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Moving observers, nonorthogonal boundaries, and quasilocal energy

I. S. Booth* and R. B. Mann†
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The popular Hamilton-Jacobi method first proposed by Brown and York for defining quasilocal quantities
such as energy for spatially bound regions assumes that the timelike boundary is orthogonal to the foliation of
the spacetime. Such a restriction is undesirable for both theoretical and computational reasons. We remove the
orthogonality assumption and show that it is more natural to focus on the foliation of the timelike boundary
rather than the foliation of the entire four dimensional bound region. Reference spacetimes which define
additional terms in the action are discussed in detail. To demonstrate this new formulation, we calculate the
quasilocal energies seen by observers who are moving with respect to a Schwarzschild black hole.
@S0556-2821~99!05704-5#

PACS number~s!: 04.20.Cv, 04.20.Fy, 04.70.Dy
th
e
a

ca
tu

d
ti-
n
of
e
n

g
n
tu
io

at
u

w
e
f

tio
s

se
ee
ic
s
a-

ai

b

th

ed
he
-

o-
e

to a
of

al
-
cted

ite
ped
c-

n

as
as
cor-
re-

il-

d-
ed,
ries
e in
nd
sug-
on-
he
sary
und

-
g
on-
are

cus
I. INTRODUCTION

Gravitational thermodynamics and its relationship to
Euclidean-action formulation of quantum gravity have be
of increasing interest in recent years. This relationship w
first explored by Gibbons and Hawking@1#, who argued that
the Euclidean gravitational action is equal to the grand
nonical free energy times the reciprocal of the tempera
associated with a black hole~or cosmological! event horizon
@2#. A more recent extension of this work by Brown an
York involved consideration of the formulation of the par
tion function for gravitating systems of finite spatial exte
@3,4#. Starting from a spacelike foliation of a finite region
spacetime and a timelike vector field defining a flow of tim
they studied the Einstein-Hilbert action using a Hamilto
Jacobi-type analysis. Decomposing the action accordin
the foliation and flow of time, they showed that natural ca
didates arose for quantities such as energy and momen
These quantities were defined quasilocally, i.e. for a reg
of finite spatial extent containing a gravitating system.

For a number of reasons this analysis and its associ
quasilocal quantities have generated much interest and fo
a multitude of uses. First, all physical systems with which
have any experience have a finite spatial boundary. Ind
one of the central concepts in thermodynamics is that o
system and a reservoir that are separated by a parti
Quasilocal quantities admit a physical realization of the
concepts so that thermodynamics may be applied in a
sible way. As such, in the literature this analysis has b
used extensively in the study of black hole thermodynam
~for example in@4–6#!. Among other places, this work ha
found application in studies of the distribution of gravit
tional energy in a variety of spacetimes~for example@7#! and
also in examining the quantum mechanical creation of p
of black holes~for example@8#!. A very similar Hamiltonian
decomposition of the action has also been executed
Hawking and Horowitz@9#.

However, an acknowledged incompleteness exists in
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quasilocal formulation in that~apart from two exceptions
mentioned below! the spacetime foliation is always assum
to be orthogonal to the timelike boundary. While this is t
case for many standard examples~such as black holes sur
rounded by a set of stationary observers! it is a fairly strong
restriction. For example, within the confines of this orthog
nality assumption it is extremely difficult to calculate th
quasilocal quantities seen by observers who are falling in
black hole. Furthermore, when one considers variations
the metric ~as one actually does during the quasiloc
Hamilton-Jacobi analysis! the orthogonality assumption im
plies that the variations are not general, but instead restri
to those that preserve the orthogonality.

The requirement that the timelike boundary of the fin
region be orthogonal to its spacelike boundary was drop
by Hayward@10#, who considered how the basic Hilbert a
tion I should be modified so that solvingdI 50 for general
variations of the metric~subject to the boundary conditio
that boundary metrics should be held constant! will produce
the Einstein equations in the usual way. However, this w
from a purely Lagrangian viewpoint—no consideration w
given as to how these variations would decompose in ac
dance with the spacetime foliation. That approach was
cently considered by Hawking and Hunter@11# and Lau@12#,
who addressed the nonorthogonal situation from a Ham
tonian perspective.

In Ref. @11# Hayward’s action was broken down accor
ing to the foliation of the spacetime, a Hamiltonian propos
and two sample calculations performed where the bounda
were nonorthogonal. However, there was no attempt mad
this treatment to consider the variation of the action a
show an agreement between the quasilocal quantities
gested by that approach and the direct Hamiltonian dec
struction of the action. Furthermore, in order to deal with t
nonorthogonal intersections, the authors found it neces
to impose somewhat complicated restrictions on backgro
comparison spacetimes.

