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Toward the no-scalar-hair conjecture in asymptotically de Sitter spacetime
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We discuss the no-hair conjecture in the presence of a cosmological constant. For the first step the real scalar
field is considered as the matter field and the spacetime is assumed to be static spherically symmetric. If the
scalar field is massless or has a convex potential such as a mass term, it is proved that there is no regular black
hole solution. For a general positive potential, we search for black hole solutions which support the scalar field
with a double well potential, and find them by numerical calculations. The existence of such solutions depends
on the values of the vacuum expectation value and the self-coupling constant of the scalar field. When we take
the zero horizon radius limit, the solution becomes a boson star like solution which we found before. However
new solutions are found to be unstable against the linear perturbation. As a result we can conclude that the
no-scalar-hair conjecture holds in the case of scalar fields with a convex or double well potential.
[S0556-282(199)02206-1

PACS numbgs): 04.70.Bw, 04.20.Jb, 95.30.5f

I. INTRODUCTION hole. Note that some of them are stable and that such solu-
tions are the counterexamples of the black hole no-hair con-
Recent developments of observational techniques have ifjecture. The essential difference between the field equations
creased interest in black holes and increasing data show evif Einstein-Yang-Mills systems and those of the Einstein-
dence of supermassive black holes in the center of galaxidslein-Goldon system is in the form of the potential term. By
and solar mass size black holes which form binary systemaising these properties, Bekenstfiyl0] and Sudarsky11]
From the theoretical viewpoint, however, there remain manyrovided simple proofs for the no-scalar-hair theorem in
unsolved fundamental issues related to black holes. One afpherically symmetric asymptotically flat spacetime, in the
them is the validity of the black hole no-hair conjecture pro-case where the matter consists of a single scalar field with a
posed by Ruffini and Wheeldd]. The black hole no-hair convex potential and in the extended case where the matter
conjecture states that, after gravitational collapse of the matonsists of multiple scalar fields with an arbitrary positive
ter field, the resultant black hole approaches stationarpotential. Heusler also proved the no-scalar-hair theorem by
spacetime and all its multipole moments are then uniquelysing a scaling techniqud 2].
determined by two parametevsanda, which are physically Most of the proofs of the no-hair theorems impose, how-
interpreted as the mass and the angular momentum of thever, asymptotic flatness. Hence the following natural ques-
black hole. When the source has a net chafgethen of tion arises:Can we extend no-hair theorems to spacetimes
course the parameter is also required to uniquely determingith different asymptotic structurerhis is the main issue of
its (electric and gravitationaimultipole moments. The black this paper. Here we consider a system including the cosmo-
hole no-hair conjecture is supported by the black holdogical constant and only one real scalar field as a matter
unigueness theorems in electrovacuum thedrdsand by field for the first step. The importance of the cosmological
the works of Chasd3], Bekenstein[4], Hartle [5], and  constant comes not only from the theoretical aspect but also
Teitelboim [6] which show that stationary black hole solu- from the observational results of our universe. For example
tions are hairless in a variety of theories coupling classicasome astrophysicists have pointed out that the small cosmo-
fields to Einstein gravity. logical constant may explain the observed number count of
However, a nontrivial static, spherically symmetric solu- galaxies[13], and the recent observation of a type la super-
tion, called a colored black hole, was discovered in thenova at large redshift also supports a universe with a cosmo-
Einstein-Yang-Mills systenfi7]. It can be interpreted as the logical constanf14]. Furthermore, in the early universe, we
self-gravity of the Yang-Mills field being supported by its usually expect a vacuum energy, which is equivalent to the
repulsive force. Although this solution is found to be un-cosmological constant. As for black hole solutions with a
stable both in the gravitational sec{@ and in the sphaleron cosmological constant, the family of Kerr—Newman—de Sit-
sector[9], non-Abelian hair is generic and many other non-ter solutions is known as the exact solutions. In addition to
Abelian black holes were discovered after the colored blackhese the cosmic colored black hole solution is deriies.
These solutions are an extension of the Kerr-Newman solu-
tions and the colored black hole to the nonzero cosmological

*Electronic address: torii@th.phys.titech.ac.jp constant case. Interestingly, although there are black hole
"Electronic address: maeda@th.phys.titech.ac.jp solutions in the Einstein-Maxwell-dilaton systefh6], no
*Electronic address: narita@se.rikkyo.ac.jp black hole solution exists if we take the cosmological con-
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stant into accourtl7]. Hence the cosmological constant can -1
strongly affect the existence of black hole solutions.

