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Ground state energy of a massive scalar field in the background
of a cosmic string of finite thickness
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We calculate the ground state energy of a massive scalar field in the background of a cosmic string of finite
thickness~Gott-Hiscock metric!. Using zeta functional regularization we discuss the renormalization and the
relevant heat kernel coefficients in detail. The finite~nonlocal! part of the ground state energy is calculated in
211 dimensions in the approximation of a small mass density of the string. By a numerical calculation it is
shown to vanish as a function of the radius of the string and of the parameterj of the nonconformal coupling.
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I. INTRODUCTION

The Universe may have undergone a number of ph
transitions since the big bang due to spontaneous symm
breaking in gauge theories. A number of topological obje
may have been produced during the expansion of the U
verse@1# amongst which the cosmic strings seem to be
particular interest as seeds for the density fluctuations in
early Universe that are responsible for the formation of g
axies~see for example@2#!. Also, the gravitational radiation
produced by the formation of cosmic strings is part of c
mological scenarios.

Several models of strings have been suggested. First o
Vilenkin has investigated the case of an infinitely thin co
mic string @3#. The energy momentum tensor of this strin
has a delta function like singular form. The space-time
locally flat except in the origin where it has a delta-shap
Riemann tensor@4#. The vacuum expectation value of th
stress-energy tensor for different kinds of fields in that ba
ground has been calculated both for zero temperature@5# and
non-zero temperature@6# cases.

The vanishing thickness of the string causes known pr
lems. The vacuum expectation value of the stress-energy
sor has a non-integrabile singularity in the origin which c
be seen already from dimensional considerations. As a c
sequence, for the renormalization of the ground state en
of quantum fields an additional counterterm is required. I
known as the topological Kac term@7#. This additional part
may be recognized as due to the boundary condition at
origin @6#.

The mentioned problems can be avoided by considerin
string with finite thickness. The simplest case is that o
constant matter density inside the string. It has been con
ered in Refs.@8,9#. The pressurep and energy densityE
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inside the string obey the conditionp1E50. The exterior of
this string is a conical space-time and the interior is a c
stant curvature space~‘‘cup’’ space!. The metric is smoothly
matched on the surface of the string but the scalar curva
has a lapse on it. In fact, this space is a cone with a smoo
origin. There is no gravitational field outside the string
both above cases opposite to the Newtonian logarith
gravitational potential of a thread-like matter distributio
Note that this statement remains valid for an arbitrary rad
matter distribution inside the string, provided that the tra
lational invariance along the string is not broken.

The purpose of this paper is to calculate the ground s
energy of a massive scalar field in the background of a fin
thickness cosmic string using the methods developed in@14#.

In fact, we consider the (211)-dimensional case. In zet
functional regularization, the ground state energy of a sc
field F is given by

E05M2s
1

2
zS s2

1

2D , ~1!

where

z~s!5(
~n!

~l~n!1m2!2s ~2!

is the zeta function of the corresponding Laplace opera
The parameterM is arbitrary. It has the dimension of a mas
Usually it is denoted bym which we reserve here for th
linear mass density of the string. We assume the fieldF to be
put into a large volume with Dirichlet boundary conditions
order to render the eigenvalues discrete. It will be seen
the influence of this boundary separates completely from
contributions of the pure background. Thel (n) are eigenval-
ues of the two dimensional Laplace operator

~D2jR!w~n!~x!5l~n!w~n!~x!, ~3!

where R is the curvature scalar.
©1999 The American Physical Society17-1
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In the (311)-dimensional case we would have to add t
integration over the momentum of the translational invari
direction along the axis of the string and get

E0
~311!5

Ap

2

G~s21!

G~s21/2!
M2sz~s21!. ~4!

The ultraviolet divergencies of the ground state energy
completely determined by the first few heat kernel coe
cients. By means of

z~s!5E
0

` dt

t

ts

G~s!
K~ t ! ~5!

and the asymptotic expansion fort→0,

K~ t !5
1

4pt (
n>0

Bntn ~6!

of the heat kernelK(t) corresponding to the operator in E
~3! the divergent part of the ground state energy can be
pressed in terms of the first four coefficients@in (311) di-
mensions five coefficients would enter#. We define

E0
div~s!5S M

mD 2s 1

8p H G~s23/2!

G~s21/2!
B0m31B1/2

G~s21!m2

G~s21/2!

1B1m1B3/2

G~s!

G~s21/2!J . ~7!

In the following we calculate these coefficients for a string
zero thickness, reobtaining known results, and for a string
finite thickness in the approximation of a small mass den
of the string. Using these coefficients, the renormalization
the ground state energy can be carried out in the stan
way by adding the counterterms corresponding to Eq.~7! to
a suitably defined classical energy. So we get the renorm
ized ground state energy

E0
ren5 lim

s→0
~E02E0

div!. ~8!

In the (211)-dimensional case we obtain the resultE0
ren

50 in the given order of small mass density numerically
We note that the ground state energy defined in this w

obeys the normalization condition

E0
ren→0 for m→`, ~9!

which follows, from the circumstance that the heat ker
expansion is at once the asymptotic expansion for la
mass.