Lau’s main interest in@12# was to reformulate the quasilo
cal quantities of@3# in terms of Ashtekar variables. Treatin
nonorthogonal boundaries was a matter of secondary c
cern. Thus, although certain elements of his discussion
similar to some of the developments of this paper, the fo
©1999 The American Physical Society21-1
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is quite different. In particular he did not decompose t
action I , and the decomposition ofdI was with respect to
variations of the Ashtekar variables rather than metric v
ables. He did not discuss background terms in detail and
not calculate any examples.

In this paper we shall consider both a decomposition
Hayward’s action and a decomposition of the variation
that action and show that they agree in their natural ca
dates for the quasilocal quantities. In doing this, we sh
focus on the boundary lapse and shift functions rather t
the full spacetime lapse and shift as was the case in@11#.
This will result in less complicated decompositions that a
require less stringent restrictions on the comparison sp
time, in contrast with the approach in Ref.@11#. We shall
also argue that the boundary lapse and shift functions are
natural lapse and shift to consider.

Before turning to those decompositions it is necessar
set out quite a few definitions. Those definitions will be t
subject of Sec. II. In Sec. III we will perform the decomp
sitions, examine the quasilocal quantities that naturally a
from those decompositions, see how those quantities rela
conserved charges, and finally examine the backgro
terms in some detail. Section IV is made up of applicatio
of the theory of Sec. III. In that section we shall calculate
quasilocal energy~and other quantities! seen by a spherically
symmetric set of observers undergoing a variety of moti
in Schwarzschild spacetime.

II. DEFINITIONS

Consider a regionM of ann-dimensional spacetime with
metric tensor fieldgab and on that region define a timelik
vector fieldTa and a spacelike (n21)-dimensional hyper-
surfaceS0 . This field and surface are sufficient to define
notion of time overM. As a start, we letS0 be an ‘‘instant’’
in time. That is we choose to define all events happening
that surface as happening simultaneously. Next, consid
set of observers at locationsxA0

a PS0 ~where theA index
labels the individual observers!. The past and future loca
tions of these observers are uniquely determined if
specify that they must follow the pathsxA

a(t) through space-
time where these paths satisfy the differential equat
dxA

a/dt5Ta subject to the initial conditionxA
a(t0)5xA0

a . We
then define ‘‘instants’’ of time to bet5const surfaces. We
label themS t and define the notion of past and future
saying that if t1,t2 , then S1 ‘‘happens’’ beforeS2 . By
construction thet0 hypersurface isS0 . Thus, from the vector
field and original hypersurface we have imposed an obse
dependent notion of time on our manifold according to
constructed time coordinatet. Next, we may break upTa

into its components perpendicular and parallel to theS t by
defining a lapse functionN and a shift vector fieldVa so that

Ta5Nua1Va, ~1!

whereua is defined so that at each point inM it is the future
pointing unit normal vector to the appropriate spacelike
persurfaceS t , andVaua50. The lapse and shift then tell u
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how observers being swept along with the time flowTa

move through space and time relative to the foliation.
We specialize to the situation of interest for this paper.

the surfaceS0 define a surfaceV0 that is topologically an
(n22)-sphere.V0 locally bifurcatesS0—we will pick one
of the regions as ‘‘inside’’ and the other as ‘‘outside.’’1

Now, propagate this surface through time according to
time flow Ta. Then, by the local continuity of the time flow
V t will ~at least locally! topologically remain an
(n22)-sphere in the hypersurfaceS t and still divide the
‘‘inside’’ from the ‘‘outside.’’ Choosing time coordinatest1
and t2 we define an (n21) dimensional timelike hypersur
face B5$ø tV t :t1<t<t2%. We then defineM,M as the
region ‘‘inside’’ B bounded by the surfacesS t1 and S t2 .
HereS t andV t represent foliations ofM andB respectively.
Figure 1 illustrates these concepts for a three dimensio
M.

We define unit normal vector fields for the various hype
surfaces. Already we have definedua as the timelike unit
normal vector field to theS t surfaces. Similarly, we may
defineũa as the forward pointing timelike unit normal vecto
field to the surfacesV t in the hypersurfaceB. The spacelike
outward-pointing unit normal vector field toB is defined as
na. Then, by constructionũana50 andTana50. We fur-
ther defineña as the vector field defined onB such thatña is
the unit normal vector toV t in S t ~V t viewed as a surface in
S t!. By constructionuaña50.

