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All nonspherical perturbations of the Choptuik spacetime decay
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We study the nonspherical linear perturbations of the discretely self-similar and spherically symmetric
solution for a self-gravitating scalar field discovered by Choptuik in the context of marginal gravitational
collapse. We find that all nonspherical perturbations decay. Therefore critical phenomena at the threshold of
gravitational collapse, originally found in spherical symmetry, will extendatoleast slightly nonspherical
initial data.[S0556-282099)01606-9

PACS numbsg(s): 04.25.Dm, 04.20.Dw, 04.40.Nr, 04.70.Bw

I. INTRODUCTION Furthermore it is the natural place to accommodate the zoo
of special solutions we currently know of, including naked
We have many and powerful results about the static osingularities.
stationary end states of gravitational collapse. However, very In a previous papef4] we addressed the question of
little is known in comparison about the dynamical evolutionWhether the Choptuik solution was a codimension-one solu-
towards them. Analytical studies are limited by the compli-tion in the system Einstein-Maxwell-charged scalar field, re-

cated non-linear nature of the equations. Numerical studiegtricted to spherical symmetry, and obtained an affirmative
can fill this gap if they can demonstrate generic behavior. @nswer, which has been confirmed in independent Wak

Starting with the pioneering work of Choptdik], a num- In this paper we address the same question for the system

ber of authors have shown that, despite the complicated ndzinstein-real scalar field, but this time allowing for arbitrary
ture of the equations, the threshold of gravitational coIIapsémaII deviations from spherical symmetry, and we obtain

is strikingly simple[2]. Following the initial ideas of Evans ﬁﬂggcve";‘llh?;”g‘ﬂ‘ézl answer. z?eemsg‘éd%ngf sthr?erilgftselrr:-
[3] it has been possible to explain this simplicity as the coN- - otrv will be grjeported elsewhe)r/e Y P y
sequence of the existence of a “critical solution” which acts Y '

. di in oh Thi lution h This result, together with a parallel result on the collapse
as an intermediate attractor in phase space. This solution N3g ; e rfect fluid6], strongly suggests that critical phenom-

a single linearly unstable eigenmode which drives out everyyg jn gravitational collapse are still present in the absence of
nearby solution either towards black hole formation or dis-spherical symmetry. An equally strong indication that critical
persal, leaving flat space behind. phenomena are not restricted to spherical symmetry is pro-
This body of work expands our understanding of the dy-yided by numerical work on the critical collapse of axisym-
namical process of collapse, borrowing concepts and toolgetric vacuum spacetimég], which shows universality and
from the theory of dynamical systems. The emphasis iscaling similar to that of the spherical scalar field.
shifted to phase space, and within it, to solutions with special The plan of the article is as follows: In Sec. Il we give a
stability characteristics: complete review of the Gerlach and Senguf@®] formal-
(1) First, we look for global attractors. The Minkowski ism of gauge-invariant perturbations around a general spheri-
and Kerr-Newman solutions are the only possible end statesally symmetric spacetimévhich typically contains matter
of collapse in the Einstein-scalar-Maxwell system. and is time-dependentin Sec. Il we re-express these still
(2) Then we look for codimension-one attractors, whichgeneral tensor equations of Sec. Il in an arbitrary basis to
separate phase space into basins of attraction of the globgcilitate the study of their causal structure. The equations in
attractors. These solutions are also very important. For exthis section will be of help in any study of linear perturba-
ample, the study of the trajectories connecting thetions around spherical symmetry for arbitrary matter content,
codimension-one attractors with the global attractors gives us an arbitrary background coordinate system. In Sec. IV we
a qualitative picture of marginal collapse because many difspecialize the formalism to massless scalar field matter. The
ferent trajectories tend to approach them and arrive at thbackground solution is briefly reviewed in Sec. V, where we
attractors along them. In this terminology, Choptuik discov-specialize to a particular basis, and choose a coordinate sys-
ered the first codimension-one attractor. For reasons still untem. In Secs. VI and VII we split the odd and even linear
known, many of the codimension-one attractors are selfperturbation equations, respectively, into evolution equations
similar. and constraints, and identify free data. Section VIII describes
(3) The long-term objective is the construction of a pic- our numerical results in detail. The Appendix contains a de-
ture of the unfolding of trajectories in phase space. It wouldscription of our numerical methods for computing the back-
contain all the dynamical information about a given systemground and then the perturbations on it.
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To summarize our main result here, all non-spherical 1
physical perturbations of Choptuik’s solution decay, and EGZZ_R+UA|A+UAUA:87TQ1 (7)
therefore the critical phenomena at the black hole threshold
in scalar field collapse — universality, echoing and scaling a ) L (A ;
— are expected to persist for initial data that deviatewhereG,” denotes the partial trace ovér,, R=3;Ry"" is
(slightly) from spherical symmetry. the Gaussian-curvature scalar M. The four-dimensional
In related work, Frolov has been able to calculate theRicci scalar isR=2(R—V,). The conservation equation for
spherical and non-spherical perturbation spectrum of théhe stress-energy tensor in spherical symmetry is
Roberts solution analyticalljl0]. The Roberts solution is a
self-similar scalar field spacetime, like the Choptuik solution. tAB\B+ 2tagv®=2Qu,. 8
Unlike the Choptuik solution, it has a continuum of growing
spherical perturbation modes. All its nonspherical perturbaA

> s a manifestation of the contracted Bianchi identities,
tion modes decay, however.

can be obtained as a derivative of E6), provided that Eq.

(8) holds.
Il. REVIEW OF GERLACH AND SENGUPTA FORMALISM Now we introduce an arbitrarnot spherically symmet-
OF GAUGE-INVARIANT PERTURBATIONS ric) perturbation of this spacetime:g,,—gd,,(x°)

In this section we give a brief introduction to the formal- +h,,(x"x%) and again we perform a-22 decomposition.
ism of Gerlach and Sengupf8,9] for perturbations around Furthermore we decompose the angul;P)(dependence
the most general spherically symmetric spacetime. Spacd?to Seres of tensorial spherical harmonics: _
time is decomposed ad*=M?2x S?, whereS? is the two- Y"(x%) are the scalar spherical harmonics, the objects
sphere andM? is a two-dimensional manifold with bound- Y{":a andS",=e-Y{", form a complete basis of vector har-
ary. Tensor indices oM* are Greek letters, tensor indices monics, and following Zerill{11], we use the following ba-
on M2 are upper case Latin letters, and tensor indice§%on Sis of symmetric tensor harmonic¥|"yap,Z{"ap=Y/ -ap
are lower case Latin letters. We write the general spherically-[1(1+1)/2]Y{"yap, and §"a.p+ S p:a, Which is a linear

symmetric metric as combination of the basis introduced by Regge and Wheeler
[12]. Forl =0,1 there is only one linearly independent tensor,
g,,,dx4dx"=gap(x2) dXAdxB+ r2(xP) y.p(x4) dx2d X namelyy,,Y|", while the other two tensors vanish. Gerlach
Mmv ’

(1)  and Sengupta initially8] used the Regge-Wheeler basis, but
in [9] changed to Zerilli's basis in order to include the cases
I=0,1 into a single formalism.

All these spherical harmonics have definite parity under
spatial inversion: a spherical harmonic with labét called
even if it has parity €1)' and odd if its parity is
(—1)"LYM, YY", and Z",, are even andS", and S
+ 9.2 are odd.(An alternative terminology is polar instead
oy D\ 4 A B of even, and axial instead of oddEven and odd perturba-
L dXEdX"=tap(x7) dXdX tions decouple, and different values bfand m decouple.

+Q(XP)r2(xP) yp(x4) dx2d X0 2) Furthermore, the perturbation equations do not depend.on
In the following we consider one value bndm at a time,
and suppress both the indickandm and the explicit sum-
mation over themh,,, is decomposed into

whereg,g is a metric and is a scalar field oM 2.y, is the
unit Gaussian-curvature metric ®.r =0 identifies the cen-
ter of the spherical symmetry, where ead&hdegenerates to
a point.r=0 is the boundary oM?2. In the same way we
decompose the spherically symmetric stress-energy tensor

For simplifying the field equations, it is useful to introduce a
vector and a scalar oM? derived from the scalar.

hag=hagY, 9
oa="2, 3 hab=hEY -+ hGS, (10
Vo=—1 2420 42+ 30 s0™. 4 hap="?KyapY +1°GZap+N(Sap+t Spia)- (1D
We distinguish covariant derivatives a‘,M? and S*: Note that the left-hand sides are components of a tensor on
Gun=0, Gasc=0, 7ape=0. 5) M*. On the right-hand sidBag is a tensor orM?, andY is

a scalar or?. Similar remarks apply to the other definitions.

