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We present techniques and methods for analyzing the dynamics of event horizons in numerically constructed
spacetimes. There are three classes of analytical tools we have investigated. The first class consists of proper
geometrical measures of the horizon which allow us a comparison with perturbation theory and powerful
global theorems. The second class involves the location and study of horizon generators. The third class
includes the induced horizon 2-metric in the generator comoving coordinates and a set of membrane-paradigm-
like quantities. Applications to several distorted, rotating, and colliding black hole spacetimes are provided as
examples of these techniqu¢S0556-282(198)09420-X]

PACS numbes): 04.25.Dm, 04.70-s, 97.60.Lf

[. INTRODUCTION ized circumstances or quasi-stationary spacetimes. But as-
pects of each of these open questions are amenable to study
Black holes play an important role in general relativity with the numerical methods we describe.
and astrophysics. They are characterized both by spacetime As a result of strong field nonlinearities, black hole hori-
singularities within them and by their horizons that cover thezons are difficult to study analytically. Therefore we turn to a
singularities from the outside world. In this paper we de-numerical treatment which is now routinely able to generate
velop a set of tools for analyzing the dynamics of black holehighly dynamical, axisymmetric black hole spacetimes
horizons. evolved beyond=100M, whereM is the Arnowitt-Deser-
The event horizonEH) of a black hole is defined as the Misner (ADM) mass of the spacetime. Many such axisym-
boundary of the causal past of future null infinify". As  metric studies of highly distorted rotating and non-rotating
such the EH surface is traced out by light rays that neveblack holes and colliding black holes have been performed in
reach future null infinity and never fall into the black hole recent year$5—8]. Three dimensional black hole evolutions
singularity. This surface responds to infalling matter and ra-are approaching the accuracy of axisymmetric calculations
diation and to the gravitational fields of external bodies. In[9—-13]. Together with the ability to find and analyze event
the membrane paradigm of black holes, the horizon fullyhorizons, these simulations provide us with a new opportu-
characterizes the dynamical interactions of a black hole withity to study black hole dynamics.
its surrounding$1]. The important role of the horizon in the We recently proposed methods for the study of the EH in
study of black holes motivates us to carry out a systematioumerically generated spacetimgd]. In a series of fol-
study of horizon dynamics in numerical relativity. lowup papers, we give details of the methods and their ap-
While much work has been done on the properties oplications to various black hole spacetimes. The first paper in
stationary black holes and small perturbations about thenthis serieq15], referred to hereafter as paper |, detailed the
little is known about the properties of highlgynamical method for locating the EH in a dynamical spacetime, and
black hole spacetimes. For example, the cosmic censorshghowed the high degree of accuracy with which the EH can
conjecture[2], which suggests that spacetime singularitiesbe located. In this second paper, we focus on the tools con-
should be clothed by event horizons, demands study into thstructed for analyzing the dynamics of the EH.
existence of horizons. The hoop conjectdf®4], which There are several aims of the present paper. We show
states that a black hole horizon forms if and only if a matterthree different sets of tools that can be used to analyze the
source becomes sufficiently compact in all directions, begslynamics of the EH and how one can construct them in
the question of how spherical must a black hole horizon benumerical relativity. We show how accurately the quantities
Caustics, or singular points in the congruence of photonsised in these tools can be constructed with present numeri-
tracing out the horizon where new generators can join theally generated black hole spacetimes. We demonstrate the
horizon, can occur, but under what conditions do they apapplicability of these tools to various spacetimes of interest.
pear? And what are the properties of these caustics? Oria fact, these tools apply immediately to almost all numeri-
would also like to know to what extent one can understandally generated black hole spacetimes we have constructed to
interactions of black holes with their astrophysical environ-date. This paper describes the tools that elucidate the physics
ment in terms of properties of the EH. Studies of most ofof the EH and the accuracy with which we cér cannot
these questions have to date only been made in very idea¢valuate these measures; the emphasis is not on the physics
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itself. The physics we learn using these tools will be dis-tains the EH, which we call the horizon containing domain
cussed in a later paper in this series. (HCD).

