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Moving observers, nonorthogonal boundaries, and quasilocal energy
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The popular Hamilton-Jacobi method first proposed by Brown and York for defining quasilocal quantities
such as energy for spatially bound regions assumes that the timelike boundary is orthogonal to the foliation of
the spacetime. Such a restriction is undesirable for both theoretical and computational reasons. We remove the
orthogonality assumption and show that it is more natural to focus on the foliation of the timelike boundary
rather than the foliation of the entire four dimensional bound region. Reference spacetimes which define
additional terms in the action are discussed in detail. To demonstrate this new formulation, we calculate the
guasilocal energies seen by observers who are moving with respect to a Schwarzschild black hole.
[S0556-282(199)05704-5

PACS numbdss): 04.20.Cv, 04.20.Fy, 04.70.Dy

[. INTRODUCTION quasilocal formulation in thatapart from two exceptions
mentioned belowthe spacetime foliation is always assumed

Gravitational thermodynamics and its relationship to theto be orthogonal to the timelike boundary. While this is the

Euclidean-action formulation of quantum gravity have beencase for many standard examplgsich as black holes sur-
of increasing interest in recent years. This relationship wasounded by a set of stationary obserydtss a fairly strong
first explored by Gibbons and Hawkind], who argued that restriction. For example, within the confines of this orthogo-
the Euclidean gravitational action is equal to the grand canality assumption it is extremely difficult to calculate the
nonical free energy times the reciprocal of the temperaturguasilocal quantities seen by observers who are falling into a
associated with a black holer cosmologicalevent horizon black hole. Furthermore, when one considers variations of
[2]. A more recent extension of this work by Brown and the metric (as one actually does during the quasilocal
York involved consideration of the formulation of the parti- Hamilton-Jacobi analysighe orthogonality assumption im-
tion function for gravitating systems of finite spatial extentplies that the variations are not general, but instead restricted
[3,4]. Starting from a spacelike foliation of a finite region of to those that preserve the orthogonality.
spacetime and a timelike vector field defining a flow of time, The requirement that the timelike boundary of the finite
they studied the Einstein-Hilbert action using a Hamilton-region be orthogonal to its spacelike boundary was dropped
Jacobi-type analysis. Decomposing the action according tby Hayward[10], who considered how the basic Hilbert ac-
the foliation and flow of time, they showed that natural can-tion | should be modified so that solving =0 for general
didates arose for quantities such as energy and momentumwariations of the metri¢subject to the boundary condition
These quantities were defined quasilocally, i.e. for a regiothat boundary metrics should be held constavil produce
of finite spatial extent containing a gravitating system. the Einstein equations in the usual way. However, this was
For a number of reasons this analysis and its associatefdom a purely Lagrangian viewpoint—no consideration was
guasilocal quantities have generated much interest and fourgiven as to how these variations would decompose in accor-
a multitude of uses. First, all physical systems with which wedance with the spacetime foliation. That approach was re-
have any experience have a finite spatial boundary. Indeecently considered by Hawking and Hunféd] and Lau[12],
one of the central concepts in thermodynamics is that of avho addressed the nonorthogonal situation from a Hamil-
system and a reservoir that are separated by a partitiomonian perspective.
Quasilocal quantities admit a physical realization of these In Ref.[11] Hayward's action was broken down accord-
concepts so that thermodynamics may be applied in a seling to the foliation of the spacetime, a Hamiltonian proposed,
sible way. As such, in the literature this analysis has beemnd two sample calculations performed where the boundaries
used extensively in the study of black hole thermodynamicsvere nonorthogonal. However, there was no attempt made in
(for example in[4—6]). Among other places, this work has this treatment to consider the variation of the action and
found application in studies of the distribution of gravita- show an agreement between the quasilocal quantities sug-
tional energy in a variety of spacetim@sr example[7]) and  gested by that approach and the direct Hamiltonian decon-
also in examining the quantum mechanical creation of pairstruction of the action. Furthermore, in order to deal with the
of black holeg(for example[8]). A very similar Hamiltonian  nonorthogonal intersections, the authors found it necessary
decomposition of the action has also been executed bto impose somewhat complicated restrictions on background
Hawking and Horowit49]. comparison spacetimes.