The organization of the paper is as follows. In Sec. II
describe the Gott-Hiscock space-time of finite thickness c
mic string. In Sec. III we write down the general formul
for the thin string and calculate the corresponding heat ke
coefficients. In the next section we do the same for the fin
thickness string. In Sec. V we calculate the ground state
ergy in the approximation of a small angle deficit. The res
06401
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is discussed in Sec. VI and the Appendix contains some te
nical details of numerical calculations.

We use units\5c5G51.

II. THE SPACE-TIME

The metric of Gott-Hiscock@8,9# is a solution of Ein-
stein’s equations and it describes the space-time of an
nitely long straight cosmic string with nonvanishing thic
ness. The energy densityE is constant inside the string an
zero outside of it. The manifold can be covered by two ma
The first map, tP(2`,1`),rP@0,r0#,wP@0,2p#,z
P(2`,1`), covers the interior of the string and the seco
one, tP(2`,1`), r P@r 0 ,1`), wP@0,2p#, zP(2`,
1`), covers the exterior. The coordinates (t,w,z) are the
same in both maps.r 0 andr0 denote the radius of the strin
in external and internal coordinates, respectively. The str
is situated along thez-axis. The metrics areC1—matched on
the surface of the string, there is no surface stress energy~the
extrinsic curvature tensors of the interior and exterior metr
are equal to each other@9#!. The metric has the following
form:

dsin
2 5dt22dr22r

*
2 sin2S r

r*
Ddw22dz2, ~10!

inside the string, and

dsout
2 5dt22dr22

r 2

n2 dw22dz2, ~11!

outside of it. Herer* 51/A8pE is the ‘‘energetic’’ radius of
the string; E is the energy density inside the string. Th
matching condition on the surface of the string links t
exterior parameters (n,r 0) and interior ones (r* ,r0) of the
string

r0

r*
5
def

e5const, n5
1

cose
,

r 0

r0
5

tane

e
. ~12!

From these relations we have the following consequen
The limit to the Minkowski space-time is achieved by lettin
the energy density inside the string tend to zero (r*→`) for
fixed radius of the stringr0 . Then the angle deficit will tend
to zero too because ofe→0. Thereby in this limit n
51/cose51,r 05r0 and both metrics turn into Minkowsk
space time. On the other hand, in order to shrink the str
(r0→0) at fixed exterior~e respectively the angle deficit
are constant! we must turn the energy densityE to infinity
proportional toe2/8pr0

2. Nevertheless the energym per unit
length of the stringm which is the product of the energ
densitye2/8pr0

2 and the cross section of the string is alwa
constant and equals (121/n)/4, the same value as for th
infinitely thin cosmic string and it does not depend on t
radius of the string. The two dimensional part (t5const,z
5const! of the space-time~10!,~11! is depicted in Fig. 1.

The manifold can be covered also by one map. One
continue the exterior radial coordinater into the interior of
7-2
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the string by mappingr 5r 01(r0 /e)tan(er/r02e) and the
space-time will be described by the metric

dsin
2 5dt22

dr2

@11e2~r 2r 0!2/r0
2#2

2
r 2

n2

dw2

11e2~r 2r 0!2/r0
2

2dz2, r P@0,r 0#,

dsout
2 5dt22dr22

r 2

n2 dw22dz2, r P@r 0 ,`!.

Here, the parametersn, r0 andr 0 are connected by conditio
~12!. Nevertheless we shall use the metric in two maps
cause it is simpler for calculations. As far as the angle de
is fixed, that ise5arccos 1/n5r0 /r* is constant, one can
excluder* and rewrite the metric in the form which will b
used in the following:

dsin
2 5dt22dr22

r0
2

e2 sin2S er

r0
Ddw22dz2, rP@0,r0#,

~13!

inside the string, and

dsout
2 5dt22dr22

r 2

n2 dw22dz2, r P@r 0 ,`!, ~14!

outside of it.

III. INFINITELY THIN COSMIC STRING

The metric for an infinitely thin cosmic string is given b
Eq. ~14! for r P@0,`). In the (211)-dimensional case
which we consider here, the coordinatez is absent. The ei-
genvaluesl (n) which enter the zeta function~2! are deter-
mined by Eq.~3! in the background of the spatial part of th
metric. The curvature scalar R in this equation is prop

FIG. 1. Plot of the two-dimensional (t5const,z5const! part of
finite thickness cosmic string space-time.
06401
-
it

-

tional to the two dimensional delta function. So it is a pote
tial with pointlike support and should be taken into accou
by a self-adjoint extension of the operator corresponding
Eq. ~3!. Instead, we drop these contributions here by cons
ering the casej50 only.

By means of the ansatz

w~n!5einwAn

r
R~r !, ~15!

(n50,61,62, . . . ) wearrive at the radial equation

S d2

dr2 2
n2n221/4

r 2 1l2DR50. ~16!

The solution regular at the origin of this equation is a Bes
function

R5Aplr

2
Jnn~lr !. ~17!

We assume it to obey Dirichlet boundary conditions ar
5R. Then the solutionsl5ln,i ( i 51,2,. . . ) of theequation

AplR

2
Jnn~lR!50 ~18!

are the discrete eigenvaluesl→l (n)5ln,i . Now the ground
state energy and equally the zeta function~2! can be written
in the form

E0
thin~s!5

1

2
M2s(

i 51

`

(
n52`

`

~ln,i1m2!1/22s. ~19!

