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Ground state energy of a massive scalar field in the background
of a cosmic string of finite thickness
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We calculate the ground state energy of a massive scalar field in the background of a cosmic string of finite
thickness(Gott-Hiscock metrit. Using zeta functional regularization we discuss the renormalization and the
relevant heat kernel coefficients in detail. The fiitenloca) part of the ground state energy is calculated in
2+1 dimensions in the approximation of a small mass density of the string. By a numerical calculation it is
shown to vanish as a function of the radius of the string and of the parageté¢he nonconformal coupling.
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. INTRODUCTION inside the string obey the conditignt+ £=0. The exterior of
this string is a conical space-time and the interior is a con-
The Universe may have undergone a number of phasstant curvature spadécup” space). The metric is smoothly
transitions since the big bang due to spontaneous symmetmatched on the surface of the string but the scalar curvature
breaking in gauge theories. A number of topological objectdhas a lapse on it. In fact, this space is a cone with a smoothed
may have been produced during the expansion of the Unierigin. There is no gravitational field outside the string in
verse[1] amongst which the cosmic strings seem to be ofooth above cases opposite to the Newtonian logarithmic
particular interest as seeds for the density fluctuations in thgravitational potential of a thread-like matter distribution.
early Universe that are responsible for the formation of gallNote that this statement remains valid for an arbitrary radial
axies(see for exampl¢2]). Also, the gravitational radiation Mmatter distribution inside the string, provided that the trans-

produced by the formation of cosmic strings is part of cos-ational invariance along the string is not broken.
mological scenarios. The purpose of this paper is to calculate the ground state

Several models of strings have been suggested. First of nergy of a massive. scalar field in the background of a finite
Vilenkin has investigated the case of an infinitely thin cos-! ickness cosmic string using the methods developédip

mic string[3]. The energy momentum tensor of this string In_fact, we con§|dgr the (21)-dimensional case. In zeta
: ; . . - functional regularization, the ground state energy of a scalar
has a delta function like singular form. The space-time i

locally flat except in the origin where it has a delta-shapez(IEId ©is given by

Riemann tensof4]. The vacuum expectation value of the 1 1

stress-energy tensor for different kinds of fields in that back- Eo=M 235 §( S— 5) , (1)
ground has been calculated both for zero temperafjrand

non-zero temperaturd] cases. where

The vanishing thickness of the string causes known prob-
lems. The vacuum expectation value of the stress-energy ten-
sor has a non-integrabile singularity in the origin which can {(8)=2 (\(ny+m?)~® (2
be seen already from dimensional considerations. As a con- m
sequence, for the renormalization of the ground state energy the zeta function of the corresponding Laplace operator.
of quantum fields an additional counterterm is required. It iSThe parameteM is arbitrary. It has the dimension of a mass.
known as the topological Kac terfi7]. This additional part ysyally it is denoted by which we reserve here for the
may be recognized as due to the boundary condition at thghear mass density of the string. We assume the fletd be
origin [6]. _ _ putinto alarge volume with Dirichlet boundary conditions in
The mentioned problems can be avoided by considering grder to render the eigenvalues discrete. It will be seen that
string with finite thickness. The simplest case is that of ahe influence of this boundary separates completely from the
constant matter density inside the string. It has been consigsgntriputions of the pure background. Thg, are eigenval-
ered in Refs[8,9]. The pressurg and energy densitf | es of the two dimensional Laplace operator

(A= ER) o) (X) =N (nye(m(X), 3
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In the (3+1)-dimensional case we would have to add theis discussed in Sec. VI and the Appendix contains some tech-
integration over the momentum of the translational invariannical details of numerical calculations.

direction along the axis of the string and get We use unitsi=c=G=1.
vm I'(s—1)
@B+n_ Y7 2S¢ a_ Il. THE SPACE-TIME
B T s M s @

The metric of Gott-HiscocK8,9] is a solution of Ein-

The ultraviolet divergencies of the ground state energy arét€in’s equations and it describes the space-time of an infi-

completely determined by the first few heat kernel coeffi-nitely long straight cosmic string with nonvanishing thick-
cients. By means of ness. The energy densifyis constant inside the string and

zero outside of it. The manifold can be covered by two maps.
wdt tS The first map, te(—o,+*),pe[0,p0],¢€[0,27],2
{(s)= f T @K(t) (5)  e(—=,+x), covers the interior of the string and the second
0 one, te(—o,+%), refry,+=), ¢e[0,2r], ze(—c,
+©), covers the exterior. The coordinatetsg,z) are the
same in both maps, andp, denote the radius of the string
1 in external and internal coordinates, respectively. The string
K(t)= Py E B, t" (6) is situated along the-axis. The metrics ar€'—matched on
n=0 the surface of the string, there is no surface stress erfgrgy

of the heat kernek (t ding to th tor in E extrinsic curvature tensors of the interior and exterior metrics
eat kern (t) corresponding to the operator in Eq. are equal to each oth¢®]). The metric has the following
(3) the divergent part of the ground state energy can be eXorm:

pressed in terms of the first four coefficiefis (3+1) di-
mensions five coefficients would enteWe define

and the asymptotic expansion for 0,

dsfnzdtz—de—pisinz(i)dq;z—dzz, (10

Ediv( | M)ZS 1 [I‘(S—B/Z) 3.8 I['(s—1)m? o
0 (S)=|=| a=iT/a_77/5 Bom R T ia_1/9)
m/ 8w (I'(s—1/2) I'(s-1/2) inside the string, and
+Bm+B i] @ (2
LT (s—1/2) ) dsgm=dt2—dr2—7d¢2—dzz, (12)

