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Toward the no-scalar-hair conjecture in asymptotically de Sitter spacetime
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We discuss the no-hair conjecture in the presence of a cosmological constant. For the first step the real scalar
field is considered as the matter field and the spacetime is assumed to be static spherically symmetric. If the
scalar field is massless or has a convex potential such as a mass term, it is proved that there is no regular black
hole solution. For a general positive potential, we search for black hole solutions which support the scalar field
with a double well potential, and find them by numerical calculations. The existence of such solutions depends
on the values of the vacuum expectation value and the self-coupling constant of the scalar field. When we take
the zero horizon radius limit, the solution becomes a boson star like solution which we found before. However
new solutions are found to be unstable against the linear perturbation. As a result we can conclude that the
no-scalar-hair conjecture holds in the case of scalar fields with a convex or double well potential.
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I. INTRODUCTION

Recent developments of observational techniques hav
creased interest in black holes and increasing data show
dence of supermassive black holes in the center of gala
and solar mass size black holes which form binary syste
From the theoretical viewpoint, however, there remain ma
unsolved fundamental issues related to black holes. On
them is the validity of the black hole no-hair conjecture p
posed by Ruffini and Wheeler@1#. The black hole no-hair
conjecture states that, after gravitational collapse of the m
ter field, the resultant black hole approaches station
spacetime and all its multipole moments are then uniqu
determined by two parametersM anda, which are physically
interpreted as the mass and the angular momentum of
black hole. When the source has a net chargeQ, then of
course the parameter is also required to uniquely determ
its ~electric and gravitational! multipole moments. The black
hole no-hair conjecture is supported by the black h
uniqueness theorems in electrovacuum theories@2# and by
the works of Chase@3#, Bekenstein@4#, Hartle @5#, and
Teitelboim @6# which show that stationary black hole sol
tions are hairless in a variety of theories coupling class
fields to Einstein gravity.

However, a nontrivial static, spherically symmetric so
tion, called a colored black hole, was discovered in
Einstein-Yang-Mills system@7#. It can be interpreted as th
self-gravity of the Yang-Mills field being supported by i
repulsive force. Although this solution is found to be u
stable both in the gravitational sector@8# and in the sphaleron
sector@9#, non-Abelian hair is generic and many other no
Abelian black holes were discovered after the colored bl
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hole. Note that some of them are stable and that such s
tions are the counterexamples of the black hole no-hair c
jecture. The essential difference between the field equat
of Einstein-Yang-Mills systems and those of the Einste
Klein-Goldon system is in the form of the potential term. B
using these properties, Bekenstein@4,10# and Sudarsky@11#
provided simple proofs for the no-scalar-hair theorem
spherically symmetric asymptotically flat spacetime, in t
case where the matter consists of a single scalar field wi
convex potential and in the extended case where the m
consists of multiple scalar fields with an arbitrary positi
potential. Heusler also proved the no-scalar-hair theorem
using a scaling technique@12#.

Most of the proofs of the no-hair theorems impose, ho
ever, asymptotic flatness. Hence the following natural qu
tion arises:Can we extend no-hair theorems to spacetim
with different asymptotic structure?This is the main issue o
this paper. Here we consider a system including the cos
logical constant and only one real scalar field as a ma
field for the first step. The importance of the cosmologic
constant comes not only from the theoretical aspect but
from the observational results of our universe. For exam
some astrophysicists have pointed out that the small cos
logical constant may explain the observed number coun
galaxies@13#, and the recent observation of a type Ia sup
nova at large redshift also supports a universe with a cos
logical constant@14#. Furthermore, in the early universe, w
usually expect a vacuum energy, which is equivalent to
cosmological constant. As for black hole solutions with
cosmological constant, the family of Kerr–Newman–de S
ter solutions is known as the exact solutions. In addition
these the cosmic colored black hole solution is derived@15#.
These solutions are an extension of the Kerr-Newman s
tions and the colored black hole to the nonzero cosmolog
constant case. Interestingly, although there are black h
solutions in the Einstein-Maxwell-dilaton system@16#, no
black hole solution exists if we take the cosmological co
©1999 The American Physical Society27-1
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TAKASHI TORII, KENGO MAEDA, AND MAKOTO NARITA PHYSICAL REVIEW D 59 064027
stant into account@17#. Hence the cosmological constant c
strongly affect the existence of black hole solutions.

