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All nonspherical perturbations of the Choptuik spacetime decay
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We study the nonspherical linear perturbations of the discretely self-similar and spherically symmetric
solution for a self-gravitating scalar field discovered by Choptuik in the context of marginal gravitational
collapse. We find that all nonspherical perturbations decay. Therefore critical phenomena at the threshold of
gravitational collapse, originally found in spherical symmetry, will extend to~at least slightly! nonspherical
initial data.@S0556-2821~99!01606-9#

PACS number~s!: 04.25.Dm, 04.20.Dw, 04.40.Nr, 04.70.Bw
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I. INTRODUCTION

We have many and powerful results about the static
stationary end states of gravitational collapse. However, v
little is known in comparison about the dynamical evoluti
towards them. Analytical studies are limited by the comp
cated non-linear nature of the equations. Numerical stu
can fill this gap if they can demonstrate generic behavio

Starting with the pioneering work of Choptuik@1#, a num-
ber of authors have shown that, despite the complicated
ture of the equations, the threshold of gravitational colla
is strikingly simple@2#. Following the initial ideas of Evans
@3# it has been possible to explain this simplicity as the c
sequence of the existence of a ‘‘critical solution’’ which ac
as an intermediate attractor in phase space. This solution
a single linearly unstable eigenmode which drives out ev
nearby solution either towards black hole formation or d
persal, leaving flat space behind.

This body of work expands our understanding of the d
namical process of collapse, borrowing concepts and to
from the theory of dynamical systems. The emphasis
shifted to phase space, and within it, to solutions with spe
stability characteristics:

~1! First, we look for global attractors. The Minkowsk
and Kerr-Newman solutions are the only possible end st
of collapse in the Einstein-scalar-Maxwell system.

~2! Then we look for codimension-one attractors, whi
separate phase space into basins of attraction of the g
attractors. These solutions are also very important. For
ample, the study of the trajectories connecting
codimension-one attractors with the global attractors give
a qualitative picture of marginal collapse because many
ferent trajectories tend to approach them and arrive at
attractors along them. In this terminology, Choptuik disco
ered the first codimension-one attractor. For reasons still
known, many of the codimension-one attractors are s
similar.

~3! The long-term objective is the construction of a p
ture of the unfolding of trajectories in phase space. It wo
contain all the dynamical information about a given syste
0556-2821/99/59~6!/064031~19!/$15.00 59 0640
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Furthermore it is the natural place to accommodate the
of special solutions we currently know of, including nake
singularities.

In a previous paper@4# we addressed the question
whether the Choptuik solution was a codimension-one so
tion in the system Einstein-Maxwell-charged scalar field,
stricted to spherical symmetry, and obtained an affirmat
answer, which has been confirmed in independent work@5#.
In this paper we address the same question for the sys
Einstein-real scalar field, but this time allowing for arbitra
small deviations from spherical symmetry, and we obt
again an affirmative answer. The study of the Einste
Maxwell-charged scalar field system beyond spherical sy
metry will be reported elsewhere.

This result, together with a parallel result on the collap
of a perfect fluid@6#, strongly suggests that critical phenom
ena in gravitational collapse are still present in the absenc
spherical symmetry. An equally strong indication that critic
phenomena are not restricted to spherical symmetry is
vided by numerical work on the critical collapse of axisym
metric vacuum spacetimes@7#, which shows universality and
scaling similar to that of the spherical scalar field.

The plan of the article is as follows: In Sec. II we give
complete review of the Gerlach and Sengupta@8,9# formal-
ism of gauge-invariant perturbations around a general sph
cally symmetric spacetime~which typically contains matter
and is time-dependent!. In Sec. III we re-express these st
general tensor equations of Sec. II in an arbitrary basis
facilitate the study of their causal structure. The equation
this section will be of help in any study of linear perturb
tions around spherical symmetry for arbitrary matter conte
in an arbitrary background coordinate system. In Sec. IV
specialize the formalism to massless scalar field matter.
background solution is briefly reviewed in Sec. V, where
specialize to a particular basis, and choose a coordinate
tem. In Secs. VI and VII we split the odd and even line
perturbation equations, respectively, into evolution equati
and constraints, and identify free data. Section VIII descri
our numerical results in detail. The Appendix contains a
scription of our numerical methods for computing the bac
ground and then the perturbations on it.
©1999 The American Physical Society31-1
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To summarize our main result here, all non-spheri
physical perturbations of Choptuik’s solution decay, a
therefore the critical phenomena at the black hole thresh
in scalar field collapse — universality, echoing and scal
— are expected to persist for initial data that devia
~slightly! from spherical symmetry.

In related work, Frolov has been able to calculate
spherical and non-spherical perturbation spectrum of
Roberts solution analytically@10#. The Roberts solution is a
self-similar scalar field spacetime, like the Choptuik solutio
Unlike the Choptuik solution, it has a continuum of growin
spherical perturbation modes. All its nonspherical pertur
tion modes decay, however.

II. REVIEW OF GERLACH AND SENGUPTA FORMALISM
OF GAUGE-INVARIANT PERTURBATIONS

In this section we give a brief introduction to the forma
ism of Gerlach and Sengupta@8,9# for perturbations around
the most general spherically symmetric spacetime. Sp
time is decomposed asM45M23S2, whereS2 is the two-
sphere andM2 is a two-dimensional manifold with bound
ary. Tensor indices onM4 are Greek letters, tensor indice
on M2 are upper case Latin letters, and tensor indices onS2

are lower case Latin letters. We write the general spheric
symmetric metric as

gmndxmdxn[gAB~xD!dxAdxB1r 2~xD!gab~xd!dxadxb,
~1!

wheregAB is a metric andr is a scalar field onM2.gab is the
unit Gaussian-curvature metric onS2.r 50 identifies the cen-
ter of the spherical symmetry, where eachS2 degenerates to
a point. r 50 is the boundary ofM2. In the same way we
decompose the spherically symmetric stress-energy tens

tmndxmdxn[tAB~xD!dxAdxB

1Q~xD!r 2~xD!gab~xd!dxadxb. ~2!

For simplifying the field equations, it is useful to introduce
vector and a scalar onM2 derived from the scalarr:

vA[
r uA

r
, ~3!

V0[2r 2212vA
uA13vAvA. ~4!

We distinguish covariant derivatives onM4,M2 andS2:

gmn;l[0, gABuC[0, gab:c[0. ~5!

We shall also need the covariantly constant unit antisymm
ric tensors with respect togAB andgab , which we calleAB
andeab .

The Einstein equations in spherical symmetry are

GAB522~vAuB1vAvB!1gABV058ptAB , ~6!
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2
Ga

a52R1vA
uA1vAvA58pQ, ~7!

whereGa
a denotes the partial trace overGmn .R[ 1

2 RA
(2)A is

the Gaussian-curvature scalar ofM2. The four-dimensional
Ricci scalar isR52(R2V0). The conservation equation fo
the stress-energy tensor in spherical symmetry is

tAB
uB12tABvB52QvA . ~8!

As a manifestation of the contracted Bianchi identities,~7!
can be obtained as a derivative of Eq.~6!, provided that Eq.
~8! holds.

Now we introduce an arbitrary~not spherically symmet-
ric! perturbation of this spacetime:gmn→gmn(xD)
1hmn(xD,xd) and again we perform a 212 decomposition.
Furthermore we decompose the angular (xd) dependence
into series of tensorial spherical harmonics:

Yl
m(xd) are the scalar spherical harmonics, the obje

Yl
m

:a andSl
m

a[ea
bYl

m
:b form a complete basis of vector ha

monics, and following Zerilli@11#, we use the following ba-
sis of symmetric tensor harmonics:Yl

mgab ,Zl
m

ab[Yl
m

:ab

1@ l ( l 11)/2#Yl
mgab , and Sl

m
a:b1Sl

m
b:a , which is a linear

combination of the basis introduced by Regge and Whe
@12#. For l 50,1 there is only one linearly independent tens
namelygabYl

m , while the other two tensors vanish. Gerla
and Sengupta initially@8# used the Regge-Wheeler basis, b
in @9# changed to Zerilli’s basis in order to include the cas
l 50,1 into a single formalism.

All these spherical harmonics have definite parity und
spatial inversion: a spherical harmonic with labell is called
even if it has parity (21)l and odd if its parity is
(21)l 11;Yl

m ,Yl
m

:a and Zl
m

ab are even andSl
m

a and Sl
m

a:b

1Sl
m

b:a are odd.~An alternative terminology is polar instea
of even, and axial instead of odd.! Even and odd perturba
tions decouple, and different values ofl and m decouple.
Furthermore, the perturbation equations do not depend om.
In the following we consider one value ofl andm at a time,
and suppress both the indicesl andm and the explicit sum-
mation over them.hmn is decomposed into

hAB[h̃ABY, ~9!

hAb[hA
EY:b1hA

OSb , ~10!

hab[r 2KgabY1r 2GZab1h~Sa:b1Sb:a!. ~11!