However, an acknowledged incompleteness exists in the Lau’s main interest ifl12] was to reformulate the quasilo-
cal quantities of 3] in terms of Ashtekar variables. Treating
nonorthogonal boundaries was a matter of secondary con-
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is quite different. In particular he did not decompose the
action|, and the decomposition afl was with respect to
variations of the Ashtekar variables rather than metric vari-
ables. He did not discuss background terms in detail and did
not calculate any examples.

In this paper we shall consider both a decomposition of
Hayward’s action and a decomposition of the variation of
that action and show that they agree in their natural candi-
dates for the quasilocal quantities. In doing this, we shall
focus on the boundary lapse and shift functions rather than
the full spacetime lapse and shift as was the casglih
This will result in less complicated decompositions that also
require less stringent restrictions on the comparison space-
time, in contrast with the approach in R¢lL1]. We shall
also argue that the boundary lapse and shift functions are the
natural lapse and shift to consider. FIG. 1. The regiorM of Lorentzian spacetime, its assorted nor-

Before turning to those decompositions it is necessary téal vector fields, and a typical element of the foliation.
set out quite a few definitions. Those definitions will be the

Subject of Sec. Il. In Sec. Il we will perform the decomPO' how observers being Swept a|0ng with the time flaw

sitions, examine the quasilocal quantities that naturally arisg,qye through space and time relative to the foliation.
from those decompositions, see how those quantities relate to \y/e specialize to the situation of interest for this paper. On

e ot . Seeion 5w o s suteceS, deine & uracelytha is opologcly o
: ) n—2)-sphere{), locally bifurcatess ,—we will pick one
of the theory of Sec. lll. In that section we shall calculate thes( )-Sp 0 y >0 b

uasilocal energyand other quantitigsseen by a sphericall of the regions as “inside” and the other as “outsidé.”
q ; 9 q . yasp Y Now, propagate this surface through time according to the
symmetric set of observers undergoing a variety of motion

) . ; Time flow T Then, by the local continuity of the time flow,
in Schwarzschild spacetime. ; X .

O, will (at least locally topologically remain an
(n—2)-sphere in the hypersurfacg, and still divide the
Il. DEFINITIONS “inside” from the “outside.” Choosing time coordinatets

_ . . _ _ . andt, we define anif—1) dimensional timelike hypersur-
Consider a regiooM of ann-dimensional spacetime with ¢, . B={U,Q, :t,;<t<t,}. We then defineM C M as the

metric tensor fieldy,; and on that region define a timelike region “inside” B bounded by the surfaces, andS,,.
vector fieldT* and a spaceliken(—1)-dimensional hyper- ooy andq, represent foliations dfl andB respectively.

surfaceX,. This field and surface are sufficient to define ariqre 1 illustrates these concepts for a three dimensional
notion of time overM. As a start, we lek ; be an “instant”

in time. That is we choose to define all events happening on \ya define unit normal vector fields for the various hyper-
that surface as happening simultaneously. Next, _consider &irfaces. Already we have defined as the timelike unit
set of observers at locationgoe 2o (where theA index  ormal vector field to theS, surfaces. Similarly, we may
labels the individual observersThe past and future loca- gefingfi« as the forward pointing timelike unit normal vector
tions of these observers are uniquely determined if Wgie|q to the surface), in the hypersurfac®. The spacelike
specify that they must follow the pathg(t) through space-  oytward-pointing unit normal vector field ® is defined as
time where these paths satisfy the differential equatiorhe Then, by constructiofi“n,=0 andT®n,=0. We fur-
dxa/dt=T* subject to the initial conditiona(to) =Xao. We  ther defindgi* as the vector field defined dhsuch thafi® is
then define “instants” of time to bé=const surfaces. We the unit normal vector t6), in 3, (), viewed as a surface in
label themZ,; and define the notion of past and future by 3.,). By constructionu“f,,=0.

saying that ift;<t,, thenX, “happens” beforeX,. By We define the scalar fielg=u®n, overB. If =0 ev-
construction the, hypersurface i&,. Thus, from the vector erywhere, then the foliation surfaces are orthogonal to the
field and original hypersurface we have imposed an observajoundaryB (the case dealt with in Ref$3,9]),> and the
dependent notion of time on our manifold according to theyector fields with the tildes are equal to their counterparts

constructed time coordinate Next, we may break uF*  without tildes. We expresg® andn® in terms ofu® andf®
into its components perpendicular and parallel to Xhéby  (or vice vershas
defining a lapse functioN and a shift vector field/“ so that