If we find physical solutions with scalar hair, the no-sca
hair conjecture cannot hold in asymptotically de Sitter spa
time and such solutions may have an influence on the
mology. If there are no such solutions, we can say that
no-scalar-hair conjecture holds in our system. In ot
words, the weak cosmic no-hair conjecture holds in the se
that all initially expanding universes with positive cosm
logical constant approach the ‘‘de Sitter spacetime’’ asym
totically, except for locally distributed black holes@18#.
Hence it must be stressed that the black hole no-hair con
ture in asymptotically de Sitter spacetime is strongly rela
to the weak cosmic no-hair conjecture.

This paper is organized as follows. In Sec. II we introdu
the model and the basic equations and try to extend the
hair theorem in a spherically symmetric system. In Sec.
we derive black hole solutions numerically in the model th
the real scalar field has a double well potential and disc
their properties. We investigate the stability of these so
tions in Sec. IV. We give our conclusions and remarks in
final section.

II. MODEL AND BASIC EQUATIONS

We will consider the model given by the action

S5E d4xA2gF 1

16pG
~R22L!2

1

2
~¹f!22V~f!G ,

~1!

wheref is the real scalar field andV(f) is its potential. We
shall assume a spherically symmetric spacetime and a
the Schwarzschild type metric:

ds252S 12
2Gm

r
2

L

3
r 2De22ddt2

1S 12
2Gm

r
2

L

3
r 2D 21

dr21r 2~du21sin2udw2!.

~2!

The mass functionm and the lapse functiond depend on
both the time coordinatet and the radial coordinater. The
mass function is the quasilocal mass defined by Ref.@19#,
which is the gravitational energy subtracted by the ene
due to the cosmological constantL. In other words, it is
considered as the energy of the matter field. In spheric
symmetric spacetime, the energym is nondecreasing in the
outgoing null or spacelike direction in the region
22Gm/r 23Lr 2.0 if the matter fields satisfy the dominan
energy condition.

Varying the action~1! and substitutingAnsatz ~2!, we
derive the field equations
06402
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m̃854p r̃ 2H 1

2S 12
2m̃

r̃
2

1

3
r̃ 2D 21

3e2dḟ̃21
1

2S 12
2m̃

r̃
2

1

3
r̃ 2D f̃821Ṽ~f̃ !J , ~3!

d8524p r̃ F S 12
2m̃

r̃
2

1

3
r̃ 2D 22

e2dḟ̃21f̃82G ,

~4!

ṁ̃54p r̃ 2S 12
2m̃

r̃
2

1

3
r̃ 2D ḟ̃f̃8, ~5!

2FedS 12
2m̃

r̃
2

1

3
r̃ 2D 21

ḟ̃G •
1

1

r̃ 2F r̃ 2e2dS 12
2m̃

r̃
2

1

3
r̃ 2D f̃8G 85e2d

dṼ~f̃ !

df̃
.

~6!

Here, we have used the dimensionless variablest̃[ALt, r̃

[ALr , m̃[ALGm, f̃[AGf, and Ṽ[GV/L. An over-
dot and a prime in the field equations denote derivatives w
respect tot̃ and r̃ , respectively. In this section and the ne
section we consider only the static solutions; hence we d
the time derivative term of the field equations for a while

For the boundary conditions of the metric functions on t
black hole event horizon~BEH! and on the cosmologica
event horizon~CEH!, we impose the following threeAn-
sätze.

~i! The existence of a regular BEHr B : i.e.,

2Gm~r B!5r BS 12
L

3
r B

2 D , ~7!

d~r B!,`. ~8!

~ii ! The existence of a regular CEHr C : i.e.,

2Gm~r C![2GM5r CS 12
L

3
r C

2 D , ~9!

d~r C!,`. ~10!