Note that the left-hand sides are components of a tenso
M4. On the right-hand sideh̃AB is a tensor onM2, andY is
a scalar onS2. Similar remarks apply to the other definition
In the same way we decompose the perturbationDtmn into
tensorial spherical harmonics:

DtAB[D t̃ ABY, ~12!

DtAb[DtA
EY:b1DtA

OSb , ~13!
1-2
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Dtab[r 2Dt3gabY1Dt2Zab1Dt~Sa:b1Sb:a!, ~14!

where we use the superindices 2 and 3 in order to follow
notation of@9#. ~They are just labels, not components of a
vector.! Some of the coefficients on the right hand side
these expansions are not defined forl 50,1 because the cor
responding spherical harmonics vanish. In the following,
always point out which of the general equations continue
hold for l 50 andl 51 if one sets these coefficients to zer

It is possible to form linear combinations of these obje
which are invariant under coordinate transformations of
-

li
e
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background ~‘‘gauge-invariance’’!. These objects are
kAB ,kA ,k for the metric, which are the generalizations

h̃AB ,hA
O,K when the latter are evaluated in the gaugehE

5G5h50 ~Regge-Wheeler gauge!. And they are
TAB ,TA ,T3,T2,LA ,L for the matter, which are generaliza

tions of Dh̃AB ,DtA
E ,Dt3,Dt2,DtA

O2QhA
O,Dt in Regge-

Wheeler gauge, respectively. See@8,9# for the precise defi-
nitions of these objects.

The perturbed Einstein equations, expressed only
gauge-invariant perturbations, are
l>0:

~kCAuB1kCBuA2kABuC!vC2gAB~2kCD
uD2kD

D
uC!vC

2~kuAvB1kuBvA1kuAB!1S V01
l ~ l 11!

2r 2 D kAB

2gABFkF
F

l ~ l 11!

2r 2
12kDFvDuF13kDFvDvF2kuF

F23kuFvF1
~ l 21!~ l 12!

2r 2
kG58pTAB , ~15!

1

2 H 2kAB
uAB1kA

A
uB

uB22kAB
uAvB1kA

AuBvB1RAB~kAB2kgAB!

2
l ~ l 11!

2r 2
kA

A1kuA
A12kuAvAJ 58pT3, ~16!

l>1:

1

2
~kAB

uB2kB
BuA1kB

BvA2kuA!58pTA , ~17!

2
1

2r 2F r 4S kA

r 2 D
uC

2r 4S kC

r 2 D
uA
G uC

1
~ l 21!~ l 12!

2r 2
kA58pLA , ~18!

l>2:

2
1

2
kA

A58pT2, ~19!

1

2
kA

uA58pL. ~20!
of
tions
RAB in Eq. ~16! are the AB components of the four
dimensional Ricci tensor. Equations~16! and ~20! can be
obtained as derivatives of the other equations using the
earized equations of stress-energy conservation, which w
not give here explicitly.
n-
do

III. PERTURBATION EQUATIONS FOR ARBITRARY
MATTER IN AN ARBITRARY ORTHONORMAL BASIS

Both in order to transform tensor equations into sets
scalar equations, and in order to separate evolution equa
1-3
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from constraints, it is desirable to introduce an orthonorm
frame inM2: namely,

2uAuA[nAnA[1, uAnA[0. ~21!

In the presence of curvature, this cannot be a coordin
basis:

@n,u#A5mnA2nuA, m[uA
uA , n[nA

uA . ~22!

We define an associated basis of 2-tensors,

gAB52uAuB1nAnB , eAB[nAuB2uAnB, ~23!

pAB[uAuB1nAnB , qAB[nAuB1uAnB ~24!

and use it to decompose the gauge-invariant metric pertu
tion:

kAB[hgAB1fpAB1cqAB . ~25!

We define derivatives along the basis vectors:

ḟ [uAf uA , f 8[nAf uA , ~26!

and re-express the even-perturbation equations in this b
We also introduce the notation
06403
l
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uAvA[U, nAvA[W, W22U25vAvA[v2. ~27!

For reference we give the background Einstein equation
frame components:

W82U̇1nW2mU22U212W22r 2258p
1

2
tA

A , ~28!

2W82U̇1nW1mU2U22W258p
1

2
pABtAB, ~29!

2U82Ẇ1mW1nU22UW58p
1

2
qABtAB,

~30!

2R1W82U̇1nW2mU2U21W258pQ. ~31!

We use them among other things to bring all perturbat
equations into a standard form by eliminating the derivativ
of U andW.

The complete Einstein equations for the even pertur
tions, still for arbitrary matter content, expressed in gau
invariant variables, and decomposed in an arbitrary fra
are
l>0:

2 k̈1k91nk82m k̇22U@2k̇1ḟ1c812mf12nc#22W@22k81f81ċ12nf12mc#

2
l ~ l 11!

r 2
~k1h!1

2

r 2
~k2h!22f~U21W2!24cUW116p~fpAB1cqAB!tAB58pTA

A , ~32!

2 k̈2k91nk81m k̇12U@2 k̇1ḣ1c812mf#12W@2k81h82ċ22nf#

12fS V01
l ~ l 11!

2r 2 D 58ppABTAB , ~33!

2~ k̇!82~k8!˙1mk81n k̇12U@2k81h82f822mc#12W@2 k̇1ḣ1ḟ12nc#

22cS V01
l ~ l 11!

2r 2 D 58pqABTAB , ~34!

2 k̈2ḧ2f̈1k91h92f92~ ċ !82~c8!˙1nk82m k̇1nh82mḣ23~nf81nċ1mc81mḟ!

22U~ḟ1 k̇1c8!22W~f82k81ċ !22~n8f1 ṅc1m8c1ṁf!2
l ~ l 11!

r 2
h

22~k2h!@R2W81U̇2nW1mU1U22W2#

22f@W81U̇1nW1mU1U21W21m21n2#

22c@U81Ẇ1mW1nU12UW12mn#516pT3, ~35!
1-4
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l>1: k̇1ḣ1ḟ1c812mf12nc22Uh5216puATA , ~36!

k81h82f82ċ22nf22mc22Wh5216pnATA , ~37!

l>2: h528pT2. ~38!
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We have now turned the even perturbation equations
scalar form. They are already in first-order form if on
counts f, ḟ and f 8 as separate variables linked by certa
trivial equations. In the following we always imply this firs
order interpretation. The final step of the analysis is to se
rate the equations into evolution equations and constra
This cannot be done in general, as the causal structure o
equations depends on the matter content.

Attention must be paid to the regularity of the perturb
tions atr 50. Changing to Cartesian coordinates one can
that regular perturbations scale as

h5r l h̄, ~39!

k5r l k̄, ~40!

c5r l 11c̄, ~41!

x[f2k1h5r l 12x̄, ~42!

where the barred variables areO(1) at the center.
The odd metric-perturbations are contained inkA . We can

transform the vector equation~18! into a scalar equation us
ing the curl ofkA :

P[eAB~r 22kA! uB . ~43!

It is possible to reconstructkA from P for l>2 using Eq.
~18!. ThereforeP alone characterizes the physical odd m
ric perturbations. Forl>2 it obeys the ‘‘odd parity maste
equation’’ @8#

l>2: 2
1

2F 1

r 2
~r 4P! uAG

uA

1
~ l 21!~ l 12!

2
P58peABLAuB .

~44!

This equation is a generalization of the Regge-Wheeler eq
tion @12#. If we define the objectPRW5r 3P then the master
equation is

PR W
uA

A1S vA
uA2vAvA2

~ l 21!~ l 12!

r 2 D PRW

5216pr eABLAuB ~45!

which, for Schwarzschild background in radial coordinat
and using the ‘‘tortoise’’ coordinater * , is the Regge-
Wheeler equation:
06403
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2
]2PRW

]t2
1

]2PRW

]r * 2
1S 12

2M

r D S 6M

r 3
2

l ~ l 11!

r 2 D PRW50.

~46!

We enforce regularity at the origin by defining

P5r l 22P̄, ~47!

and Eq.~44! in an arbitrary basis becomes

l>2: 2 P̈̄1P̄91@n12~ l 11!W#P̄82@m12~ l 11!U#Ṗ̄

1~ l 12!F r uA
A

r
1~ l 21!~vAvA2r 22!GP̄

5216pr 2 l@2~uALA!81~nALA!˙1mnALA2nuALA#.

~48!