If we find physical solutions with scalar hair, the no-scalar
hair conjecture cannot hold in asymptotically de Sitter space-
time and such solutions may have an influence on the cos-
mology. If there are no such solutions, we can say that the 2
no-scalar-hair conjecture holds in our system. In other
words, the weak cosmic no-hair conjecture holds in the sense
that all initially expanding universes with positive cosmo- S'=—A4mxr
logical constant approach the “de Sitter spacetime” asymp-
totically, except for locally distributed black hold48]. (4)
Hence it must be stressed that the black hole no-hair conjec-
ture in asymptotically de Sitter spacetime is strongly related ~ ~2
to the weak cosmic no-hair conjecture.

This paper is organized as follows. In Sec. Il we introduce
the model and the basic equations and try to extend the no-
hair theorem in a spherically symmetric system. In Sec. Ill —
we derive black hole solutions numerically in the model that
the real scalar field has a double well potential and discuss
their properties. We investigate the stability of these solu-
tions in Sec. IV. We give our conclusions and remarks in the T2
final section.

1—T—§I’2):ﬁ:ﬁ/, (5)

(6)

Here, we have used the dimensionless variables/At, T
=JAr, m=JAGm, $=\G¢, andV=GV/A. An over-
dot and a prime in the field equations denote derivatives with
respect tot andr, respectively. In this section and the next
section we consider only the static solutions; hence we drop
the time derivative term of the field equations for a while.
For the boundary conditions of the metric functions on the
(1) black hole event horizofBEH) and on the cosmological
event horizon(CEH), we impose the following threén-
saze
(i) The existence of a regular BEH;: i.e.,

II. MODEL AND BASIC EQUATIONS

We will consider the model given by the action

fd“x\/_[m o (R- 2A>——<V¢>2 V().

where ¢ is the real scalar field and( ) is its potential. We
shall assume a spherically symmetric spacetime and adopt

the Schwarzschild type metric: A,

2Gm(rg)=rg 1—§rB), (7)

d32=—<1 ZGm_%rz)e—zadtz (rg)<oo. (8

r
2Gm A -1 _ (i) The existence of a regular CEH : i.e.,
+ 1—T—§r2 dr2+r?(d6?+sirfode?). A
= - — 2
o 2Gm(rc)=2GM rc(l 3 rc), 9
S(re)<ce. (10)

The mass functioom and the lapse functiod depend on
both the time coordinate and the radial coordinate The
mass function is the quasilocal mass defined by REd],
which is the gravitational energy subtracted by the energ
due to the cosmological constant. In other words, it is
considered as the energy of the matter field. In sphencallﬁ 5— &*, and rescaling the time coordinate &s e~
symmetric spacetime, the energyis nondecreasing in the we recover our boundary condition.

outgoing null or spacelike direction in the region 1 (i) The nonexistence of a singularity between BEH and
—2Gm/r —3Ar2>0 if the matter fields satisfy the dominant CEH: i.e., forrg<r<rg,

energy condition.

Here we assumé(r c) =0. Note that if we are interested in a
different boundary condition such & 6* #0, we can al-
ays have such a boundary condition without further calcu-

ation by rescaling the time coordinate. That is, introducing
7
t,

Varying the action(1) and substitutingAnsatz (2), we
derive the field equations

064027-2
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As for the scalar field, we impose the finiteness of itself andout the outer region of the BEH d is negative at infinity.
its derivatives. These conditions guarantee that the curvatutdowever, E must approach zero in the asymptotic region

invariantl =R,,,,,,R*""” is finite and that no naked singu-

larity appears.

[11]. This means that there is no regular solution in this
system except fokh=const, i.e., a trivial solution. On the

Now we investigate whether or not the no-scalar-hairgther hand, in the\ #0 case E=—V<=0 on both horizons

theorems obtained by Bekenstdify10] and Sudarsky11]

anda is no longer positive definite. Hence the inconsistent

can be extended to our system. First we consider the case pkhavior ofE cannot be derived from Eg15). Furthermore,

a scalar field with convex potential, e.g((¢)=m(2ﬁ¢2. In
static spacetime the equation of the scalar field is

,dV()
do
wheref =1-2m/r —T /3. Multiplying by ¢ and integrating

from the BEH to CEH, we obtain

ﬁ rc(ﬁ[?
s

= [Fedi 2e‘5< )
T dé

(r2e %f¢') =r2%e" , (12

e

e g —we—ﬁfay]

¥ f?ﬁ% ~[F2e o 5d 1

Te emp
= [_"drr2e?
's

¢ (13

<~dV(¢) +f?¢3'% =0.

asymptotic behavior does not reject the scalar hair in the
arbitrarily positive potential cage20].