T*=Nu“+V*, () 1Globally of course the “inside” and “outside” could be con-
nected. Consider for example the case wikgeas a two-torus, and

whereu? is defined so that at each pointv it is the future o is @ homotopically nontrivial circle in that surface.

pointing unit normal vector to the appropriate spacelike hy- 2The definitions ofu® and n® are consistent with Ref3], but
persurface,;, andV“u,=0. The lapse and shift then tell us interchanged with respect to those in R
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1 1 a cosmological constant, Hayward’s actid®] is
n“==n%—n»u* and TU%=—u®—yNn® 2
A A 1 1
|=—f d4x\/—g(R—2A)+—f d3x/hK
or 2k Im KJs
He=lnorgUe and ut=iuTHgnd, (3) g 1 4oz sinht
X 7 X 7me, - de —y0+— Qol x\Josinh 1(5)—1, (6)
wherex?=1/(1+ 7?). .
Note, too, that withT*n,=0 we may write where[y=[s,-s andfq=Jo,~[q,, and if we choose a
_ _ system of units where=G=1,=87x. Here] is a func-
T*=Nu*+V*, (4)  tional of the boundary metrics a#M. For simplicity, in the

_ _ next two sections we will take=0, but in the Sec. IlID we
where we calN=\N the boundary lapse ar\d“zagvﬁ the  will allow it to be nonzero again.
boundary shift.
Next consider the metrics induced on the hypersurfaces

. . . . A. Variation of the action
by the spacetime metrig, ;. These may be written in terms

of g5 and the normal vector fields,,z=g,z+ U,Ug is the The variation ofl with respect to the metrig, is [10]
metric induced on th&, surfaces,y,z=g,5—N.N; is the 1

metric in_duc_:ed orB, ando = haﬁ_—’ﬁa’ﬁﬁz _yaﬁmauﬁ is Sl = _f d*/=q g(GaBJFAgaB)aga,g

the metric induced orf);. By raising one index of these 2Kk Jm

metrics we obtain projection operators into the correspond-

ing surfaces. These have the expected properhipsﬂ _f d3x(P*Ash )+f d3x (78S,
= B = gnB= B = ahb_pa a b s e “*
ygh’=opn”=ogu”=0, andhzhl=h7, yzy)=7v,, and
0'%0'520'(;. 1
On choosing a coordinate systemt,x?,x3 on the sur- +f d2x| —sinh™( 7])5\/;), (7)
Q K

face X, we defineh=deth,z) (where in this case we take
h.s as the coordinate representation of that metric tensor
We then map this coordinate system to each of the ather where P*P=(\h/2«) (K¥¥—~Kh*f) and =*f=(\—yl
surfaces using the time flow; combining this set of coordi-2«) (@ “#— @ y*#). If we consider variations of the metric
nates on each surface with the time coordindtet we have that leave the boundary metribs,; and v,z fixed, then all

a coordinate system over all 8. We defineg=det@,z).  of the boundary terms are 0, adli=0 if and only if Ein-
Similarly, choosing a coordinate system fin we definec  stein’s equations hold ovéd. Thusl is the action that gen-
=det(o,p). Again, using the time flow to extend the coordi- erates general relativity if we are considering variations of
nate system over all d, we definey=det(y,p). It is then  the metric over a bounded region of space sucMas

not hard to show11] that Now, v, is fully defined if we specifiN, V¢, ando,.
~ Thus variation ofy, is equivalent to a variation of these
V=g=Nvh and V- y=N\o. (5  quantities, and we may rewrite tiBeterm in the above with

respect to such variations. During this calculation we repeat-

edly make use of the fact thau,/|u,,on,|n,. This is true

because these one-forms are defined by the requirement that

X X > NapT Yy u,v*=n_w*=0 for all vector fieldsv*eT>,,w*eTB.