In the following we calculate these coefficients for a string of

zero thickness, reobtaining known results, and for a string obutside of it. Herep,, = 1/\/87 € is the “energetic” radius of
finite thickness in the approximation of a small mass densitghe string; £ is the energy density inside the string. The
of the string. Using these coefficients, the renormalization ofnatching condition on the surface of the string links the
the ground state energy can be carried out in the standaekterior parametersi(ry) and interior onesgd, ,po) of the
way by adding the counterterms corresponding to @fto  string

a suitably defined classical energy. So we get the renormal-

ized ground state energy po %ef 1 o tane
— =e=const, v= , —= . (12
E°"= |im (Eq— E9V). ) P €ose” po €
s—0

From these relations we have the following consequences.
The limit to the Minkowski space-time is achieved by letting
the energy density inside the string tend to zgr9-G «) for
fixed radius of the string,. Then the angle deficit will tend
0 zero too because o&€—0. Thereby in this limitw
=1/cose=1,ry=pg and both metrics turn into Minkowski
EF"0 for m—soo, (99  space time. On the other hand, in order to shrink the string
(po—0) at fixed exterior(e respectively the angle deficits
which follows, from the circumstance that the heat kernel@"® constantwe must turn the energy densig/to infinity
expansion is at once the asymptotic expansion for larg@roportional toe’/8mpj. Nevertheless the energyper unit
mass. length of the stringu which is the product of the energy
The organization of the paper is as follows. In Sec. Il wedensitye?/8mpg and the cross section of the string is always
describe the Gott-Hiscock space-time of finite thickness coseonstant and equals (11/v)/4, the same value as for the
mic string. In Sec. lll we write down the general formulas infinitely thin cosmic string and it does not depend on the
for the thin string and calculate the corresponding heat kernghbdius of the string. The two dimensional patt=(onstz
coefficients. In the next section we do the same for the finite=cons} of the space-tim¢10),(11) is depicted in Fig. 1.
thickness string. In Sec. V we calculate the ground state en- The manifold can be covered also by one map. One can
ergy in the approximation of a small angle deficit. The resultcontinue the exterior radial coordinateinto the interior of

In the (2+1)-dimensional case we obtain the resEf"
=0 in the given order of small mass density numerically.

We note that the ground state energy defined in this wa
obeys the normalization condition
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constant curvature tional to the two dimensional delta function. So it is a poten-
space - time tial with pointlike support and should be taken into account
by a self-adjoint extension of the operator corresponding to

I'=T, s = Po . . .
»P=P Eq. (3). Instead, we drop these contributions here by consid-
ering the cas€=0 only.
By means of the ansatz
in v
- (n=0,+=1,%£2,...) wearrive at the radial equation
d> n%?-1/4
—————+\?*|R=0. (16)
€ = arccos(1/v) dr r
“““““““““ The solution regular at the origin of this equation is a Bessel
function
R=1/ AT Jn,(A 1
FIG. 1. Plot of the two-dimensionat £ constz=cons} part of - 2 nv(AF)- (17

finite thickness cosmic string space-time.

We assume it to obey Dirichlet boundary conditionsrat
the string by mapping =r,+ (po/€)tanep/p,—€) and the =R. Thenthe solutions=\p; (i=1,2,...) of theequation
space-time will be described by the metric

7AR
dr2 r2 de? \/TJM()\R)=O (18

dsiy =dt* - 2 2/ 212 2 2 2, 2
[1+e(r=ro)%pol™ v* 1+ eX(r—ro)/pg are the discrete eigenvaluks-\ =X\, . Now the ground
—dZ, re[0,r,] state energy and equally the zeta functi@ncan be written
' e in the form
r2
—dt2— dr2— — 2
dsgut dt dr Vzd(p dZZ, re[r01oc)- thlr‘l(s) 252 2 ()\ +m2)1/2 s (19)

i=1 n=-—
Here, the parametets py andr, are connected by condition
(12). Nevertheless we shall use the metric in two maps be; 10)
cause it is simpler for calculations. As far as the angle deﬁm[
is fixed, that ise=arccos 1v=py/p, is constant, one can
excludep, and rewrite the metric in the form which will be Eth'n( s)=—M?3s
used in the following:

The sum over can be rewritten as an integi@br details see

cos{ TSs)

0 =~ dp?— 20 S|n2( g4z, pel0pol, % [ akoe-md s Lk (R, (20)

13
(13 whered,-,=2 anddy=1 is the multiplicity of the angular

inside the string, and momentum. Note the factck™"” in the argument of the
logarithm; seq 10]. '

In order to investigate the pole cE})h'”(s) we use the
uniform asymptotic expansion of the modified Bessel func-
tion for n—o [11]

2
dsﬁut—dt—dr— de?—dZ, refrg,»), (14

outside of it.

t U (t)
IIl. INFINITELY THIN COSMIC STRING ln(Nvz)="\/ -—— Py e ‘1+ > )k} (22)

The metric for an infinitely thin cosmic string is given by
EqQ. (14) for re[0,%). In the (2+1)-dimensional case, with t=1/\1+2?, 7(z)=\1+Z?+In(@/(1+J1+Z7%)) and
which we consider here, the coordinatés absent. The ei- z=kR/nv.
genvalues\ (,) which enter the zeta functio(®) are deter- The pole term of the zeta functiof(s) (2) in s=—1/2
mined by Eq.3) in the background of the spatial part of this respectively of the enerdyy(s) in s=0 will be delivered by
metric. The curvature scalar R in this equation is proporthe first few termgup to k=2) of this expansion when in-
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serting them intdg, (20). We note that this expansion is at we will in the following keep track of these powers and drop
once an asymptotic expansion for large masses and that tladl contributions which form—c are of orderO(1/m).
individual heat kernel coefficients enter expansions like Eq. After inserting the expansiof21) into (20), the integra-
(7) multiplied by the corresponding power of. Therefore tion overk can be carried out using

3 p—3
. I'\=—s|T S+T
jdx(xz—1)1’2*5x(1+x2/a2)*p’2= 5 aP(1+a?) S~ (P73
1
a2
and we obtain the following expression fB(s):
=3
2s o) F S— —

ST Pt R ST (S L s P i Ll PN R R PN o I'(s)Z(0,5)
47 \m 2 =% " Jx ' b 2 2b ) 2(
10—F(Sﬂ)zﬂ 1F+1ZO+1 6r(+3 2,5+ 5F 5z4+

T3 T pz H2stD| gl st o) 2| 0st g Tl st o) Z{ 28 5|t ol st o) Z{ 48t
! 28I 1)Z(0 1 1062F 2 2 2 884I‘ 3)Z(4,5+3 1768I‘ 4)Z(6,5+4
—W (s+1)Z(0s+1)— g7 I'(s+ )+(2,s+ HW (s+3)Z(4,s+ )_W (s+4)Z(6,5+4)

oo (22)

Here ,F,=,F,[—%,5—1;%:— (nv/b)?] is the hypergeomet- Where the contour is such that the polesIgs—1+1t)/(t
ric function; Z(p,q) ==%_ odn(n¥)P[ 1+ (n/b)2] "% and b —1/2) lie to the left of it and the poles &f(—t) to the right

—mR Next we have to perform the analytical continuation [11]- Before interchanging sum and integral one has to shift
S0 the contoury to the left crossing the pole &t 1/2 up tot

First of all let us consider the part containing the hyper-— — 1/2 and then to close it to the left. Because of the con-
geometric function vergence of the series;_;n? it is necessary to have<
—1/2. The residue at the poirtt=1/2 cancels the second
manifestly divergent term in the suf@3). Taking the limit

= I'(s—1) nv 1 s—0 we obtain the following finite expression for E®@3):
Y(s)=2, d, oFi-pTls—3
n=0 Jr b 2
4 [v\2 1 2mb
I'(s—1) I'(s— 1) nv 1) Y(0)= —(—) (R(—2)+ — (2 In——3)
- - b
\/; +22 \/— l b INIS 2 \/— \/; v
(23) E (1" {r(2n+2) (b)220
\/_ o (n+1)(n+2) n+3/2 \v
For the calculation of the series we use the Mellin-Barnes
type representation of the hypergeometric function Here ¢x(a) is Riemann zeta function.
The series is absolutely convergent fafv<<1, but we
_ 2 need it in the domain of largR, that is forb>1. For this
I'(s—1) 1 1 nv - . . .
Fil—=.s—1:2;—|— reason we perform the analytic continuation into the domain
NE 2 2 b we need. Witht=ib/v in the formula
1 1 f F(s—1+t)r( t)(ny>2tdt
T 1\ 2m), t-12 U] ot ot
r( _ E) 21 —R2n)=ing—, <1, (24)
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we can express the seriesYif0) in terms of the serie@4). c2r \/;F(r —1/2)
As a result,Y(0) is expressed in terms of functions which {en(r,c)=— 5 + 2T(1) c 2+t
are analytical in the whole plane bfand it can be divided
into a polynomial and an exponentially small part oo T2
+ Tnzl nril/ZKr_l/z(Z’lTnC).
2Jm b mv B
YO =—3—7 -3+ \/—;In(l—e Zmolv) For smallc it holds
— 2 [40(b/v)—20,(b/ )] S ZLn+r) o
: 2 Len(r,0)= 2 (= 1)"F s e™ gr(2r +2n).