This suggests that the method adopted here may not be
appropriate to prove the black hole no-hair theorem or that
the black hole solutions with nontrivial scalar hairs may ex-
ist. We will search for such solutions in the next section by
using numerical calculations.

Ill. BLACK HOLE SOLUTIONS WITH SCALAR HAIR

In this section we investigate the system including a
double well potentiaV( ¢) =\ ($>—v?)?/4 as an example of
a positive potential. In this case there are two trivial black
hole solutions. One i$a) $=v, m=M, 5=0. The scalar
field takes its vacuum expectation value and does not con-
tribute to the spacetime at all. This is the usual
Schwarzschild—de Sitter solution. The otheftis $=0, m
=M+ mxv?r 33, =0, where \=\/GA and v=.Gv.
The scalar field sits on the top of the potential barrier every-

Since V is a convex potential, the integrand is positive where and its contribution to the spacetime can be inter-

semidefinite. Hence the possible solutiorbis 0. As a result

the same argument as Bekenstein’'s holds and the no-scala¥y =27\,

hair theorem is complete in the convex potential cigXd.
When the scalar field is massless, i¥=0, Eq. (13) also

demands$=0, which is the no-hair theorem for a massless

scalar field.

Next we proceed to the theorem proved by Sudarsky. First

we rewrite Eq.(6) in static spacetime as

~ 2 . dV(¢
(e—5f¢')'+:e-5f¢'—e—5ﬂ=o. (14)
r
Multiplying @', we obtain
E'=—ae %92 (15)
where
1., -
E=e5(§f¢2—V), (16)
2 3m 1., n
a==|1l——=—371 .
r 2r 2

In the A=0 case, i.e., asymptotically flat cage= — V=<0
on the BEH, andh is always positive between the BEH and
infinity because of the regularitjiNote that we have normal-
ized the variables by\, wherea=2(1-3m/2r)/r in the

A =0 case] SinceE does not increase outward by E@5),
the only possible case is that eitHeremains zero through-

preted as the “effective cosmological constant” defined by
We call this solution the excited
Schwarzschild—de Sitter solution.

The equation of the scalar fiel@) is rewritten as

- 2 —— e — o~
fo"+| | =+4nrd %Hf’ o' =Nd(d?>—v?). (18
r
On the event horizon Eq18) becomes
7' =Xp($*~v?). (19

Sincef’ is positive on the BEHg'(rg)>0 if —v<¢(rg)
<0 or v<¢(rg), and ¢'(rg)<0 if H(rg)<—v or 0
<¢(rg)<v. On the other hand,’ is negative on the CEH,
@' (re)>0 if Pp(re)<—v or 0<¢(re)<v and ¢'(rg)<0
if —v<¢p(rc)<0 orv<g(rg). At the extremum point of
¢, Eq.(18) becomes

@' =XNp($*—v?). (20
Sincef is always positive between BEH and CE#,has no
local maximum if—v<¢(r)<0 orv<¢(r) and ¢ has no
local minimum if ¢(r)<—v or 0<¢(r)<v. Now we esti-
mate the possible behavior of the scalar field from the above
constraints. We can restrigi(rg) >0 without loss of gener-
ality because the scalar field has reflection symmetry. If
¢(rg)>v,¢ increases around the BEH. Since there is no
maximum point¢$>v, it continues to increase monotoni-
cally to the CEH. However, on the CEHW’ must be nega-
tive. This is a contradiction. When Q¢(rg)<v,¢ de-
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FIG. 1. The configurations of the scalar field= \/G ¢ with one FIG. 2. The configurations of the scalar field= /G ¢ with one

node i=1). We setv = JGv=0.1, \=\/GA =700 and show the node i=1). We setv=/Gv=0.1, Tg=/Arg=0.2 and show the
solutions forrg= \Arg=0.2, 0.4, 0.6, 0.8. We also plot the regular solutions for\=A/GA =400, 700, 2000, 5000. A& becomes
solution without the BEH by the dashed line for comparison. Thesmall, ¢ approaches zero and the solution coincides with the ex-
left and right end points of each line are the BEH and CEH, respecgjted Schwarzschild—de Sitter solutidin) at X =X
tively, and a dotted line traces them. As the BEH radius becomes

large, the BEH coincides with the CEH and the solution become
extremal.