The sum overi can be rewritten as an integral~for details see
@10#!

E0
thin~s!52M2s

cos~ps!

2p (
n50

`

dn

3E
m

`

dk~k22m2!1/22s
]

]k
lnk2nnI nn~kR!, ~20!

wheredn.052 andd051 is the multiplicity of the angular
momentum. Note the factork2nn in the argument of the
logarithm; see@10#.

In order to investigate the pole ofE0
thin(s) we use the

uniform asymptotic expansion of the modified Bessel fun
tion for n→` @11#

I nn~nnz!5A t

2pnn
ennh~z!H 11 (

k51

` uk~ t !

~nn!kJ ~21!

with t51/A11z2, h(z)5A11z21 ln„z/(11A11z2)… and
z5kR/nn.

The pole term of the zeta functionz(s) ~2! in s521/2
respectively of the energyE0(s) in s50 will be delivered by
the first few terms~up to k52! of this expansion when in-
7-3
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serting them intoE0 ~20!. We note that this expansion is a
once an asymptotic expansion for large masses and tha
individual heat kernel coefficients enter expansions like
~7! multiplied by the corresponding power ofm. Therefore
-

on

er

e

06401
the
.

we will in the following keep track of these powers and dr
all contributions which form→` are of orderO(1/m).

After inserting the expansion~21! into ~20!, the integra-
tion overk can be carried out using
E
1

`

dx~x221!1/22sx~11x2/a2!2p/25

GS 3

2
2sDGS s1

p23

2 D
2GS p

2D ap~11a2!2s2 ~p23!/2,

and we obtain the following expression forE(s):

E~s!52
cosps

4p S M

mD 2s

Rm2GS 3

2
2sD H (

n50

`

dnFG~s21!

Ap
2F12

nn

b
GS s2

1

2D G2

GS s2
1

2D
2b

ZS 0,s2
1

2D2
1

4b2Ap
FG~s!Z~0,s!

2
10

3

G~s11!

b2 Z~2,s11!G2
1

8b3 FGS s1
1

2DZS 0,s1
1

2D2
6

b2 GS s1
3

2DZS 2,s1
3

2D1
5

2b4 GS s1
5

2DZS 4,s1
5

2D G
2

1

96b4Ap
F25G~s11!Z~0,s11!2

1062

5b2 G~s12!1~2,s12!1
884

5b4 G~s13!Z~4,s13!2
1768

63b6 G~s14!Z~6,s14!G

1¯
J . ~22!
hift

n-

d

ain
Here 2F152F1@2 1
2 ,s21; 1

2 ;2(nn/b)2# is the hypergeomet
ric function; Z(p,q)5(n50

` dn(nn)p@11(nn/b)2#2q and b
5mR. Next we have to perform the analytical continuati
s→0.

First of all let us consider the part containing the hyp
geometric function

Y~s!5 (
n50

`

dnFG~s21!

Ap
2F12

nn

b
GS s2

1

2D G
5

G~s21!

Ap
12(

n51

` FG~s21!

Ap
2F12

nn

b
GS s2

1

2D G .

~23!

For the calculation of the series we use the Mellin-Barn
type representation of the hypergeometric function

G~s21!

Ap
2F1X2 1

2
,s21;

1

2
;2S nn

b D 2C
5

1

GS 2
1

2D
1

2p i Eg

G~s211t !

t21/2
G~2t !S nn

b D 2t

dt,
-

s

where the contour is such that the poles ofG(s211t)/(t
21/2) lie to the left of it and the poles ofG(2t) to the right
@11#. Before interchanging sum and integral one has to s
the contourg to the left crossing the pole att51/2 up to t
521/2 and then to close it to the left. Because of the co
vergence of the series(n51

` n2t it is necessary to havet,
21/2. The residue at the pointt51/2 cancels the secon
manifestly divergent term in the sum~23!. Taking the limit
s→0 we obtain the following finite expression for Eq.~23!:

Y~0!5
4

Ap
S n

bD 2

zR8 ~22!1
1

Ap
S 2 ln

2pb

n
23D

1
1

Ap
(
n50

`
~21!n

~n11!~n12!

zR~2n12!

n13/2 S b

n D 212n

.

HerezR(a) is Riemann zeta function.
The series is absolutely convergent forb/n,1, but we

need it in the domain of largeR, that is forb@1. For this
reason we perform the analytic continuation into the dom
we need. Witht5 ib/n in the formula

(
n51

`
t2n

n
zR~2n!5 ln

pt

sinpt
, utu,1, ~24!
7-4
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we can express the series inY(0) in terms of the series~24!.
As a result,Y(0) is expressed in terms of functions whic
are analytical in the whole plane ofb and it can be divided
into a polynomial and an exponentially small part

Y~0!5
2Ap

3

b

n
2

Apn

3b
1

2

Ap
ln~12e2 2pb/n!

22Ap@4Q̃1~b/n!22Q̃2~b/n!#

with

Q̃a~x!5
1

xa E
0

x dtta

e2pt21
2

1

xa

G~a11!

~2p!a11 zR~a11!