= —3£uh.p, Where £ is the Lie derivative in the direction rpe metric does not figure in the definition TéEt or TB;

u. Th? extrinsic  curvature ofB in M is O.5 4 is a metric required to calculate the action of a one-form

= yZYBVYQﬁ’ while the extrinsic curvature d@, in 2t onavector, and so, andn,, are defined up to a normalizing

Kap=— 0307V, Contracting each of these with the ap- factor independently of the metric. Thusg“?sug,

propriate metric we defin&=h*?K 5, ®=y*%0 ,,, and = 0P8l g= 0P 5N y= 0P 57 5= 0.

k=0"K,p. Expressingu® andfi“ in terms ofti* andn® and writing
Finally, we define the following intrinsic quantities over Yap=0ap—TU,lg, We have

M andZ,. On M, the Ricci tensor, Ricci scalar, and Ein-

We also define the following extrinsic curvatures. Taking
V, as the covariant derivative ol compatible withg, s,
the extrinsic curvature ok, in M is Kaﬁz—hghgvyug

_stein tensor_arézaﬁ . R,_ andG,g4 re_spect@vely. Or_Et, D, (@B—@yF) 5,}/aﬁ:(®aﬁ_®gaﬁ)6gaﬁ

is the covariant derivative compatible with,;, while R,z

andR are respectively the intrinsic Ricci tensor and scalar. +2®aﬁﬁ“51”15—2®ﬁa5ﬂ“. (8
. ANALYZING THE ACTION In the meantime, we may decompddg into its parts that

_ . . are perpendicular and parallel to the to obtain
For definiteness, we now takk to be four dimensional. perp P hg

The generalization to other dimensions is trivial. Given - 5 s s
M C M as described above and allowing for the inclusion of 0 p=Kapt 2U(,0 UV Ns+TUg(N7A,), 9
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wherek,,,=— o202V n (the extrinsic curvature o), in a
af a” By 5 t 4 —_ —
hypersurface perpendicular ®) and aasuﬁvﬁna is the fMd XV=g(R—2A)
acceleration of normal vect@r* along its length. Also, on
contracting® “# with v,z o ) N

A = Md XV—0g(R—2A —K?+K ,zK*#)
0=k-n"a,, (10
—2f d3x\/ﬁK—2f d3x\— ¥(K p+n,a%),

s B

wherePEa“BkaB. Putting these three resul®),(9),(10) to-

gether, a few lines of algebra produces (13

wherea“zuBVﬁu“ is the acceleration of the foliation’s unit

(0°F—@y*F) 5y, .= (k*F—[k—n"a,]0?P) 6o normal vector field along its length. Next, if we substitute
“p i b expressions fon® andli® from Eq.(2) into Eq.(10), then it
+ 2gg,n5V yﬁgguﬁ_ 2~kTJ,35Uﬂ. is a simple matter to show that
1y 1
0+ nK+n“aa=Xk+Au“Va7/. (14

To complete this deconstruction, recall that the time-flow

vector field is defined independent of the metric. ThereforeCombining these two results the following expressionl fisr
sT*=0 which in turn implies thatstu®=(—1/N)(@*sN  obtained:

+5V®). Applying this to Eq.(11), substituting the result

1
back into the variation of the actidi), and recalling Eq(5) | = —j d*x—g(R—2A —KZ+K 4K *#)
we obtain the final result 2K Jm

1
——f d3X\/—y
kg

k
1 X'ﬁ‘)\uavaﬂ)
= 4y [— aB
ol P fMd XV=0(GuptAdup) 69

1
1 +—f d?x+/o sinh (7). (15
—Ld3x(Paﬁéhaﬁ)+fﬂd2x<;sinh—1(n)5£) KJa

Next, we apply the Einstein constraint equations. These are

- -~ N

— J dt| d?x\o
o,

h h
=— £Gaﬁu“uﬁz - \/——(R—2A+ KZ2—K,zK**)=0,
K K

(12 (16)
where F=(Ui)K, Tu=—(1k)cPn’V i, and ¢ 29
= (Ux)(k*P—[k—n"&,]o"P). Jh Jh
From this result we can make a couple of useful observa- H,= TthﬁyU7=7(D5K§— D,K)=0. (17

tions. First, examining the initial and final hypersurfagas
and, and their boundarie®, and(2, we see thaP“’ is  Combining these constraints with the Lie derivative
the % hypersurface momentum conjugate i while  definition of the extrinsic curvatureK ,z=—3£,h,g
(1/2«)sinh () is the Q, hypersurface momentum conju- =(—1/2N)(£rh,s—2D (V) Of 3, in M, we may rewrite
gate to\/o. Second, we see that/o% is conjugate to the the integrand of the remaining bulk term with respect to
boundary lapsd\, \oJ® is conjugate to the boundary shift these constraints, a time derivative of the hypersurface met-
Ve, and3N o5 is conjugate to the boundary meteig,;.  fC, and a total divergence term:

Following the Hamilton-Jacobi analysis @8], we identify

%, 7% and3*? as surface energy, momentum, and stress
densities. Ify=0, these quantities coincide with those de- 24

fined in[3]. Also note that each of these terms is explicitly =—P%¢gh
independent ofy. They are defined with respect to the folia- vh

tion of B only.