min -

Hecomes large, the CEH becomes small and the value of the
scalar field on each event horizon approaches its vacuum

creases around the BEH. Since there is no minimum in thigaluﬁd’: *v. Hgnt():e the sce;lar f|e|l_|d must vary rtﬁpldé){zl'_r; 3
region, ¢ must pass over the potential barries<€0). Con- small region and become steep. However, as the ) e
tinuing to decrease beyong=—uv,4 cannot satisfy the Comes even largeky(rg) and ¢(rc) approach zero and fi-

in $<—v. Hence¢ must stop at a certain value inv We show thex dependence of the scalar field fog

< ¢<0 or have a minimum. In the latter cagepasses over =0.2, v=0.1, anch=1 in Fig. 2. For largex, which can be

the potential barrier again. In this way may oscillate any  considered as the case that the cosmological constant is
number of times and takes a valuey <¢<wv on the CEH.  gmg)|, the scalar field remains at its vacuum vaues even

For each oscillation has to go over t_he potgntlal ba_rrler. for quite larger around the BEH. AS\ decreases, the am-
Now we search for nontrivial static solutions using nu- ~ ) ) o
merical analysis. We drop the time derivative term of theblitude of  becomes small and finally the solution coincides

field equationg3), (4), and(6) and integrate them from the With the excited Schv!arzschild—de Sitter solutit) at a
BEH with the boundary condition§7) and (8). Since the certain critical value\,;,=354.8. These properties are
equation of the scalar fiel@) becomes singular on the event qualitatively the same as the regular solution discussed in
horizons, we expand the equation and variables by poweRref. [21]. For different values of parameters we obtain
series off — T to guarantee the regularity on the BEH, and similar results to those mentioned above.
use their analytic solutions for the first step of integration. We show theM-rg diagram of new solutions in Fig. 3,
For most of the values ab(g), the scalar field diverges as where M is the quasilocal mass on the CEH. We fix
the integration approaches the CEH. Hence we have to find 0.1 andn=1. We also show@a) the Schwarzschild—de
suitable value ofp(rg) in order to satisfy the boundary con- Sitter branch andb) the exited Schwarzschild—de Sitter
ditions (9) and(10). In this senséh(r ) is a shooting param- branch by dashed and dotted lines, respectively,Nfor compari-
eter. son. We find that each solution branch turnshat= 1/3.

We found nontrivial solutions wheR, v, andrg satisfy ~ From the boundary conditio(®),
a certain condition which will be discussed later. They are
classified into several families by the node numbeif the e A
scalar field. Configurations of the field functions of the solu- M= %( - _rc> :

2 Y 3
tions with A=700, v=0.1, andn=1 for different radii of

BEH are shown in Fig. 1. The left and right end points OfSince the BEH has a one-to-one correspondence to the CEH

each solid line are BEH and CEH, respectively. A dotted line - :
traces them. The dashed line is the regular solution, whicﬁlround the turning point,

can be considered as solutions in the-0 limit [21]. The M are oM 19
structures of the new solutions do not concentrate around the oM _ e M _ 2 e
BEH but spread out to a cosmological scale. As the BEH drg  drg drc 2 drg

(21)

(1-Ar2)=0, (22)
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FIG. 3. The mass-BEH radius diagram of the new solutions. Wa FIG. 4. The critical parameters of the nontrivial solutions with

setv = \/Gv =0.1 and show the solutions far=\/GA =300, 400 e=VArg=06 andn=1. Betweenk y, and Xpy curves there
700, 2000. 5000. The dashed and dotted Iines’ are’ thgmst nontrivial solutions. We also plot the critical parameters of the

Schwarzschild—de ~ Sitter solutions(@) and the excited regular solution by the dashed line for comparison. On the critical

Schwarzschild—de Sitter solutiors), respectively. For smalk lénCeh?N;\I’r;iSn(]Jhtdee dneonstirtltvelzrilsjzltlij;g)nSorfotlﬁ:lgtehevrmhgnt(;lethixrfgi?