In the special casel 51,kA is defined byP only up to a
gradient, but precisely this gradient is a gauge degree
freedom, so thatP again contains all the gauge-invaria
information. As we have (r 2LA) uA50, LA can be expressed
asr 2LA5eABTuB, with T a new scalar. Equation~18! can be
integrated to obtain the algebraic Einstein equation

l 51: r 4P516pT1const. ~49!

The integration constant must be zero if the perturbed sp
time is to be regular inr 50. ~If the background spacetime i
Schwarzschild, then this integration constant parametrize
infinitesimal angular momentum taking Schwarzschild in
Kerr.! For l 50, there are no odd-parity perturbations at a

IV. THE MASSLESS SCALAR FIELD MODEL

In the remainder of the paper, we restrict attention to
particular matter model, the real massless scalar fieldw with
stress-energy tensor

tmn5w ,mw ,n2
1

2
gmnw ,lw ,l. ~50!

The background momentum-conservation equation~8! gives
the evolution equation of the field:

1

r 2
~r 2w uA! uA5w uA

A12vAw uA50. ~51!

It is useful to notice that for scalar field matter
1-5
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V05
r uA

uA

r
5r 222vAvA5

2mHawking

r 3
. ~52!

The scalar field has a perturbation( l ,mYDw. We can con-
struct a gauge-invariant perturbation as

F[Dw2pCw uC , ~53!

in terms of which the gauge-invariant perturbations of
stress-energy tensor are

TAB5F uAw uB1F uBw uA2gABw uFF uF1
1

2
gABkDFw uDw uF

2
1

2
kABw uFw uF, ~54!

TA5Fw uA , ~55!

T35kQ2w uDF uD1
1

2
kDFw uDw uF , ~56!

T250, ~57!

LA50, ~58!

L50. ~59!

Notice that there are no odd perturbations.
Again, the momentum-conservation equation gives

evolution equation for the matter perturbation, that is,
perturbed scalar wave equation:

l>0:
1

r 2
~r 2F uA! uA2

l ~ l 11!

r 2
F

5
1

r 2
~r 2kABw uA! uB2~k1h! uBw uB. ~60!

If w50, matter and metric perturbations decouple.
To enforce regularity at the origin, we define

F5r lF̄, ~61!

whereF̄ is O(1) at r 50.

V. CHOICE OF FRAME AND COORDINATE SYSTEM

In the remainder of the paper we shall use the radial b
defined by

nA[
vA

v
W5v, U50. ~62!

There is a system of coordinates naturally associated
this basis, which usesr as a coordinate: the familia
‘‘Schwarzschild-like’’ coordinate system, in which the me
ric is
06403
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ds252a2~ t,r !dt21a2~ t,r !dr21r 2dV2. ~63!

In these coordinates, the derivatives in thevA frame take the
form

ḟ 5a21
] f

]t
, f 85a21

] f

]r
. ~64!

This is not yet the coordinate system we shall use, but i
useful as an intermediate step in the presentation of the
coordinates.

The Choptuik critical solution is a solution of th
Einstein-real massless scalar field system defined by its
similarity together with regularity. We introduce coordinat
x andt adapted to self-similarity of the spacetime. The bac
ground solution has the geometric property of being d
cretely self-similar~DSS!, which in our coordinates mean
that w(t1D,x)5w(t,x). The metric coefficientsa and a
defined in Eq.~63! have the same periodicity. Coordinate
with this property are not unique. We make the followin
choice~in terms of the Schwarzschild-like coordinates!:

t[2 lnS 2
t

r 0
D , x[S 2

r

t De2j0~t!, ~65!

wherer 0 is an arbitrary scale. In the following we set it equ
to 1. Our choice has the following properties. Surfaces
constantt coincide with those of constantt, andt increases
with t. Thereforet is a good time coordinate, as well a
being the logarithm of overall spacetime scale. The origir
50 coincides withx50. We choose the functionj0(t) such
that the past light cone of the pointr 5t50 coincides with
the surfacex51. The domain of dependence of the disk
<x<1 on any spacelike surface is therefore given by 0<x
<1. We can therefore work on the numerical domain 0<x
<1,0<t,` without requiring boundary data onx51. If we
extended our perturbation initial data tox.1, that part of the
data could not influencex,1. We can therefore determin
exponential growth or decay on the domain 0<x<1 alone.

In these coordinates the frame derivatives in the rad
frame are

ḟ 5a21etF ] f

]t
1S 12

dj0

dt D x
] f

]xG , ~66!

f 85a21et2j0
] f

]x
, ~67!

and the spacetime metric in these coordinates, but expre
througha anda, is

ds25r 0
2e22tH 2a2dt21a2e2j0Fdx1S 12

dj0

dt D x dtG2

1x2e2j0 dV2J . ~68!

The background Einstein equations and a few more d
nitions are given in Appendix A.
1-6
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VI. ODD PERTURBATIONS OF THE CHOPTUIK
SPACETIME

As we have seen, bothLA andL vanish and therefore th
odd metric perturbations decouple from the matter pertur
tions. This implies@see Eq.~49!# that for l 51 we haveT
50, and henceP50, if we demand regularity at the cente
kA is then pure gauge. Alll 51 odd perturbations are there
fore pure gauge. Forl>2 Eq. ~48! is, in the radial basis,

l>2: 2 P̈̄1P̄91@n12~ l 11!v#P̄82mṖ̄

2~ l 224!V0P̄50. ~69!

This equation is equivalent to the first-order system

2~ Ṗ̄ !˙1~P̄8!81S150, ~70!

2~P̄8!˙1~ Ṗ̄ !81S250, ~71!

2~P̄ !˙1 Ṗ̄50, ~72!

2~P̄ !81P̄850, ~73!

where

S152mṖ̄1@n12~ l 11!v#P̄82~ l 224!V0P̄, ~74!

S252mP̄81nṖ̄. ~75!

Note that Eqs.~71!–~73! are really identities that need to b

added to the system when we considerP̄,Ṗ̄ and P̄8 as in-
dependent variables. From this first-order point of view,
now have three evolution equations~which contain dot-
derivatives! and one constraint~which does not!. The three
characteristics are the light rays and the lines of constanr.
Note that this causal structure is independent of any part
lar choice of coordinates. Now we introduce coordina
(t,x). We also rescaleP̄ and its derivatives so that the re
caled variablesu are precisely periodic int if ~and only if!
the perturbed solution is DSS. Consider a perturbation o
self-similar background so that the sum of background
perturbations is again self-similar~to linear order in the per-
turbations!. To find the scaling behavior ofP, we note that
the tensorkASa must scale like the metric itself.Sa scales
trivially, so thatkA scales like the metric itself. On the othe
hand eAB scales like the inverse metric, so that the sca
eABkAuB scales trivially, that is, it is periodic int for a DSS
perturbation. ThereforeP̄5r 22 leAB(r 22kA) uB scales like
r 2 l , that is likeel t. We also note that each frame derivati
adds a poweret. In order to cancel this scaling behavior, w
define

u1[e2~ l 11!tṖ̄, ~76!

u2[e2~ l 11!tP̄8, ~77!

u3[e2 l tP̄. ~78!
06403
a-

e

u-
s

a
d

r

The final form of the equations is then

]u

]t
1A3

]u

]x
1s50, ~79!

where the 333 matrix A3 is

A3[diag~A2 ,l0!, l0[xS 12
dj0

dt D , ~80!

with

A2[S l0 2~a/a!e2j0

2~a/a!e2j0 l0
D . ~81!

We first consider the transport part of the equations. T
characteristic speeds, or eigenvalues ofA3 are

l0 , l65l06
a

a
e2j0. ~82!

l0 andl1 are always positive, whilej0 has been chosen s
that l2 changes sign atx51 by definition. That is,j0(t) is
defined by the equation

S 12
dj0

dt Dej0[S a

a D
x51

. ~83!

This definition means that for 0<x,1 the characteristic
speedsl0 and l1 are positive, andl2 is negative. Atx
51,l0 and l1 are still positive, andl2 is zero. Therefore
no boundary condition is required at the boundaryx51, be-
cause no information crosses it from the right. Atx50, all u
are either even or odd inx, so that boundary conditions ar
obtained trivially.

The source terms in the final equations are

s152ae2~ l 12!tS11~ l 11!u1

52a@2m̄u11 n̄u212~ l 11!v̄u22~ l 224!V̄0u3#

1~ l 11!u1 , ~84!

s252ae2~ l 12!tS21~ l 11!u2

52a@2m̄u21 n̄u1#1~ l 11!u2 , ~85!

s352au11 lu3 . ~86!

We have used rescaled background coefficients that are
riodic in t on the DSS background. Using the backgrou
Einstein equations they are

m̄[e2tm5
2a

ej0x
XY, ~87!

n̄[e2tn5
a

ej0x
S X21Y21

12a22

2 D , ~88!
1-7
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v̄[e2tv5
1

ej0ax
, ~89!