R—2A —K2+K, K

ZKH
af \/ﬁ

2k

B. Decomposing the action N9

1
_paﬁ\/ﬁ

vh

We now decomposé with respect to the foliation. To whereP%# is the hypersurface momentum ¢, which we
start, theR—2A term of Eq.(6) may be rewritten as discussed above. Then, using Stokes theorem on the hyper-

4k
VaHa_ W D, ) (18)
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surfaces3; to move the total divergence term out to the Such observers are cognizant of the foliation of the boundary
boundarieq}, and applying Eq(5) we may write the action (for the foliation has been defined to correspond to their no-
as tion of simultaneity, but being restricted to the surface they
have no way of associating that foliation with a foliation of
M as a whole. Viewed another way, there are no observers in
the interior ofM and therefore no unique way to extend the
“instants” of time into that region. As such, it does not seem
to physically make sense for the observers to measure the
energy and momentum surface densities with respect to the
foliation X, the lapseN, and the shiftv* that we have
defined but they cannot observe. Rather, as observers travel-
ling along B they would naturally(locally) extend the folia-

tion of B into a foliation that is perpendicular to“ and

Up to this point we have been working with the foliation of therefore in effect be considering a foliatian (locally) de-

M and therefore with the lapsh, shift V¢, and normal  fineq aroundB with lapseN and shiftVe. Then they would

vectorsu® andf“. On the term evaluated 0B we NOW  measure the quantities that we have found naturally arise
switch to work with the foliation ofB and therefore the fom the action.

|=f d*x(P*A£th 3~ NH—V*H,)
M
1
—;jdtJ d2x\o(Nk— VK .5~ Kh,z]H#
O,

Ny 1
—quavan)+;f d2x+/o sinh (7). (19)
Q

boundary lapsé\, the boundary shifV*, and normal vec- We may also define a Hamiltonian. In elementary classi-
torst® andn®. Then cal mechanics with one degree of freedom, the adtiand
HamiltonianH are related by the equatids pgq—H, where

Nk= —1{?— NoPY T (20) g is the variable giving the configuration of the system and

A a”B p= dl/dq is the conjugate momentum. Extending this to the

B B system under considerati¢8], h,; and Jo are configura-
—AYK 5~ Khop)VF=N7no*fV T tion variables whileP“# and (1k)sinh (7) are their conju-
= -~ ~ gate momenta, and so the Hamiltonian is
—N7°k+n“VAY g, +\VAV 4,

(21 3 5 o~
H=| d3[NH+V®H, ]+ | d*xJo(Nz—-VT,).
wherek=0*’k, 5. Combining these two results with Eg. > ™ (24)
(4), which can be used to show that

Again this quantity is indifferent to the intersection angle
f d2x+/o sinhX( n)—f dtJ d2x\JoANT*V 7 between the foliation oM and the boundary. For solutions
Q O to the Einstein equations, it is defined entirely with respect to
the foliation ofB. Note that this Hamiltonian does not agree
=J dtf d2x[ (Erv/o)sinh 1(5)+ JoaVeV 5],  with that proposed in[11] where the problem was ap-
0 proached from the point of view of the foliation & rather
(22)  than that ofB.

we obtain the following decomposition of the action: C. Conserved charges

The discussion of conserved charges present¢8]ioar-
ries over exactly into this work. Thus § e TB is a vector
field in the boundaryB and £v,5=0 (i.e. it is a Killing