there is a lower limit of the BEH, while we can take the BEH zero ™~ ) ’ = o~ T s

limit for the solution with largex. The new solution branch and the trivial solutions become extremal on the critical linegay, with v

exited Schwarzschild—de Sitter branch approach each other for a 0.14; otherwise they correspond to the solution dotted in Fig. 3.

large BEH and finally coincide. At this point the BEH and CEH ~ ~

degenerate and the solution becomes extremal. between\ i, and \,ax- The existence of the critical line
\min plotted by the dashed line is due to reasons similar to

on the turning point. From Fig. 3ir o/drg does not vanish; those in the regular solution case. In the regular solution case

henceTo=+Arc=1 at the turning point. This mearfd the critical lines are derived by investigating the perturbation
—1/3. from the de Sitter solution and are expressed as

The properties of the new solution branch are quite dif-(Reos/Xcomp?=n(2n+3), where Ros= V3/(1+27mX0*)

ferent depending oR. For smalik there is only one solution is the typical scale of the CERcomp= V2/A0? is the typi-

for each BEH radius. As the BEH radius increases, thecal size of the structure, amilis the node number of the
branch approaches the excited Schwarzschild—de Sittascalar field 21]. If X becomes small, the size of the structure
branch and finally both branches coincide at the maximunbecomes large compared to the size of the CEH. Below the

BEH radius. At this point the BEH and CEH coincide and cyitical parameteR ., the structure cannot be packed into the

the solution becomes extremal. There is the minimum BEWadlus R... and the nontrivial solution disappears. Let us

radius, below which only trivial solutions, i.e., : ) .
Schwarzschild—de Sitter solution® and (b), exist. The consider the effect of the existence of the BEH to the crmcal

nontrivial branch is very close to the excited Parameter. Rescaling andm by the BEH radius's asr
Schwarzschild—de Sitter branch. As we can see in Fig. 2, ther/rg and m=m/mg, and taking an apprOX|mat|or¢’>
scalar field remains near the top of the potential barrigr ( >¢’'~0, i.e., near the critical parametar,;,, the field
~0) for smallx. The main contribution td must be this equations become

potential energy of the scalar field. Hence the solution is
similar to the excited Schwarzschild—de Sitter solution.

On the other hand, for large, there are two solutions,
which have the same BEH radius. This only occurs for a
narrow range of radii. The maximum BEH radius is not at _
the extremal point but a turning point plotted by dots in Fig. d_&go 24)
3. On the small BEH radius, we can take the—0 limit dr
even for the nontrivial branch, and the solution becomes the
regular solution[21]. From Fig. 2 the scalar field takes an
almost vacuum value near both horizons and passes rapidly Argd(¢
on the top of the potential barrier. As a result the nontrivial s
branch is quite different from the excited Schwarzschild—dewhere>\rB2 can be considered as the effective self-coupling

Sitter solution. constant and the critical solutions are controlled by it. Con-

In Fig. 4 we show the critical parameters in the plane sequentlyX i, becomes small when we consider the large
for rg=0.6 andn=1. There is a solution only in the region BEH radius.

O P33, (23
dr

~2%)=~0, (25)
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On the other han&max is a new restriction which cannot
be seen in the regular solution case. From Fig. 3 the maxi-
mum BEH radius for each branch becomes small as
increases. Hence if we fix the BEH radius, the nontrivial
solution disappears at a certain critical valuexofThis is a
Amax CUrVe. The types of critical solutions are different de-
pending On\ sy OF equivalentlyv ma=0v (XA =Xmay. When
ZmaX20.14 for?B=O.6 the critical solution is the extremal
solution. Otherwise the critical solution is not the extremal
one, but is shown by the points plotted on the solution for
A =2000, 5000 in Fig. 3.