V̄0[e22tV05
12a22

e2j0x2
. ~90!

Note that atx50, these are regular except forv̄;x21. ~The
background fieldsX and Y are defined in the Appendix.!
Finally, the constraint equation becomes

]u3

]x
5aej0u2 . ~91!

As free initial data we can takeu1 andu3 , and we obtainu2
by taking the derivative ofu3 . Numerically it is more stable
06403
to takeu1 andu2 , plus the value ofu3 at x50, as free data,
and solve foru3 by integration.

VII. EVEN PERTURBATIONS OF THE CHOPTUIK
SPACETIME

A. General casel>2

The even perturbation equations are far more com
cated. We discuss the casesl>2,l 50 and l 51 separately,
beginning with the general casel>2.

The vanishing of the matter perturbationT2 makeskAB
traceless (h50). Therefore the even perturbations are d
scribed byx̄,c̄,k̄ and F̄. These obey the following set o
equations:
2 F̈̄1F̄92mḞ̄1„n12~ l 11!v…F̄81S 2 l 2V01
8

r 2
~Y22X2!D F̄

22~ k̄1r 2x̄ !
1

r
~Ẏ2nX!22c̄„Ẋ1~v2n!Y…50, ~92!

2 k̈̄1 k̄92m k̇̄1„n12~ l 11!v…k̄82 l 2V0k̄22x̄12S V01
2

r 2
~X21Y2!D ~ k̄1r 2x̄ !

1
8

r
XYc̄2

16v
r

XF̄50, ~93!

r 2ẋ̄12k̇̄1r c̄81„2n1~ l 11!v…r c̄12m~ k̄1r 2x̄ !1
8

r
YF̄50, ~94!

r ċ̄1r 2x̄81~ l 12!r 2vx̄12n~ k̄1r 2x̄ !12mr c̄2
8

r
XF̄50, ~95!

k̄912~ l 11!v k̄82m k̇̄2S ~ l 11!~ l 12!

2
12r 2v2D x̄2„l ~ l 11!V01 lnv…k̄2vr 2x̄8

1S lV01
4

r 2
Y2D ~ k̄1r 2x̄ !1

4

r
„YḞ̄1X~ lvF̄1F̄8!…1r c̄S 22mv1

4

r 2
XYD 50, ~96!

2~ k̇̄!82~ l 12!v k̇̄1m k̄81~ l 22!mv k̄2rvc̄82r c̄S ~ l 11!v21V01
l ~ l 11!

2r 2
1

2

r 2
~X22Y2!D 22mvr 2x̄

2
4

r
~XḞ̄1YF̄8!2

4

r
vYF̄~ l 12!50. ~97!

Again, we rescale the variables so that they are periodic int if and only if the perturbed spacetime is still DSS:
1-8
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u1[e2~ l 11!tḞ̄,u2[e2~ l 11!tF̄8,u3[e2 l tF̄,

u4[e2~ l 11!t k̇̄,u5[e2~ l 11!tk̄8,u6[e2 l tk̄,

u7[e2~ l 11!tr x̄,u8[2e2~ l 11!tc̄. ~98!

There are 8 evolution equations of the form

]u

]t
1A8

]u

]x
1s50, ~99!

where the matrixA8 is

A8[diag~A3 ,A3 ,A2!, ~100!

ands is the vector

s15~ l 11!u12aF2m̄u11„n̄12~ l 11!v̄…u21S 2 l 2V̄01
8

x2e2j0
~Y22X2!D u3

22~e2tẎ2 n̄X!S 1

xej0
u61u7D 12„e2tẊ1~ v̄2 n̄ !Y…u8G , ~101!

s25~ l 11!u22a@n̄u12m̄u2#, ~102!

s35 lu32au1 , ~103!

s45~ l 11!u42aF2
16

xej0
v̄Xu32m̄u41„n̄12~ l 11!v̄…u51S ~22 l 2!V̄01

4

x2e2j0
~Y21X2!D u6

1
2

xej0
„2a2212~X21Y2!…u72

4

a
m̄u8G , ~104!

s55~ l 11!u52a@n̄u42m̄u5#, ~105!

s65 lu62au4 , ~106!

s75~ l 11!u72aF2
8

x2e2j0
Yu32

2

xej0
~u41m̄u6!22m̄u71„2n̄1~ l 11!v̄…u8G , ~107!

s85~ l 11!u82aF2
8

x2e2j0
Xu31

2

xej0
n̄u61„2n̄1~ l 11!v̄…u722m̄u8G . ~108!
There are four constraints

]u3

]x
5aej0u2 , ~109!

]u6

]x
5aej0u5 , ~110!

]u7

]x
1

b7

x
u75c7 , ~111!
06403
]u8

]x
1

b8

x
u85c8 , ~112!

where

b75a2S 21 l 1 l 2

2
1

l 11

a2
24Y2D , ~113!
1-9
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b85a2S 21 l 1 l 2

2
1

l

a2
12~X22Y2!D ,

~114!

c75a
]u5

]x
2a2ej0H 2

4

xej0
„Yu11X~u2

1 l v̄u3!…1m̄422~ l 11!v̄u5

1S l 2V̄01 l n̄ v̄2
4

x2e2j0
Y2Du6J , ~115!

c85a
]u4

]x
2a2ej0H 2

4

xej0
„Xu1

1Y@u21~ l 12!v̄u3#…2~ l 12!v̄u4

1m̄u51~ l 22!m̄ v̄u62
2

a
m̄u7J . ~116!

The causal structure of the equations is similar to the
case, becauseA8 is constructed fromA2 andA3 . The char-
acteristics ofA2 are just the ingoing and outgoing radial nu
geodesics.u1 ,u2 andu3 on the one hand, andu4 ,u5 andu6
each form a wave equation with a mass-like term, whileu7
and u8 form a massless wave equation. The first two co
straints are also identical to the odd perturbation case,
can be solved foru3 andu6 by integration, or foru2 andu5
by differentiation. Again we choose the former in the n
merical treatment, taking the value ofu3 andu6 at x50 as
free initial data, together withu1 ,u2 ,u4 andu5 .

The next constraint equation containsu7 but notu8 , and
is therefore a linear ordinary differential equation~ODE! for
u7 . Onceu7 is known, the last constraint can be solved as
ODE for u8 . We solve these ODEs by a second-order i
plicit method, in order to finite-difference all constraints
the same way. Both the evolution equation foru7 and the
constraint foru8 require the following condition at the origin
x50 for all t in order to be consistent:

2u41
8

ej0

]Y

]x
u32~ l 11!u85O~x2!. ~117!

We solve this constraint for the value ofu8 at x50. The
value of u7 at x50 is zero by definition. These bounda
conditions complete the constraints foru7 andu8 , which are
then determined completely, givenu1 to u6 .

B. Special casel 50

For l 50 a general perturbation is described by the obje
(kAB ,k,TAB ,T3), which are not gauge-invariant: under a
arbitrary coordinate transformation generated by the ve
jmdxm5 j̃AYdxA these objects change as

kAB→kAB2~ j̃AuB1 j̃BuA!, ~118!
06403
d

-
nd

-

n
-

ts

or

k→k22vAj̃A , ~119!

TAB→TAB2tABuCj̃C2tACj̃C
uB2tBCj̃C

uA , ~120!

T3→T32
1

r 2
~r 2Q! uDj̃D. ~121!

Therefore we have to impose two gauge conditions. In
case we want to maintain the form~63! of the metric during
perturbation, so we perform a gauge transformation to ob
k5c50. Then, metric perturbations are described byh and
x. By regularity they areO(1) and O(r 2) at the center,
respectively. The conditionk50 fixes the projection ofj̃ on
vA completely, butc50 fixes the orthogonal part only up t
a residual gauge freedomj̃A5 f uA where the scalarf obeys
the equationf 85n f . This latter equation can be thought o
as an ODE inr at constantt. We can give the boundary valu
for this ODE at each moment of time, so the residual gau
is an arbitrary function of time. We use it to seth50 at the
center.

Using Eqs.~39!, ~42! we define

h5h̄, x5f1h5r 2x̄, ~122!

where x̄ is O(1) at the center, buth̄ is O(x2), due to our
gauge choice. The scalar field perturbationF is already
O(1) and even at the center, compare Eq.~61!. Equations
~32!–~34! and ~60! are then

r

a
x̄81~112a22!x̄14Y2S h̄

r 2
2x̄ D 2

4

r
~YḞ1XF8!50,

~123!

1

ar
h̄814Y2S h̄

r 2
2x̄ D 2

4

r
~YḞ1XF8!50,

~124!

r

a
ẋ̄2

4

r
~XḞ1YF8!50,

~125!