with

For integer =1 the zeta function can be expressed in terms
of elementary functions. So we get the relevant part of the
1 JX dit* 1 I'(a+1) ground state energy in the form

Qa(x)= L2 20t_ 1 va arrér@tl)
X*Joem—1 X" (2m) o (M\ZE L[ 27R2 . 2¥RnPr(s—1)
1 (= dtt? B (9=m) &x|"3 ™~ L
—_Efx ez”‘—l' (25) v S_E
T 72 (s) 1 1
For largeb this expression is exponentially small. Therefore talvt Mt v | RO\ BRm/"
we arrive at 32RvF(s— >
‘o 27 b J;,,+O( " (26)
=———= e
3 v 3b dropping contributions proportional to expRm). By com-

paring this formula withES" (7) we can read off the heat
The same result may be obtained in another way. One cafernel coefficients
use an analytical continuation of the hypergeometric function

2 3/2
[11], namely _7R __™R _r +£)
Bo V,Bl/z V’Bl3vyv
1 1 nv 2) 3/2
Fil—-z.s—1;=;—| — ™
? 1( 2 2 (b) Bar=351,- (27)

ny T(U2T(s—1/2) T(1/2T(1/2—s)

+ Now, taking into account the general structure
b I'(s—1) I'(=1/2)I'(3/2—5)

ny\2\1-s 1 1 Brzf crdS-I—f a,dVv (28)
X1+ — oFi| Ls—Llis+ i ———| - oV v
2 nv
+(F) of the coefficients we represeBy as
_277 T 1
The first term in the right-hand sid®HS) cancels the sec- Bl_§+ 3\ (29

ond, divergent term in the suf@3). Next, one can use power

series expansion for the hypergeometric function because its this representation, the first term By and all other coef-
argument 1(1+ (nv/b)?) is always smaller than unity. The ficients are seen to be the result of the boundany=aR. In
result will be the same as that obtained above by a longefact, they are knowpl3]. The second term iB; is indepen-

calculation. dent on that boundary. It is known as the topological Kac
The seriesZ(p,q) in Eqg. (22) can be expressed in terms term[7] and is a result of the conical singularity.
of the Epstein-Hurwitz zeta functidi 2] Using these coefficients, by means of Ed@), we can

define EJY and the renormalized ground state enefg§"
o (8). Now we observe that all contributions in E§6) except
Len(r,c)= Z (n°+c?) ", for the topological Kac term are due to the boundary at
n=1 =R. Leaving them aside, only the Kac term remains. It must
be included intcEJ" and we get
A known, quickly convergent expansion for large values of
the parametec is Eo'=0 (30
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for the genuine contributions of the string, or equally in theare combinations of the Hankel functions. The solution regu-
limit R—co. Let us remark that this result holds also in (3 lar at the origin of the radial equatidB3) inside the string is
+1) and higher dimensions as can be inferred from dimen-

sional reasons. The parameters entering the problem are the R (w201 zsiné—p(ﬂ)m-l/zp_n 0P
mass density of the string which enters together with the in 27 pol € a Po
gravitational constant to form a dimensionless combination,

expressed by the angle deficit, for example, and the mass #fith

the quantum field. In the case of a string with zero radius

there is no further dimensional parameter on which the 1 1 4)\2p§
renormalized ground state energy might depend. As the a=—5+5 1+ 2 —8¢

ground state energy has the dimension of an inverse length it
might be pr_oportlonal to the mass but such terms hao! be_egnd P is the Legendre function. These solutions must obey
subtracted in the renormalization process. Note that this d'st'he m%tchin conditions

cussion does not apply to the case of a string with finite 9

radius becaus.e th_|s radius is the addltlona_ll d|menS|on§I pa- Rin(po)=Rou(fo)  Rin(pe)=RiuTo)
rameter allowing in general for a nontrivial renormalized
ground state energy. on the surface of the string. From this we get the following

formula for the Jost function:
IV. COSMIC STRING WITH FINITE THICKNESS

H H n+1
We use the metric given by Eq§l3),(14). Again, the f (\)=—¢€(™ np-1)' 7 _SN€ (ﬂ)
coordinatez will be dropped because we work in {21) 2 \Jcose\ €

dimensions. The curvature scalar is

0 g? X {HL' (Aro)P, "[cose]

R=——-, (31
Po

(1) . esine
+H, (Arg)P, " [cose] X .
and we allow foré+ . By means of the ansatn€0,+ 1, Po

+
*2,..) Here the primes denote derivatives with respect to the argu-
d=elneg~ R ments. Taken on the imaginary axis this Jost function reads