Here we assumed(r C)50. Note that if we are interested in
different boundary condition such asd→d* Þ0, we can al-
ways have such a boundary condition without further cal
lation by rescaling the time coordinate. That is, introduci
d̄[d2d* , and rescaling the time coordinate ast̄ 5e2d* t̃ ,
we recover our boundary condition.

~iii ! The nonexistence of a singularity between BEH a
CEH: i.e., forr B,r ,r C ,

2Gm~r !,r S 12
L

3
r 2D . ~11!
7-2
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TOWARD THE NO-SCALAR-HAIR CONJECTURE IN . . . PHYSICAL REVIEW D 59 064027
As for the scalar field, we impose the finiteness of itself a
its derivatives. These conditions guarantee that the curva
invariant I 5RmnrsRmnrs is finite and that no naked singu
larity appears.

Now we investigate whether or not the no-scalar-h
theorems obtained by Bekenstein@4,10# and Sudarsky@11#
can be extended to our system. First we consider the cas
a scalar field with convex potential, e.g.,V(f)5mf

2 f2. In
static spacetime the equation of the scalar field is

~ r̃ 2e2d f f̃8!85 r̃ 2e2d
dṼ~f̃ !

df̃
, ~12!

wheref 5122m̃/ r̃ 2 r̃ 2/3. Multiplying by f̃ and integrating
from the BEH to CEH, we obtain

E
r̃ B

r̃ C
dr̃H r̃ 2e2df̃

dṼ~f̃ !

df̃
2f̃~ r̃ 2e2d f f̃8!8J

5E
r̃ B

r̃ C
dr̃ r̃ 2e2dS f̃

dṼ~f̃ !

df̃
1 f f̃82D 2@ r̃ 2e2d f f̃f̃8#

r̃ B

r̃ C

5E
r̃ B

r̃ C
dr̃ r̃ 2e2dS f̃

dṼ~f̃ !

df̃
1 f f̃82D 50. ~13!

Since Ṽ is a convex potential, the integrand is positi
semidefinite. Hence the possible solution isf̃[0. As a result
the same argument as Bekenstein’s holds and the no-sc
hair theorem is complete in the convex potential case@20#.
When the scalar field is massless, i.e.,Ṽ[0, Eq. ~13! also
demandsf̃[0, which is the no-hair theorem for a massle
scalar field.

Next we proceed to the theorem proved by Sudarsky. F
we rewrite Eq.~6! in static spacetime as

~e2d f f̃8!81
2

r̃
e2d f f̃82e2d

dṼ~f̃ !

df̃
50. ~14!

Multiplying f̃8, we obtain

E852ae2df̃82, ~15!

where

E5e2dS 1

2
f f̃822ṼD , ~16!

a5
2

r̃
S 12

3m̃

2r̃
2

1

2
r̃ 2D . ~17!

In the L50 case, i.e., asymptotically flat case,E52Ṽ<0
on the BEH, anda is always positive between the BEH an
infinity because of the regularity.@Note that we have normal
ized the variables byL, where a52(123m/2r )/r in the
L50 case.# SinceE does not increase outward by Eq.~15!,
the only possible case is that eitherE remains zero through
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However, E must approach zero in the asymptotic regi
@11#. This means that there is no regular solution in th
system except forf5const, i.e., a trivial solution. On the
other hand, in theLÞ0 case,E52Ṽ<0 on both horizons
and a is no longer positive definite. Hence the inconsiste
behavior ofE cannot be derived from Eq.~15!. Furthermore,
asymptotic behavior does not reject the scalar hair in
arbitrarily positive potential case@20#.

This suggests that the method adopted here may no
appropriate to prove the black hole no-hair theorem or t
the black hole solutions with nontrivial scalar hairs may e
ist. We will search for such solutions in the next section
using numerical calculations.