2F̈1F92
6

r
aXYḞ1

a

2r
~113a2212X226Y2!F8

1
Y

r
ḣ̄1aX~124Y2!x̄1

4

r 2
aXY2h̄12S h̄

r 2
2x̄ D rẎ50.

~126!

The last equation is the wave equation for the matter per
bation. We do not have an evolution equation forh̄. Instead,
we have to calculate it by integration of the constraint~124!.
Finally x̄ can be calculated from the evolution equati
~125! or by integration of the constraint~123!.
1-10
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Again we rescale the variables. We also reorganize
variables to eliminateḣ from the equations.~This is the same
trick as usingY instead ofẇ to simplify the background
equations.!

u1[e2tS Ḟ2
Y

r
h D ,u2[e2tF8,u3[F,

u4[h̄,u5[e2tr x̄. ~127!

Variables (u1 ,u2 ,u3 ,u5) verify the following evolution
equations:
fo

a

06403
e ]u

]t
1A4

]u

]x
1s50, ~128!

where the matrixA4 is

A4[diag~A3 ,l0!, ~129!

ands is the vector
s15u12aF2
6a

xej0
XYu11S 3

2
v̄1

a

xej0
S 1

2
1X223Y2D D u21S 22a

XY2

x2e2j0
1e2t

Ẏ

xej0
D u4

1S aX

xej0
~124Y2!22e2tẎD u5G , ~130!

s25u22aF S axej0

2
V̄01

a

xej0
~X215Y2!D u11

2aXY

xej0
u21S 2a

X2Y

x2e2j0
1e2t

Ẋ

xej0
D u41

4aY3

xej0
u5G ,

~131!

s352aFu11
Y

xej0
u4G , ~132!

s55u52aF 4a

xej0
~Xu11Yu2!14a

XY

x2e2j0
u4G . ~133!
e

the
-
en-

rtial
There are three constraints:

]u3

]x
5aej0u2 , ~134!

]u4

]x
5c4 , ~135!

]u5

]x
1

b5

x
u55c5 , ~136!

where

c454a2ej0~Yu11Xu21Y2u5!, ~137!

b5511a2~124Y2!, ~138!

c55
4a2

x
~Yu11Xu2!. ~139!

Note that we have a constraint, but no evolution equation,
u4 . We have in fact constraints foru3 and bothu4 andu5 ,
so that the only degrees of freedom are those of a w
r

ve

equation. We obtainu4 by solving a constraint at each tim
step, starting from the gauge conditionu450 at x50.

C. Special casel 51

For l 51 a general even perturbation is described by
objects (kAB ,k,TAB ,TA ,T3), which are only partially gauge
invariant: under an arbitrary coordinate transformation g
erated by the vectorjmdxm5 j̃AYdxA1r 2jY:adxa these ob-
jects change as

kAB→kAB1~r 2j uA! uB1~r 2j uB! uA , ~140!

k→k12j1~r 2! uAj uA , ~141!

TAB→TAB1r 2~ tABuCj uC1tACj uC
B1tBCj uC

A!,

~142!

TA→TA1r 2~ tABj uB2Qj uA!, ~143!

T3→T312Qj1~r 2Q! uAj uA . ~144!

We see that there is invariance under thej̃A part of the
transformation. Therefore we have to impose just one pa
1-11
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gauge condition. The most interesting gauge condition ik
50, because then we can eliminate all second derivat
from Eqs.~32!–~38!. Now matter perturbations are describ
by h,c,x, which areO(r ),O(r 2) and O(r 3) at the center,
respectively. The conditionk50 does not fix the gauge com
pletely, and again we have a residual gauge freedom of fu
tions j obeying equationr 2vj81j50. We use this freedom
to seth;O(r 3) at the center.
06403
es

c-

Using Eqs.~39!, ~41!, ~42! and ~61! we define

h5r h̄, c5r 2c̄, x5f1h5r 3x̄, F5r F̄,
~145!

where the barred variables are even andO(1) at the center,
excepth̄, which is O(r 2), due to our gauge choice. Equa
tions ~32!–~37! and ~60! are then
r

a
x̄81~213a2224Y2!x̄14Y2

h̄

r 2
2

4

r S X

ar
F̄1YḞ̄1XF̄8D50, ~146!

1

ar
h̄812~12a221X21Y2!

h̄

r 2
1~a2222X222Y2!x̄2

4

r
XYc̄1

8

ar2
XF̄50, ~147!

r

a
c̄81~21a2212X222Y2!c̄14rXYS x̄2

h̄

r 2D 14S 3Y

ar
F̄1XḞ̄1YF̄8D50, ~148!

r

a
ẋ̄2~124Y2!

c̄

r
2

4

r S Y

ar
F̄1XḞ̄1YF̄8D50, ~149!

r

a
ċ̄24XYc̄1„3~12a22!12~X22Y2!…

h̄

r
2„12a2212~X22Y2!…r x̄14S 3X

ar
F̄1YḞ̄1XF̄8D50, ~150!

2 F̈̄1F̄92
2

r
aXYḞ̄1~117a2212X212Y2!

a

2r
F̄81S 2V018

Y2

r 2 D F̄

1
Y

r
ḣ̄1~aX22rẎ!x̄1~aX12rẎ!

h̄

r 2
1S aY

r
~123a2222X212Y2!22ẊD c̄50. ~151!

Again we rescale and regroup the variables:

u1[e22tS Ḟ̄2
Y

r
h D ,u2[e22tF̄8,u3[e2tF̄,

u4[e2th̄,u5[e22tr x̄,u6[2e22tc̄. ~152!

The variables (u1 ,u2 ,u3 ,u5 ,u6) obey the following evolution equations:

]u

]t
1A5

]u

]x
1s50, ~153!

where the matrixA5 is

A5[diag~A3 ,l0 ,l0!, ~154!

ands is the vector

s152u12aF2
2aXY

xej0
u11X72v̄1

a

xej0
S 1

2
1X21Y2D Cu21S 2V̄01

8Y2

x2e2j0
D u31S a

X

x2e2j0
~122Y2!1e2t

Ẏ

xej0
D u4

1S aX

xej0
22e2tẎD u51S 3v̄Y2

aY

xej0
~122X212Y2!12e2tẊD u6G , ~155!
1-12
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s252u22aF S axej0

2
V̄01

a

xej0
~X21Y2!D u12

2aXY

xej0
u22

8XY

x2e2j0
u31X22aYS V̄01

Y2

x2e2j0
D 1e2t

Ẋ

xej0
Cu4

1
Y

xej0
S 2

1

a
12a~X21Y2! Du52

4aXY2

xej0
u6G , ~156!

s35u32aFu11
Y

xej0
u4G , ~157!

s552u52aF 4a

xej0
~Xu11Yu2!1

4

x2e2j0
Yu314a

XY

x2e2j0
u42

a

xej0
~124Y2!u6G , ~158!

s652u62aF 4a

xej0
~Yu11Xu2!1

12

x2e2j0
Xu31S 3aV̄01

2a

x2e2j0
~X21Y2!D u4

2S axej0V̄01
2a

xej0
~X22Y2!D u51

4a

xej0
XYu6G . ~159!
f a
en-

are
ree
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ori-
ta-
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e,
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ift
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There are four constraints:

]u3

]x
5aej0u2 , ~160!

]u4

]x
1

b4

x
u45c4 , ~161!

]u5

]x
1

b5

x
u55c5 , ~162!

]u6

]x
1

b6

x
u65c6 , ~163!

where

b452212a2~11X21Y2!, ~164!

b55212a2~122Y2!, ~165!

b65112a2~11X22Y2!, ~166!

c452
8aX

x
u31ej0

„2112a2~X21Y2!…u524ej0a2XYu6 ,

~167!

c55
4a2

x
~Yu11Xu21 v̄Xu3!, ~168!

c65
4a2

x
~Xu11Yu213v̄Yu31XYu5!. ~169!

Note that again we do not have an evolution equation foru4 ,
and that we have constraints for all variables other thanu1
06403
and u2 , so that the only degrees of freedom are those o
wave equation. There is a consistency condition at the c
ter:

u62
4

ej0

dY

dx
u35O~x2!. ~170!

Again we imposeu450 at x50 as a gauge condition.

VIII. NUMERICAL RESULTS

Our numerical code, and the tests we have performed,
described in the Appendix. Here we only summarize th
important points.

The code treats the boundariesx50 ~center of spherical
symmetry! andx51 ~boundary of domain of dependence! in
exactly the same way as all other points. On a flat em
background spacetime, it is second-order convergent, the
gin x50 is stable, and waves cleanly leave the compu
tional domain atx51 without numerical backscatter.