0 [ep L sine @)””[ ) .
Rin(p)! \/?sm(%), p<[0,p0], fa(ik)= @( c Knu(Kro)P, "[cose]

(32

€Si

.
Rou(r)/\/:u refrg,»), sine
t v 0 kpo ] (37)

+Kp,(kro)P. " [cose]

we arrive at the equations . :
g Note that this function does not have zeros kot [0,»),

d2 €2[n2—1/4] €2 i.e., there are no bound states. This can be checked by in-
[—2—2_—+—2(1—8§)+)\2] Rin=0, spection of Eq.(37). The Jost function has the following
dp®  pgsirf(eplpy)  4p§ asymptotics for large and smal

0, 33 ) r
pe[0,po] (33 fn(|k)k%~exp{—kpo(p—°—1)],
SV °
ﬁ_—rz +A ’ROUFO, rE[rO,OO) (34) fn(ik)k_,o"‘kin(vil), fo(ik)k_>0~_|n k.
(38)
for the radial functions. Both these equations may be Sowe?lsin the formula
exactly. Indeed, the solution of the radial equation outside o 9
the string(34) can be written as X
. lim t"P, " cosy =J,(x), (39
I — t—o
Rou=5[fn(MH7, (D= TR )HL, (], (39)
the Minkowskian limit (#— 1) for the Jost function
wheref, is the Jost function and lim f.(0)=1 (40)

V*)l
TNl
vy i A [T )
Ho(Ar)==i > Hny (A1) (36) can be checked.
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Proceeding as was done in the case of the infinitely thifor n—o,k—o0,n/k fixed is required. Now, although this
string we obtain the following expression for the groundJost function is known explicitly in terms of Bessel functions
state energy in (2 1) dimensions: and the Legendre function, this task is not easy to perform.

The point is that the asymptotic fer—o~ andn—« of the
£ COSTrsz d f dK{K2— m?]V2-s Legendre functionP_" is quite complicated to handle.
0= m Therefore we restrict ourselves to the easier tractable case of
a small angle deficit respectively mass density of the string,
i.e., to the case<1. Then in the radial equation for the
interior of the string

><—In{k " fa(iK)H (IKR) = (ik)H (IkR) T}

and, using d2 n2-=1/4
—im —iuz : F_ 2 —U(p) [ Rin=0, pe[0,po],
K,(ze '™ =e ¥ (2)—iml ,(2) p p "
after obvious rearrangements we get with the potentialusing Eq.3D]
COSTS 5
Eo=—M M2s E d f dk[kZ 2]1/2 s 1( , 1 0 , 1 )
U(p)=—||n"—~ —1|+6% 26—~
() p? sir? 6 ¢ 4
J -
Xﬁln{kin[fn(ik)lnv(kR)_fn(ik)Knv(kR)]} (0= €plpg) we approximate
T U(p)=Uo+O(€") (44)
COSTS ©
=—M32s & 2 dnf dk[kz_mz]llzfs with
2w n=0 m

eZ

d cosws
-ng (i 2s Ug=—=(n?+6£-1).
Xaklnk fa(ik)l,,(KR)—M 5 0 3P(2)

By this, Eq.(43) can be solved in terms of Bessel functions

/2 ( " A n+1/2 T
. —l(mn v— _ _
T.(ik) K, (KR) Rin=e (M) V7 Mpdn(Anp)

fo(ik) 1,,(kR) |’
(1K) 1nu(kR) (Ay=VA?—U,) and the corresponding Jost function reads,

Now the contribution of the last line is exponentially for smalle,
small for R—co. The contribution of the preceding line can

[ \g_ \[o}
><‘]n(7\npO)H(l (Aro)+ropolAn Jn()\npo)

+ oo
x> dnf dk[k?—m?]Y/2s
n=0 m

Xal
ak

be written as the sum se()\)_l el (m/2) (v- 1)( )

E Eth|n+ Eln'[ (41)

of the contributionES™ (20) of the infinitely thin string con-
sidered in the preceding section and the contribution of the

_ (1)’
interior structure of the string X(Aro) = MNn(Anpo)Hy, (Mo)]}-

On the imaginary axis we get
{ \/7 \/\} In(Knpo)Kn,(Kro)
Po

o

+ \/: k.pol (K K (Kr
After the work done in Sec. Il it is just this contribution Po[ nPol n(Knpo)Kn,(Kro)
which remains to be calculated.