1 vector field, then we may define an associated conserved
+—J dtf A2 (Eryo)sint () vector field Y
K (N g

| = f d*x(P*f£1h, 3~ NH—V“H,)
M

_ f dt fﬂ ax o (NE—VT,). 23 Q= L)dzx@“(smﬂa). (25

wherez and]“ are the energy and surface momentum denif T« js a Killing vector field, then the Hamiltoniakl as

sities that we obtained from the variational calculation. defined above is a conserved charge. If there is an angular
The terms of this expression will be familiar to anyone Killing vector field e TQ, then the angular momentum

who is familiar with Refs[3,9,11]. Specifically,g and]“ are

exactly the energy surface density and momentum surface

density that the observers on the boundary would measure if J¢Ef d2x\o¢7,, (26)

the foliation of M were perpendicular t&8. A little thought Q@

shows that these quantities are the ones that would be rea-

sonable for observers restricted to surfa®eto measure. is also a conserved charge.
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D. Background terms the global version of our definition of and as such will

We now return to the reference teimDefined as it is as ocally yield the same results as our definition, though it is
a functional of the boundary metrics, it is clear that for aSomewhat harder to apply computationally. Beyond that con-
metric variation that leaves the boundary metrics unchangedlition they further require that the reference spacetime be
51 =0—therefore its exact form does not affect the equationdliated in such a way thag in the reference spacetime is the

of motion. This degree of freedom in the definitionlaiay same as in the original spacetime. Such a condition is neither

equivalently be viewed as the freedom to define zero point§ecessary nor desirable in our approach which does not con-

of the energy, momentum, and Hamiltonian. Specifically, itC€" itself with the foliation of the spacetime as a whole.
allows us to choose a reference spacetime for which we wishNally we note that in the approach used in Rfl] the
these quantities to be zero. For asymptotically flat spacetime@clusion of this background term is necessary to remove an
we would normally choose Minkowski space as the reference dépendence in the Hamiltonian—this dependence does not
spacetime, but other choices may be made if we are studyingCCU" in our approach.

spacetimes with other asymptotic behaviors—for example

asymptotically anti—de Sitter spaf@l. IV. EXAMPLES

Given a reference spacetimeM , we embed . . o
P VI(gap) We now consider some sample calculations. For simplic-

(Q,0,p) in that spacetime and define a vector figldover v e will work with static spherically symmetric space-

the embedded(®, ¢ .5) sucr;thaf[“IazT“_'l'_a and the com-  {imes parametrized with the natural spherical coordinates
ponents of ag,5=£70,5.” These conditions ensure that {r

i {t,r,0,¢} and therefore with metric
the boundary lapse and the components of the boundary shift

vector as calculated from® are equal to those calculated for dr?
T« in the original spacetime. We then define ds?=—F(r)dt?+ mjtrz(dazﬁtsin2 0dg?). (29
sz dtf dzxﬁ[NE—V“Ta], (27) In each case we will consider a surface of obserferde-
o !

fined byr=ry andt=ty. Then geometrically it is a two-
sphere with metric

whereg and], are defined in the same way as before except
that this time they are evaluated for the surfacembedded

in the reference spacetime. Thus, the net effect of inclutling (where we have parametriz€with the samed and as the

Is to ch'c'mgé—@ —E and.T.a_)Ta_Ia' i full space. If we then consider the timelike unit vector field
Physically these conditions correspond to demanding that

an observer living in the surfad® and observing only quan-
tities intrinsic to that surfacéas it evolves through time To=| — +/1+ — RO .®
cannot tell whether she is living in the original spacetime or JF N2E
in the reference spacetime. From another point of view the
observers have calibrated their instruments so that they wilyhereR=R(r,6,¢), ©=0(r,8,¢), andd=d(r,6, ) are
always measure the quasilocal quantities to be zero in thgeneral functions of, 6, and ¢, the boundary lapse and
reference spacetime—no matter what kind of motion theyhoundary shift functions are easily found to be
undergo.
This definition ofl differs slightly from both the one used N2=1+r2(©2%+sir? 602), (31)
in [3] and the one used ifl1]. In the former casd&) was
embedded in a reference three dimensional space and no dgsyq
mand was made of+r 5, however, in all examples consid-
ered in Ref.[3] (and indeed in the subsequent wprk
£10,5=0, and so insofar as that formalism has been pursued
within the literature, it agrees with the formalism consideredWhile
here. Note that if we do not include the conditions on
£r0,4, then boosted observers in Minkowski space will ob- {

ds?=r3(d6?+sir? 6d¢?), (29)

