ U(1) gauge theory witlBF term, it will ~ supported in part by the Nihon University research grant.
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