We have developed and present three sets of tools for (ii) We trace the evolution of the HCD backward in time
analyzing the EH. First, we present a set of geometric meaPy tracing its outer and inner boundaries as null surfaces. A
sures of the horizon as a two dimensional surface in a curvefiinction describing a null surface &tt;, x'=x;,
3D space-like slice of constant time. These tools include .
proper circumferences, proper area, Gaussian curvature, the f(t=ts,x;) =0, (1)
embedding of the surface in Euclidean space, and the embed-
ding history. Second, we discuss how the horizon generatorsatisfies the equation
can be constructed. This construction also gives the locus of
generators that will join the horizon in the future at caustic ad,fo*t=0 (2
points on the horizon surface. Third, we present a set of tools
from the membrane paradigm of black holé$ for analyz- ¢
ing the generators and the physics they contain, such as the

horizon 2-metric in generator co-moving coordinates, —giaf+\(g'af )2—gigia fa f

and quantities derived from and connected to it, such as the af= ' — ! ©)
expansion®", shearagb, surface gravityg, , and Hajicek 9

field QF .

. . for outgoing surfaces. The fact that this method represents
To illustrate the use of these horizon tools, we apply therqHe pogitior? of the EH directly as a functidift,x) is Sar—

to several spacetimes. We consider the Schwarzschild aftularly convenient in our construction of horizon analysis
Kerr analytic black hole spacetimes to show the basic prin; y y

. . tools, as we shall see below.
ciples involved and to test the accuracy of the methods. Also, (iii) The strength of our method stems from the fact that

we apply them to fully nonlinear, highly dynamical black . .
hole (BH) systems, such as a distorted Schwarzschild BH, éhe inner and outer boundaries of the HCD converge together

distorted Kerr BH, and the collision of two black holéke _quickly when integra_tedbackwardsin time in many cases of
Misner data[16]) ,Our tools can be applied to almost all interest. When the distance between the two boundaries in a

numerical black hole spacetimes we have presently corlime slice becomes significantly less than the grid separation

; used in the construction of the spacetime, we have accurately
;g\ue(;teéjs, \?vr:acljl should be applicable to future black hole SpaC(?ocated the EH. This condition can often be met through the

The structure of this paper is as follows: In Sec. Il we entire regime Qf Interest here._ . o
briefly review the method we developed to find the location (iv) The ch0|c_e of parametrization of the surface is Impor-
of the EH. In Sec. lll we show various ways to extract im-ta.nt‘ For the axisymmetric spacetimes used as examples in
portant information from the EH surface location in thethls paper, one convenient choice is
spacetime, including studying the topology, area, various cir-
cumferences, Gaussian curvature, and geometric embeddings
of the surface. In Sec. IV we show how to find the actual ) ) ) )
generators of the EH, and the information their paths cafvhere7is a radial coordinate andis a polar angular coor-
bring. In Sec. V we discuss how one can apply ideas devedinate. In what followg, we assume th.at this function
black hole spacetimes. Throughout the paper, we illustratgPacetime.

these ideas with examples from numerically generated black N axisymmetric two black hole spacetimes, such as those
hole spacetimes. generated in7,17,18, we can use the parametrization in Eq.

(4) to trace the event horizon through the merger phase. In
the Cadezcoordinate systerfil9] where coordinates are cen-
tered around each individual throat and the axis below the
throat is a line of constan, this parametrization allows us
to trace a single hole by applying an upwinded condition on
Our method for locating event horizons in numerical rela-the horizon at the axis before coalescence. In the recently
tivity was detailed in paper I. In order to define our notation,proposed “class 1" coordinate systefi8] where the coor-
and because our analysis here is closely related to our EHinates are centered around the throat and the axis, forming
finding method, we briefly review it here. The essence of thgpeanut shaped radial coordinate lines near the throats, this
EH finding method can be summarized in four steps: parametrization will represent a null surface which contains
(i) At late times after the dynamical evolution we seek toboth the horizon and the null surface which represents the
analyze(that is, when the black hole spacetime has returnedbcus of generators waiting to join the horizon; a simple
to approximate stationarity, e.g., after the coalescence of tweymmetry boundary condition gn the equator suffices. The
black holes or after all incident gravitation radiation has ei-locus can also be located in thed@zsystem by using an
ther radiated into the hole or into the far wave zptlee  alternate p,z) parametrization, as described in paper I. We
position of the EH can often be located approximately. Wewill use simulations generated in both coordinate systems
can identify a region of the late-time spacetime which condnterchangeably here.

f=n—s(t,0) (4)