N R?
, (30

Ve=[0,00,d], (32)

R?2 R
1+ —,—,0,0

serve nonzero quasilocal energies which is clearly an unde- 1
JF N2F N

sirable situation.
In Ref.[11] (B, v,s) as a whole is embedded in the ref-
erence four-spaceM,g,z). That requirement is essentially 4.4

To=

: (33

R 1 R?
3We leave aside the issue as to whether this is possible in all n,=| ——,— 1+ T’O’O . (34
cases. We will consider several examples where it is, but in general N \/E N°F

an arbitrary surface cannot be embedded in an arbitrary higher di-

mensional space. Then, a straightforward calculation yields
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2 R?
T=—— F+— (35
Kr N2
and
2 d (R 0 (R
To=——F7——=|00—|=| —<|=|| 36
[ R d0\N/) 9\ N
K F+~—
NZ
Finally, we calculate th€) components of £o,; as
£ =2r| R+ 79 3
(Eroqap) 9= 21 rﬁ ) (37)
(00 oD
(E104p) gp=T £+smz 6)%, (38
(E10qp) pp= 25 SIN 0( Rsiné6+ ®r cosé
+ '0(@) 39
r sin % (39

Note that there is n& dependence in any of these compo-
nents. Thus if we wish to calculate quasilocal quantities for
observers moving through Schwarzschild space usin

Minkowksi space as a reference spaceti@®in the follow-
ing examples on embeddingQ) (which is trivial for a

spherg and setting
- R?
N~+/1+—R,0,®
N2

the metrico 4z and its derivative £o 4 will be the same for
both Schwarzschild and Minkowski space.

7=

: (40
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This is the standard result as obtainedidh Taking the limit
asr—o we obtainE—m as would be expected, while as
r—2m (the Schwarzschild horizonE— 2m.

With N=1 and the shift vector 0, the Hamiltonia
=E. SinceT“ is a Killing vector in this caseH is a con-
served charge. There is also a conserved angular momentum
associated with each of the regular three spherical Killing
vectors.7, is zero, however, and so each of these charges
vanishes.

B. Radially infalling observers

A more interesting example is the case of observers tak-
ing their measurements as they fall radially along geodesics
towards a Schwarzschild hole. Such motion is described by
solutions to the geodesic equation. For observers who were
stationary as they started falling in from infinity, the geode-
sic equation reduces tdr/d7=—+2m/r, where 7 is the

proper time coordinate. ThelR=—\2m/r, ®=d=0, N
=1, againV*=0, and

1( [ 2m )
T—t=— 1+ ——1].
= 4z r

The total measured energy is

o 2m
E=de2x\/;(s—§)=r(\/1+T—1). (44)

%\s for static observers, as—o,E—m. Of course, this is
not really surprising since the radially infalling observers at
infinity actually are static. Over the rest of the range the two
energy measures are not the same. In particular—agm,
E—2m(v2—-1).

As for the first example, the momentum terms are zero
and theN=1, and soH=E. HereT“ is no longer a Killing
vector, however, and so this is no longer a conserved charge.
Physically of course this is to be expected since the observers
are moving radially inwards and therefore through the gravi-

(43

We now specialize to specific examples using the systertational field. As time passes therefore the amount of gravi-

of units wherex=81r.

A. Static observers

For our first example, we will consider a spherical set
observers holding themselves static with respect to a

Schwarzschild black hole H=1— 2m/r) and take flat

tational field energy contained withid; changes. Again the
three angular momenta are conserved but each has the unin-
teresting value of zero.

C. Radially boosted observers

We next consider a set of observers who are boosted to

Minkowski space E=1) as our reference spacetime. Thentravel radially with “constant” velocityv. By constant ve-

for both spacetime®=0=®=0, N=1, andV*=0. Sub-
stituting these data into the above expressions we obtain

1 2m
E—Ez—(l—\/l——). (41
Tl r
Then, the total measured energy is
2m
E=f dzx\/;('é—"é)=r<l— \/1—7). (42)
0

locity here we mean that a second set of observers dwelling
on at=const surface and being evolved by the timelike vec-
tor field[1,0,0,0 will measure the first set as having velocity
v and acceleration 0.