52
1

xa E
x

` dtta

e2pt21
. ~25!

For largeb this expression is exponentially small. Therefo
we arrive at

Y~0!5
2Ap

3

b

n
2

Apn

3b
1O~e2b!.

The same result may be obtained in another way. One
use an analytical continuation of the hypergeometric funct
@11#, namely

2F1X2
1

2
,s21;

1

2
;2S nn

b
D 2C

5
nn

b

G~1/2!G~s21/2!

G~s21!
1

G~1/2!G~1/22s!

G~21/2!G~3/22s!

3X11S nn

b
D 2C12s

2F1S 1,s21;s1
1

2
;

1

11S nn

b
D 2D .

The first term in the right-hand side~RHS! cancels the sec
ond, divergent term in the sum~23!. Next, one can use powe
series expansion for the hypergeometric function becaus
argument 1/„11(nn/b)2

… is always smaller than unity. Th
result will be the same as that obtained above by a lon
calculation.

The seriesZ(p,q) in Eq. ~22! can be expressed in term
of the Epstein-Hurwitz zeta function@12#

zEH~r ,c!5 (
n51

`

~n21c2!2r .

A known, quickly convergent expansion for large values
the parameterc is
06401
an
n

its

er

f

zEH~r ,c!52
c22r

2
1

ApG~r 21/2!

2G~r !
c22r 11

1
2p rc2r 11/2

G~r ! (
n51

`

nr 21/2Kr 21/2~2pnc!.

For smallc it holds

zEH~r ,c!5 (
n50

`

~21!n
G~n1r !

G~r !n!
c2rzR~2r 12n!.

For integerr>1 the zeta function can be expressed in ter
of elementary functions. So we get the relevant part of
ground state energy in the form

E0
thin~s!5S M

mD 2s 1

8p X2
2pR2

3n
m32

p3/2Rm2G~s21!

nGS s2
1

2D
1

p

3 S n1
1

n Dm1
p3/2G~s!

32RnGS s2
1

2D C1
1

R
OS 1

RmD ,

~26!

dropping contributions proportional to exp(2Rm). By com-
paring this formula withE0

div ~7! we can read off the hea
kernel coefficients

B05
pR2

n
, B1/252

p3/2R

n
, B15

p

3 S n1
1

n D ,

B3/25
p3/2

32Rn
. ~27!

Now, taking into account the general structure

Br5E
]V

crdS1E
V
ardV ~28!

of the coefficients we representB1 as

B15
2p

3n
1

p

3 S n2
1

n D . ~29!

In this representation, the first term inB1 and all other coef-
ficients are seen to be the result of the boundary atr 5R. In
fact, they are known@13#. The second term inB1 is indepen-
dent on that boundary. It is known as the topological K
term @7# and is a result of the conical singularity.

Using these coefficients, by means of Eq.~7!, we can
define E0

div and the renormalized ground state energyE0
ren

~8!. Now we observe that all contributions in Eq.~26! except
for the topological Kac term are due to the boundary ar
5R. Leaving them aside, only the Kac term remains. It m
be included intoE0

div and we get

E0
ren50 ~30!
7-5
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for the genuine contributions of the string, or equally in t
limit R→`. Let us remark that this result holds also in (
11) and higher dimensions as can be inferred from dim
sional reasons. The parameters entering the problem ar
mass density of the string which enters together with
gravitational constant to form a dimensionless combinati
expressed by the angle deficit, for example, and the mas
the quantum field. In the case of a string with zero rad
there is no further dimensional parameter on which
renormalized ground state energy might depend. As
ground state energy has the dimension of an inverse leng
might be proportional to the mass but such terms had b
subtracted in the renormalization process. Note that this
cussion does not apply to the case of a string with fin
radius because this radius is the additional dimensional
rameter allowing in general for a nontrivial renormaliz
ground state energy.

IV. COSMIC STRING WITH FINITE THICKNESS

We use the metric given by Eqs.~13!,~14!. Again, the
coordinatez will be dropped because we work in (211)
dimensions. The curvature scalar is

R52
2e2

r0
2 , ~31!

and we allow forjÞ 1
6 . By means of the ansatz (n50,61,

62, . . . )

F5einwg21/4R

5einwH Rin~r!/Ar0

e
sinS er

r0
D , rP@0,r0#,

Rout~r !/Ar

n
, r P@r 0 ,`!,

~32!

we arrive at the equations

H d2

dr2 2
e2@n221/4#

r0
2 sin2~er/r0!

1
e2

4r0
2 ~128j!1l2JRin50,

rP@0,r0# ~33!