We define the scalar fieldh5uana over B. If h50 ev-
erywhere, then the foliation surfaces are orthogonal to
boundaryB ~the case dealt with in Refs.@3,9#!,2 and the
vector fields with the tildes are equal to their counterpa
without tildes. We expressũa andna in terms ofua and ña

~or vice versa! as

1Globally of course the ‘‘inside’’ and ‘‘outside’’ could be con
nected. Consider for example the case whereS0 is a two-torus, and
V0 is a homotopically nontrivial circle in that surface.

2The definitions ofua and na are consistent with Ref.@3#, but
interchanged with respect to those in Ref.@9#.

FIG. 1. The regionM of Lorentzian spacetime, its assorted no
mal vector fields, and a typical element of the foliation.
1-2
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na5
1

l
ña2hua and ũa5

1

l
ua2hña ~2!

or

ña5
1

l
na1hũa and ua5

1

l
ũa1hna, ~3!

wherel2[1/(11h2).
Note, too, that withTana50 we may write

Ta5Ñũa1Ṽa, ~4!

where we callÑ[lN the boundary lapse andṼa[sb
aVb the

boundary shift.
Next consider the metrics induced on the hypersurfa

by the spacetime metricgab . These may be written in term
of gab and the normal vector fields.hab[gab1uaub is the
metric induced on theS t surfaces,gab[gab2nanb is the
metric induced onB, andsab[hab2ñañb5gab1ũaũb is
the metric induced onV t . By raising one index of these
metrics we obtain projection operators into the correspo
ing surfaces. These have the expected propertieshb

aub

5gb
anb5sb

anb5sb
aub50, andhb

ahg
b5hg

a , gb
agg

b5gg
a , and

sb
asg

b5sg
a .

On choosing a coordinate system$x1,x2,x3% on the sur-
face S0 we defineh5det(hab) ~where in this case we tak
hab as the coordinate representation of that metric tens!.
We then map this coordinate system to each of the otheS t
surfaces using the time flow; combining this set of coor
nates on each surface with the time coordinatex0[t we have
a coordinate system over all ofM . We defineg5det(gab).
Similarly, choosing a coordinate system onV t we defines
5det(sab). Again, using the time flow to extend the coord
nate system over all ofB, we defineg5det(gab). It is then
not hard to show@11# that

A2g5NAh and A2g5ÑAs. ~5!

We also define the following extrinsic curvatures. Taki
¹a as the covariant derivative onM compatible withgab ,
the extrinsic curvature ofS t in M is Kab[2ha

ghb
d ¹gud

52 1
2 £uhab , where £u is the Lie derivative in the direction

ua. The extrinsic curvature ofB in M is Qab

52ga
ggb

d ¹gnd , while the extrinsic curvature ofV t in S t is
kab[2sa

gsb
d ¹gñd . Contracting each of these with the a

propriate metric we defineK[habKab , Q[gabQab , and
k[sabkab .

Finally, we define the following intrinsic quantities ove
M andS t . OnM, the Ricci tensor, Ricci scalar, and Ein
stein tensor areRab , R, andGab respectively. OnS t , Da
is the covariant derivative compatible withhab , while Rab
andR are respectively the intrinsic Ricci tensor and scala

III. ANALYZING THE ACTION

For definiteness, we now takeM to be four dimensional.
The generalization to other dimensions is trivial. Giv
M,M as described above and allowing for the inclusion
06402
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a cosmological constant, Hayward’s action@10# is

I 5
1

2k E
M

d4xA2g~R22L!1
1

k E
S
d3xAhK

2
1

k E
B
d3xA2gQ1

1

k E
V

d2xAs sinh21~h!2II, ~6!

where*S5*S22S1
and *V5*V2

2*V1
, and if we choose a

system of units wherec5G51,k58p. Here II is a func-
tional of the boundary metrics on]M . For simplicity, in the
next two sections we will takeII50, but in the Sec. III D we
will allow it to be nonzero again.

A. Variation of the action

The variation ofI with respect to the metricgab is @10#

dI 5
1

2k E
M

d4xA2g~Gab1Lgab!dgab

2E
S
d3x~Pabdhab!1E

B
d3x~pabdgab!

1E
V

d2xS 1

k
sinh21~h!dAs D , ~7!

where Pab[(Ah/2k) (Kab2Khab) and pab[(A2g/
2k)(Qab2Qgab). If we consider variations of the metri
that leave the boundary metricshab andgab fixed, then all
of the boundary terms are 0, anddI 50 if and only if Ein-
stein’s equations hold overM . ThusI is the action that gen-
erates general relativity if we are considering variations
the metric over a bounded region of space such asM .