Then R=yv\1-2m/r [y=1/(y1-v?) the standard
Lorentz factor from special relativity® =®=0, N=1, and
once moréV®=0. A simple calculation then obtains,

2m

y (\/ 2mp? \/ )
T—=— 1- - 1-—, (45)
47r r r
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and the total measured energy is

2mu? 2m
E=J dzx\/;(”é—”é)=yr( \/1— - \/1—— :
Q r r

In this case as —®, E—1—v2m, while asr—2m,

PHYSICAL REVIEW D59 064021

~_= / 2 S”
e—¢ =—/] —v°Cco 0,
( _)I'*V»’O l rz

. __Mmov sing 49
Ta=Ta)r w7 (49

Then, integrating over thet=0,—x} two-surface we ob-
E tain

—2m. )

Once more wittN=1 andV*=0H=E. AgainT® is not E :f a2\ o (3—%) = m . arcsin
a Killing vector, and so this is not a conserved charge. The “ Ja 2 v ’
angular momenta are conserved charges though again each is (50

Zero.

At first glance it may seem unusual that in the « limit

and

Eoc m/y. Extrapolating from special relativity we would per-

haps expectExym. Physically, however, it is clear that Hw=f dsz;[N(E—E)—V“(Ta—Ta)]= 1—v?m.
there is a flow of gravitational field energy through the sur- Q h

face ). That is, there is &, component of the momentum. (51)
This momentum may be seen as “drawing off” some of theMeanwhiIe forr—2m

energy. We will not investigate the issue further in this pa- ' '

per, though it is addressed in the last exampléidf to a 1

certain extent by the invariant quantities definedia].

D. z-boosted observers

Finally we consider a set of observers who are boosted to 4m(1-v®cos 6)
travel “in the z-direction” with “constant” velocity v. By
constant we again mean with respect to other observer

(e _’é)rAZm:my

v sing

(Ta_’]_’a)rHZm: (52)

ptegrating over thet=0r =2m} two surface we obtain

who are dwelling ont=const surfaces and being evolved

by the timelike vector field [1,0,0,J. Then,
= yv c0osfy1— 2m/r, ®= yv sindlr, d=0,

R Eom= L)dZX\/E(E—EFZm, (53
N

=1+ y%v?sirf 6, and V*=[0,0,yv sin@r,0]. We now and

have

1 1

4mr \1—p2cod 6

2mu? co< 6 2m
x| \1- —m\/1- —
r r

T—E=

2muv? co< 6

r

1—

Hom= deZX\/;[N(E—E)—V“(Ta—T_a)]

2
=m(1—27+vzarcsinv+ %arctanh) . (59

NCY As in the previous caseB” is not a Killing vector and

so H is not a conserved charge, as we would physically
expect. Note that in this situation we have a nonzero
component ofj,. Despite this we still do not have any
nonzero conserved angular momenta. To see this recall that
the three linearly independent spherical Killing vectors are
¢7=[0,0,0,1], ¢5=[0,0,sing,cos¢cotd], and ¢35
=[0,0,cosp,—sin¢pcotd]. Then ¢77,=0, ¢35]j, is propor-
tional to sing, and ¢35 is proportional to cog. Therefore, as
would be expected physically and by symmetry, on integra-
tion J¢l:J¢2:J¢3:O

1]. (49 The comments made in the previous example regarding

the fact thatH,.=m/y apply here as well.

V. DISCUSSION

In this case, thg —% does not integrate into a nice tidy form In this paper we have seen that the orthogonality restric-
as it did in previous examples. Instead we will consider thetion of [3] may be lifted without too much difficulty. Further,

two usual limiting cases. Far—oo,

by concentrating on the foliation of the boundayrather
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than the spacetime regidvi we avoid many of the technical servers as we have seen in several examples. One somewhat
complications of the nonorthogonal treatment[@f], and  counterintuitive observation is that the observed mass of a
obtain definitions of quasilocal quantities that are manifestlysource decreases rather than increases with the motion of the
independent of the intersection angle between the foliation ofbservers who are measuring that mass. This is a conse-
M and the boundanB independent of our choice of the quence of choosing our observers in such a way that there is

background spacetime. a net flow of gravitational field energy through the surféce
In our choice of how to calculate the reference tdron

the background spacetime we have given local conditions

that modify those; of3] in away that is more appropri'a.te if ACKNOWLEDGMENTS
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