We shall also need the covariantly constant unit antisymmet! the same way we deco_mp.ose the perturbafiep, into
fic tensors with respect tgag andg,,, which we calle,g  t€nsOrial spherical harmonics:

and ey, . o~
The Einstein equations in spherical symmetry are Atag=AtagY, (12)
Gas= —2(vaptvavs) T 9asVo=87tap, (6) Atap=AtRY:p+ALRS,, (13
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AtabE rzAts'yabY-l— AtZZab-I— At(Sa:b+ Sb:a)r

where we use the superindices 2 and 3 in order to follow th
notation of[9]. (They are just labels, not components of any
vector) Some of the coefficients on the right hand side of
these expansions are not definedIfer0,1 because the cor-

PHYSICAL REVIEW (39 064031

(14) background (“gauge-invariance’). These objects are
Kag,Ka,k for the metric, which are the generalizations of

‘FiAB,h,?,K when the latter are evaluated in the gaudge
=G=h=0 (Regge-Wheeler gauge And they are
Tag.Ta, T3, T2,L,L for the matter, which are generaliza-

responding spherical harmonics vanish. In the following, weions  of Ahpg, Aty A3 A2 AtR—QhR, At in Regge-
always point out which of the general equations continue tdVheeler gauge, respectively. SE&9] for the precise defi-
hold for =0 andl=1 if one sets these coefficients to zero. nitions of these objects.

It is possible to form linear combinations of these objects The perturbed Einstein equations, expressed only in
which are invariant under coordinate transformations of thegauge-invariant perturbations, are

[=0:
(kCA\B+kCB|A_kAB|c)UC_9AB(2kCDID_kDD|c)UC
I(1+1)
—(KavetKkigoatkap)+| Vot o2 | Kes
I(1+1 I-1)(1+2
—0daB kFF (2r2 )+2kDFUD‘F+3kDFUDUF_leF_3k|FUF+ %k :87TTAB, (15)
1 AB AlB AB A B pAB
> — k™At KA 18— 2k |avs + K A )g0 "+ R™(Kkag—KQag)
I(1+1
- (2 5 )kAA+k|AA+2k|AvA]=87TT3, (16)
r
=1
1 B_ B B
E(kAB —k®gat Kk gva—Kja)=87T,, 17
1 k k I-1)(1+2
2ol ot [P, s
2r r c r A 2r
1=2:
1
- EkAA: 87TT2, (19)
1
EkA‘A:87TL. (20)
I

dimensional Ricci tensor. Equatiorf$6) and (20) can be MATTER IN AN ARBITRARY ORTHONORMAL BASIS

obtained as derivatives of the other equations using the lin-
earized equations of stress-energy conservation, which we do Both in order to transform tensor equations into sets of

not give here explicitly.

scalar equations, and in order to separate evolution equations

064031-3



JOSEM. MARTIN-GARCIA AND CARSTEN GUNDLACH PHYSICAL REVIEW D59 064031

from constraints, it is desirable to introduce an orthonormal urva=U, nfupa=W, W2—U2=p"u,=0v2 (27
frame inM2: namely,

For reference we give the background Einstein equations in

—uau=nant=1, uxni=0. (2D frame components:

In the presence of curvature, this cannot be a coordinate 1
basis: W' —U+ vW— uU—2U%+2W?—r 2=87-t,A, (29
2
[n,u]?=un?—pu?, ,LLEUA|A, v= nA‘A. (22
. 1
We define an associated basis of 2-tensors, W —=U+vW+uU— U2—W2=87T§ past®, (29
gag= —UaUg+NaNg, €ag=Nalg—UaNg, (23 1
—U' =W+ uW+ yu—zuwzswquBtAB,

Pas=UaUgtNaNg, (ap=nNalgtUaNg (24 30
30
and use it to decompose the gauge-invariant metric perturba-

tion: —R+W' —U+pW—uU—-U?+W?=87Q. (3D
Kas=70asT PasT Ydas- @9 e use them among other things to bring all perturbation
We define derivatives along the basis vectors: equations into a standard form by eliminating the derivatives

of U andW.

fEuAfIA, f'=n*a, (26) The complete Einstein equations for the even perturba-

tions, still for arbitrary matter content, expressed in gauge-
and re-express the even-perturbation equations in this basisivariant variables, and decomposed in an arbitrary frame,
We also introduce the notation are

—kH K+ vk’ — uk—2U[2k+ ¢+ ' +2udp+ 2vih]—2W[ — 2K’ + @' + p+ 2vp+ 2 uip]

[(1+1) 2 5 AB A
T2 (k+77)+r—2(k—77)—2¢>(U +W?) —4yUW+16m(ppapt ¢0ap)t™=87T,A", (32

—k—K'+ vk + pk+2U[ —k+ p+ ' +2udp]+2W[— K’ + 7' — y—2v ]

[(1+1
+2¢( V0+ ( +2 )) :SWpABTAB, (33)
2r

— (k) = (K") +uk'+vk+2U[—K'+ 7' — ¢’ = 2up]+2W[ —k+ n+ ¢+ 2v¢)]

I(1+1
—zw(v0+ ( +2 ))=8quBTAB, (34
2r

—km = Ky = ¢ = () = (§) VK = pkt vy = py=3(v vt py + )

oo . . . I(I+1
S 2U( kU ) = 2W( K20 )~ Ly

—2(k—P)[R—W'+U— pW+ pU+U%—W?]
—2¢[W' + U+ vW+ U+ U2+ W2+ 52+ 2]
—2¢{U’ + W+ uW+ U + 2UW+ 2uv]=167T3, (35
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1=1: ket pt b+ +2ud+2vh—2Un=— 167U Ty, (39
k/+7]/_¢/_¢_2V¢_2M¢—2W7’=—167TnATA; (37)
1=2: 5»=-8nT> (38)

6M  I(1+1)

r3 r
(46)

scalar form. They are already in first-order form if one —

countsf, f and f’ as separate variables linked by certain
trivial equations. In the following we always imply this first-
order interpretation. The final step of the analysis is to sepa-
rate the equations into evolution equations and constraints.
This cannot be done in general, as the causal structure of the -2

. II=r""<II, (47)
equations depends on the matter content.

Attention must be paid to the regularity of the perturba-,. 4 Eq.(44) in an arbitrary basis becomes
tions atr =0. Changing to Cartesian coordinates one can see

that regular perturbations scale as |=2- —ﬁ_+ﬁ”+[v+2(| )W —[ e+ 21 +1)U]ﬁ

=r'n, 39 A _
= 39 +(|+2)”TA+(|—1)(UAUA—r*2)H

We have now turned the even perturbation equations into Py Pllpy ( 2M>
r

at? Jr*?

We enforce regularity at the origin by defining

k=r'k, (40 .
=—16ar [ = (UAL®)’ + (NaL?) + unalA— vuL?].
y=r'"1y, (4D (48)
Y=d—k+ n:rwz;, (42 In the special cask=1Kk, is defined byll only up to a

gradient, but precisely this gradient is a gauge degree of
freedom, so thall again contains all the gauge-invariant
information. As we haver(zLA)‘AZO, L, can be expressed
asr?L,=engT!8, with T a new scalar. Equatiofi8) can be
integrated to obtain the algebraic Einstein equation

where the barred variables at{1) at the center.

The odd metric-perturbations are containedtjin We can
transform the vector equatidi8) into a scalar equation us-
ing the curl ofky :

I=e*B(r 2ku) 5. 43 l=1: r*I=167T+ const. (49
The integration constant must be zero if the perturbed space-
time is to be regular im=0. (If the background spacetime is
Schwarzschild, then this integration constant parametrizes an
infinitesimal angular momentum taking Schwarzschild into
Kerr.) For =0, there are no odd-parity perturbations at all.