III. BLACK HOLE SOLUTIONS WITH SCALAR HAIR

In this section we investigate the system including
double well potentialV(f)5l(f22v2)2/4 as an example o
a positive potential. In this case there are two trivial bla
hole solutions. One is~a! f̃[ ṽ, m̃[M̃ , d[0. The scalar
field takes its vacuum expectation value and does not c
tribute to the spacetime at all. This is the usu
Schwarzschild–de Sitter solution. The other is~b! f̃[0, m̃

5M̃1pl̃ ṽ2r̃ 3/3, d[0, where l̃[l/GL and ṽ[AGv.
The scalar field sits on the top of the potential barrier eve
where and its contribution to the spacetime can be in
preted as the ‘‘effective cosmological constant’’ defined
Le f f52pl ṽ4. We call this solution the excited
Schwarzschild–de Sitter solution.

The equation of the scalar field~6! is rewritten as

f f̃91F S 2

r̃
14p r̃ f̃82D f 1 f 8G f̃85l̃f̃~ f̃22 ṽ2!. ~18!

On the event horizon Eq.~18! becomes

f 8f̃85l̃f̃~ f̃22 ṽ2!. ~19!

Since f 8 is positive on the BEH,f8(r B).0 if 2v,f(r B)
,0 or v,f(r B), and f8(r B),0 if f(r B),2v or 0
,f(r B),v. On the other hand,f 8 is negative on the CEH
f8(r C).0 if f(r C),2v or 0,f(r C),v and f8(r C),0
if 2v,f(r C),0 or v,f(r C). At the extremum point of
f, Eq. ~18! becomes

f f̃95l̃f̃~ f̃22 ṽ2!. ~20!

Sincef is always positive between BEH and CEH,f has no
local maximum if2v,f(r ),0 or v,f(r ) andf has no
local minimum if f(r ),2v or 0,f(r ),v. Now we esti-
mate the possible behavior of the scalar field from the ab
constraints. We can restrictf(r B).0 without loss of gener-
ality because the scalar field has reflection symmetry
f(r B).v,f increases around the BEH. Since there is
maximum pointf.v, it continues to increase monoton
cally to the CEH. However, on the CEHf8 must be nega-
tive. This is a contradiction. When 0,f(r B),v,f de-
7-3
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TAKASHI TORII, KENGO MAEDA, AND MAKOTO NARITA PHYSICAL REVIEW D 59 064027
creases around the BEH. Since there is no minimum in
region,f must pass over the potential barrier (f50). Con-
tinuing to decrease beyondf52v,f cannot satisfy the
boundary condition on the CEH becausef has no minimum
in f,2v. Hencef must stop at a certain value in2v
,f,0 or have a minimum. In the latter casef passes over
the potential barrier again. In this wayf may oscillate any
number of times and takes a value2v,f,v on the CEH.
For each oscillationf has to go over the potential barrier.

Now we search for nontrivial static solutions using n
merical analysis. We drop the time derivative term of t
field equations~3!, ~4!, and~6! and integrate them from th
BEH with the boundary conditions~7! and ~8!. Since the
equation of the scalar field~6! becomes singular on the eve
horizons, we expand the equation and variables by po
series ofr̃ 2 r̃ B to guarantee the regularity on the BEH, a
use their analytic solutions for the first step of integratio
For most of the values off̃( r̃ B), the scalar field diverges a
the integration approaches the CEH. Hence we have to fi
suitable value off̃( r̃ B) in order to satisfy the boundary con
ditions ~9! and~10!. In this sensef̃( r̃ B) is a shooting param
eter.

We found nontrivial solutions whenl̃, ṽ, and r̃ B satisfy
a certain condition which will be discussed later. They a
classified into several families by the node numbern of the
scalar field. Configurations of the field functions of the so
tions with l̃5700, ṽ50.1, andn51 for different radii of
BEH are shown in Fig. 1. The left and right end points
each solid line are BEH and CEH, respectively. A dotted l
traces them. The dashed line is the regular solution, wh
can be considered as solutions in ther̃ B→0 limit @21#. The
structures of the new solutions do not concentrate around
BEH but spread out to a cosmological scale. As the B