Now, gab is fully defined if we specifyÑ, Ṽa, andsab .
Thus variation ofgab is equivalent to a variation of thes
quantities, and we may rewrite theB term in the above with
respect to such variations. During this calculation we repe
edly make use of the fact thatduaiua ,dnaina . This is true
because these one-forms are defined by the requiremen
uava5nawa50 for all vector fields vaPTS t ,waPTB.
The metric does not figure in the definition ofTS t or TB;
nor is a metric required to calculate the action of a one-fo
on a vector, and soua andna are defined up to a normalizin
factor independently of the metric. Thus,sabdub
5sabdũb5sabdnb5sabdñb50.

Expressingua and ña in terms ofũa andna and writing
gab5sab2ũaũb , we have

~Qab2Qgab!dgab5~Qab2Qsab!dsab

12Qabũadũb22Qũadũa. ~8!

In the meantime, we may decomposeQab into its parts that
are perpendicular and parallel to theV t to obtain

Qab5 k̃ab12ũ(asb)
g ũd¹gnd1ũaũb~ngãg!, ~9!
1-3
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I. S. BOOTH AND R. B. MANN PHYSICAL REVIEW D59 064021
wherek̃ab[2sa
gsb

d ¹gnd ~the extrinsic curvature ofV t in a
hypersurface perpendicular toB! and ãa[ũb¹bũa is the
acceleration of normal vectorũa along its length. Also, on
contractingQab with gab ,

Q5 k̃2naãa , ~10!

wherek̃[sabkab . Putting these three results~8!,~9!,~10! to-
gether, a few lines of algebra produces

~Qab2Qgab!dgab5~ k̃ab2@ k̃2ngãg#sab!dsab

12sb
gnd¹gũddũb22k̃ũbdũb.

~11!

To complete this deconstruction, recall that the time-fl
vector field is defined independent of the metric. Theref
dTa50 which in turn implies thatdũa5(21/Ñ)(ũadÑ

1dṼa). Applying this to Eq.~11!, substituting the resul
back into the variation of the action~7!, and recalling Eq.~5!
we obtain the final result

dI 5
1

2k E
M

d4xA2g~Gab1Lgab!dgab

2E
S
d3x~Pabdhab!1E

V
d2xS 1

k
sinh21~h!dAs D

2E dtE
V t

d2xAsF «̃dÑ2 j̃ bdṼb2
Ñ

2
s̃abdsabG ,

~12!

where «̃[(1/k) k̃, j̃ a[2(1/k)sa
bnd¹bũd , and s̃ab

[ (1/k)( k̃ab2@ k̃2ngãg#sab).
From this result we can make a couple of useful obser

tions. First, examining the initial and final hypersurfacesS1
andS2 and their boundariesV1 andV2 we see thatPab is
the S t hypersurface momentum conjugate tohab while
(1/2k)sinh21(h) is the V t hypersurface momentum conju
gate toAs. Second, we see that2As«̃ is conjugate to the
boundary lapseÑ, As j̃ a is conjugate to the boundary shi
Ṽa, and 1

2 ÑAs s̃ab is conjugate to the boundary metricsab .
Following the Hamilton-Jacobi analysis of@3#, we identify
«̃, j̃ a, and s̃ab as surface energy, momentum, and str
densities. Ifh50, these quantities coincide with those d
fined in @3#. Also note that each of these terms is explici
independent ofh. They are defined with respect to the foli
tion of B only.

B. Decomposing the action

We now decomposeI with respect to the foliation. To
start, theR22L term of Eq.~6! may be rewritten as
06402
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M

d4xA2g~R22L!

5E
M

d4xA2g~R22L2K21KabKab!

22E
S
d3xAhK22E

B
d3xA2g~Kh1naaa!,

~13!

whereaa[ub¹bua is the acceleration of the foliation’s un
normal vector field along its length. Next, if we substitu
expressions forna andũa from Eq. ~2! into Eq. ~10!, then it
is a simple matter to show that

Q1hK1naaa5
1

l
k1lũa¹ah. ~14!

Combining these two results the following expression forI is
obtained:

I 5
1

2k E
M

d4xA2g~R22L2K21KabKab!

2
1

k E
B
d3xA2gS k

l
1lũa¹ah D

1
1

k E
V

d2xAs sinh21~h!. ~15!

Next, we apply the Einstein constraint equations. These

H[2
Ah

k
Gabuaub52

Ah

k
~R22L1K22KabKab!50,

~16!

and

Ha[
Ah

k
ha

bGbgug5
Ah

k
~DbKa

b2DaK !50. ~17!