+
COS7S

Egl=—M2 > d,

27T n=0

o P k)= (
xj dk[k2—m?]Y27S—In k"~ Vf (ik). (42)

—kpol n(knPO)Kr,w(krO)]] , (45
V. APPROXIMATION OF SMALL ANGLE DEFICIT

To calculateE]" (42) and the corresponding renormalized with ro/po=tanele andk,= \k?>+ (€2/3p3) (N>+6£—1). It
ground state energy the analytic continuationsito s=0 is easy to verify that it obeys the limi{88) and (40).
must be performed. To this end the knowledge of the uni- Note that the approximate potentldl(44) is constant and
form asymptotic expansion of the Jost functiby{ik) (37)  that U, may take negative values. Therefore bound states
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could occur. However, due to the conical structure of the In Eg‘"as(48) the integrand can be expanded in powers.of
exterior part of the spaceseev in the index of the Hankel Then the integration ovérand the summation overcan be
functions and the corresponding relations between the pacarried out explicitly using the same method as in Sec. Ill.
rameters, in fact no bound states occur. Correspondingly, #Ve obtain
can be shown that the Jost functi@Gtb) does not have zeros
2 _

for ke[0,%). int € |7 o |m 1-6§

[ i i jon irEd" Eoass—0=5 1548 |75~ ™| B

Now we insert this approximate Jost function nﬁé‘ = 2mpg | 24 12 12

(42) and have to perform the analytic continuationsimo s

=0. For this reason we use the uniform asymptotic expan- _ i+ 1-6¢ o E 2_ i

sion of Eq.(45) which can now be obtained by simply in- 720 72 |B |6 24

serting the corresponding expansi@1) of the Bessel func- 1-6¢

. . - o ~

tions. We define L In(1—e 27F)— §ﬁ2[3Q1(,3)
fse,afik): ﬁe*nvﬂ(Zanﬂ(y) 1+62L) (46) _~ ~ 1_6§ ~
" y" 24n —3Q2(B)+Q3(B)]— 3 mQ1(B) |,

with (50)

Kpo Kro o1 with the notationB=mp, andQ, defined by Eq(25). We
z=—- =g =147 remark thatQ,(B) are exponentially decreasing f@r— .

At this point we can determine the heat kernel coefficients
for the thick string. We have to consider the asymptotic ex-

(2)=\1+Z2+In z pansion oiEi(;" for largem. The nondecreasing contributions
g 141422 may be contained only i'(48) and can be read off from
Egs.(50) and(7). They are
€ € 1-6¢ 02
) P '
y= \/224—?—?7. BI(?IZ_GZTO, BTt:—Z’Ffe‘z. (51)

Note that the coefficier,,, is zero. This was to be expected
because the background is smooth enough not to allow for
boundary dependent coefficients in this order. Also, the co-
efficient B;, is zero. This is in the given order ia and
follows simply from dimensional reasons. In higher orders in
€ it may be nonzero like further coefficients of higher half
integer order.

) ) ) (- 1)ese.as Now, by means of Eqi41) we have to take the contribu-
simply subtracting and adding k"~ Vf3**In Eq.(42). Here  ions to the heat kernel coefficients of the infinitely thin
string (27) and that of the “interior,” Eq.(51), together.

In general, the expansio@6) must include all terms up to
n~2. But that contribution does not appe@dogether with
n~4n~% ...). Next we divide the expression fd&g" into
two parts

Ei(;n: i0n,215+ Ei(?,tfin (47)

int 55 COSTTS = These coefficients can be compared with that following from
Eoass —M™—— nzo n the general formulas. For instance, from
" Ak K2 — 2125 k(-1 B Jdvzfp°p°'épd+2WfRd
_ —-s___ n(v—1)¢as,; = = —SIn— — rar
Xfmdk[k Ml 8k|nk fa (k) o Jv i 0o € Po P ro
(48 7R2  €2mp2
-T2, (52)
is called the “asymptotic” part which still requires the ana- v
lytic continuation to be done and we obtain the boundary dependent contribufioh Eq. (27)]
L+ andBg" (51). For the coefficienB8, we have
. - ] d
Egin= 75— 2 dnf dkyk?—m?*— 1-6¢ 1-6¢
21 n=0 m ok B,= 5 f RdV= 3 2m+ 0(64). (53
v

X[Ink"~Df (ik)—Ink""~DEas(ik)] (49
Now, in the given approximation it holds
is called the “finite” part. In it the analytic continuation 1
i i aw a
could be performed under the sign of the integral and the (V_ ;) =T 210,

sum because they are convergent. 3 3
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Therefore, fromB; (27) respectively(29) of the thin string 1-6¢ - * o J
andB" (51) we get ——3 "QuB)- > dnf dxyx*—B°—F,
n=0 B oX
1 2 1-6
B2 | v+ ) 2mer=2T 4 2m 08 L o(eh. 1 1-6¢w
3 v 3v 3 —lssmt— |- (55)
(54) 720 6 |B

We note that the Kac term disappeared. The first term in the )
last line is due to the boundary et R and the second is the Here, the notation
genuine contribution of the thick string. It vanishes in the
case of a conformal coupling. . as, -
To proceed, we defingy" by means of Eq(8) using the =In fn(|x)—2In fa (%)
coefficientsBy (52) andB; (53) in the definition ofEJ" (7). A €
Note that the coefficients with half integer numbers are pure
boundary dependent contributions resulting from the bound- .
ary conditions at =R. Is introduced. . .
In fact, the renormalization iEi(;‘t is reduced to dropping Som_e further work is necessary. i the_ Jost_functlons
the nondecreasing fan— o contributions inEM™  There- have still to be expanded for smaill For f,(ik) this can be