On the Choptuik background we observe second-or
convergence for most values ofx and t. Convergence of a
lower than second order is observed nearx50, twice per
period int. These are the values oft where certain coeffi-
cients of the background solution change rapidly in tim
namely at the minima and maxima of the background sc
field. A typical solution~as we shall discuss below! is an
exponentially damped quasiperiodic oscillation. Conv
gence inevitably breaks down at larget for two reasons: the
oscillations at different numerical resolutions gradually dr
out of phase, and small differences in the exponential de
rates at different resolutions have a cumulative effect on
amplitude.

As we discuss in detail in the Appendix, the numeric
code has a subtle instability which becomes apparent on
1-13
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high l at high resolutions. The instability is already presen
the free wave equation~in self-similar coordinates! on
Minkowski space. We have found a way of repairing it
Minkowski space, but it persists on the Choptuik bac
ground. At low resolution this instability can be neglecte
and we see convergence up to a resolution ofDx51/800.

In spite of the inevitable absence of pointwise conv
gence at late times, and in spite of the numerical instabi
our main result appears secure: all non-spherical phys
perturbation modes, for all initial data, decay exponentia
in t. The exponential decay is typically rapid. Only for ev
l 52 perturbations is the decay quite slow, but there~as for
low l in general! we have good convergence of the soluti
itself, and therefore the decay exponent.

Due to the discrete self-similarity of the background s
lution, the perturbations decay in a complicated fashion, w
the exponential decay apparent only over many periods.
background-dependent coefficients of the perturbation eq
tions are periodic int ~at constantx). Therefore the genera
form of the perturbation is a sum of terms of the form

u~x,t!5Re@C el t f ~x,t!#, ~171!

with C,l and f (x,t) all complex, andf (x,t1D)5 f (x,t).
Once the most slowly decaying mode dominates, only
such term is left. In real notation, it is

u~x,t!5ekt@C1 cos~vt! f 1~x,t!1C2 sin~vt! f 2~x,t!#,
~172!

with k5Rel,v5Iml,C1 ,C2 , f 1 and f 2 now real, andf 1
and f 2 again periodic. This means thatu(x,t), even after the
exponential decay has been taken out, is not periodic it
unlessv is commensurate with 2p/D. Furthermore,C1 and
C2 , and in particular their ratio, depend on the perturbat
initial data. Therefore, the complex exponentl is not easy to
read off. Nevertheless, to the extent to which they are
proximated by Eq.~172!, the Fourier transform int of the
data with the exponential decay taken out should be pea
around the set of frequencies

N
2p

D
1v ~173!

for integerN. The background is not only periodic int with
periodD, but has an additional symmetry. The backgrou
scalar field obeysw(t1D/2,x)52w(t,x), while the back-
ground metric coefficients obeyg(t1D/2,x)5g(t,x). The
perturbations inherit this additional symmetry. Therefore,
the spectrum~173! of the scalar field perturbationsu1 to u3 ,
only odd integersN appear, while in the spectrum of th
metric perturbationsu4 to u8 , only even value ofN appear.
This must be taken into account when we read offv from
the spectrum. Because theN are either even or odd,vD/2p
is defined modulo 2~and not modulo 1 as one might expec!,
and we define it to be 0<vD/2p,2. For example, with the
highest peak in the spectrum ofu1 at vD/2p55.3, and the
highest peak in the spectrum ofu4 at vD/2p56.3, we con-
sistently obtainvD/2p50.3.
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The only exception to this complicated behavior are
spherical (l 50) perturbations. At larget they are dominated
by a single growing mode withl real.~The fact that there is
a single growing mode is of course at the center of criti
phenomena in critical collapse, and this uniquel must then
be real because the background is real.! Here we can read off
both k and f (x,t) quite clearly. We findkD59.21. This
corresponds tok52.67, and a critical exponent for the blac
hole mass ofg51/k50.374. This agrees to all three digi
with the value of the critical exponents obtained from c
lapse simulations@1#, and a perturbative calculation@13# that
is completely independent from the present one.

For l .0, we have obtained estimates ofk andv by first
adjusting the value ofk until the rescaledurescaled[e2ktu
appeared to be neither increasing nor decreasing over m
periods. The resultingurescaledis then quasiperiodic. We hav
carried out a discrete Fourier transform on the time se
u1,rescaled(0,t) over a range of 10D. The result has sharp
peaks spaced at intervals 4p/D due to the additional sym
metry in the background mentioned above. In the spe
casesl 50 andl 51 the functionu1,rescaledis clearly periodic
(v50), and the line spectrum is very sharp.

The estimated values ofk andv are tabulated for differ-
ent resolutions in Table I. As an example, we show the va
of u1 for evenl 52 perturbations atx50 as a function oft,
after an exponential decay has been taken out, in Fig. 1
Fig. 2 we show the low frequency part of the discrete Four
transform of Fig. 1. The quasiperiodic nature of the sig
becomes clear in that there is a series of peaks obeying
~173!.

As the background spacetime is periodic int, and the
perturbation equations are linear, evolving the perturbati
for one period is equivalent to multiplying them by a trans
matrix. For odd perturbations, this matrix has size (2N)2,
and for even perturbations (4N)2, whereN is the number of
grid points inx, and two and four respectively is the numb
of degrees of freedom. ForN550 and 100, we have verified
that the logarithm of the largest eigenvalue of the trans
matrix agrees withlD. These matrices contain of course a
the information that there is about the system, but for lar
N the computation time and memory requirement for cal
lating these matrices and their eigenvalues quickly beco
prohibitive, scaling asN4. However, if we use generic initia
data, in which nou vanishes at anyx ~except oddu at x
50), we have a mixture of all perturbation modes, and
late enough times the most slowly decaying mode has ta
over.

With increasingl, the even parity numerical code appea
to be more and more sensitive to small errors in the ba
ground solution, as the solutions obtained at different re
lutions drift apart more and more rapidly. The solution at la
times depends sensitively on the initial data, so that the s
tem looks chaotic. This problem may be unavoidable w
any code. Our results still seem to capture the correct ove
behavior, as the values ofk and v obtained at different
resolutions differ much less than the actual time series.
believe that the explanation is that different resolutions ag
reasonably well on the periodic functionsf 1 and f 2 , but that
the initial data-dependent coefficientsC1 andC2 take essen-
1-14
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TABLE I. Summary of eigenvaluesl, read off fromu1(x50,t). The values of kappa were obtained b
eliminating an exponential factor. The values ofv were obtained from a discrete Fourier transform of t
result. Values ofvD/2p are defined modulo 2, while peaks in the discrete Fourier transform ofu1 are located
at vD/2p1112N for non-negative integerN. As we have integrated over a range of 10D in t,vD/2p can
only be estimated in multiples of 0.1. Results marked ‘‘noisy’’ are dominated by numerical error. I
Fourier transform this shows up as high frequency noise.

System (kD,vD/2p)
grid points 100 200 400 800 1600

evenl 50 9.24, 0.0 9.21, 0.0 9.21, 0.0 9.21, 0.0 9.21, 0.0
evenl 51 20.34,0.0 20.31,0.0 20.48,0.0 noisy 20.30,0.0

evenl 52 20.08,0.3 20.07,0.3 20.06,0.3 20.07,0.3 20.07,0.3
evenl 53 21.63,1.6 21.65,1.6 21.65,1.6 21.65,1.6 21.66,1.6
evenl 54 22.8,0.9 22.9,0.9 22.9,0.9 23.0,0.9 noisy
evenl 55 24.0,0.2 24.25,0.2 23.9,0.2 23.65,0.3 noisy

odd l 52 22.20,1.9 22.28,1.9 22.30,1.9 22.30,1.9 21.8,3.0
odd l 53 23.13,1.3 23.23,1.4 23.27,1.4 23.28,1.4 noisy
odd l 54 24.05,0.7 24.20,0.7 24.25,0.7 24.27,0.7 noisy
odd l 55 25.0,0.0 25.2,0.0 25.2,0.1 25.3,0.1 25.3,0.1
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tially random values at late times for different resolutions
In summary, we find that both even and odd perturbati

decay exponentially for all physical values ofl. It is
clear that perturbations with largel will decay more and
more quickly because of the presence of the termsu,t
52 lu1••• in all evolution equations.~These terms are in
troduced by the scaling of perturbations withr l to keep them
regular at r 50.) The numerical evolutions confirm tha
higher l modes decay more and more rapidly. We can the
fore affirm that all values ofl decay, even though we hav
checked this explicitly only for the lowest few values. Th
most slowly decaying mode occurs in thel 52 polar pertur-

FIG. 1. u1 versust at x50. An overall exponential decay ha
been compensated for. The scale on the vertical axis is irrelevan
the equations are linear. On the horizontal axis we have ma
background periods, that ist/D. The sharp peaks are typical fea
tures. Although it is not clear from this plot, they are perfec
smooth.
06403
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bations, with l.20.073(1/D)10.33(2p i /D).20.02
10.55i . As this mode decays so very slowly, there may
an intermediate range ofp2p* for a given one-paramete
family of initial data where this perturbation becomes u
versally visible. For p2p* small enough, however, th
spherical universal solution will again dominate.