It is possible to reconstrudt, from II for =2 using Eq.
(18). Thereforell alone characterizes the physical odd met-
ric perturbations. Fot=2 it obeys the “odd parity master
equation” [8]

(1-1)(1+2)
T2

|=2:

-5 M=8meBL ppp . IV. THE MASSLESS SCALAR FIELD MODEL

11
—(r*m*
r

I (44) In the remainder of the paper, we restrict attention to a

particular matter model, the real massless scalar feldth

This equation is a generalization of the Regge-Wheeler equal/€SS-€nergy tensor

tion [12]. If we define the objeckl gy=r3II then the master

S 1
equation is = @,u0.,— zgﬂv(p')\go')‘. (50)
(I=-1)(1+2) . .
g VJAA+ UA‘A_U va— ——— | lrw The background momentum-conservation equai®rgives
rz the evolution equation of the field:
= — 167 *PLp (45)
i(r2</:|A)'A=qo|/f‘+ 2v"¢|a=0. (51)

which, for Schwarzschild background in radial coordinates, r2
and using the “tortoise” coordinateg*, is the Regge-
Wheeler equation: It is useful to notice that for scalar field matter

064031-5
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2mHawkin
r2—ppht=—r, (52)
r

The scalar field has a perturbati&n YA ¢. We can con-

PHYSICAL REVIEW D59 064031

ds?=—a?(t,r)dt?+a?(t,r)dr2+r2dQ?2. (63

In these coordinates, the derivatives in theframe take the
form

struct a gauge-invariant perturbation as i of of
f:ailﬁ, f'= 715. (64)
P=Ap-poc, (53
in terms of which the gauge-invariant perturbations of the! NS IS not yet the coordinate system we shall use, but it is

stress-energy tensor are

1
Tas=Pap+Paeia— gAB§D\Fq)|F+ EgABkDFQD\DQD\F

L F 54)
2 ABPIFP (

TA:(I)QD‘Ai (55)
3 |D 1 oF

T°=kQ—¢p® +§k PIDPIF (56)

T?=0, (57)

LA:O, (58)

L=0. (59

Notice that there are no odd perturbations.

Again, the momentum-conservation equation gives th
evolution equation for the matter perturbation, that is, th
perturbed scalar wave equation:

I(1+1)
|= -

=

0:

1
S(r2)A-

r r

1
r—2<r2kAB¢'A>'B—<k+n)wscp'B. (60)

If =0, matter and metric perturbations decouple.
To enforce regularity at the origin, we define

O=r'd, (61)
where® is O(1) atr=0.

V. CHOICE OF FRAME AND COORDINATE SYSTEM

€

useful as an intermediate step in the presentation of the final
coordinates.

The Choptuik critical solution is a solution of the
Einstein-real massless scalar field system defined by its self-
similarity together with regularity. We introduce coordinates
x and 7 adapted to self-similarity of the spacetime. The back-
ground solution has the geometric property of being dis-
cretely self-similar(DSS), which in our coordinates means
that o(7+A,xX)=¢(7,X). The metric coefficienta and «
defined in Eq.(63) have the same periodicity. Coordinates
with this property are not unique. We make the following
choice(in terms of the Schwarzschild-like coordinagtes

t

o

TE—m( , XE( —%) e 7, (65

wherer  is an arbitrary scale. In the following we set it equal
to 1. Our choice has the following properties. Surfaces of
constantr coincide with those of constahtand = increases
with t. Thereforer is a good time coordinate, as well as
ebeing the logarithm of overall spacetime scale. The origin
=0 coincides withx=0. We choose the functiogy(7) such
that the past light cone of the point=t=0 coincides with
the surfacex=1. The domain of dependence of the disk 0
<x=<1 on any spacelike surface is therefore given x0
=<1. We can therefore work on the numerical doma#0
=<1,0< 7<oo without requiring boundary data o= 1. If we
extended our perturbation initial dataxo- 1, that part of the
data could not influencg<1. We can therefore determine
exponential growth or decay on the domaisg®¥<1 alone.

In these coordinates the frame derivatives in the radial
frame are

. of dé&,\ of
— o~ 147 _ _
f=a e (97-1- d )X&X , (66)
of
[ 17— ¢
f'=a""e Oax’ (67)

and the spacetime metric in these coordinates, but expressed

In the remainder of the paper we shall use the radial basighrougha and «, is

defined by

(62

There is a system of coordinates naturally associated with

this basis, which uses as a coordinate: the familiar
“Schwarzschild-like” coordinate system, in which the met-
ric is

d 2
1 9%

dx+ -

xdr

ds?= rSeZT[ — a?d7?+a%e?®
+x2e2% dﬂz] . (69)

The background Einstein equations and a few more defi-
nitions are given in Appendix A.
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VI. ODD PERTURBATIONS OF THE CHOPTUIK
SPACETIME

As we have seen, both, andL vanish and therefore the

odd metric perturbations decouple from the matter perturba-

tions. This implies[see Eq.(49)] that forI=1 we haveT
=0, and hencédl =0, if we demand regularity at the center.
Kk, is then pure gauge. All=1 odd perturbations are there-
fore pure gauge. Fde=2 Eq. (49) is, in the radial basis,

|=2:

—I+"+[v+2(1+ 1) ] — pIT
— (12— 4)V,I1=0. (69)

This equation is equivalent to the first-order system

—(I) +(I")' +S,=0, (70)
—(I1") +(I)’ +$,=0, (7
—(I) +11=0, (72)
—(I)'+I1' =0, (73

where
Sy = — ull+[v+2(1+ o]l — (12— 4)V,II, (74
S,=— Il + vil. (75)

Note that Eqs(71)—(73) are really identities that need to be

added to the system when we considlEdl andIl’ as in-
dependent variables. From this first-order point of view, wi
now have three evolution equatiorfeshich contain dot-
derivative$ and one constrainfwhich does ngt The three
characteristics are the light rays and the lines of constant

Note that this causal structure is independent of any particu-
lar choice of coordinates. Now we introduce coordinates

(7,x). We also rescalél and its derivatives so that the res-
caled variabless are precisely periodic i if (and only if)

the perturbed solution is DSS. Consider a perturbation of a
self-similar background so that the sum of background and

perturbations is again self-similé@o linear order in the per-
turbations. To find the scaling behavior dil, we note that
the tensork,S, must scale like the metric itselS, scales
trivially, so thatk, scales like the metric itself. On the other

hand €*B scales like the inverse metric, so that the scalar

€"ka g scales trivially, that is, it is periodic i for a DSS
perturbation. Therefordl=r?""'e*8(r~2k,) 3 scales like

€

PHYSICAL REVIEW (39 064031

The final form of the equations is then

+A au+ =0 79
where the X3 matrix A; is
. _ déo
A3=d|agA2,)\0), No=X 1—E ) (80
with
No —(ala)e %
A= (atajeto No 8D

We first consider the transport part of the equations. The
characteristic speeds, or eigenvalued\gfare

o
\o, xt:xoigefé’o. (82)

Ao andX ;. are always positive, whil§, has been chosen so
that\ _ changes sign at=1 by definition. That is§y(7) is
defined by the equation

(83

This definition means that for ©x<1 the characteristic
speeds\y and A, are positive, anc\_ is negative. Atx
=1\g and X\, are still positive, and\ _ is zero. Therefore
no boundary condition is required at the boundaryl, be-
cause no information crosses it from the right.x4t 0, allu
are either even or odd ir, so that boundary conditions are
obtained trivially.

The source terms in the final equations are

S1= —aef(Hz)TSl-i-(l +1)U1

—af — puy+ vuy+ 2(1+ L)vu,— (12— 4)Vous]

+(1+1)uy, (84)
s,=—ae” 72I7S, 4+ (1+1)u,

= —af — ulUp+ vu ]+ (1+ 1)Uy, (85

S3=—au;+lus. (86)

We have used rescaled background coefficients that are pe-

I’il, that is likee'”. We also note that each frame derivative riodic in 7 on the DSS background_ Using the background
adds a powee’. In order to cancel this scaling behavior, we Ejnstein equations they are

define
uy=e I+ VI, (76)
u,=e (07T, 77
u;=e"'"I. (79

— 2a

u=e "u= XY, (87)
eox

- a( ., ., 1-a?

v=e "v=—— X+Y+ , (88
ebox 2
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— 1
=e v= , (89
efoax
Vo=e 27V _1-a” 90
0=¢€ 07" 2ty (90)

Note that atx=0, these are regular except for-x" L. (The

background fieldsX and Y are defined in the Appendix.