H d2

dr2 2
n2n221/4

r 2 1l2JRout50, rP@r0,`! ~34!

for the radial functions. Both these equations may be sol
exactly. Indeed, the solution of the radial equation outside
the string~34! can be written as

Rout5
i

2
@ f n~l!Hnn

2 ~lr !2 f n* ~l!Hnn
1 ~lr !#, ~35!

where f n is the Jost function and

Hnn
6 ~lr !56 iAplr

2
Hnn

~1!,~2!~lr ! ~36!
06401
-
the
e
,
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are combinations of the Hankel functions. The solution re
lar at the origin of the radial equation~33! inside the string is

Rin5ei ~p/2! n~n21!Ap

2
sin

er

r0
S lr0

e D n11/2

Pa
2nFcos

er

r0
G

with

a52
1

2
1

1

2
A11

4l2r0
2

e2 28j

and Pa
n is the Legendre function. These solutions must ob

the matching conditions

Rin~r0!5Rout~r 0!, Rin8 ~r0!5Rout8 ~r 0!

on the surface of the string. From this we get the followi
formula for the Jost function:

f n~l!52ei ~p/2! n~n21!
ip

2

sine

Acose
S lr0

e D n11

3H Hnn
~1!8~lr 0!Pa

2n@cose#

1Hnn
~1!~lr 0!Pa

2n8@cose#
e sine

lr0
J .

Here the primes denote derivatives with respect to the a
ments. Taken on the imaginary axis this Jost function re

f n~ ik !52
sine

Acose
S kr0

e D n11H Knn8 ~kr0!Pa
2n@cose#

1Knn~kr0!Pa
2n8@cose#

e sine

kr0
J . ~37!

Note that this function does not have zeros forkP@0,`),
i.e., there are no bound states. This can be checked by
spection of Eq.~37!. The Jost function has the following
asymptotics for large and smallk:

f n~ ik !k→`;expH 2kr0S r 0

r0
21D J ,

f n~ ik !k→0;k2n~n21!, f 0~ ik !k→0;2 ln k.
~38!

Using the formula

lim
t→`

tnPt
2nFcos

x

t G5Jn~x!, ~39!

the Minkowskian limit (n→1) for the Jost function

lim
n→1

f n~l!51 ~40!

can be checked.
7-6
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Proceeding as was done in the case of the infinitely t
string we obtain the following expression for the grou
state energy in (211) dimensions:

E052M2s
cosps

2p (
n50

1`

dnE
m

`

dk@k22m2#1/22s

3
]

]k
ln$k2n@ f n~ ik !Hnn

2 ~ ikR!2 f n* ~ ik !Hnn
1 ~ ikR!#%

and, using

Km~ze2 ip!5e2 imzKm~z!2 ipI m~z!

after obvious rearrangements we get

E052M2s
cosps

2p (
n50

1`

dnE
m

`

dk@k22m2#1/22s

3
]

]k
ln$k2n@ f n~ ik !I nn~kR!2 f̃ n~ ik !Knn~kR!#%

52M2s
cosps

2p (
n50

1`

dnE
m

`

dk@k22m2#1/22s

3
]

]k
ln k2nf n~ ik !I nn~kR!2M2s

cosps

2p

3 (
n50

1`

dnE
m

`

dk@k22m2#1/22s

3
]

]k
lnF12

f̃ n~ ik !

f n~ ik !

Knn~kR!

I nn~kR!
G .

Now the contribution of the last line is exponential
small for R→`. The contribution of the preceding line ca
be written as the sum

E05E0
thin1E0

int ~41!

of the contributionE0
thin ~20! of the infinitely thin string con-

sidered in the preceding section and the contribution of
interior structure of the string

E0
int52M2s

cosps

2p (
n50

1`

dn

3E
m

`

dk@k22m2#1/22s
]

]k
ln kn~n21! f n~ ik !. ~42!

After the work done in Sec. III it is just this contributio
which remains to be calculated.

V. APPROXIMATION OF SMALL ANGLE DEFICIT

To calculateE0
int ~42! and the corresponding renormalize

ground state energy the analytic continuation ins to s50
must be performed. To this end the knowledge of the u
form asymptotic expansion of the Jost functionf n( ik) ~37!
06401
n

e

i-

for n→`,k→`,n/k fixed is required. Now, although thi
Jost function is known explicitly in terms of Bessel functio
and the Legendre function, this task is not easy to perfo
The point is that the asymptotic fora→` andn→` of the
Legendre functionPa

2n is quite complicated to handle
Therefore we restrict ourselves to the easier tractable cas
a small angle deficit respectively mass density of the stri
i.e., to the casee!1. Then in the radial equation for th
interior of the string

H d2

dr2 2
n221/4

r2 1l22U~r!JRin50, rP@0,r0#,

~43!

with the potential@using Eq.~31!#

U~r!5
1

r2 XS n22
1

4
D S u2

sin2 u
21D 1u2S 2j2

1

4
D C

(u5er/r0) we approximate

U~r!5U01O~e4! ~44!

with

U05
e2

3r0
2 ~n216j21!.

By this, Eq.~43! can be solved in terms of Bessel functio

Rin5ei ~pn/2! ~n21!S l

ln
D n11/2Ap

2
lnrJn~lnr!

(ln5Al22U0) and the corresponding Jost function read
for small e,

f n
se~l!5 i

p

2
ei ~pn/2! ~n21!S l

ln
D nH 1

2 FAr 0

r0
2Ar0

r 0
G

3Jn~lnr0!Hnn
~1!~lr 0!1Ar 0r0@lnJn8~lnr0!Hnn

~1!

3~lr 0!2lJn~lnr0!Hnn
~1!8~lr 0!#J .

On the imaginary axis we get

f n
se~ ik !5S k

kn
D nH 1

2 FAr 0

r0
2Ar0

r 0
G I n~knr0!Knn~kr0!