IX. CONCLUSIONS

We have evolved generic spherical and non-spherical
turbations of the Choptuik critical solution. We have o

as
d

FIG. 2. The low-frequency end of the discrete Fourier transfo
of the previous figure. The vertical scale is again irrelevant. On
horizontal axis we have marked frequency in units of the ba
ground frequency, that is (vD)/(2p). The quasiperiodic nature o
the signal shows up in the peaks situated at (vD)/(2p)
51.3,3.3,5.3, . . . . The spectrum decays rapidly at high freque
cies.
1-15
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JOSÉM. MARTÍ N-GARCÍA AND CARSTEN GUNDLACH PHYSICAL REVIEW D59 064031
tained strong numerical evidence that all non-spher
physical perturbations decay. The method of evolving
neric perturbation also reproduces the known result that th
is precisely one growing spherical mode, and gives the c
rect value for its growth rate, and hence the critical expon
Therefore the critical phenomena at the black hole thresh
in scalar field collapse — universality, echoing and scal
— are expected to persist for initial data that devia
~slightly! from spherical symmetry.

The most slowly decaying perturbation mode is in thel
52 even-parity sector. As its decay rate is very small, t
mode is expected to play a visible role in non-spherical cr
cal collapse. The decay rate of the most slowly decay
non-spherical mode also determines the critical exponen
black hole-angular momentum.~This will be discussed in a
separate paper.!
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APPENDIX A: BACKGROUND SOLUTION

Following Choptuik, we introduce the scale-invariant a
dimensionless auxiliary fields for the spherically symmet
scalar field system as

X5A2prw8, Y5A2pr ẇ, ~A1!

in the radial basis.~Do not confuse Y with a spherical ha
monic.! We use the dependent variablesg5a/a,a,X andY,
and the coordinatesx andt. With the shorthand

D[xgej0~12j0,t!, ~A2!

the wave equation forw is equivalent to the first-order sys
tem

xS X,x

Y,x
D 5

1

12D2S 1 D

D 1 D
3S 2@ 1

2 ~11a2!1a2~X22Y2!#X1gxej0Y,t

@ 1
2 ~32a2!1a2~X22Y2!#Y1gxej0X,t

D .

~A3!

The Einstein equations are

xg,x5g~12a2!, ~A4!

xa,x5
a

2
@12a212a2~X21Y2!#, ~A5!
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a,t52~12j0,t!xa,x1
2a3

gxej0
XY. ~A6!

In order to exclude a conical singularity atr 50, we impose
a51 atx50. In order to fix the remaining coordinate amb
guity t→ f (t) we imposeg51 at x50. We makex51 an
ingoing null surface by imposingD51 at x51. j0 is not
initially known, but is determined together with the dynam
cal fieldsX,Y,a andg of the critical solution.

We have recalculated the background using the numer
code of Gundlach@13#, slightly modified to usex instead of
z5 ln x, which results in a better treatment ofx50. If the
solution is regular,X and Y vanish atx50. Therefore we
work with X2[x22X and Y1[x21Y. x50 and x51 are
regular singular points of the equations. The regularity c
dition ~vanishing of the numerator in the wave equation! is

X25
1

3
ej0@Y1,t1~12dj0 /dt!Y1# ~A7!

at x50, while atx51 it is

@11a2~112X2
222Y1

2!#X21@231a2~122X2
212Y1

2!#Y1

22S 12
dj0

dx D 21S ]Y1

]t
1

]X2

]t D50. ~A8!

The discrete self-similarity of the background is equiv
lent to periodicity ofX,Y,a andg in t, with a periodD that
is initially unknown. a is treated as a functional ofX,Y,g
andj0 , by solving Eq.~A6!, with periodic boundary condi-
tions int for each value ofx. Note that this equation is linea
in a22. Periodicity is imposed by representingX,Y,g andj0
through a~truncated! Fourier series.t-derivatives are calcu-
lated, and Eq.~A6! is solved, in Fourier space. This make
the numerical method a pseudo-spectral one. T
y-derivatives are implemented through finite differencing
a grid equally spaced inx, and are solved by relaxation
together with the algebraic and ODE~pseudo-algebraic!
boundary conditions atx50 andx51.

We have calculated the background solution using po
51,101, . . . ,1601 on the range 0<x<1, always with 128
points per period 0<t,D. It was shown in@13# that this
resolution in t is large enough so that numerical error
dominated by resolution inx and systematic error effects a
x50 andx51.

We observe second-order convergence, measured by
maximal and root-mean-squared differences ofX2 ,Y1 ,a and
g, from 51 to 1601 grid points inx ~with 128 Fourier com-
ponents int). D and j0 ~in the maximum and root-mean
squared norms! also show convergence, but not to a distin
order. This is illustrated in Fig. 3. For the perturbation c
culations we have always used the high-resolution ba
ground, downsampled as necessary.
1-16
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APPENDIX B: PERTURBATIONS NUMERICAL METHOD

The perturbation equations are of the form

]u

]t
1A

]u

]x
1Bu50, ~B1!

where u is a vector of unknowns, andA and B are
background-dependent matrices.

As by definitionx51 is an ingoing spherical null surface
the domain of dependence of perturbation data att50, 0
<x<1 for t>0 is precisely 0<x<1. Both scalar and gravi
tational waves travel only from smaller to largerx for x
>1. In order to implement a time evolution without an ar
ficial boundary condition atx51, we use an evolution
scheme that explicitly uses the characteristic speeds
therefore changes over smoothly to upwindx-derivatives for
x>1. The numerical method we have used is similar to t
used for the perturbations of the perfect fluid critical so
tions in a previous publication@6,14#, but is second order in
space and time. It uses second order one-sided derivativ
x, and is Runge-Kutta-like int:

uj
n11/25uj

n2
Dt

2 F ~A2! j
n

4uj 11
n 2uj 12

n 23uj
n

2Dx

2~A1! j
n

4uj 21
n 2uj 22

n 23uj
n

2Dx
1Bj

nuj
nG , ~B2!

uj
n115uj

n2DtF ~A2! j
n11/2

4uj 11
n11/22uj 12

n11/223uj
n11/2

2Dx

2~A1! j
n11/2

4uj 21
n11/22uj 22

n11/223uj
n11/2

2Dx

1Bj
n11/2uj

n11/2G . ~B3!

HereA11A25A. In order to use the characteristic spee
in the finite differencing scheme, it is necessary to spliA
into a sum over its eigenvalues according to their sign,
that, for example,

A315l1S 1/2 21/2

21/2 1/2

0
D 1l0S 0

0

1
D ,

A325l2S 1/2 1/2

1/2 1/2

0
D . ~B4!

For x>1, l2 becomes positive, so thatA15A and A2

50, so that we do not need the downwind derivative the
We go just one grid point beyondx51, so that the last grid
point just beforex51 still has two points to its right in orde
to take a right derivative there. All grid points further to th
right only require left derivatives. This means that we cou
have extended the numerical domain to largex. We have
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chosen 0<x<11Dx because it is the smallest numeric
domain in which we stay in the domain of dependence of
perturbation initial data for allt, while using a one-sided
three-point stencil.~If we used a first-order differencing
scheme, with two-point stencils, the numerical domain
<x<1 would be sufficient.!

We might refer to the method just described as
second-order characteristic method. It is explicit and sec
order. One obtains an implicit method by averagingun and
un11 to obtain a new improved estimate forun11/2,

un11/25~un1un11!/2, ~B5!

and iterating the pair~B5!, ~B3! of equations untilun11 has
converged. Let us call this the iterated characteristic meth

The boundaryx50 does not require special treatment,
u(2x)56u(x) for all u, so that ghost grid points withx
,0 are available for taking derivatives. The one-sided d
ferencing operators do not give exactly zero atx50 even if
analytically]u/]x(0)50, but that is consistent: all terms i
the finite difference equations combine so thatu(0) remains
zero to machine precision ifu is odd initially. This also en-
sures that source terms of the formu/x for odd u in the
evolution equations are well behaved numerically.

The constraints are solved by integrating fromx50 out to
x51. For stability, we do not evolve any variable for whic
we have a constraint, but instead calculate it from the c
straints, including at the half-stepn1 1

2 . For simple integra-
tions du/dx5c with u an even function ofx, and u(0)
given, we use the trapezoidal rule

uj 115uj1
Dx

2
~cj1cj 11!. ~B6!