Finally, the constraint equation becomes

AU
—_ 2 —_gebo
X aeou,. (91

As free initial data we can take; anduz, and we obtairu,

PHYSICAL REVIEW D59 064031

to takeu,; andu,, plus the value ofi; atx=0, as free data,
and solve foru; by integration.

VII. EVEN PERTURBATIONS OF THE CHOPTUIK
SPACETIME

A. General casel=2

The even perturbation equations are far more compli-
cated. We discuss the cades2,|=0 andl=1 separately,
beginning with the general case 2.

The vanishing of the matter perturbatid® makeskag
traceless =0). Therefore the even perturbations are de-

scribed by;%? and ®. These obey the following set of

by taking the derivative ofi;. Numerically it is more stable equations:

IV . _ 8 _
— O+ "= ud+ (r+2(1+ 1))@’ +| 12Vt —(Y2=X?) | ®
r
_ _ 1 . — .
—2(k+l’2)()F(Y—VX)—2¢(X+(U—V)Y)=O, (92
e . _ _ 2 _ _
—k+K"— pk+ (v+2(1+1)v)k’ —12Vok—2x+2 V0+—2(X2+Y2) (k+r?y)
r
8 _ 160 —
+FXY¢—TXCI)=O, (93
L . _ _ __ 8 _
r2X+2k+r¢’+(2v+(|+1)v)r¢+2M(k+r2X)+FYq>=o, (94)
. _ _ _ _ _ 8 _
r¢//+r2X’+(I+2)rzvx+2v(k+r2)()+2,urw—FXCIDZO, (95)
_ — = [(+D(+2) 5 o\ — S
K'+2(1+1)vk" — uk— T-i—ZI’ v x—((+2)Vo+lvv)k—vroy’

+

4 2

—('?)'—u+2)UV+M?'+(|—2)Mv?—ru$—r$((|+1)v2+v0+ o0 + 2 (x2—v?)
r

- — 4 - — 4
(k+r2X)+?(Y<I>+X(Iv<l>+<1>’))+ri<—2,uv+—ZXY =0, (96)
r
I(1+1 2 _
( ) > —2uvr?y
p
4 - 4
— (XP+Y®')— —oYD(I+2)=0. 97)

Again, we rescale the variables so that they are periodicifrand only if the perturbed spacetime is still DSS:
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U1567(| +1)T(3,U2597(|+1)Tq_), ,uszeflfa'
U4Ee_(|+l)TEU5Ee_(|+1)T? ,UGEe_lTE

U7Ee_(|+l)7r;U85—e_(H—l)TZ. (98)

There are 8 evolution equations of the form

o +A u +s=0 99
5 8(9_X S= ’ ( )

where the matriXdg is
ABEdiagABIAS ,Az), (100)

ands is the vector

s1=(I+ Duy—a| — pug+ v+ 201+ Do)up+| —12Vo+ ———(Y2=X?) |ug
x2e?éo
. — 1 L
—2(e""Y—=vX) —fou6+u7 +2(e" " X+(v—7r)Y)ug|, (101
X€
s=(1+1)up— al vu;— puy], (102
53=|U3—au1, (103)
16 — — — — _
Ss=(l+1)uy—a| — —vXuz— pus+ (v+2(1+1)v)us+| (2—1?)Vy+ (Y24 X?) | ug
Xe§0 Xzezfo
2 4__
+ ——(—a %+ 2(X2+Y?)u;— —uug|, (104)
Xe‘fo a
s5=(1+1)us—af vu,— pus], (105
56:|U6_CYU4, (106)
8 2 — — _ _
S7:(|+1)U7_a - > o - (U4+MU6)_2/LU7+(2V+(I+1)U)U8 f (107)
x2e2% xeto
2 — _ _
sg=(I+1)ug—a — 55 XUzt —vuUg+ Qv+ (1+1)v)u;—2uug]|. (108
x2e2to xefo
|
There are four constraints dug bg
_+_U8:C8, (112)
us X X
Wzae%uz, (109
Mo _ aefou (110 where
X >
2
au; b, _ 2+1+1 +I+1_ )
— s ur=cr, (111 b;=a%| — = 4 (113
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241412 |
bg=a% ——+ —+2(X?-Y?) |,
2 a2
(114
dus 4
—a—— ol — —
Cr=a— ae0| Xego(Yu1+X(u2

+1ouz))+ ma—2(1 +1)vusg

+

12V + 70— LY2 (115
oT1VU = So2g; ¥ | Us s

4
(Xuy
xefo

U,
—a— " _ a2aép] —
C a a‘e
8% ox l

+Y[uy+(1+2)vuz])— (1 +2)vu,

PHYSICAL REVIEW D59 064031

k—k—20%E,, (119
Tag—Tas™ tAB|CEC_ tACEC|B_ thEC|A : (120
1 ~
T =T3- —(r?Q)pé®. (121
r

Therefore we have to impose two gauge conditions. In our
case we want to maintain the for(@3) of the metric during
perturbation, so we perform a gauge transformation to obtain
k==0. Then, metric perturbations are describedzbgnd
x- By regularity they areO(1) and O(r?) at the center,

respectively. The conditiok=0 fixes the projection of on
v completely, buty=0 fixes the orthogonal part only up to
a residual gauge freedog = fu, where the scalaf obeys
the equationf’=vf. This latter equation can be thought of

as an ODE irr at constant. We can give the boundary value
for this ODE at each moment of time, so the residual gauge
is an arbitrary function of time. We use it to set=0 at the
center.

The causal structure of the equations is similar to the odd USing Eqs.(39), (42) we define
case, becaus®g is constructed fronA, andAs. The char-
acteristics ofA, are just the ingoing and outgoing radial null
geodesicsuq,u, anduz on the one hand, and,,us andug
each form a wave equation with a mass-like term, while  where y is O(1) at the center, buy is O(x?), due to our
and ug form a massless wave equation. The first two congauge choice. The scalar field perturbatidn is already
straints are also identical to the odd perturbation case, and(1) and even at the center, compare E&fl). Equations
can be solved fou; andug by integration, or foru, andusg (32)—(34) and(60) are then
by differentiation. Again we choose the former in the nu-
merical treatment, taking the value of andug atx=0 as
free initial data, together with,u,,u, andus.

The next constraint equation contaimg but notug, and
is therefore a linear ordinary differential equati@DE) for
u;. Onceuy is known, the last constraint can be solved as an
ODE for ug. We solve these ODEs by a second-order im-
plicit method, in order to finite-difference all constraints in
the same way. Both the evolution equation fer and the
constraint forug require the following condition at the origin
x=0 for all 7 in order to be consistent:

_ I 2
+pus+(1—=2) uvug— a,u,u7]. (116

n=7, x=¢+n=r, (122

7 - 4.
— x|~ —(YO+XD")=0,
r r

(123

a}’ +(1+2a )y +4Y?2

n
r2

—})—?(dexcb'):o,
(124

1 4y?
- ’+
arn

" 2 YD )=0

8 aY
2uy+ — —uz— (1 +1)ug=0(x?). (125

-— 11

e§0 &X ( 7)
We solve this constraint for the value ag at x=0. The
value ofu; at x=0 is zero by definition. These boundary
conditions complete the constraints for andug, which are
then determined completely, given to ug.

. 6 . a
—<I>+<I>”—FaXY(I>+E(1+3a‘2+2X2—6YZ)®’
7 — .
——x|rY=0.
r? X)

(126)

Y— ,— 4 —

+ 777+ axX(1—-4Y9)x+ r—zaXY n+2
B. Special casd=0

Forl=0 a general perturbation is described by the objects o ]
(Kag . K, Tag,T°), which are not gauge-invariant: under an 1he last equation is the wave equation for the matter pertur-
arbitrary coordinate transformation generated by the vectopation. We do not have an evolution equation forinstead,
£, dx“=E,Y d¥* these objects change as we have to calculate it by integration of the constrair4).
Finally y can be calculated from the evolution equation
(125 or by integration of the constrairii23).