1Ar 0

r0
@knr0I n8~knr0!Knn~kr0!

2kr0I n~knr0!Knn8 ~kr0!#J , ~45!

with r 0 /r05tane/e andkn5Ak21 (e2/3r0
2) (n216j21). It

is easy to verify that it obeys the limits~38! and ~40!.
Note that the approximate potentialU ~44! is constant and

that U0 may take negative values. Therefore bound sta
7-7
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could occur. However, due to the conical structure of
exterior part of the space~seen in the index of the Hanke
functions! and the corresponding relations between the
rameters, in fact no bound states occur. Correspondingl
can be shown that the Jost function~45! does not have zero
for kP@0,`).

Now we insert this approximate Jost function intoE0
int

~42! and have to perform the analytic continuation ins to s
50. For this reason we use the uniform asymptotic exp
sion of Eq.~45! which can now be obtained by simply in
serting the corresponding expansion~21! of the Bessel func-
tions. We define

f n
se,as~ ik !5

znn

yn e2nnh~zn!1nh~y!S 11e2
t

24nD ~46!

with

z5
kr0

n
, zn5

kr0

nn
, t5~11z2!21/2,

h~z!5A11z21 ln
z

11A11z2
,

y5Az21
e2

3
2

e2

n2

126j

3
.

In general, the expansion~46! must include all terms up to
n22. But that contribution does not appear~together with
n24,n26, . . . !. Next we divide the expression forE0

int into
two parts

E0
int5E0,as

int 1E0,fin
int ~47!

simply subtracting and adding lnkn(n21)fn
se,asin Eq. ~42!. Here

E0,as
int 52M2s

cosps

2p (
n50

1`

dn

3E
m

`

dk@k22m2#1/22s
]

]k
ln kn~n21! f n

as~ ik !,

~48!

is called the ‘‘asymptotic’’ part which still requires the an
lytic continuation to be done and

E0,fin
int 5

21

2p
(
n50

1`

dnE
m

`

dkAk22m2
]

]k

3@ ln kn~n21! f n~ ik !2 ln kn~n21! f n
as~ ik !# ~49!

is called the ‘‘finite’’ part. In it the analytic continuation
could be performed under the sign of the integral and
sum because they are convergent.
06401
e

-
it

-

e

In E0,as
int ~48! the integrand can be expanded in powers oe.

Then the integration overk and the summation overn can be
carried out explicitly using the same method as in Sec.
We obtain

E0,as
int us→05

e2

2pr0
H p

24
b32F p

12
2

126j

12
p Gb

2F 1

720
1

126j

72 G p

b
1F1

6
b22

1

24

1
126j

6 G ln~12e22pb!2
p

3
b2@3Q̃1~b!

23Q̃2~b!1Q̃3~b!#2
126j

3
pQ̃1~b!J ,

~50!

with the notationb5mr0 and Q̃a defined by Eq.~25!. We
remark thatQ̃a(b) are exponentially decreasing forb→`.

At this point we can determine the heat kernel coefficie
for the thick string. We have to consider the asymptotic e
pansion ofE0

int for largem. The nondecreasing contribution
may be contained only inE0,as

int ~48! and can be read off from
Eqs.~50! and ~7!. They are

B0
int52e2

pr0
2

4
, B1

int522pje2. ~51!

Note that the coefficientB1/2 is zero. This was to be expecte
because the background is smooth enough not to allow
boundary dependent coefficients in this order. Also, the
efficient B3/2 is zero. This is in the given order ine and
follows simply from dimensional reasons. In higher orders
e it may be nonzero like further coefficients of higher ha
integer order.

Now, by means of Eq.~41! we have to take the contribu
tions to the heat kernel coefficients of the infinitely th
string ~27! and that of the ‘‘interior,’’ Eq.~51!, together.
These coefficients can be compared with that following fro
the general formulas. For instance, from

B05E
V
dV52pE

0

r0 r0

e
sin

er

r0
dr1

2p

n E
r 0

R

rdr

5
pR2

n
2

e2pr0
2

4
1O~e4!, ~52!

we obtain the boundary dependent contribution@cf. Eq. ~27!#
andB0

int ~51!. For the coefficientB1 we have

B15
126j

6 E
V
RdV5

126j

3
e2p1O~e4!. ~53!

Now, in the given approximation it holds

p

3 S n2
1

n D5
p

3
e21O~e4!.
7-8
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Therefore, fromB1 ~27! respectively~29! of the thin string
andB1

int ~51! we get

B15
p

3 S n1
1

n D22pje25
2p

3n
1e2p

126j

3
1O~e4!.

~54!

We note that the Kac term disappeared. The first term in
last line is due to the boundary atr 5R and the second is th
genuine contribution of the thick string. It vanishes in t
case of a conformal coupling.

To proceed, we defineE0
ren by means of Eq.~8! using the

coefficientsB0 ~52! andB1 ~53! in the definition ofE0
div ~7!.

Note that the coefficients with half integer numbers are p
boundary dependent contributions resulting from the bou
ary conditions atr 5R.