Combining these constraints with the Lie derivati
definition of the extrinsic curvatureKab52 1

2 £uhab
5(21/2N)(£Thab22D (aVb)) of S t inM, we may rewrite
the integrand of the remaining bulk term with respect
these constraints, a time derivative of the hypersurface m
ric, and a total divergence term:

R22L2K21KabKab

5
2k

Ah
Pab£Thab2

2k

Ah
H

2
2k

A2g
VaHa2

4k

N
DaF 1

Ah
PabVbG , ~18!

wherePab is the hypersurface momentum forS t , which we
discussed above. Then, using Stokes theorem on the hy
1-4
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MOVING OBSERVERS, NONORTHOGONAL . . . PHYSICAL REVIEW D 59 064021
surfacesS t to move the total divergence term out to th
boundariesV t and applying Eq.~5! we may write the action
as

I 5E
M

d4x~Pab£Thab2NH2VaHa!

2
1

k E dtE
V t

d2xAs~Nk2Va@Kab2Khab#ñb

2Ñlũa¹ah!1
1

k E
V

d2xAs sinh21~h!. ~19!

Up to this point we have been working with the foliation
M and therefore with the lapseN, shift Va, and normal
vectorsua and ña. On the term evaluated onB we now
switch to work with the foliation ofB and therefore the
boundary lapseÑ, the boundary shiftṼa, and normal vec-
tors ũa andna. Then

Nk5
1

l2 Ñk̃2hNsab¹aũb , ~20!

2ña~Kab2Khab!Vb5Nhsab¹aũb

2Ñh2k̃1naṼb¹bũa1lṼb¹bh,

~21!

where k̃[sabk̃ab . Combining these two results with Eq
~4!, which can be used to show that

E
V

d2xAs sinh21~h!2E dtE
V t

d2xAslÑũa¹ah

5E dtE
V t

d2x@~£TAs!sinh21~h!1AslṼa¹ah#,

~22!

we obtain the following decomposition of the action:

I 5E
M

d4x~Pab£Thab2NH2VaHa!

1
1

k E dtE
V t

d2x~£TAs!sinh21~h!

2E dtE
V t

d2xAs~Ñ«̃2Ṽa j̃ a!, ~23!

where«̃ and j̃ a are the energy and surface momentum d
sities that we obtained from the variational calculation.

The terms of this expression will be familiar to anyo
who is familiar with Refs.@3,9,11#. Specifically,«̃ and j̃ a are
exactly the energy surface density and momentum sur
density that the observers on the boundary would measu
the foliation ofM were perpendicular toB. A little thought
shows that these quantities are the ones that would be
sonable for observers restricted to surfaceB to measure.
06402
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Such observers are cognizant of the foliation of the bound
~for the foliation has been defined to correspond to their
tion of simultaneity!, but being restricted to the surface the
have no way of associating that foliation with a foliation
M as a whole. Viewed another way, there are no observer
the interior ofM and therefore no unique way to extend t
‘‘instants’’ of time into that region. As such, it does not see
to physically make sense for the observers to measure
energy and momentum surface densities with respect to
foliation S t , the lapseN, and the shiftVa that we have
defined but they cannot observe. Rather, as observers tr
ling alongB they would naturally~locally! extend the folia-
tion of B into a foliation that is perpendicular toTa and
therefore in effect be considering a foliationS̃ t ~locally! de-
fined aroundB with lapseÑ and shiftṼa. Then they would
measure the quantities that we have found naturally a
from the action.

We may also define a Hamiltonian. In elementary clas
cal mechanics with one degree of freedom, the actionI and
HamiltonianH are related by the equationI 5pq̇2H, where
q is the variable giving the configuration of the system a
p5 ]I /]q is the conjugate momentum. Extending this to t
system under consideration@3#, hab andAs are configura-
tion variables whilePab and (1/k)sinh21(h) are their conju-
gate momenta, and so the Hamiltonian is

H5E
S t

d3x@NH1VaHa#1E
V t

d2xAs~Ñ«̃2Ṽa j̃ a!.

~24!

Again this quantity is indifferent to the intersection ang
between the foliation ofM and the boundary. For solution
to the Einstein equations, it is defined entirely with respec
the foliation ofB. Note that this Hamiltonian does not agre
with that proposed in@11# where the problem was ap
proached from the point of view of the foliation ofM rather
than that ofB.