FIG. 1. The configurations of the scalar fieldf̃5AGf with one

node (n51). We setṽ5AGv50.1, l̃5l/GL5700 and show the

solutions forr̃ B5ALr B50.2, 0.4, 0.6, 0.8. We also plot the regul
solution without the BEH by the dashed line for comparison. T
left and right end points of each line are the BEH and CEH, resp
tively, and a dotted line traces them. As the BEH radius beco
large, the BEH coincides with the CEH and the solution becom
extremal.
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becomes large, the CEH becomes small and the value o
scalar field on each event horizon approaches its vacu
value f̃56 ṽ. Hence the scalar field must vary rapidly in
small region and become steep. However, as the BEH
comes even larger,f̃( r̃ B) and f̃( r̃ C) approach zero and fi
nally the BEH and CEH coincide to be the extremal solutio

We show thel̃ dependence of the scalar field forr̃ B

50.2, ṽ50.1, andn51 in Fig. 2. For largel̃, which can be
considered as the case that the cosmological constan
small, the scalar field remains at its vacuum valuef̃' ṽ even
for quite larger̃ around the BEH. Asl̃ decreases, the am
plitude off̃ becomes small and finally the solution coincid
with the excited Schwarzschild–de Sitter solution~b! at a
certain critical value l̃min>354.8. These properties ar
qualitatively the same as the regular solution discussed
Ref. @21#. For different values of parametersṽ, we obtain
similar results to those mentioned above.

We show theM̃ -r̃ B diagram of new solutions in Fig. 3
where M̃ is the quasilocal mass on the CEH. We fixṽ
50.1 andn51. We also show~a! the Schwarzschild–de
Sitter branch and~b! the exited Schwarzschild–de Sitte
branch by dashed and dotted lines, respectively, for comp
son. We find that each solution branch turns atM̃51/3.
From the boundary condition~9!,

M5
r C

2GS 12
L

3
r C

2 D . ~21!

Since the BEH has a one-to-one correspondence to the C
around the turning point,

]M

]r B
5

]r C

]r B

]M

]r C
5

1

2

]r C

]r B
~12Lr C

2 !50, ~22!

e
c-
s
s

FIG. 2. The configurations of the scalar fieldf̃5AGf with one

node (n51). We setṽ5AGv50.1, r̃ B5ALr B50.2 and show the

solutions for l̃5l/GL5400, 700, 2000, 5000. Asl̃ becomes

small, f̃ approaches zero and the solution coincides with the

cited Schwarzschild–de Sitter solution~b! at l̃5l̃min .
7-4
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on the turning point. From Fig. 3,]r C /]r B does not vanish;
hence r̃ C5ALr C51 at the turning point. This meansM̃
51/3.

The properties of the new solution branch are quite d
ferent depending onl̃. For smalll̃ there is only one solution
for each BEH radius. As the BEH radius increases,
branch approaches the excited Schwarzschild–de S
branch and finally both branches coincide at the maxim
BEH radius. At this point the BEH and CEH coincide an
the solution becomes extremal. There is the minimum B
radius, below which only trivial solutions, i.e
Schwarzschild–de Sitter solutions~a! and ~b!, exist. The
nontrivial branch is very close to the excite
Schwarzschild–de Sitter branch. As we can see in Fig. 2,
scalar field remains near the top of the potential barrierf

;0) for small l̃. The main contribution toM must be this
potential energy of the scalar field. Hence the solution
similar to the excited Schwarzschild–de Sitter solution.

On the other hand, for largel̃, there are two solutions
which have the same BEH radius. This only occurs fo
narrow range of radii. The maximum BEH radius is not
the extremal point but a turning point plotted by dots in F
3. On the small BEH radius, we can take ther B→0 limit
even for the nontrivial branch, and the solution becomes
regular solution@21#. From Fig. 2 the scalar field takes a
almost vacuum value near both horizons and passes ra
on the top of the potential barrier. As a result the nontriv
branch is quite different from the excited Schwarzschild–
Sitter solution.