In fact, the renormalization inE0
int is reduced to dropping

the nondecreasing form→` contributions inE0,as
int . There-

fore we obtain for the complete renormalized ground st
energy

E0
ren5

e2

2pr0
H F1

6
b22

1

24
1

126j

6 G ln~12e22pb!

2
p

3
b2@3Q̃1~b!23Q̃2~b!1Q̃3~b!#
e
x

06401
e

e
-

e

2
126j

3
pQ̃1~b!2 (

n50

`

dnE
b

`

dxAx22b2
]

]x
Fn

2F 1

720
1

126j

6 G p

b J . ~55!

Here, the notation

Fn5
ln f n~ ix !2 ln f n

as~ ix !

e2

is introduced.
Some further work is necessary. InFn the Jost functions

have still to be expanded for smalle. For f n( ik) this can be
done using the formula@11#

U]Kp~x!

]p U
p5n

5
n!

2 S x

2D 2n

(
l 50

n21 S x

2D n Kl~x!

~n2 l !l !
;

for f n
as( ik) this expansion is a simple task. Finally we obta
Fnue50
5S ~n11!2

6
2

x2

3
D I nKn1S n2

6
2

x2

3
D I n11Kn211

x

3
I n11Kn1

nn!

4
(
l 50

n21 S x

2
D l 2n x~ I n11Kl1I nKl 11!

~n2 l !l !
1

n

2
XK0n! I nS 2

x
D n

1 ln xC1
nn!

2
(
l 51

n21 S x

2
D l 2n I nKl

l !
U

n>2

1
n

3
A11

x2

n22
n

6

1

11A11
x2

n2

2
n

2
lnS 11A11

x2

n2D 2
1

24n

1

A11
x2

n2

2
126j

6 F I nKn1I n11Kn212
1

n

1

11A11
x2

n2
G .
ited
ive
ain
the
sub-
ffi-
the
rge

the

the
This expression has to be used inE0
ren ~55!.

In writing

E0
ren5

e2

2pr0
G~b!1O~e4! ~56!

it is in fact G(b), a function of one variable, which must b
calculated. We did this task numerically. After a careful e
amination we came to the result

G~b!50, ~57!

for arbitraryj; the details are given in the Appendix.
-

VI. CONCLUSIONS

In the preceding sections we worked out methods su
for the calculation of the ground state energy of a mass
scalar field in the background of a cosmic string. The m
emphasis was on a string of finite thickness. We used
standard renormalization scheme, i.e., we calculated and
tracted the contributions of the first few heat kernel coe
cients. Thereby the normalization condition, stating that
renormalized ground state energy must vanish for a la
mass of the quantum field, is imposed.

As a part of these calculations we first considered
infinitely thin string in detail. Using explicit formulas we
reobtained the known heat kernel coefficients. These are
7-9
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coefficients due to the boundary of a large cylinder ar
5R, which was introduced in order to render the eigenv
ues discrete, and the topological Kac term. In the sense o
renormalization used we got the result that the renormali
ground state energy of the pure string, i.e., when remov
the outer boundary (R→`), is zero.

Then the same problem is formulated for a string w
finite thickness. However, the complete calculation suff
still from mathematical difficulties. Therefore the approx
mation of a small mass densitye of the string was intro-
duced. Having in mind the smallness ofe;1023 in cosmo-
logical applications, this is at once physically motivated.

We note that in this approximation an alternative calcu
tion should be possible, namely the use of a perturba
theory in the mass density as it was done for the calcula
of the Casimir force between two cosmic strings in@15#.

In this approximation of a small mass density, in ordere2,
first the heat kernel coefficients were calculated. They
checked to coincide with that following from general form
las. We remark that the Kac term disappears and that f
conformal coupling (j51/6) there are no counterterms r
quired besides that which follow from the boundary atr
5R. From this it is clear that the Kac term is due to t
singular behavior of the metric of the thin string at the orig
This can be understood from another point of view too. C
sider the vacuum expectation value of the energy densit
the background of the thin string. For dimensional reason
behaves liker 22 near the string and, therefore, cannot
integrated overr near the origin. Now, if introducing a suit
able regularization, zeta functional regularization for
stance, it becomes possible to integrate overr . As a result,
when removing the regularization, an additional divergen
occurs which is just the Kac term.

After performing the renormalization we calculated n
merically the ground state energy in the background of
thick cosmic string in ordere2 of a small mass density. Th
result is zero with the reasonable precision of 1027 indepen-
dently of the parameterj. Thereby a nontrivial compensatio
between different contributions occurred.

This result that the vacuum of a scalar field is not d
turbed by a cosmic string is quite remarkable and seems
to have analogues in other configurations. For instance,
do not see any symmetry or invariance arguments for
result although they should be there.

Perhaps, there is some relation to the result of Brevik
Jenesen@16# indicating the absence of particle production
the formation of a cosmic string.

Further work is necessary. For instance, the result sho
be extended to the (311)-dimensional case, to higher sp
fields and to mass densities which are not small.
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APPENDIX

Here we consider the analytical and numerical analysis
the functionG(b) defined in Eq.~57!:

G~b!5F1

6
b22

1

24
1

126j

6
G ln~12e22pb!2

p

3
b2@3Q̃1~b!

23Q̃2~b!1Q̃3~b!#2
126j

3
pQ̃1~b!