0,as* i
fore we obtain for the complete renormalized ground state(zjone using the formulpl1]
energy
o € ([, 1 1-6¢ Cons K p(X) :m(i)‘” ”il (§>“ Ki(x)
0 _ZWPO gﬂ _ﬂ_l' 6 In(l_e ) ﬁp b=n 2 2 = 2 (n_l)lla

_ g B2[3Q1(8) —3Qu(B)+Qa(B)]

for f2{ik) this expansion is a simple task. Finally we obtain

(n+1)%2 x? n? x2 X nn! "il X\ X (s 1 K+ 1K 5 1) n( 2\"
—— | Kpt+ | == =l 1Kpo 1+ =l pe 1 Kp+ — - + = \Kgn!l,| =
nl.—o 6 3 n\n 6 3 n+1™\n-1 3 n+1M™n 4 < \2 (I’l—|)|! 2 0 n X
nnt "1 x\ LK, n x> n 1 X2 1 1
+inx|+—2>, | = VIt 5 -—————zh| 1+ \J1+ 5| - —
=112 I n° 6 x2 n 24n X2
1+\/1+— 1+ —
n? n?
1-6¢ 1 1
- InKn+|n+1Kn—l_ >
X
1+\/1+—=
n2
|
This expression has to be used&f" (55). VI. CONCLUSIONS
In writing In the preceding sections we worked out methods suited
2 for the calculation of the ground state energy of a massive
E"= G(B)+0(e* (56)  scalar field in the background of a cosmic string. The main
2mpg emphasis was on a string of finite thickness. We used the

standard renormalization scheme, i.e., we calculated and sub-
itis in fact G(), a function of one variable, which must be tracted the contributions of the first few heat kernel coeffi-
calculated. We did this task numerically. After a careful ex-cjents. Thereby the normalization condition, stating that the
amination we came to the result renormalized ground state energy must vanish for a large
mass of the quantum field, is imposed.

G(B)=0, (57) As a part of these calculations we first considered the
infinitely thin string in detail. Using explicit formulas we
for arbitrary &, the details are given in the Appendix. reobtained the known heat kernel coefficients. These are the
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coefficients due to the boundary of a large cylinderrat APPENDIX

=R, \.Nh'Ch was introduced n order to render the eigenval- Here we consider the analytical and numerical analysis of

ues dlscr_ete,_ and the topological Kac term. In the sense qf ﬂ?\e functionG(8) defined in Eq(57):

renormalization used we got the result that the renormalize

ground state energy of the pure string, i.e., when removing

the outer boundaryR— ), is zero. 1., 1 1-6¢
Then the same problem is formulated for a string with C(8)= gﬂ B Zf

finite thickness. However, the complete calculation suffers

u -
}ln(l—e_z"ﬁ)— 5,32[3Q1(B)

still from mathematical difficulties. Therefore the approxi- ~ ~ 1-6&

mation of a small mass density of the string was intro- —3Q2(B)+Qa(B)]~ T“Ql(ﬂ)

duced. Having in mind the smallness of 102 in cosmo-

logical applications, this is at once physically motivated. ~ o aF, 1 1-6¢|7
We note that in this approximation an alternative calcula- _nZO dnfﬁ dxyx*— g2 P 7—20+ 2 |5

tion should be possible, namely the use of a perturbation
theory in the mass density as it was done for the calculation (A1)
of the Casimir force between two cosmic stringq 1%).

In this approximation of a small mass density, in orefér Obviously we haves(B) s_...— 0 and the domain of interest
first the heat kernel coefficients were calculated. They args the neighborhood of zerg3~0. For numerical simula-
checked to coincide with that fOIIOWing from general formu- tions the above formula is more suitable fﬁg 1. In the
las. We remark that the Kac term disappears and that for gpposite caseB<1, there exist at first sight a logarithmic
conformal coupling §=1/6) there are no counterterms re- singularity for smallB: In(1— exp(—2m8))~ In 27B. But this
quired besides that which follow from the boundaryrat singularity is canceled with that in the contribution af (
=R. From this it is clear that the Kac term is due to the =0) in the series in EA1). For numerical calculations it is
singular behavior of the metric of the thin string at the origin.more suitable to cancel this singularity in manifest form. For
This can be understood from another point of view too. Con+his reason we divide this term into two parts,
sider the vacuum expectation value of the energy density in
the background of the thin string. For dimensional reasons it - P 1 P
behaves liker ~2 near the string and, therefore, cannot be f dx x2—,82—F0=j dxyx*— B*—F,
integrated over near the origin. Now, if introducing a suit- B X B X
able regularization, zeta functional regularization for in- o 9
stance, it becomes possible to integrate aveAs a result, +f dx x2—,82a—x Fo, (A2)
when removing the regularization, an additional divergence !
occurs which is just the Kac term.

