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Wormholes and flux tubes in 5D Kaluza-Klein theory
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In this paper spherically symmetric solutions to 5D Kaluza-Klein theory, with “electric” and/or “mag-
netic” fields, are investigated. It is shown that the global structure of the spacetime depends on the relation
between the “electrical” and “magnetic” Kaluza-Klein fields. For a small “magnetic” field we find a
wormholelike solution. As the strength of the “magnetic” field is increased relative to the strength of the
“electrical” field, the wormholelike solution evolves into a finite or infinite flux tube depending on the
strength of the two fields. For the large “electric” field case we conjecture that this solution can be considered
as the mouth of a wormhole, with ti@&;s, Gs;, andGs, components of the metric acting as the source of the
exotic matter necessary for the formation of the wormhole’s mouth. For the large “magnetic” field case a 5D
flux tube forms, which is similar to the flux tube between two monopoles in type-Il superconductors, or the
hypothesized color field flux tube between two quarks in the QCD vac{8&556-282(99)07504-9

PACS numbd(s): 04.50+h

I. INTRODUCTION matter. One possible application of this 5D wormhole is to
“sew” two Reissner-Nordstrm solutions on to the two sur-
Spherically symmetric metrics in multidimensiodD)  faces of the 5D WH solution where dimensional reduction
gravity can describe black holes and wormhd#s) (see, from 5D to 4D breaks down. In this manner one obtains two
for example[1-5]). Usually these papers investigate metricsasymptotically flat 4D regions with electric flux, which are
without off-diagonal components. However, these compofonnected by a 5D WH thro@t2]. The splitting off or com-

of the following theoren{6,7). surfaces where the two 4D Reissner-Nordstrsolutions are

Let G be the group fiber of the principal bundle. Then connected to the 5D WH throat. This composite, asymptoti-
there is a one-to-one correspondence between theally flat WH has regions with both compactified extra di-
G-invariant metrics on the total spac¥® and the triples mensions (the two exterior regions of the 4D Reissner-

. e .~ Nordstran solutiong and with noncompactified extra
a )
(9, Ay  Nyan). Hereg,, is the Einstein's pseudo Rie- dimensiongthe 5D throat or bridge which connects the two

mannian metric on the basey, is the gauge field of the 4p sojutions. The 5D region of this composite WH has a

group G (the nondiagonal components of the multidimen-girong gravitational field.

sional metri¢, andhy,, is the symmetric metric on the fiber.  |n Refs.[10,11] a MD metric with only “electric” fields
This theorem suggests that including the off-diagonakyas investigated. In Ref13] a MD metric with “magnetic”

components of the MD metric is equivalent to including field = “electrical” field was investigated. In this paper we

gauge fieldgU(1), SU(2), or SU3) gauge fieldfand a scalar investigate the consequence of having both “electric” and

field ¢(x*) which is connected with the linear size of the “magnetic” Kaluza-Klein fields of varying relative

extra dimension. These geometrical fields can act as thstrengths. We will consider 5D Kaluza-Klein theory as grav-

source of the exotic matter necessary for the formation of théy on the principal bundle with () fiber and 4D space as

wormhole’s mouth. Such solutions were obtained in Refsthe base of this bundlel1].

[8—11]. These solutions are spherically symmetric WH-like

metrics with a finite longitudinal size. The throat of these Il. INITIAL EQUATIONS

WH-like solutions is located between two surfaces where the

reduction from 5D to 4D spacetime breaks down. These re-

sults indicate that the exotic matter necessary for the forma-

tion of the WH can appear ivacuum multidimensional grav-

For our spherically symmetric 5D metric we take

ds2=e2"(Ngt2— rgew(r)—zv(r)

ity from the off-diagonal elements of the metfithe gauge X[dy+ w(r)dt+n cosd de]?
fields) and from theGs5 component of the metritthe scalar
field), rather than coming from some externally given exotic —dr?—a(r)(d@®+sirf de?), (1)

wherey is the 8" extra coordinater,, 6, ¢ are 3D spherical-
*Email address: dzhun@freenet.bishkek.su polar coordinatesn is an integer, and e {— Ry, + Ry} (Rg
"Email address: das3y@maxwell.phys.csufresno.edu may be equal tox). We require that all functions
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v(r), ¢(r), anda(r) should be even functions af and