Kag— Kag— (~§A|B+~§B\A), (118
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Again we rescale the variables. We also reorganize the Ju Ju

variables to eliminatey from the equationgThis is the same
trick as usingY instead of¢ to simplify the background

Ay +5=0, (129

equations.
oy where the matribd, is
u=e’ ¢_rﬂ>,UZEe_T®’,U3£¢),
U4E;,U5Eei7-r; (127) A4Ed|an31)\0)1 (129)
Variables (1,u,,us,us) verify the following evolution
equations: ands is the vector
|
= XY+3_+a 1+x2 3Y2| |u,+| -2 XY2+—TY
Sl—ul o efo U]_ U Xeg 2 UZ aX2e2§0 e Xefo U4
X
+| —(1-4Y%)—2e7"Y |ug]|, (130
xeo
axefov . 2 sy2) |y o 22X aXy | 9a X2y e X +4aY3
Sz—uZ o 2 0 ( ) Ul ef U2 X262§0 e Xefo U Xe§0 U5 y
(131
Y
S3= —a| Ui+ —Uy|, (132
xeo
4a XY
S5ZU5_C¥ (XU1+YU2)+4a. 2 2 (133)
xeo G

There are three constraints:

P

__°_agebo
aebou,,,

X 2
auy
—=C ,
ax 4

dus by

—+ —Us=cCs,

ax = x oS

where

C4: 4aze§0(Y U1+ XU2+ Y2U5) '

bs=1+a*1-4Y?),

4a?
C5: T(YU1+ XU2).

(134

(139

(136)

(137
(138

(139

equation. We obtaimni, by solving a constraint at each time
step, starting from the gauge conditiap=0 atx=0.

C. Special casd=1

Forl=1 a general even perturbation is described by the
objects Kag.K, Tag,Ta,T%), which are only partially gauge-
invariant: under an arbitrary coordinate transformation gen-
erated by the vectof,dx*=¢,Y dx*+r2£Y_ ,dx® these ob-
jects change as

Kag—Kag+ (r?&a) s+ (r?&p)ja, (140

k—k+2£+(r2)Ag,, (141
Tag—Tast rz(tAB\c§|C+ tact S+ tacta),

(142

Ta—Tatr%(tasé® = Qéja), (143

T3 T342Q¢+(r2Q)A¢ja. (144

Note that we have a constraint, but no evolution equation, for
u,. We have in fact constraints far; and bothu, andus,
so that the only degrees of freedom are those of a waveansformation. Therefore we have to impose just one partial

We see that there is invariance under e part of the
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gauge condition. The most interesting gauge conditiok is Using Egs.(39), (41), (42) and(61) we define

=0, because then we can eliminate all second derivatives . . . .

from Eqgs.(32)—(38). Now matter perturbations are described n=rn, Y=r%, x=¢+n=r3, &=rd,

by 7,4, x, which areO(r),0(r?) and O(r®) at the center, (145
respectively. The conditiok=0 does not fix the gauge com-

pletely, and again we have a residual gauge freedom of funavhere the barred variables are even &(d) at the center,
tions ¢ obeying equatiom?v &' + ¢=0. We use this freedom exceptn, which is O(r?), due to our gauge choice. Equa-

to setyp~O(r®) at the center. tions (32)—(37) and (60) are then
4
—x X' +(2+3a 2 4Y2)X+4Y2———(—¢>+Y®+X<I>’) (146)
1 -2 2 2 ; -2 2 2\ 4 — 8 =
— ' +2(1—-a 2+ X2+ Y?)—+(a 2—-2X2=2Y) y— = XY+ — XD =0, (147
ar r2 r ar2
_ 7\ [3Y—
—¢/ +(2+a 24+ 2X2-2Y2) Y+ ArXY x—— +4 —(I)+XCI>+YCI>’ =0, (148
re ¢ 4
X~ (1= 4Y2)————CI>+X<I>+YCI>’ =0, (149
M- o -2 2_\2 ; -2 2_\2 3X
S AXYY+(B(1-a ) +2(XP-Y2))m — (1-a 2+ 2(X —~Y2))ry+4 —<1>+Y<1>+xc1>' =0, (150
- 2 — a_— Y2\
—(I)+<I>”—FaXYCI>+(1+7a‘2+2X2+2Y2)E<D’+ —Vo+8—|®
r
Y L . 7m [aY PP
+ 7+ (@X=2rY )+ (aX+2rY) < +| ——(1-3a 2= 2X?+2Y2) —2X | =0. (152)
r
Again we rescale and regroup the variables:
Y — —
u=e 2" @—7n>,u25e27®’,u35e7<b,
us=e""p,us=e 2Ty, ug=—e 27y. (152
The variables (; ,u,,us,us,us) obey the following evolution equations:
é’U+A au+ =0 153
o7 "Sgx ST (153
where the matriXAs is
A5EdiagA3,)\o,)\0), (154)

ands is the vector

=2 G K VTRV F v A g+ X 1-2v)+e Y
S1=eth wefo 1T VT Lkl 2 U2 0T 202 LNEReTA Jhe T g Y
ax aY
+| ——2e77Y 3vY——(1 2X2+2Y?)+2e X | ug |, (159
xebo xebo
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_2 axeéov 2uy? 2aXy 8XY oav| v Y? X
Sz— Uz_a’ 2 0+_( + ) Ul Xefo U2_ X2e2§0 +|—2a O+ —XZeZEO +e _Xe'fo U4
+ M 1+2 X2+Y? 4axy’ 156)
bl a a( ) |Us wefo Ug |, (156)
Y
S3=Uz—«a Ul+_U4 ' (157)
xefo
4a a
S5=2Us— a (Xu1+Yu2)+ Yu3+4a 2 — (1= 4Y?)ug|, (158
4a
Sg=2Ug— a —(Yu1+Xu2)+ Xu3+ 3aVy+ 5 (X?+Y?) |u
X€ x2e?¢o
— 2a ) ) 4a
—| axeoVy+ (X2=Y?) |ug+ —XYus|. (159
xefo xefo

There are four constraints:

dus

= aefou,, (160
du, by
3 Ua=Ca. (161)
dug by
3 Us=Cs. (162
dug bg
=2+ tug=cs, (163
where
b,=—2+2a%(1+X2+Y?), (164
bs=2+2a%(1-2Y?), (165
bg=1+2a2(1+X2-Y?), (166
8aX
Cq=— ——UaTe%(—1+2a%(X?+Y?))us— 4efa’X Y s,
(167
a2 —
Cs=—— (Y U+ Xup+vXug), (168
a’ —
Co=—— (XUL+ Y U+ 30Y Ug+ XY 15). (169

Note that again we do not have an evolution equationufgr
and that we have constraints for all variables other than

andu,, so that the only degrees of freedom are those of a
wave equation. There is a consistency condition at the cen-
ter:

4 dY
_U3:O(X2).

Ug— g dx (170)

Again we imposau,=0 atx=0 as a gauge condition.

VIIl. NUMERICAL RESULTS

Our numerical code, and the tests we have performed, are
described in the Appendix. Here we only summarize three
important points.

The code treats the boundaries 0 (center of spherical
symmetry andx=1 (boundary of domain of dependence
exactly the same way as all other points. On a flat empty
background spacetime, it is second-order convergent, the ori-
gin x=0 is stable, and waves cleanly leave the computa-
tional domain atk=1 without numerical backscatter.

On the Choptuik background we observe second-order
convergence for most values rfand . Convergence of a
lower than second order is observed ngar0, twice per
period in 7. These are the values efwhere certain coeffi-
cients of the background solution change rapidly in time,
namely at the minima and maxima of the background scalar
field. A typical solution(as we shall discuss belgvis an
exponentially damped quasiperiodic oscillation. Conver-
gence inevitably breaks down at largdor two reasons: the
oscillations at different numerical resolutions gradually drift
out of phase, and small differences in the exponential decay
rates at different resolutions have a cumulative effect on the
amplitude.