After performing the renormalization we calculated nu-where
merically the ground state energy in the background of the
thick cosmic string in ordee? of a small mass density. The
result is zero with the reasonable precision of 1thdepen- Fo=®o—
dently of the paramete. Thereby a nontrivial compensation
between different contributions occurred.

This result that the vacuum of a scalar field is not dis- Oy=
turbed by a cosmic string is quite remarkable and seems not 6
to have analogues in other configurations. For instance, we 1-6¢
do not see any symmetry or invariance arguments for this ———(1oKo+1,Ky),
result although they should be there. 6

Perhaps, there is some relation to the result of Brevik and
Jeneseml16] indicating the absence of particle production in x 1 1-6¢
the formation of a cosmic string. =t ——

Further work is necessary. For instance, the result should 3 2% 6x
be extended to the (81)-dimensional case, to higher spin
fields and to mass densities which are not small. The integral

1—x? x2 x2
loKo— 5 11K1— 510K

1 J
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16318. following expression for the case<<1:
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N
/_\ 0.00047
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-0.0008
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=l -0.0012 1
a) -0.00141 b)

FIG. 2. Plots of the integranN,=2ny (d/dy) F,((n?y?>+ B2 for (8) =0 and(b) B=0.4 andn=1,2,3.

1, 1 1-6¢ 1—e 278 5 In order to argue this statement let us consider the part in EQ.
GB=gP 2276 | B (1+V1-p9) (A4) which contains the integral
a 2 1 5 20’)q)0 o 5 20":0
— 3 A13Q1(A) ~3Qx(B) +Qs(B)] D(B)=| dx\x®=pB*——+ | dx\x*~p>—
B X 1 X
1-6¢ ™8 * o JF
— =5 QB+ 55+ R~ 2) > 2f o= " (A6)
n=1 B X
1 1-6¢ 1 d
_[§+ T}Vl—ﬂz— jﬁdx Xz—ﬁza—x‘bo The function®, has the following expansion for small

(using the power series expansion of the Bessel fungtions

— N 2_ zi _ J‘OC 2__ Zi 0 S
fl dxVx"—p 69XFO nZl : B BNX*- B aXFn <I>0:In§2 CoxZ+ Y, Tx?,
2(=0 k=0
(A4)
It is only the zeroth term in the first sun@gInx/2, which
with the notation delivers a linear contribution to the first integral in E46).
All other terms contribute higher powers # Thus
1 (8 dtt"
Qn(B)=5n | gzmi1- (A5) 1 by 1 by
B Jo f dx XZ—BZWIJ dXXW—ECOﬂ-FO(,BZ)

B 0

It is necessary to stress that form@sd) is only a differ- )
ent representation @(3) (A1) which we made in order to With Co=(1—6¢)/6—1/6=—¢.
avoid the logarithmic contribution in individual terms. Next  In the second integral in E(A6) we can expand the
we observe that the series oweris slowly convergent and integrand forg%/x?<1 and obtain
quite a large number of terms must be taken into account

Now let us consider some analytical propertiesc{iB). wdx 252 9Fo _ °°dXX0"_Fo+O( 2)
This function does not have a linear term in the expansion 1 B ox IX B
for small B,

In the last term in Eq(A6) we use the uniform expansion of
G(B)=G(0)+0(B?). F, (46) which starts from the third power of i/ All inte-
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grals can be calculated in closed form; their expansion starts

from the second order i. Therefore

> 2 f dxy/x —32—: 2 2f dxx—+O(ﬁ2)
n=1
Putting together all three parts we obtain

D(B)=D(0)+ 5 £B+O(B?). (A7)

The expansion of the remaining terms in E44) contains
the same linear term

ar
const- - ¢4+ o(B?),

which is canceled by that in E§A7). Therefore the expan-
sion of G(B) starts at least from the second power@®f

For the numerical analysis of the serie<d(B) first of all
we replace the integration variabte-y= yx?>— 8°/n. Then
we obtain

PHYSICAL REVIEW D59 064017

» J
2\/x2—,82(?—Fn(x)dx
B X

© - 9
= 2nya—Fn(vn2y2+Bz)dy-
n=1J0 Yy

Some first integrand,=2ny (3/9y) F,(Vn?y?+ B?) are
plotted in Fig. 2 forB=0 and for3=0.4. As is seen from
the figures, all functiondN,(y) have quite large variations
near the origin and decrease ag®lfor largey.

For highern,(n>3), the Bessel functions enterirfg,
have been substituted by their uniform asymptotic expan-
sions whereby the first 13 terms were taken. The error caused
by this approximation is smaller than 10 Then the integral
and the sums can be carried out explicitly. For this task
Maple was used.

With this, the functionG(B) was calculated for &3
<2 and the result

|G(B)|<107’

was obtained numerically.
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