2 (
n50

`

dnE
b

`

dxAx22b2
]Fn

]x
2F 1

720
1

126j

72
G p

b
.

~A1!

Obviously we haveG(b)b→`→0 and the domain of interes
is the neighborhood of zero:b;0. For numerical simula-
tions the above formula is more suitable forb>1. In the
opposite case,b,1, there exist at first sight a logarithmi
singularity for smallb: ln„12exp(22pb)…; ln 2pb. But this
singularity is canceled with that in the contribution of (n
50) in the series in Eq.~A1!. For numerical calculations it is
more suitable to cancel this singularity in manifest form. F
this reason we divide this term into two parts,

E
b

`

dxAx22b2
]

]x
F05E

b

1

dxAx22b2
]

]x
F0

1E
1

`

dxAx22b2
]

]x
F0 , ~A2!

where

F05F02F0
as,

F05
12x2

6
I 0K02

x2

3
I 1K12

x2

6
I 0K2

2
126j

6
~ I 0K01I 1K1!,

F0
as52

x

3
1

1

24x
2

126j

6x
.

The integral

E
b

1

dxAx22b2
]

]x
F0

as ~A3!

may be found in manifest form. Thereby we arrive at t
following expression for the caseb,1:
7-10
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FIG. 2. Plots of the integrandNn52ny (]/]y) Fn„(n
2y21b2)1/2

… for ~a! b50 and~b! b50.4 andn51,2,3.
xt

t

io

Eq.

s

f

G~b!5F1

6
b22

1

24
1

126j

6 G lnF12e22pb

b
~11A12b2!G

2
p

3
b2@3Q1~b!23Q2~b!1Q3~b!#

2
126j

3
pQ1~b!1

pb

24
1zR8 ~22!

2F1

8
1

126j

6 GA12b22E
b

1

dxAx22b2
]

]x
F0

2E
1

`

dxAx22b2
]

]x
F02 (

n51

`

2E
b

`

dxAx22b2
]

]x
Fn

~A4!

with the notation

Qn~b!5
1

bn E
0

b dttn

e2pt21
. ~A5!

It is necessary to stress that formula~A4! is only a differ-
ent representation ofG(b) ~A1! which we made in order to
avoid the logarithmic contribution in individual terms. Ne
we observe that the series overn is slowly convergent and
quite a large number of terms must be taken into accoun

Now let us consider some analytical properties ofG(b).
This function does not have a linear term in the expans
for small b,

G~b!5G~0!1O~b2!.
06401
n

In order to argue this statement let us consider the part in
~A4! which contains the integral

D~b!5E
b

1

dxAx22b2
]F0

]x
1E

1

`

dxAx22b2
]F0

]x

1 (
n51

`

2E
b

`

dxAx22b2
]Fn

]x
. ~A6!

The functionF0 has the following expansion for smallx
~using the power series expansion of the Bessel function!:

F05 ln
x

2 (
k50

`

Ckx
2k1 (

k50

`

C̃kx
2k.

It is only the zeroth term in the first sum,C0 ln x/2, which
delivers a linear contribution to the first integral in Eq.~A6!.
All other terms contribute higher powers inb. Thus

E
b

1

dxAx22b2
]F0

]x
5E

0

1

dxx
]F0

]x
2

p

2
C0b1O~b2!

with C05(126j)/621/652j.
In the second integral in Eq.~A6! we can expand the

integrand forb2/x2!1 and obtain

E
1

`

dxAx22b2
]F0

]x
5E

1

`

dxx
]F0

]x
1O~b2!.

In the last term in Eq.~A6! we use the uniform expansion o
Fn ~46! which starts from the third power of 1/n. All inte-
7-11
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grals can be calculated in closed form; their expansion st
from the second order inb. Therefore

(
n51

`

2E
b

`

dxAx22b2
]Fn

]x
5 (

n51

`

2E
0

`

dxx
]Fn

]x
1O~b2!.

Putting together all three parts we obtain

D~b!5D~0!1
p

2
jb1O~b2!. ~A7!

The expansion of the remaining terms in Eq.~A4! contains
the same linear term

const1
p

2
jb1O~b2!,

which is canceled by that in Eq.~A7!. Therefore the expan
sion of G(b) starts at least from the second power ofb.

For the numerical analysis of the series inG(b) first of all
we replace the integration variablex→y5Ax22b2/n. Then
we obtain
r
e,
.

av

06401
ts

(
n51

`

E
b

`

2Ax22b2
]

]x
Fn~x!dx

5 (
n51

`

E
0

`

2ny
]

]y
Fn~An2y21b2!dy.

Some first integrandsNn52ny (]/]y) Fn(An2y21b2) are
plotted in Fig. 2 forb50 and forb50.4. As is seen from
the figures, all functionsNn(y) have quite large variations
near the origin and decrease as 1/y3 for largey.

For higher n,(n.3), the Bessel functions enteringFn
have been substituted by their uniform asymptotic exp
sions whereby the first 13 terms were taken. The error cau
by this approximation is smaller than 1027. Then the integral
and the sums can be carried out explicitly. For this ta
Maple was used.

With this, the functionG(b) was calculated for 0<b
<2 and the result

uG~b!u,1027

was obtained numerically.
ys.
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