As we discuss in detail in the Appendix, the numerical
code has a subtle instability which becomes apparent only at
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high| at high resolutions. The instability is already presentin  The only exception to this complicated behavior are the
the free wave equatior(in self-similar coordinatgson  spherical (=0) perturbations. At large they are dominated
Minkowski space. We have found a way of repairing it in by a single growing mode with real.(The fact that there is
Minkowski space, but it persists on the Choptuik back-a single growing mode is of course at the center of critical
ground. At low resolution this instability can be neglected,phenomena in critical collapse, and this uniquenust then
and we see convergence up to a resolutios »f 1/800. be real because the background is pddére we can read off

In spite of the inevitable absence of pointwise conver-both x and f(x,7) quite clearly. We findkA=9.21. This
gence at late times, and in spite of the numerical instabilitycorresponds ta=2.67, and a critical exponent for the black
our main result appears secure: all non-spherical physicalole mass ofy=1/k=0.374. This agrees to all three digits
perturbation modes, for all initial data, decay exponentiallywith the value of the critical exponents obtained from col-
in 7. The exponential decay is typically rapid. Only for even lapse simulationgl], and a perturbative calculatiga3] that
| =2 perturbations is the decay quite slow, but thexe for  is completely independent from the present one.
low | in general we have good convergence of the solution  For|>0, we have obtained estimates ofand w by first
itself, and therefore the decay exponent. adjusting the value ok until the rescaledlgscaeE € “"U

Due to the discrete self-similarity of the background so-appeared to be neither increasing nor decreasing over many
lution, the perturbations decay in a complicated fashion, withperiods. The resulting,escaedS then quasiperiodic. We have
the exponential decay apparent only over many periods. Thearried out a discrete Fourier transform on the time series
background-dependent coefficients of the perturbation equar, (os.,(0,7) over a range of 18. The result has sharp
tions are periodic irr (at constank). Therefore the general peaks spaced at intervalsr#A due to the additional sym-

form of the perturbation is a sum of terms of the form metry in the background mentioned above. In the special
N cased =0 andl =1 the functionu, rescaiedS Clearly periodic
u(x,7) =R C e" "f(x,7)], (17)  (w=0), and the line spectrum is very sharp.

. The estimated values af and w are tabulated for differ-
with C,\ and f(x, ) all complex, andf(x,7+A)=f(x,7).  ent resolutions in Table I. As an example, we show the value
Once the most slowly decaying mode dominates, only ongf y, for evenl =2 perturbations at=0 as a function ofr,

such term is left. In real notation, it is after an exponential decay has been taken out, in Fig. 1. In
) Fig. 2 we show the low frequency part of the discrete Fourier
u(x,7)=e*[Cycofwn)fi(X,7)+ CasifwT)fa(x,7)], transform of Fig. 1. The quasiperiodic nature of the signal
172 becomes clear in that there is a series of peaks obeying Eq.
173,

with x=Re\,0=Im\,C,,Cy,f, and f, now real, andf, As the background spacetime is periodic #n and the
andf, again periodic. This means thafx, 7), even after the o, hation equations are linear, evolving the perturbations

exponential decay has been taken out, is not periodie in ¢, one period is equivalent to multiplying them by a transfer
unlessw is commensurate with2/A. FurthermoreCy and oy For odd perturbations, this matrix has sizeN}2,

.C?! and in particular their ratio, depend on _the perturbationy 4 for even perturbations K42, whereN is the number of
initial data. Therefore, the complex exponanis not €asy 10 ig points inx, and two and four respectively is the number
read off. Nevertheless, to the extent to which they are apg; degrees of freedom. F&¢=50 and 100, we have verified
proximated by Eq(172), the Fourier transform i of the 1ot the logarithm of the largest eigenvalue of the transfer
data with the exponential decay taken out should be peakegh iy agrees with\A. These matrices contain of course all
around the set of frequencies the information that there is about the system, but for larger
N the computation time and memory requirement for calcu-
NZ_”JW) 173 lating these matrices and their eigenvalues quickly becomes
A prohibitive, scaling adl*. However, if we use generic initial
data, in which nou vanishes at any (except oddu at x
for integerN. The background is not only periodic inwith  =0), we have a mixture of all perturbation modes, and at
periodA, but has an additional symmetry. The backgroundate enough times the most slowly decaying mode has taken
scalar field obeys(7+ A/2x)=— ¢(7,X), while the back- over.
ground metric coefficients obey(7+A/2x)=g(7,x). The With increasind, the even parity numerical code appears
perturbations inherit this additional symmetry. Therefore, into be more and more sensitive to small errors in the back-
the spectruni173 of the scalar field perturbations to us, ground solution, as the solutions obtained at different reso-
only odd integersN appear, while in the spectrum of the lutions drift apart more and more rapidly. The solution at late
metric perturbationsi, to ug, only even value oN appear. times depends sensitively on the initial data, so that the sys-
This must be taken into account when we readwffrom  tem looks chaotic. This problem may be unavoidable with
the spectrum. Because theare either even or od@dyA/2r  any code. Our results still seem to capture the correct overall
is defined modulo Zand not modulo 1 as one might expect behavior, as the values of and w obtained at different
and we define it to be €@ wA/277<2. For example, with the resolutions differ much less than the actual time series. We
highest peak in the spectrum of at wA/27=5.3, and the believe that the explanation is that different resolutions agree
highest peak in the spectrum of at wA/277=6.3, we con- reasonably well on the periodic functiohsandf,, but that
sistently obtainwA/27=0.3. the initial data-dependent coefficiertg andC, take essen-
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TABLE I. Summary of eigenvalues, read off fromu,(x=0,7). The values of kappa were obtained by
eliminating an exponential factor. The valueswfwere obtained from a discrete Fourier transform of the
result. Values ofvA/27 are defined modulo 2, while peaks in the discrete Fourier transform aife located
at wA/27+ 1+ 2N for non-negative integal. As we have integrated over a range oAl 7,wA/27r can
only be estimated in multiples of 0.1. Results marked “noisy” are dominated by numerical error. In the
Fourier transform this shows up as high frequency noise.

System «A,wA/27)

grid points 100 200 400 800 1600
evenl=0 9.24, 0.0 9.21, 0.0 9.21, 0.0 9.21, 0.0 9.21, 0.0
evenl=1 —0.34,0.0 -0.31,0.0 —0.48,0.0 noisy -0.30,0.0
evenl=2 -0.08,0.3 -0.07,0.3 —-0.06,0.3 -0.07,0.3 -0.07,0.3
evenl=3 -1.63,1.6 -1.65,1.6 —1.65,1.6 -1.65,1.6 —-1.66,1.6
evenl=4 —2.8,09 —-2.9,09 —-2.9,09 -3.0,0.9 noisy
evenl=5 —4.0,0.2 —4.25,0.2 —-3.9,0.2 —3.65,0.3 noisy
oddl=2 —-2.20,1.9 —-2.28,1.9 —-2.30,1.9 —-2.30,1.9 -1.8,3.0
oddI=3 -3.13,1.3 —-3.23,14 —-3.27,14 —-3.28,1.4 noisy
oddI=4 —4.05,0.7 —4.20,0.7 —4.25,0.7 —4.27,0.7 noisy
oddI=5 -5.0,0.0 —-5.2,0.0 -5.2,0.1 -5.3,0.1 -5.3,0.1

tially random values at late times for different resolutions. bations, with N=-—0.07x(1/A)+0.3X (27i/A)=—-0.02

In summary, we find that both even and odd perturbations+0.55. As this mode decays so very slowly, there may be
decay exponentially for all physical values of It is an intermediate range qf—p, for a given one-parameter
clear that perturbations with largewill decay more and family of initial data where this perturbation becomes uni-
more quickly because of the presence of the temms versally visible. Forp—p, small enough, however, the
=—lu+--- in all evolution equationgThese terms are in- spherical universal solution will again dominate.
troduced by the scaling of perturbations withto keep them
regular atr=0.) The numerical evolutions confirm that IX. CONCLUSIONS
higherl modes decay more and more rapidly. We can there- ) _ )
fore affirm that all values of decay, even though we have  We have evolved generic spherical and non-spherical per-
checked this explicitly only for the lowest few values. The turbations of the Choptuik critical solution. We have ob-
most slowly decaying mode occurs in the 2 polar pertur-

10°

40 T T T T T T T T T

30 b

j BN B

0 2 4 6 8 10 12 14 16 18 20

FIG. 2. The low-frequency end of the discrete Fourier transform
FIG. 1. u; versust at x=0. An overall exponential decay has of the previous figure. The vertical scale is again irrelevant. On the
been compensated for. The scale on the vertical axis is irrelevant, d®rizontal axis we have marked frequency in units of the back-
the equations are linear. On the horizontal axis we have markedround frequency, that ise(A)/(27). The quasiperiodic nature of
background periods, that i A. The sharp peaks are typical fea- the signal shows up in the peaks situated aiA}/(2)
tures. Although it is not clear from this plot, they are perfectly =1.3,3.3,5.3.... Thespectrum decays rapidly at high frequen-
smooth. cies.