hencev’'(0)=¢'(0)=a’(0)=0. According to the above-
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If we integrate Eq(8) once and let the integration constant
be 4wq, then from Eq(10) we find thatExx = g/a(r) where

mentioned theorema(r) is thet component of the electro- 9 can be taken as the Kaluza-Klein “electric” charge. Fi-

magnetic potential andn(cosé) is the ¢ component. This

nally for the system of equations given in E¢8)—(7) we

means that we have radial Kaluza-Klein “electrical” and Will consider solutions with the boundary conditioat0)

“magnetic” fields.

=1,4(0)=»(0)=0 [for numerical calculations we will in-

Substituting this ansatz into the 5D Einstein vacuumtroduce dimensionless functioa(r)—a(r)/a(0) and x

equations

1

I:2AB_ 2

GasR=0 2

(whereA,B=0,1,2,3,4) gives ususing arREDUCE package
for symbolic calculations

! !

1
V//+V/¢/+T_Eréw/ZeZuﬂ—AV:O’ (3)

! !

a
w"—4v'w’+3w’zj/’+T=O, (4)

a” a'y' 2 2
_+_¢__+Q_e2¢—21/:0, (5)
a a a a2

a/lﬂ, Q2
eZw—ZV: 0

"y 12+__
Ve . ®
12 rogt a,lﬁ,_l_l alz 1 2 12:2¢—4v
14 —Vlﬂ—T E_E_Z W "€
Q% ,
——e?"2=0; (7
4a?

here the Kaluza-Klein “magnetic” charge ®=nr,. The

Kaluza-Klein “electrical” field can be defined by multiply-

ing Eq. (4) by 47 and rewriting it in the following way:
(row'e3¥ *4ma)’=0. (8)

This can be compared with the normal 4D Gauss law
(E4pS)' =0, (9)

whereE,p is a 4D electrical field an@=47r? is the area of

=r/a(0)]. Using these boundary conditions in EJ) and
also in Eq.(10) [which givesrow’(0)=q] gives the follow-
ing relationship between the Kaluza-Klein “electric” and
“magnetic” charges:

_9+Q?
"~ 4a(0) -

(11)

From Eq.(11) it is seen that the charges can be parametrized
asq=2+a(0)sine andQ=2+/a(0)cosa.
We will examine the following different case$A) Q
=0 or Hkxx=0, “magnetic” field is zero;(B) =0 or Exk
=0, “electrical” field is zero;(C) Hxx=Exk , “‘electrical”
field equal to “magnetic” field;(D) Hxx<Ekk, “mag-
netic” field less than “electrical;”(E) Hxk>Ekk , “‘electri-
cal” field less than “magnetic.”

A. Switched off “magnetic” field
In this case we have the following soluti¢d,10]:

a=r2+r? (12
0
2ry ro+r?
e*'=— : (13
q ra—r?
$=0, (14
4rg r1 (15
w=— .
q ra—r?

This WH-like spacetime has an asymptotical flat metric,
bounded by two surfaces at==*r, where the reduction
from 5D to 4D spacetime breaks down. Asnoves away
from O the cross-sectional size of the thrat;), increases.

A connection can be made between the present solution
and Wheeler’s old proposal of electric charge as a wormhole

that two-spher&?. These are five equations for determining filled with electric flux that flows from one mouth to the
the four ansatz functions/(#,a,w). The first four equations ~ other—the *“charge without charge” model of electric
[Egs.(3)—(6)] are dynamical equations which determine thecharge. In a recent workl2] a model of electric charge

ansatz functions, while the last equati@y. (7)] contains no

along these lines was proposed where electric charge is mod-

new dynamical information not contained in the first four eled as a kind of composite WH with a quantum mechanical
equations, but gives some initial conditions related to solvingsplitting off of the 8" dimension. The 5D WH-like solution

this system of equations. For the metric given in EQ, r?
is replaced bya(r) and the surface area is given &
=4qa(r). Comparing Eq(8) with Eq. (9) we can identify
the 5D Kaluza-Klein “electric” field as