In Fig. 4 we show the critical parameters in thel̃-ṽ plane
for r B50.6 andn51. There is a solution only in the regio

FIG. 3. The mass-BEH radius diagram of the new solutions.

set ṽ5AGv50.1 and show the solutions forl̃5l/GL5300, 400,
700, 2000, 5000. The dashed and dotted lines are
Schwarzschild–de Sitter solutions~a! and the excited

Schwarzschild–de Sitter solutions~b!, respectively. For smalll̃
there is a lower limit of the BEH, while we can take the BEH ze

limit for the solution with largel̃. The new solution branch and th
exited Schwarzschild–de Sitter branch approach each other f
large BEH and finally coincide. At this point the BEH and CE
degenerate and the solution becomes extremal.
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betweenl̃mim and l̃max. The existence of the critical line
l̃min plotted by the dashed line is due to reasons similar
those in the regular solution case. In the regular solution c
the critical lines are derived by investigating the perturbat
from the de Sitter solution and are expressed

(R̃cos/l̃Comp)
25n(2n13), where R̃cos5A3/(112pl̃ ṽ4)

is the typical scale of the CEH,l̃Comp5A2/l̃ ṽ2 is the typi-
cal size of the structure, andn is the node number of the
scalar field@21#. If l̃ becomes small, the size of the structu
becomes large compared to the size of the CEH. Below
critical parameterl̃cr the structure cannot be packed into t
radius R̃cos and the nontrivial solution disappears. Let
consider the effect of the existence of the BEH to the criti
parameter. Rescalingr̃ and m̃ by the BEH radiusr̃ B as r̄

[ r̃ / r̃ B and m̄[m̃/m̃B , and taking an approximationf̃
@f̃8'0, i.e., near the critical parameterl̃min , the field
equations become

dm̄

dr̄
'l̃ r̃ B

2 r̄ 2~f̃22 ṽ2!2, ~23!

dd̄

dr̄
'0, ~24!

l̃ r̃ B
2f̃~f̃22 ṽ2!'0, ~25!

where l̃ r̃ B
2 can be considered as the effective self-coupl

constant and the critical solutions are controlled by it. Co
sequentlyl̃min becomes small when we consider the lar
BEH radius.

e

e

a

FIG. 4. The critical parameters of the nontrivial solutions w

r̃ B5ALr B50.6 andn51. Betweenl̃max and l̃min curves there
exist nontrivial solutions. We also plot the critical parameters of
regular solution by the dashed line for comparison. On the crit

lines l̃mim the nontrivial solutions coincide with the excite
Schwarzschild–de Sitter solution~b!. On the other hand, the non

trivial solutions become extremal on the critical linesl̃max with ṽ
*0.14; otherwise they correspond to the solution dotted in Fig
7-5
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TAKASHI TORII, KENGO MAEDA, AND MAKOTO NARITA PHYSICAL REVIEW D 59 064027
On the other hand,l̃max is a new restriction which canno
be seen in the regular solution case. From Fig. 3 the m

mum BEH radius for eachl̃ branch becomes small asl̃
increases. Hence if we fix the BEH radius, the nontriv

solution disappears at a certain critical value ofl̃. This is a

l̃max curve. The types of critical solutions are different d

pending onl̃max or equivalentlyṽmax[ ṽ(l̃5l̃max). When

ṽmax*0.14 for r̃ B50.6 the critical solution is the extrema
solution. Otherwise the critical solution is not the extrem
one, but is shown by the points plotted on the solution

l̃52000, 5000 in Fig. 3.
Before we proceed to the next section, we briefly disc

the value of the parameters we adopted. Since the dim

sionless coupling constantl̃ is normalized asl̃5l/GL, we
should examineGL. By the recent observations, the prese
value of the cosmological constant is bounded byL/8pG
&(10212 GeV)4. HenceGL&102123. If we consider the
grand unified theory~GUT! vacuum, GL takes a much
larger valueGL'10216 than the present one, in which ca
the l we adopted seems rather small. However, it should
noted that there is always an allowed parameter region of

existence of the solutions in the largerl̃ limit.

IV. STABILITY ANALYSIS

In the previous section we found black hole solutions w
scalar hair in de Sitter spacetime although there is no co
terpart in asymptotically flat spacetime. This means that
no-hair conjecture may not hold in asymptotically de Sit
spacetime. In this section we investigate the stability of n
solutions by using a linear perturbation method in order
check whether the scalar hair is really physical or not. H
we focus only on the radial modes.