064031-15



JOSEM. MARTIN-GARCIA AND CARSTEN GUNDLACH PHYSICAL REVIEW D59 064031

tained strong numerical evidence that all non-spherical 243
physical perturbations decay. The method of evolving ge- a,=—(1-§)xax+ XY. (AB)
neric perturbation also reproduces the known result that there gxefo

is precisely one growing spherical mode, and gives the cor-
rect value for its growth rate, and hence the critical exponent, : . . :
Therefore the critical phenomena at the black hole threshol order to exclude a con_lcal smgulalrlt.yatzo, We Impose .
in scalar field collapse — universality, echoing and scaling?~ 1 atx=0. In order o fix the remaining coordinate ambi-

_ are expected to persist for initial data that deviate9Uly t—f(t) we imposeg=1 atx=0. We makex=1 an

(slightly) from spherical symmetry.
The most slowly decaying perturbation mode is in the

=2 even-parity sector. As its decay rate is very small, this
mode is expected to play a visible role in non-spherical criti-
cal collapse. The decay rate of the most slowly decayin
non-spherical mode also determines the critical exponent f

black hole-angular momenturfiThis will be discussed in a
separate paper.
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APPENDIX A: BACKGROUND SOLUTION

Following Choptuik, we introduce the scale-invariant and
dimensionless auxiliary fields for the spherically symmetric

scalar field system as

X=\2mre¢’", Y=\2ure,

in the radial basis(Do not confuse Y with a spherical har-
monic) We use the dependent variablgs a/«,a,X andY,
and the coordinates and r. With the shorthand

(A1)

D=xgefo(1— &), (A2)

the wave equation fop is equivalent to the first-order sys-
tem

(x,x) 1 (
X P —
Yy 1-D?

|

1 D)
D 1
—[3(1+a?)+a%(X2—Y?)]X+gxeoy ,
[3(3—a%)+a?(X?~Y?)]Y+gxeoX ,

(A3)

The Einstein equations are
xgx=9g(1-a?, (A4)
Xa = g[l—az+ 2a%(X?+Y?)], (A5)

ingoing null surface by imposin@=1 atx=1. & is not
initially known, but is determined together with the dynami-
cal fieldsX,Y,a andg of the critical solution.

We have recalculated the background using the numerical
ode of Gundlach13], slightly modified to use instead of
=Inx, which results in a better treatment »&0. If the
solution is regularX and Y vanish atx=0. Therefore we
work with X,=x"2X and Y;=x"1Y. x=0 andx=1 are
regular singular points of the equations. The regularity con-
dition (vanishing of the numerator in the wave equatitn

1
x2:§e§o[ylﬁ+(1—d§0/dr)Y1] (A7)

atx=0, while atx=1 itis

[1+a2(1+2X3-2Y2) X+ [ —3+a%(1-2X3+2Y?)]Y,

déo\ YL aXp|
(“a <¥+7 =0. (A8)

The discrete self-similarity of the background is equiva-
lent to periodicity ofX,Y,a andg in 7, with a periodA that
is initially unknown. a is treated as a functional of,Y,g
and &, by solving Eq.(A6), with periodic boundary condi-
tions in 7 for each value ok. Note that this equation is linear
in a~ 2. Periodicity is imposed by representiXgY,g and&,
through a(truncated Fourier seriesr-derivatives are calcu-
lated, and Eq(A6) is solved, in Fourier space. This makes
the numerical method a pseudo-spectral one. The
y-derivatives are implemented through finite differencing on
a grid equally spaced ix, and are solved by relaxation,
together with the algebraic and ODgseudo-algebrajc
boundary conditions at=0 andx=1.

We have calculated the background solution using points
51,101 ...,1601 on the range €x=<1, always with 128
points per period & 7<A. It was shown in[13] that this
resolution inr is large enough so that numerical error is
dominated by resolution iR and systematic error effects at
x=0 andx=1.

We observe second-order convergence, measured by the
maximal and root-mean-squared differenceXefY,,a and
g, from 51 to 1601 grid points ix (with 128 Fourier com-
ponents in7). A and¢; (in the maximum and root-mean-
squared normsalso show convergence, but not to a distinct
order. This is illustrated in Fig. 3. For the perturbation cal-
culations we have always used the high-resolution back-
ground, downsampled as necessary.
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APPENDIX B: PERTURBATIONS NUMERICAL METHOD 1e+01

The perturbation equations are of the form
1e+00
o +A u +Bu=0 B1
gr ax T PUTD BD
1e-01
where u is a vector of unknowns, and\ and B are
background-dependent matrices. 1e-02
As by definitionx=1 is an ingoing spherical null surface,

the domain of dependence of perturbation datar-aD, O

<x=1 for 7=0 is precisely Gsx=<1. Both scalar and gravi- 1e-03

tational waves travel only from smaller to largerfor x

=1. In order to implement a time evolution without an arti- te04 ‘
ficial boundary condition atx=1, we use an evolution 100 1000

scheme that explicitly uses the characteristic speeds and G 3. convergence of the background solution with increasing
therefore changes over smoothly to upwinderivatives for  yesplution inx. On the horizontal axis we plot the logarithm of the
x=1. The numerical method we have used is similar to thahumber of grid points, on the vertical axis the logarithm of the
used for the perturbations of the perfect fluid critical solu-difference between one numerical solution and the one with half the
tions in a previous publicatiof6,14], but is second order in resolution. The two thick lines are the maximal and root-mean-
space and time. It uses second order one-sided derivatives squared difference@ver both B<x<1 and one period i) of all

X, and is Runge-Kutta-like irr: fields. The thin lines are the differences of the “eigenvaldg(7).

The dashed line is the difference in the eigenvalue

n+1/2_,n A7 n4u?+1—u?+2—3u?
Ui = U | (AL 2AX chosen Bsx<1+Ax because it is the smallest numerical
domain in which we stay in the domain of dependence of the
JAul—ul, -3 perturbation initial data for allr, while using a one-sided
~(A4)] 2AX +Bjuy |, (B2)  three-point stencil.(If we used a first-order differencing
scheme, with two-point stencils, the numerical domain O
ynt 2 n+12_ g n+1/2 =x=<1 would be sufficienj.
n+l_,n n+1/2 jt1 j+2 i ; ; ;
Ui t=up— AT (AL); >Ax We might refer to the method just described as the
second-order characteristic method. It is explicit and second
Ayt 2 n+l2_ g n+1s2 order. One obtains an implicit method by averagifgand
—(A M2zl 2 ! u"*! to obtain a new improved estimate fof "2,

! 2Ax

un+1/2:(un+un+1)/2' (BS)

+ Bn+1/2u_n+1/2
J J

: (B3)

and iterating the paifB5), (B3) of equations unti"*?! has
converged. Let us call this the iterated characteristic method.
Here A, +A_=A. In order to use the characteristic speeds The boundark=0 does not require special treatment, as
in the finite differencing scheme, it is necessary to sflit u(—x)==+u(x) for all u, so that ghost grid points witk

into a sum over its eigenvalues according to their sign, sa<g are available for taking derivatives. The one-sided dif-
that, for example, ferencing operators do not give exactly zerocatO even if
analytically du/9x(0)=0, but that is consistent: all terms in

vz -12 0 the finite difference equations combine so thé) remains
Ag =\, | -2 1/2 +X\o 0 , zero to machine precision if is odd initially. This also en-
0 1 sures that source terms of the fommix for odd u in the
evolution equations are well behaved numerically.
12 1/2 The constraints are solved by integrating fremO0 out to
x= 1. For stability, we do not evolve any variable for which
Ag-=N_| 12 172 : (B4)  we have a constraint, but instead calculate it from the con-
0 straints, including at the half-stapt+ 3. For simple integra-
tions du/dx=c with u an even function ofx, and u(0)
For x=1, A_ becomes positive, so that,=A and A_ given, we use the trapezoidal rule

=0, so that we do not need the downwind derivative there.
We go just one grid point beyornd=1, so that the last grid
point just beforex=1 still has two points to its right in order
to take a right derivative there. All grid points further to the
right only require left derivatives. This means that we couldFor the ODEdu/dx+bu/x=c, with b andc even inx and,
have extended the numerical domain to lasgeNe have therefore,u odd inx, we use

Ax
uj+l:uj+7(cj+cj+l)' (86)
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Xj+Xj11

Ujp1=Uj+| 1+ should happen physically, and we are left with pure numeri-
cal error. We then extracted new Cauchy data at a late time,
at a high resolution, and restarted these data with different
: (B7) resolutiongin space and timjedown-sampling the error data
as necessary. For some time we clearly see quadratic conver-

ence, until new numerical error takes over.