3y—4v

EKKZI’Ow'e (10)

of Egs. (12—(15) has two Reissner-Nordstroblack holes
attached to it on the surfaces atr,. By considering 4D
electrogravity as a 5D Kaluza-Klein theory in the initial
Kaluza formulation withGgs=1 we can join the 5D and
Reissner-Nordstra solutions at the = =r, surfaces base to
base and fiber to fiber.
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FIG. 1. Plot of the numerically evaluated ansatz funciégr) FIG. 2. Plot of the numerically evaluated ansatz functygr)

for zero “electric” field. The singularities, which are taken to indi- for zero “electric” field.

cate the locations of thecrQ “magnetic” charges, occur near

+0.71 and by reflection near0.71. To get the full picture of the |t is interesting to note that the time part of the metric ap-
flux tube one should reflect this figure about thandy axes. pears not to be influenced by the strong gravitational field
since Gy (r) =exg2v(r)]=1. This result is similiar to what
was found in Refs[14,15 where “magnetic” Kaluza-Klein

In this case we will simplify by taking/=0 in additionto ~ components of the metric were considered. One difference

B. Switched off “electrical” field

w=0 so that the equations reduce to between the present solutions and the monopole solutions of
Refs.[14,15 is that the monopole solutions had only coor-
y" y'a’ Q?%? dinate singularities, while = *r are real singularities for
7 F_ a2 =Y, (16)  the present solution. This can be seen by calculating the in-

variantR,gR”® and using the asymptotic form fg(r),a(r)
given in Eqs(19—(21). This was done using REDUCE sym-

a’ y'a' 2 Q%% bolic calculation package with the result

a ya a g2

0, 7
1

AB
RasR™™ (ro_r)zl

(22)
aryr 1 arZ Q2y2_

ay a 4a? 4a’

0, (18)
The cross-sectional view of the ansatz functer) of

) this solution is seen in Fig. 1. From this figure we take the
wherey(r)=exdy(r)]. These are three equations for two gingularities atr=+r, as the location of two magnetic

ansatz functiong/(r),a(r). The last equation, E418), sim-  charges ¢Q) with opposite signs and with flux lines of
ply repeats information that is already contained in the firsi5yza-Klein “magnetic” field going from+Q to —Q. It
two equations. We solved the system of equatiti®,(17)  can pe shown that this spacetime has a finite voldnby
numerically, using th&mATHEMATICA package, with the fol- calculating V= [ V—Gd®. Near the singularities ==*r,
lowing initial conditions: a(0)=ay=1, a’'(0)=0, y(0) we have
=1, andy’(0)=0 (this follows from the fact that we can
introduce the dimensionless variable-r/a, and changea T [Caere
—alay). These conditions and=0 fix the dimensionless V-G detGas)
“magnetic” charge asQ=2. The results of the numerical =roa(r)exg ¢(r)]sind~(r,—r)**—=0. (23
calculations fora(r) andy(r) are shown in Figs. 1 and 2.
We see that there is a singularity at two points *Xg. Figure 1 is very suggestive the color field flux tubes which
Near these singularities we find that the ansatz functionare conjectured to form between two quarks in some pictures
have the following asymptotic behavior: of confinement(see, for example, p. 548 of R¢fL6]).
In the preceding section the purely “electric” solution of
Voo Egs.(12—(15) can lead to a Wheeler-like model of “charge
y(r)~—"—", (19 without charge”[12)]. Based on the duality between electric
(fro=r) and magnetic chargdd7] one might naively expect that a
similiar Wheeler-type model for “magnetic charge without
magnetic charge” should exist. However, from the 5D
Kaluza-Klein magnetic solution of Eq$16)—(18) we find
z 21) that the cross section of the solution givendgy) in Fig. 1
3’ decreases as— *rg, in contrast to the “electric” solution

a(r)~a.(ro—r)%, (20

QY.._

Ay
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wherea(r) increases as— *rq. Furthermore, if Reissner- &
Nordstran solutions are attached to the “electric” solution

as in Ref[12], then one has a model of electric charge where 2
the charges live in an infinite spacetime. In contrast the
“magnetic” solutions are confined to a finite spacetime with

a flux tube a Kaluza-Klein “magnetic” field running be- %
tween the charges. This may provide a reason why free
monopoles do not appear to exist in nature: they are confine
into monopole-antimonopole pairs in a finite, flux-tube-like
spacetime that is similiar to the flux tube confinement picture
of quarks in QCD.