Before we proceed to the next section, we briefly discusavhere fo=1— 2m0/r—1/3 Next we sefp; = ¢(r)e'” and
the value of the parameters we adopted. Since the dimema,= n(r)e”’t. If o is real, ¢ oscillates around the static
sionless coupling constantis normalized a& =\/GA, we  Solution and then the solution is stable. On the other hand, if
should examin& A.. By the recent observations, the presentthe imaginary part obr is negative, the perturbatlozﬂ1 and
value of the cosmological constant is bounded b87wG  m; diverge exponentially with time and then the solution is
=(10712 GeV)*. HenceGA=<10 '2 If we consider the unstable. By Eq(29) the relation betweer and 7 is 7

grand unified theory(GUT) vacuum, GA takes a much =4xrf hs¢. Then the perturbation equation of the scalar
larger valueGA ~10 16 than the present one, in which case field becomes

the A we adopted seems rather small. However, it should be

noted that there is always an allowed parameter region of the d?¢

existence of the solutions in the largetimit. T

—ef, Ly +[e %ot oy ]’

1 - — e~ o~
f<e*50fo>'+8wrefﬁox<¢3—v2>¢o¢a

+xe%<3?¢‘>é—52>l?i>1

m;=0, (30

2 - - - -
— f(re‘50¢6)’—87rre‘50¢63

+0(né=o?%, (32)

where we employ the tortoise coordinate defined by
IV. STABILITY ANALYSIS

L3 Y
In the previous section we found black hole solutions with di :e_o, (32)
scalar hair in de Sitter spacetime although there is no coun- dr fo
terpart in asymptotically flat spacetime. This means that the _ o
no-hair conjecture may not hold in asymptotically de Sitterand the potential function is
spacetime. In this section we investigate the stability of new
solutions by using a linear perturbation method in orderto  ~ .~ s |1 . ~ _s
check whether the scalar hair is really physical or not. Here U(r)=e""fo f(e °fo)' +8mre” oA
we focus only on the radial modes.
First we expand the field functions around the static solu- X (h2—02) pody+Ne (3p3—1?)
tion ¢y, Mgy, and g, as follows:
~ ~ 12 ~ ~ ~
+4wrfo¢6[?(re50¢5)’—87rre50¢()3”.
t,r
ED=do0+ 200 (26) (33
T

Figure 5a) shows the potential functiond(r) of the solu-
tion with X =300, v=0.1, andn=1.

m(t. 1) =my(H) +my(t,Ne, (27 Sinced?¢/dr*2=U(r)=0 on both horizons¢ must ap-
proach zero as* — *o for the negative mode by the regu-
larity of Eq. (31). Under this boundary condition we have

S(E1)=60(1) + 8,(T1)e. (28) searched for the negative eigenmodes and found them as

’ ' shown in Fig. %b). These modes are bound states=(0)
and there is no excited moden& 1) for n=1. For the so-

Here e is an infinitesimal parameter. Substituting them into!ution with n=2, however, there are two negative modes.
the field functions(3)—(6) and dropping the second and We expect that the node number of the scalar field of the
higher order terms o€, we find static solutionn exactly corresponds to the number of their

negative modesn. Figure §c) gives the eigenvalues. We
also plot the eigenvalues of the excited Schwarzschild—de
- ~oe ~ % Sitter case with dashed lines for comparison. At the pBint
my=4ar “fodods, (29 where the new solution branch coincides with the
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0.03 T T T ] Schwarzschild—de Sitter branch, another unstable mode,
] which is an excited mode, appears in the Schwarzschild—de

Sitter branch. This result is consistent with the analysis using

] catastrophe theorj22,23, and this stability change is clas-

3 sified as a swallow tail catastrophe. Although there is the

] rg—0 limit for large X as we mentioned, the eigenvalue

. does not vary continuously to that of the regular solution

] because of the difference of the boundary condition around
. the origin. Varying the parameters we found negative eigen-

] modes for every nontrivial solution. As a result, all of the

3 new solutions are unstable, even against radial perturbations,
] and the scalar hair falls out easily. Thus, although we found

015 ! ! L ] black hole solutions with scalar hair in the presence of the

cosmological constant, such hair is not physical and the no-
hair conjecture seems to hold even in de Sitter spacetime.

0.00

-0.03 |-

-0.06 |-

-0.09 |-

-0.12 |

V. CONCLUSION

We examined the no-hair conjecture in the presence of a
cosmological constant. For the first step, the real scalar field
was considered as the matter field and the spacetime was
assumed to be static spherically symmetric. When the scalar
field is massless or has a convex potential such as mass term,
it was proved that there is no regular black hole solution.
However, we cannot find any proof excluding scalar hair in
the general positive potential case. Therefore we searched for
black hole solutions which have a scalar field with a double
] well potential, and found them by numerical calculations.