The instability is present already in the free wave equa-
tion in flat space, which in our rescaled variables and self-

' similarity coordinates is

—1[( AX b ) After this pulse has left the computational domain, nothing

Xj+tXj11

Ax
+ 5 (Cj+Cj1)

This scheme is second-order accurate at all grid points. Fog
those variabless that are even ik and of O(1) at x=0,

because is odd and ofO(x 1), we use the same scheme
with coefficientsb—1 andcx, in order to first calculate the

odd functionu=ux. Then we divide by to obtainu. In this duq du; duy, 21+2
case we extrapolate twice: firstx to x=0, and thenu/x T Xk T ax T x e (I Dui=0,
=u to x=0.
The perturbations were calculated at different resolutions, du, du,  Juq
related by grid refinements by a factor two in betland 7. T "X o (I Du=0.  (B8)

As our lowest resolution, we usetk=0.01, with a Courant

factor of A7/Ax=0.05.(The exact Courant factor is chosen Recall that for any,u, is an even function o®(1) of x and

so that the number of time steps for integrating the perturbag, is an odd function of(x). As the instability is centered
tions is a multiple of the number of time steps in the back-at x=0 and becomes worse with increasihgit must be
ground, per period.This small Courant factor is necessary linked to the termu,/x. We have generalized a well known
for stability, apparently because some coefficients of the pettrick for the spherical wave equation which consists in ab-
turbation equations, although smooth, have very large gradisorbing this term into the-derivative. We rewrite the equa-
ents inT nearx=0. We have also verified that the effect of tions as

using an even smaller Courant factor is negligible. Our high-

est resolution was finer by a factor of 16 in both space and au, a(x?*2u,)

ug

time. The background coefficients a,X,Y were given in ——+x———(21+3) —(I+1)u;=0,

. L ) . aT aX 3(X2|+3)
Fourier coefficients at 128 points per period ihand the
required intermediate values ofwere obtained by local cu- ol 42
bic interpolation. We chose local cubic interpolation as it is %4_)((2' +3) I(X""up) %+(I +1)u,=0
much faster than Fourier interpolation, and because of lim- T A(x2+3) X 2=
ited computer memory. The interpolation is formally second (B9)

order accurate, and all background coefficients are well re-
solved at this resolution. To separate the convergence of th&e then finite difference, always in the way suggested by
perturbations from that of the background coefficients, wehe equations, using left and right second-order one-sided
used a background solution obtained with 1601 pointg,in derivatives to obtain the characteristic method outlined
and downsampled it by factors of 1, 2, 4, 8 and 16. above(see Table I\. Note that we only ever use the new
As a test, we used all numerical methods on the trivialderivative ofu,, never the straight derivativéu,/dx. The
background of flat empty spacetime without a scalar fieldgeneralization to the even and odd parity perturbations of
On this background, the even matter and metric perturbationscalar field collapse, applied to the variablgsand us, is
decouple. In fact, the even matter perturbation equation istraightforward. In particular, the coefficients af,/dx and
identical to the odd master equation, and both are identical t62| +2)u,/x, although now different from unity, remain
the free wave equation. We are therefore testing the code agqual to each other. All other variablesare differentiated
the free wave equation, with angular dependerige and in  directly with respect toc. When we use this finite differenc-
self-similarity coordinates, on the domain of dependence Gng method for the flat space wave equation, the late-time
=x<1. solution that is pure numerical error is now smooth and de-
In flat space both characteristic schemes give essentiallyays exponentially instead of blowing up, as we had hoped.
the same solution. Both are stable and second-order conve®n the Choptuik background, however, the instability at the
gent for a long time. In particulax=0 andx=1 are per- center is still not suppressed. Before the instability takes
fectly normal points, as expected from the construction ofover, the two methods clearly converge towards each other.
the numerical scheme. At high resolutions, higland late We have also tested convergence of the code orirthe
times(for example Ax=1/1600|=6,7=1) we see an oscil- merically generatedChoptuik background. Here, stability
lating instability in7 nearx=0 that leads to a breakdown of requires a smaller Courant factor. The differences between
convergence near=0, and which blows up for sufficiently different resolutions are peakedat O and are smooth func-
largel and high resolution. This instability appears to be ations ofx. For most values of andx convergence is clearly
solution of the continuum equations, but for initial data second order, with the exception of certain valuerafear
which are provided by finite differencing error at late times.x=0, where the background coefficients are particularly rap-
To demonstrate this, we have evolved a narrow Gaussiaidly varying. Here convergence still occugdifferences be-
pulse originally centered arourx=0.5 in flat spacetime. tween resolutions decrease with resolutjdout is not of a
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TABLE Il. The same with an alternative finite differencing method lfer2, defined by Eq(B9). Note
that convergence is much slower, but that for 800 grid points these results agree quite well with those of the
other method.

System «A,wA/27)

grid points 100 200 400 800 1600
evenl =2 11,03 0.15, 0.3 0.0, 0.3 —0.05,0.3 —-0.07,0.3
evenl=3 0.25,1.4 -1.3,1.6 —1.55,1.6 —1.63,1.6 —1.65,1.6
evenl =4 -0.53,0.5 -2.0,0.8 —2.75,0.9 -2.8,1.0 noisy
evenl=5 —1.45,15 —2.77,0.0 —-3.3,0.1 —-3.2,0.2 noisy
oddl=2 —-1.74,1.8 -2.18,1.9 -2.30,1.9 -2.30,1.9 noisy
oddl=3 —-1.95,1.2 -2.95,1.3 -32,14 -3.25,1.4 noisy
oddl=4 -2.2,04 —3.55,0.7 -4.1,0.7 —4.25,0.7 noisy
oddl=5 -27,14 -4.1,1.9 -5.0,0.0 -5.2,0.1 noisy

clear order: lower than second order for low resolutions and As ana priori promising numerical scheme, we have also
higher than second order for high resolutions. Somewhat sutested the iterated Crank-Nicholson method. In this method,
prisingly, second-order convergence disappears and then re«e need to treat the boundaries specially xAt0 we have
appears many times. Apparently error is not just growingtried updating the boundary point by extrapolation from its
with time, but depends very strongly on the background. Thaext neighbors at each iteration, taking into account that
explicit and iterated characteristic methods give very similarither odd inx (and vanishes at=0) or even inx. Alterna-
results. At typical resolutions the differences between thdively we have used the exact valae/dx=0 for evenu and
two methods at the same resolution are much smaller thathe finite difference stencilou/ox=[u(Ax)—u(0)]/Ax,
between resolutions. The only exception from this behaviomwhich is second order at=0 for oddu. At x=1+Ax, we
is at early times, when the iterated method clearly show$ave either used extrapolation, or the one-sideft side
first-order convergence that goes over smoothly into the exenly) second-order stencil of the characteristic methods. We
pected second-order convergence. found that the iterated Crank-Nicholson method with any of
In the flat empty background, pulses with support wellthe boundary treatments discussed is unstable, already for the
insidex=1 quickly leave the computational domain. On the flat-space wave equatiofin self-similar coordinates The
Choptuik background, we expect to fin@gxponentially instability does not have a continuum limit in space. In fact,
damped quasiperiodic behavior at late times. We mustit changes sign about every grid point in space, and grows
therefore evolve to large values ofof the order of 10 to 20 twice as fast in time whemx is halved. Nevertheless, it
background periodsA). Not surprisingly we find that appears to have a continuum limit in time. The instability
second-order convergence breaks down after a period or schanges smoothly from one time step to the next, and in fact,
both because the quasiperiodic oscillations at different resat is practically unchanged i 7 is reduced by a factor of 10
lutions drift out of phase, and because the exponential decaiat constantAx). The instability is most apparent at=0,
rates are slightly different. At early times, we still observebut in an implicit scheme, all grid points in space are of

second-order convergence, as described above. course linked.
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