C. Conserved charges

The discussion of conserved charges presented in@3# car-
ries over exactly into this work. Thus ifjaPTB is a vector
field in the boundaryB and £jgab50 ~i.e. it is a Killing
vector field!, then we may define an associated conser
charge

Qj[E
V

d2xAsja~ «̃ũa1 j̃ a!. ~25!

If Ta is a Killing vector field, then the HamiltonianH as
defined above is a conserved charge. If there is an ang
Killing vector field faPTV, then the angular momentum

Jf[E
V

d2xAsfa j̃ a ~26!

is also a conserved charge.
1-5
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I. S. BOOTH AND R. B. MANN PHYSICAL REVIEW D59 064021
D. Background terms

We now return to the reference termII. Defined as it is as
a functional of the boundary metrics, it is clear that for
metric variation that leaves the boundary metrics unchang
dII50—therefore its exact form does not affect the equati
of motion. This degree of freedom in the definition ofI may
equivalently be viewed as the freedom to define zero po
of the energy, momentum, and Hamiltonian. Specifically
allows us to choose a reference spacetime for which we w
these quantities to be zero. For asymptotically flat spaceti
we would normally choose Minkowski space as the refere
spacetime, but other choices may be made if we are stud
spacetimes with other asymptotic behaviors—for exam
asymptotically anti–de Sitter space@6#.

Given a reference spacetime (MI ,gI ab), we embed
(V,sab) in that spacetime and define a vector fieldTI a over
the embedded (VI ,sI ab) such thatTI aTI a5TaTa and the com-
ponents of £TI sI ab5£Tsab .3 These conditions ensure th
the boundary lapse and the components of the boundary
vector as calculated fromTI a are equal to those calculated fo
Ta in the original spacetime. We then define

II5E dtE
V

d2xAs@Ñ«Ĩ 2Ṽa jĨa#, ~27!

where«Ĩ and jĨa are defined in the same way as before exc
that this time they are evaluated for the surfaceV embedded
in the reference spacetime. Thus, the net effect of includinII
is to change«̃→ «̃2«Ĩ and j̃ a→ j̃ a2 jĨa .

Physically these conditions correspond to demanding
an observer living in the surfaceV and observing only quan
tities intrinsic to that surface~as it evolves through time!
cannot tell whether she is living in the original spacetime
in the reference spacetime. From another point of view
observers have calibrated their instruments so that they
always measure the quasilocal quantities to be zero in
reference spacetime—no matter what kind of motion th
undergo.

This definition ofII differs slightly from both the one use
in @3# and the one used in@11#. In the former caseV was
embedded in a reference three dimensional space and n
mand was made of £Tsab ; however, in all examples consid
ered in Ref. @3# ~and indeed in the subsequent wor!
£Tsab50, and so insofar as that formalism has been purs
within the literature, it agrees with the formalism consider
here. Note that if we do not include the conditions
£Tsab , then boosted observers in Minkowski space will o
serve nonzero quasilocal energies which is clearly an un
sirable situation.

In Ref. @11# (B,gab) as a whole is embedded in the re
erence four-space (MI ,gI ab). That requirement is essentiall

3We leave aside the issue as to whether this is possible in
cases. We will consider several examples where it is, but in gen
an arbitrary surface cannot be embedded in an arbitrary highe
mensional space.
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the global version of our definition ofII and as such will
locally yield the same results as our definition, though it
somewhat harder to apply computationally. Beyond that c
dition they further require that the reference spacetime
foliated in such a way thath in the reference spacetime is th
same as in the original spacetime. Such a condition is nei
necessary nor desirable in our approach which does not
cern itself with the foliation of the spacetime as a who
Finally we note that in the approach used in Ref.@11# the
inclusion of this background term is necessary to remove
h dependence in the Hamiltonian—this dependence does
occur in our approach.

IV. EXAMPLES

We now consider some sample calculations. For simp
ity we will work with static spherically symmetric space
times parametrized with the natural spherical coordina
$t,r ,u,f% and therefore with metric

ds252F~r !dt21
dr2

F~r !
1r 2~du21sin2 udf2!. ~28!

In each case we will consider a surface of observersV de-
fined by r 5r 0 and t5t0 . Then geometricallyV it is a two-
sphere with metric

ds25r 0
2~du21sin2 udf2!, ~29!

~where we have parametrizedV with the sameu andf as the
full space!. If we then consider the timelike unit vector fiel

Ta5F Ñ

AF
A11

R2

Ñ2F
,R,Q,FG , ~30!

whereR5R(r ,u,f), Q5Q(r ,u,f), andF5F(r ,u,f) are
general functions ofr , u, and f, the boundary lapse an
boundary shift functions are easily found to be

Ñ2511r 2~Q21sin2 uF2!, ~31!

and

Ṽa5@0,0,Q,F#, ~32!

while

ũa5F 1

AF
A11

R2

Ñ2F
,
R

Ñ
,0,0G , ~33!

and

na5F2
R

Ñ
,

1

AF
A11

R2

Ñ2F
,0,0G . ~34!