-1.0 L . . ] Their field configurations spread out to the cosmological
0 15 30 45 60 scale and are classified by the node number of the scalar
®) rirg field. For a large BEH the solution branch ends up with an

0 extreme solution in théM-rg diagram, while for a small
BEH the behavior is different, depending on the self-

e 1 0002 coupling constanh. If X is large, we can take the limitg
T ehwarzschild-de Sitter (me1) —0 and the corresponding solution becomes a regular solu-

o tion without the BEH. Ifx is small, the new solution branch
A& hits the excited Schwarzschild—de Sitter branch at a nonzero
3

L BEH radius. The new solutions have critical parameleys,

andX ., between which there are nontrivial solutions,;,
is determined by the ratio of the size of the structure to the

size of the CEH, whilé\ 5, comes from the extremes of the
solutions.

In order to specify whether the scalar hair we found is
physical or not, we investigated the stability of new solutions
by using a linear perturbation method. As a result all of the

FIG. 5. (a) The configurations of the potential functiahof the ~ New solutions have negative eigenmodes, which were found
linear perturbation equation forv=yGv=0.1, \=A/GA !0 be unstable. Thus the scalar hair is not real but a wig
=300, n=1, andrg=Arz=0.4, 0.6, 0.8(b) The configurations which falls off easily. Although we have considered only one

of eigenmodes of the perturbation equation with the same paranf€@l scalar field with a double well potential, we expect that
eters aga). We find the only bound stater(=1). The eigenvalue the general no-scalar-hair conjecture holds even if the cos-

for each mode is?= — 0.4165;- 0.1522;- 0.0298, respectivelyc) molqglcal constant eXIStS._ i
. . . Lo~ Since these new solutions are unstable, the scalar field
The eigenvalue of the linear perturbation equation der \/Gu . .

—04 T =)MGA=300. andn=1. Dotted h t th will be swallowed by the black hole and/or will escape to
oxorted Sehwarasenila Zr; giger. soﬁni‘z " Xtetsh:re OhSeGreothe € infinity over the CEH. Then the solution becomes the stable
T ) . -Athe p Schwarzschild—de Sitter solutio@ with the same or
nontrivial _ solution _ disappears, the excited mode of tlr"asmaller mass than the initial one. It is interesting to consider

Schwarzschild—de Sitter solutionmm& 1) appears. This is consis- ) 9

tent with the analysis made using catastrophe theory. the development of the solution with maximum maés

0.0

-0.2 -

0)

-1 -0.004

0.4 |

A (m

/P

-0.6 |- L
" Schwarzschild-de Sitter (m=0) 1 -0.008

-0.8 L L 1 -0.01
0.2 0.4 0.6 0.8 1
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=1/3. Although a part of the scalar field escapes to infinity instrongly depend on spacetime symmetry, i.e., staticity and
the general case, it would be possible to set up the initial datspherical symmetry. On the other hand, there is the beautiful
where all the energy of the scalar field collapses into a blackesult of the uniqueness theorem in the asymptotically flat
hole. If the third law of black hole thermodynamics is valid casg2—6]. It seems worth investigating its counterpart in the

even in the present case, it should take an infinite amount afsymptotically de Sitter case. At a first glance, however, we
time for the black hole to swallow the scalar field and for theW||| soon find that the Cosmo|ogica| constant prevents us
BEH to become degenerate with the CEH. It has been showfiom constructing Ernst-type equations and that different ap-

that similar phenomena occur in the evolution of the KastrO'proacheS are needed. We leave them as open questionsl
Traschen solutiorf24], which can be interpreted as black

holes withQ=M balanced to each other in the CEH. For
small black holes, they can coalesce to form a larger black
hole. However, when the size of the black holes is larger
than a certain critical radius, coalescence does not occur even We would like to thank Dmitri V. Gal'tsov, Akio Hosoya,
if we set the initial data to give the black holes a large initial Hideki Ishihara, and Kei-ichi Maeda for useful discussions
velocity toward each othd25]. Our case would correspond and Julian McKenzie-Smith for his critical reading of our
to the critical case that the resultant BEH radius coincidepaper. This work was supported partially by a Grant-in-Aid
with the CEH. for Scientific Research Fund of the Ministry of Education,
As for the rotating case, the no-scalar-hair conjecture canScience and Culturél.T. and K.M), and by a Grant-in-Aid
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