For the ODEdu/dx1bu/x5c, with b andc even inx and,
therefore,u odd in x, we use

FIG. 3. Convergence of the background solution with increas
resolution inx. On the horizontal axis we plot the logarithm of th
number of grid points, on the vertical axis the logarithm of t
difference between one numerical solution and the one with half
resolution. The two thick lines are the maximal and root-me
squared differences~over both 0<x<1 and one period int) of all
fields. The thin lines are the differences of the ‘‘eigenvalue’’j0(t).
The dashed line is the difference in the eigenvalueD.
1-17
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uj 115uj1S 11
Dx bj 11

xj1xj 11
D 21F S 12

Dx bj

xj1xj 11
D

1
Dx

2
~cj1cj 11!G . ~B7!

This scheme is second-order accurate at all grid points.
those variablesu that are even inx and of O(1) at x50,
becausec is odd and ofO(x21), we use the same schem
with coefficientsb21 andcx, in order to first calculate the
odd functionū5ux. Then we divide byx to obtainu. In this
case we extrapolate twice: firstcx to x50, and thenū/x
5u to x50.

The perturbations were calculated at different resolutio
related by grid refinements by a factor two in bothx andt.
As our lowest resolution, we usedDx50.01, with a Courant
factor of Dt/Dx.0.05. ~The exact Courant factor is chose
so that the number of time steps for integrating the pertur
tions is a multiple of the number of time steps in the ba
ground, per period.! This small Courant factor is necessa
for stability, apparently because some coefficients of the p
turbation equations, although smooth, have very large gr
ents int nearx50. We have also verified that the effect
using an even smaller Courant factor is negligible. Our hi
est resolution was finer by a factor of 16 in both space
time. The background coefficientsa,a,X,Y were given in
Fourier coefficients at 128 points per period int and the
required intermediate values oft were obtained by local cu
bic interpolation. We chose local cubic interpolation as it
much faster than Fourier interpolation, and because of l
ited computer memory. The interpolation is formally seco
order accurate, and all background coefficients are well
solved at this resolution. To separate the convergence o
perturbations from that of the background coefficients,
used a background solution obtained with 1601 points inx,
and downsampled it by factors of 1, 2, 4, 8 and 16.

As a test, we used all numerical methods on the triv
background of flat empty spacetime without a scalar fie
On this background, the even matter and metric perturbat
decouple. In fact, the even matter perturbation equatio
identical to the odd master equation, and both are identica
the free wave equation. We are therefore testing the cod
the free wave equation, with angular dependenceYlm , and in
self-similarity coordinates, on the domain of dependenc
<x,1.

In flat space both characteristic schemes give essent
the same solution. Both are stable and second-order con
gent for a long time. In particular,x50 andx51 are per-
fectly normal points, as expected from the construction
the numerical scheme. At high resolutions, highl, and late
times~for example,Dx51/1600,l 56,t*1) we see an oscil-
lating instability int nearx50 that leads to a breakdown o
convergence nearx50, and which blows up for sufficiently
large l and high resolution. This instability appears to be
solution of the continuum equations, but for initial da
which are provided by finite differencing error at late time
To demonstrate this, we have evolved a narrow Gaus
pulse originally centered aroundx50.5 in flat spacetime
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After this pulse has left the computational domain, nothi
should happen physically, and we are left with pure nume
cal error. We then extracted new Cauchy data at a late ti
at a high resolution, and restarted these data with differ
resolutions~in space and time!, down-sampling the error dat
as necessary. For some time we clearly see quadratic con
gence, until new numerical error takes over.

The instability is present already in the free wave eq
tion in flat space, which in our rescaled variables and s
similarity coordinates is

]u1

]t
1x

]u1

]x
2

]u2

]x
2

2l 12

x
u22~ l 11!u150,

]u2

]t
1x

]u2

]x
2

]u1

]x
2~ l 11!u250. ~B8!

Recall that for anyl ,u1 is an even function ofO(1) of x and
u2 is an odd function ofO(x). As the instability is centered
at x50 and becomes worse with increasingl, it must be
linked to the termu2 /x. We have generalized a well know
trick for the spherical wave equation which consists in a
sorbing this term into thex-derivative. We rewrite the equa
tions as

]u1

]t
1x

]u1

]x
2~2l 13!

]~x2l 12u2!

]~x2l 13!
2~ l 11!u150,

]u2

]t
1x~2l 13!

]~x2l 12u2!

]~x2l 13!
2

]u1

]x
1~ l 11!u250.

~B9!

We then finite differenceu2 always in the way suggested b
the equations, using left and right second-order one-si
derivatives to obtain the characteristic method outlin
above~see Table II!. Note that we only ever use the ne
derivative ofu2 , never the straight derivative]u2 /]x. The
generalization to the even and odd parity perturbations
scalar field collapse, applied to the variablesu2 and u5 , is
straightforward. In particular, the coefficients of]u2 /]x and
(2l 12)u2 /x, although now different from unity, remain
equal to each other. All other variablesu are differentiated
directly with respect tox. When we use this finite differenc
ing method for the flat space wave equation, the late-ti
solution that is pure numerical error is now smooth and
cays exponentially instead of blowing up, as we had hop
On the Choptuik background, however, the instability at
center is still not suppressed. Before the instability tak
over, the two methods clearly converge towards each ot

We have also tested convergence of the code on the~nu-
merically generated! Choptuik background. Here, stabilit
requires a smaller Courant factor. The differences betw
different resolutions are peaked atx50 and are smooth func
tions ofx. For most values oft andx convergence is clearly
second order, with the exception of certain value oft near
x50, where the background coefficients are particularly r
idly varying. Here convergence still occurs~differences be-
tween resolutions decrease with resolution!, but is not of a
1-18
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TABLE II. The same with an alternative finite differencing method forl>2, defined by Eq.~B9!. Note
that convergence is much slower, but that for 800 grid points these results agree quite well with those
other method.

System (kD,vD/2p)
grid points 100 200 400 800 1600

evenl 52 1.1, 0.3 0.15, 0.3 0.0, 0.3 20.05,0.3 20.07,0.3
evenl 53 0.25, 1.4 21.3,1.6 21.55,1.6 21.63,1.6 21.65,1.6
evenl 54 20.53,0.5 22.0,0.8 22.75,0.9 22.8,1.0 noisy
evenl 55 21.45,1.5 22.77,0.0 23.3,0.1 23.2,0.2 noisy

odd l 52 21.74,1.8 22.18,1.9 22.30,1.9 22.30,1.9 noisy
odd l 53 21.95,1.2 22.95,1.3 23.2,1.4 23.25,1.4 noisy
odd l 54 22.2,0.4 23.55,0.7 24.1,0.7 24.25,0.7 noisy
odd l 55 22.7,1.4 24.1,1.9 25.0,0.0 25.2,0.1 noisy
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of
clear order: lower than second order for low resolutions a
higher than second order for high resolutions. Somewhat
prisingly, second-order convergence disappears and the
appears many times. Apparently error is not just grow
with time, but depends very strongly on the background. T
explicit and iterated characteristic methods give very sim
results. At typical resolutions the differences between
two methods at the same resolution are much smaller
between resolutions. The only exception from this behav
is at early times, when the iterated method clearly sho
first-order convergence that goes over smoothly into the
pected second-order convergence.

In the flat empty background, pulses with support w
insidex51 quickly leave the computational domain. On t
Choptuik background, we expect to find~exponentially
damped! quasiperiodic behavior at late times. We mu
therefore evolve to large values oft ~of the order of 10 to 20
background periodsD). Not surprisingly we find that
second-order convergence breaks down after a period o
both because the quasiperiodic oscillations at different re
lutions drift out of phase, and because the exponential de
rates are slightly different. At early times, we still obser
second-order convergence, as described above.
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As ana priori promising numerical scheme, we have al
tested the iterated Crank-Nicholson method. In this meth
we need to treat the boundaries specially. Atx50 we have
tried updating the boundary point by extrapolation from
next neighbors at each iteration, taking into account thatu is
either odd inx ~and vanishes atx50) or even inx. Alterna-
tively we have used the exact value]u/]x50 for evenu and
the finite difference stencil]u/]x5@u(Dx)2u(0)#/Dx,
which is second order atx50 for oddu. At x511Dx, we
have either used extrapolation, or the one-sided~left side
only! second-order stencil of the characteristic methods.
found that the iterated Crank-Nicholson method with any
the boundary treatments discussed is unstable, already fo
flat-space wave equation~in self-similar coordinates!. The
instability does not have a continuum limit in space. In fa
it changes sign about every grid point in space, and gro
twice as fast in time whenDx is halved. Nevertheless, i
appears to have a continuum limit in time. The instabil
changes smoothly from one time step to the next, and in f
it is practically unchanged ifDt is reduced by a factor of 10
~at constantDx). The instability is most apparent atx50,
but in an implicit scheme, all grid points in space are
course linked.
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