Then, a straightforward calculation yields

ll
ral
i-
1-6
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«̃52
2

kr
AF1

R2

Ñ2
~35!

and

j̃ a52
2

kAF1
R2

Ñ2

F0,0,
]

]u S R

Ñ
D ,

]

]f S R

Ñ
D G . ~36!

Finally, we calculate theV components of £Tsab as

~£Tsab!uu52r S R1r
]Q

]u D , ~37!

~£Tsab!uf5r 2S ]Q

]f
1sin2 u

]F

]u D , ~38!

~£Tsab!ff52r sinuS R sinu1Qr cosu

1r sinu
]F

]f D . ~39!

Note that there is noF dependence in any of these comp
nents. Thus if we wish to calculate quasilocal quantities
observers moving through Schwarzschild space us
Minkowksi space as a reference spacetime~as in the follow-
ing examples!, on embeddingV ~which is trivial for a
sphere! and setting

TI a5F ÑA11
R2

Ñ2
,R,Q,FG , ~40!

the metricsab and its derivative £Tsab will be the same for
both Schwarzschild and Minkowski space.

We now specialize to specific examples using the sys
of units wherek58p.

A. Static observers

For our first example, we will consider a spherical s
observers holding themselves static with respect to
Schwarzschild black hole (F512 2m/r ) and take flat
Minkowski space (F51) as our reference spacetime. Th
for both spacetimesR5Q5F50, Ñ51, andṼa50. Sub-
stituting these data into the above expressions we obtain

«̃2«Ĩ 5
1

4pr S 12A12
2m

r D . ~41!

Then, the total measured energy is

E5E
V

d2xAs~«̃2«Ĩ !5r S 12A12
2m

r D . ~42!
06402
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This is the standard result as obtained in@3#. Taking the limit
as r→` we obtainE→m as would be expected, while a
r→2m ~the Schwarzschild horizon!, E→2m.

With Ñ51 and the shift vector 0, the HamiltonianH
5E. SinceTa is a Killing vector in this case,H is a con-
served charge. There is also a conserved angular mome
associated with each of the regular three spherical Kill
vectors. j̃ a is zero, however, and so each of these char
vanishes.

B. Radially infalling observers

A more interesting example is the case of observers
ing their measurements as they fall radially along geode
towards a Schwarzschild hole. Such motion is described
solutions to the geodesic equation. For observers who w
stationary as they started falling in from infinity, the geod
sic equation reduces todr/dt 52A2m/r , where t is the
proper time coordinate. Then,R52A2m/r , Q5F50, Ñ

51, againṼa50, and

«̃2«Ĩ 5
1

4pr SA11
2m

r
21D . ~43!

The total measured energy is

E5E
V

d2xAs~«̃2«Ĩ !5r SA11
2m

r
21D . ~44!

As for static observers, asr→`,E→m. Of course, this is
not really surprising since the radially infalling observers
infinity actually are static. Over the rest of the range the t
energy measures are not the same. In particular, asr→2m,
E→2m(&21).

As for the first example, the momentum terms are z
and theÑ51, and soH5E. HereTa is no longer a Killing
vector, however, and so this is no longer a conserved cha
Physically of course this is to be expected since the obser
are moving radially inwards and therefore through the gra
tational field. As time passes therefore the amount of gra
tational field energy contained withinV t changes. Again the
three angular momenta are conserved but each has the
teresting value of zero.

C. Radially boosted observers

We next consider a set of observers who are booste
travel radially with ‘‘constant’’ velocityv. By constant ve-
locity here we mean that a second set of observers dwe
on at5const surface and being evolved by the timelike ve
tor field @1,0,0,0# will measure the first set as having veloci
v and acceleration 0.

Then R5gvA12 2m/r @g51/(A12v2) the standard
Lorentz factor from special relativity#, Q5F50, Ñ51, and
once moreṼa50. A simple calculation then obtains,

«̃2«Ĩ 5
g

4pr
SA12

2mv2

r
2A12

2m

r
D , ~45!
1-7
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and the total measured energy is

E5E
V

d2xAs~«̃2«Ĩ !5gr SA12
2mv2

r
2A12

2m

r
D .

~46!

In this case asr→`, E→A12v2m, while as r→2m, E
→2m.