2

C. “Magnetic” field equal to “electrical” field 0 02 04 08 08 T 1.2

In this caseQ=q and an exact solution can be givigi8]: X

2 FIG. 3. Plot of the numerically evaluated ansatz functign)
a= q_ = const (24) for a= /3 (i.e., theExx>Hgk case. This solution represents a 5D
2 ' WH-like throat. The “electric” and “magnetic” charges are taken

to be located at the surfaces neal.24. To get the full picture of

r\/E the WH one should reflect this figure about thandy axes.
el= e”=coshq—, (25)
cally solving the system of four equatiori8)—(6) for the
ansatz functions can be simplified by noting that E.can
2 2 f [ be simplified b ing that &)
0= —-Ssinh——. (26)  be integrated out as we did in Sec. Il. Usikgx=q/a(r)
Fo q and Eq.(10) we find
Using this solution and Eq(10) we find that the Kaluza- q
Klein “electrical” field is w'= etv3Y, (29
roa(r)
q 2
EKK=5= a = const. (27 In this way thew equation has been integrated away and we

can replace thew’ term in Eq.(3) using Eq.(29), thus re-

A similiar magnetic flux-tube-like solution was discussed inducing the original system of four equations to three.
Ref. [18]. The Kaluza-Klein “magnetic” field can be de-
rived as in Refs[14,15 . The gauge field associated with the 1. Exk>Hik

metric in Eq.(1) has ap component a#\,=ron cosd. The The result of a numerical calculation fa(r), using the
Kaluza-Klein “magnetic” field is then found fromHy«  \aTHEMATICA package, is presented in Fig. 3 where we
=V XA, Wher_e the curl is taken using the metric of E)  have takena= 7/3 so thatq>Q. The functione’®) is si-
and the solution of Eqsi24)—(26). The resultant Kaluza- pjjiar in form to the functiony(r) in Fig. 2, and it has
Klein “magnetic” field derived from this has a magnitude of singularites near-r,=+1.24. As the “magnetic” field in-

rn creases from O tddyxx=Ekx we find the following: First,
H :ngzconst (289  compared to the WH-like solution of the pure “electric”
KK . . . .
a case, the longitudinal distance between the surfaces gis
i o o , stretched as the magnetic field strength increases; second, the
Thus, this solution is annfinite flux tubewith constant  crgss-sectional size of the solution, represented by the func-
Kaluza-Klein “electrical” and “magnetic” fields. The di- o a(r), does not increase as rapidly s> =r,. In the
rection of both the “electric” and “magnetic” fields IS jimit where the “magnetic” field equals the “electrical”
along ther direction (i.e., along the axis of the flux tube field, Hyx=Eyk, the longitudinal length of the solution

The sources of these Kaluza-Klein fiel@D “electrical”  goes to and the cross-sectional size becomes a constant.
and “magnetic” chargesare located at-«. This feature
leads us to consider this solution as a kind of 5D “electri- 2. Ex<Hix

cal” and “magnetic” dipole. ) o -
The result of a numerical calculation is presented in Fig. 4

where we have takea= 7/6 so thatq<Q. In this case the
“electrical” field is taken as decreasing from thEyx
We consider two different casdéscx>Hkk (or g>Q) =Hgk case down toExcx=0. As the “magnetic” field
and Exx<Hkk (or q<Q). The initial conditions for both strength increases relative to the “electric” field strength we
cases are taken a$(0)=»(0)=0,4'(0)=v'(0)=0 and notice the following evolution of the solution: the infinite
a(0)=1,a’(0)=0. These initial conditions along with a flux tube of the equal field case turns into a finite flux tube
choice ofa determine the chargegQ. The task of numeri- whenEgy drops belowHk . Also the cross-sectional size of