First we expand the field functions around the static so
tion f̃0 , m̃0 , andd0 as follows:

f̃~ t̃ , r̃ !5f̃0~ t̃ !1
f̃1~ t̃ , r̃ !

r̃
e, ~26!

m̃~ t̃ , r̃ !5m̃0~ t̃ !1m̃1~ t̃ , r̃ !e, ~27!

d~ t̃ , r̃ !5d0~ t̃ !1d1~ t̃ , r̃ !e. ~28!

Here e is an infinitesimal parameter. Substituting them in
the field functions~3!–~6! and dropping the second an
higher order terms ofe, we find

ṁ̃154p r̃ 2f 0f̃08ḟ̃1 , ~29!
06402
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2ed0f 0
21f̃

¨
11@e2d0f 0f̃18#8

2F1

r̃
~e2d0f 0!818p r̃ e2d0l~f̃0

22 ṽ2!f̃0f̃08

1le2d0~3f̃0
22 ṽ2!G f̃1

2F2

r̃
~ r̃ e2d0f̃08!828p r̃ e2d0f̃08

3Gm̃150, ~30!

where f 05122m̃0 / r̃ 21/3. Next we setf̃15j( r̃ )ei s̃ t̃ and
m̃15h( r̃ )ei s̃ t̃ . If s̃ is real, f oscillates around the stati
solution and then the solution is stable. On the other han
the imaginary part ofs̃ is negative, the perturbationf̃1 and
m̃1 diverge exponentially with time and then the solution
unstable. By Eq.~29! the relation betweenj and h is h
54p r̃ f 0f̃08j. Then the perturbation equation of the sca
field becomes

2
d2j

dr̃* 2
1Ũ~ r̃ !j5s̃2j, ~31!

where we employ the tortoise coordinater̃ * defined by

dr̃*

dr̃
5

ed0

f 0
, ~32!

and the potential function is

Ũ~r !5e2d0f 0F1

r̃
~e2d0f 0!818p r̃ e2d0l

3~f̃0
22 ṽ2!f̃0f̃081le2d0~3f̃0

22 ṽ2!

14p r̃ f 0f̃08H 2

r̃
~ r̃ e2d0f̃08!828p r̃ e2d0f̃08

3J G .

~33!

Figure 5~a! shows the potential functionsU(r ) of the solu-
tion with l̃5300, ṽ50.1, andn51.

Sinced2j/dr̃* 25U(r )50 on both horizons,j must ap-
proach zero asr̃ *→6` for the negative mode by the regu
larity of Eq. ~31!. Under this boundary condition we hav
searched for the negative eigenmodes and found them
shown in Fig. 5~b!. These modes are bound states (m50)
and there is no excited mode (m51) for n51. For the so-
lution with n52, however, there are two negative mode
We expect that the node number of the scalar field of
static solutionn exactly corresponds to the number of the
negative modesm. Figure 5~c! gives the eigenvalues. W
also plot the eigenvalues of the excited Schwarzschild
Sitter case with dashed lines for comparison. At the pointP,
where the new solution branch coincides with t
7-6
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TOWARD THE NO-SCALAR-HAIR CONJECTURE IN . . . PHYSICAL REVIEW D 59 064027
FIG. 5. ~a! The configurations of the potential functionU of the

linear perturbation equation for ṽ5AGv50.1, l̃5l/GL

5300, n51, andr B̃5ALr B50.4, 0.6, 0.8.~b! The configurations
of eigenmodes of the perturbation equation with the same par
eters as~a!. We find the only bound state (m51). The eigenvalue

for each mode iss̃2520.4165,20.1522,20.0298, respectively.~c!