Once more withÑ51 andṼa50,H5E. Again Ta is not
a Killing vector, and so this is not a conserved charge. T
angular momenta are conserved charges though again ea
zero.

At first glance it may seem unusual that in ther→` limit
E} m/g. Extrapolating from special relativity we would pe
haps expectE}gm. Physically, however, it is clear tha
there is a flow of gravitational field energy through the s
faceV. That is, there is aj £ component of the momentum
This momentum may be seen as ‘‘drawing off’’ some of t
energy. We will not investigate the issue further in this p
per, though it is addressed in the last example of@11# to a
certain extent by the invariant quantities defined in@12#.

D. z-boosted observers

Finally we consider a set of observers who are booste
travel ‘‘in the z-direction’’ with ‘‘constant’’ velocity v. By
constant we again mean with respect to other obser
who are dwelling ont5const surfaces and being evolve
by the timelike vector field @1,0,0,0#. Then, R

5gv cosuA12 2m/r , Q5 gv sinu/r, F50, Ñ
5A11g2v2 sin2 u, and Va5@0,0,gv sinu/r,0#. We now
have

«̃2«Ĩ 5
1

4pr

1

A12v2 cos2 u

3SA12
2mv2 cos2 u

r
2A12

2m

r
D , ~47!

and while j̃ f5 jĨf50,

j̃ u2 jĨ u5
v sinu

8p~12v2 cos2 u!

3S ! 12
2m

r

12
2mv2 cos2 u

r

21D . ~48!

In this case, the«̃2«Ĩ does not integrate into a nice tidy form
as it did in previous examples. Instead we will consider
two usual limiting cases. Forr→`,
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~ «̃2«Ĩ !r→`5
m

4pr 2
A12v2 cos2 u,

~ j̃ a2 jĨa!r→`5
mv sinu

4p
. ~49!

Then, integrating over the$t50,r→`% two-surface we ob-
tain

E`5E
V

d2xAs~«̃2«Ĩ !5
m

2
SA12v21

arcsinv

v
D ,

~50!

and

H`5E
V

d2xAs@Ñ~ «̃2«Ĩ !2Ṽa~ j̃ a2 jĨa!#5A12v2m.

~51!

Meanwhile, forr→2m,

~ «̃2«Ĩ !r→2m5
1

4p~2m!
,

~ j̃ a2 jĨa!r→2m5
v sinu

4p~12v2 cos2 u!
. ~52!

Integrating over the$t50,r 52m% two surface we obtain

E2m5E
V

d2xAs~«̃2«Ĩ !52m, ~53!

and

H2m5E
V

d2xAs@Ñ~ «̃2«Ĩ !2Ṽa~ j̃ a2 jĨa!#

5mS 122g1
g

v
arcsinv1

2

gv
arctanhv D . ~54!

As in the previous casesTa is not a Killing vector and
so H is not a conserved charge, as we would physica
expect. Note that in this situation we have a nonze
component of j̃ a . Despite this we still do not have an
nonzero conserved angular momenta. To see this recall
the three linearly independent spherical Killing vectors a
f1

a5@0,0,0,1#, f2
a5@0,0,sinf,cosf cotu#, and f3

a

5@0,0,cosf,2sinf cotu#. Then f1
a j̃ a50, f2

a j a is propor-
tional to sinf, andf3

a is proportional to cosf. Therefore, as
would be expected physically and by symmetry, on integ
tion Jf1

5Jf2
5Jf3

50.
The comments made in the previous example regard

the fact thatH`5m/g apply here as well.

V. DISCUSSION

In this paper we have seen that the orthogonality rest
tion of @3# may be lifted without too much difficulty. Further
by concentrating on the foliation of the boundaryB rather
1-8
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than the spacetime regionM we avoid many of the technica
complications of the nonorthogonal treatment of@11#, and
obtain definitions of quasilocal quantities that are manifes
independent of the intersection angle between the foliatio
M and the boundaryB independent of our choice of th
background spacetime.

In our choice of how to calculate the reference termII on
the background spacetime we have given local conditi
that modify those of@3# in a way that is more appropriate
we are considering moving observers. These condition
the same time remain simpler and easier to implement t
those required in@11#.

In general the Hamiltonian and quasilocal quantities s
as angular momenta are dependent on the motion of the
da

06402
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servers as we have seen in several examples. One some
counterintuitive observation is that the observed mass o
source decreases rather than increases with the motion o
observers who are measuring that mass. This is a co
quence of choosing our observers in such a way that the
a net flow of gravitational field energy through the surfaceV.
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