D. Intermediate cases
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: : g -q

FIG. 4. Plot of the numerically evaluated ansatz functign)
for a=/6 (i.e., theHxx>Eky case. This figure(after reflection FIG. 5. The evolution from WH-like solution to finite flux tube
about thex andy axe$ represents a flux tube with the “electric” solution. Starting from the top whertdx=0 and the solution is
and “magnetic” charges located at0.87. Note that relative to the WH-like, we find that as the strength of the “magnetic” field is
Exk=0 case the singularities have moved further apart. This was #creased the solution evolves into a stretched WH-like configura-
general feature of the solutiorise., the distance between the sin- tion, an infinite flux tube, a finite flux tube, and finally f@x
gularities increased as the strengthegf increasey =0 into a finite flux tube with minimal separation between the

charges.

this case has a maximum et 0 and decreases as-» *r,

where singularities occur. We take these singularities afcated between two+) and (—) “electrical” and “mag-

the locations of the “electric*/“magnetic” charges. Be- netic” charges located atr,. Thus the longitudinal size of

tween the charges there is a flux tube of Kaluza-Klein “elec+his object is again finite, but now the cross sectional size

flux tube (the distance between chargere‘gches |t_s”m|_n|- larities which we interpret as the locations of the charges.

mum the limit when there is only a “magnetic” field s solution is very similar to the confinement mechanism

(Exx=0). in QCD where two quarks are disposed at the ends of a flux
tube with color electrical and magnetic fields running be-

IIl. DISCUSSION tw_een_ the q_uarks. In t_his conr_lection one can ask if thi_s simi-
larity is accidental or if there is some deeper connection be-
As the relative strengths of the Kaluza-Klein fields areqween 5D Kaluza-Klein gravity and QCD. We note that in

varied we find that the solutions to the metric in Eq) Ref. [19] some mappings between 4D gravity and non-
evolve in a very interesting and suggestive way. Startingapelian theory are discussed.

with the case when there is no “magnetiC” field this evolu- (5) EKK:O' This solution is again finite flux tubeon'y

tion can be sketched as follows. with a “magnetic” field filling the flux tube. In this solution
(1) Hkx=0. The solution is aWH-like objectlo-  the two opposite “magnetic” charges are confined to a
cated between two surfaces aty where the reduction of spacetime of fixed volume. This may indicate why single,
sD asymptotic magnetic charges have never been observed in
to 4D Spacetime breaks down. The cross-sectional size Q‘fature: they are permanenﬂy confined to monop0|e-
this solution increases asgoes from 0 to*r,. The throat  antimonopole pairs of some fixed volume.
between thetr, surfaces is filled with “electric” flux. The evolution of the solution from a WH-like object, to
(2) 0<Hkk<Ekk . The solution is again &/H-like ob-  an infinite flux tube, to a finite flux tube, as the relative
ject The throat between the surfaces-at is filled with  strengths of the fields is varied, is presented in Fig. 5. This
both “electric” and “magnetic” fields. The longitudinal dis-  allows us to make two complimentary conclusions: First, if
tance between thecr, surfaces increases, and the cross-one takes some Wheeler-like model of electric charge as in
sectional size does not increase as rapidly asry, com-  Ref.[12], then it can be seen that if the magnetic field be-
pared to the previous case. comes too strong, the WH-like solution is destroyed and with
(3) Hkk=Ek - In this case the solution is anfinite flux it the Wheeler-like model of electric charge. Second, if one
tubefilled with constant “electrical” and “magnetic” fields, concentrates a sufficiently strong electric figlice., Exx
and with the charges disposed &te. The cross-sectional >H,) into some small region of spacetime, one is led to
size of this solution is constana§ const). Essentially, as the science-fiction-like possibility that one may be able to
the magpnetic field strength is increased one can think that théopen” the finite flux tubes into a WH-like configuration
two previous solutions are stretched so thatthg surfaces  This conjecture assumes some kind of spacetime foam model
are taken tat e and the cross section becomes constant. where the vacuum is populated by virtual flux tubes filled
(4) 0<Egk<Hgk - In this case we havefiite flux tube  with virtual “magnetic” and/or “electric” fields.
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Starting from the solutions obtained here we see that in ACKNOWLEDGMENTS
5D gravity there is a distinction between “electrical” and
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