The eigenvalue of the linear perturbation equation forṽ5AGv
50.1, l̃5l/GL5300, andn51. Dotted lines are those of th
excited Schwarzschild–de Sitter solution. At the pointP where the
nontrivial solution disappears, the excited mode of t
Schwarzschild–de Sitter solution (m51) appears. This is consis
tent with the analysis made using catastrophe theory.
06402
Schwarzschild–de Sitter branch, another unstable mo
which is an excited mode, appears in the Schwarzschild
Sitter branch. This result is consistent with the analysis us
catastrophe theory@22,23#, and this stability change is clas
sified as a swallow tail catastrophe. Although there is
r B→0 limit for large l̃ as we mentioned, the eigenvalu
does not vary continuously to that of the regular soluti
because of the difference of the boundary condition aro
the origin. Varying the parameters we found negative eig
modes for every nontrivial solution. As a result, all of th
new solutions are unstable, even against radial perturbati
and the scalar hair falls out easily. Thus, although we fou
black hole solutions with scalar hair in the presence of
cosmological constant, such hair is not physical and the
hair conjecture seems to hold even in de Sitter spacetim

V. CONCLUSION

We examined the no-hair conjecture in the presence
cosmological constant. For the first step, the real scalar fi
was considered as the matter field and the spacetime
assumed to be static spherically symmetric. When the sc
field is massless or has a convex potential such as mass
it was proved that there is no regular black hole solutio
However, we cannot find any proof excluding scalar hair
the general positive potential case. Therefore we searche
black hole solutions which have a scalar field with a dou
well potential, and found them by numerical calculation
Their field configurations spread out to the cosmologi
scale and are classified by the node number of the sc
field. For a large BEH the solution branch ends up with
extreme solution in theM̃ -r̃ B diagram, while for a small
BEH the behavior is different, depending on the se
coupling constantl̃. If l̃ is large, we can take the limitr̃ B
→0 and the corresponding solution becomes a regular s
tion without the BEH. Ifl̃ is small, the new solution branc
hits the excited Schwarzschild–de Sitter branch at a nonz
BEH radius. The new solutions have critical parametersl̃min

and l̃max between which there are nontrivial solutions.l̃min
is determined by the ratio of the size of the structure to
size of the CEH, whilel̃max comes from the extremes of th
solutions.

In order to specify whether the scalar hair we found
physical or not, we investigated the stability of new solutio
by using a linear perturbation method. As a result all of t
new solutions have negative eigenmodes, which were fo
to be unstable. Thus the scalar hair is not real but a
which falls off easily. Although we have considered only o
real scalar field with a double well potential, we expect th
the general no-scalar-hair conjecture holds even if the c
mological constant exists.

Since these new solutions are unstable, the scalar
will be swallowed by the black hole and/or will escape
infinity over the CEH. Then the solution becomes the sta
Schwarzschild–de Sitter solution~a! with the same or
smaller mass than the initial one. It is interesting to consi
the development of the solution with maximum massM̃

-
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51/3. Although a part of the scalar field escapes to infinity
the general case, it would be possible to set up the initial d
where all the energy of the scalar field collapses into a bl
hole. If the third law of black hole thermodynamics is val
even in the present case, it should take an infinite amoun
time for the black hole to swallow the scalar field and for t
BEH to become degenerate with the CEH. It has been sh
that similar phenomena occur in the evolution of the Kast
Traschen solution@24#, which can be interpreted as blac
holes withQ5M balanced to each other in the CEH. F
small black holes, they can coalesce to form a larger bl
hole. However, when the size of the black holes is lar
than a certain critical radius, coalescence does not occur
if we set the initial data to give the black holes a large init
velocity toward each other@25#. Our case would correspon
to the critical case that the resultant BEH radius coinci
with the CEH.

As for the rotating case, the no-scalar-hair conjecture c
not be proved by using the techniques adopted in R
@4,10–12# even in the asymptotically flat case because th
.

.

s-

06402
ta
k

of

n
-

k
r
en
l

s
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s.
y

strongly depend on spacetime symmetry, i.e., staticity
spherical symmetry. On the other hand, there is the beau
result of the uniqueness theorem in the asymptotically
case@2–6#. It seems worth investigating its counterpart in t
asymptotically de Sitter case. At a first glance, however,
will soon find that the cosmological constant prevents
from constructing Ernst-type equations and that different
proaches are needed. We leave them as open questions
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