II. LOCATING THE EH IN A NUMERICALLY
GENERATED BLACK HOLE SPACETIME
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L[ left and right hand sides cross, indicating the change in to-
] pology. Att=0 the portion of the surface corresponding to
Lol ft=7.5M, x) ] the locus of photons whichill join the horizon, but have not
I ] yetdone so, is given as a dashed line. As discussed in Sec.
i ] IV, the crossing of the surface signals that photons are leav-
0.5+ . ing the horizon, going backwards in time. The crossed por-
I | ] tion of the surfacgshown as a dashed line in Fig) 5 no
\ o longer on the EH, but represents the surface of horizon gen-
N 0.0 ;‘ﬂt=OM’X) ] erators “waiting to be born,” as they will join the horizon at
1 a future time. For the work here, we define a point on the
05 ] horizon where generators cross as a caustic, and therefore, at
I the point where the generators cross and join the horizon, the
i ] horizon has a caustic point. This caustic at the cusp in the
-1.0- 1 event horizon is discussed further below and also in Ref.
[20].
A5 e N R
1.5 1.0 05 0.0 0.5 1.0 15 B. Geometry of the EH surface

P The function for the surfacé(t,x'), together with the

FIG. 1. We show the topology of the EH for the collision of two metric induced on the surface, gives the intrinsic geometry of
black holes using data generated with thad€zcode from the the EH, from which important physical properties can be
Misner u=2.2 initial data. The solid lines show the EHtatOM  determined. In this section we present a set of tools which

andt=7.5M. The dotted line at=0M shows the locus of genera- allow one to study the intrinsic properties of the surface.
tors which will join the horizon in the future. We note that between

t=0M andt=7.5M the horizon undergoes a non-trivial topology 1. Area
change. We note that “crossover” type caustics form on the axis.

We shall see below that new generators join the horizon at these . ; .
black hole event horizons in general relatiVil]. The area

There has been extensive study of the surface area of

points. plays a central role in the thermodynamics of black holes. As
ll. STUDYING THE EH SURFACE area is a quantity directly used in analytic studies, it is im-

portant to be able to study the dynamical evolution of the

A. Topology of the EH area of the EH in a numerically constructed spacetime both

We note that one important, but easy to obtain piece ofor understanding the spacetime and also as a diagnostic tool
information contained irf(t,x')=0 is the topology of the for the accuracy of the numerical treatment.

EH at a constant time slice. In this section we show an in- Construction of the surface area as function of time is
teresting case of the EH undergoing a change of topologygtraightforward. Here we show how one computes the area
We apply our EH finding method above to a numericallymainly for establishing the notation used in this paper. A
generated spacetime representing the head-on collision &Hrfacef(to,x')=0 determines the coordinate location

two equal mass black holes with axisymmetry. In Fig. 1 we=x'(6,¢), (i=1,2,3), of the surface at timig, where we
show the functionf(t,x')=0 at two times for the case of regard the surface as being parametrized by two surface co-
Misner time symmetric initial data, described by two throatsprdinatesx®= (6, ¢), (a=1,2). Denote the spatial line ele-
connecting two |(_jent|c_al asymptotically flat sheets, evolvednent of the spacelike hypersurfacetatt, by

by a code described in Reff7] (the “CadeZ code). The o

case considered here is for the Misner paramete®.2, for do'2=gijdx'dxj, (5)
which the initial distance between the throats is 8192

whereM is the 1/2 the ADM mass. For details of the initial and so we can define an induced horizon 2-metric as

data set, see Refkl6, 7).

At t=0 the EH has the topology of two disconnected
two-spheres represented by the solid lines centered near
==*1 in the p-z plane. We note that the functioh(t
=0x') gives not just the location of the EH, but also the The surface area at a timids then given by
locus of the future horizon generators before they join the
horizon. Att=7.5M the horizon has the topology of a single — —
sphere. pology g A(t)zf Jydxtde,

We treat this change of EH topology by following the
surface function backwards in time. We can trace the horizomhere y is the determinant of,.
from t=75M or 10(M to a “dumbell” shaped horizon at In Fig. 2 we showA(t) for a Schwarzschild black hole
=7.5M. In Fig. 1, we start with this “dumbell” shaped evolved with maximal slicing. The dotted lif&abeled stan-
horizon. Tracing this surface backward towatdsOM, we  dard ADM) shows the results obtained using the standard
see that the central part of the surface shrinks rapidly, and theumerical treatment as described in R&2]. In this case,

Xt ax]
Yab= Gij v (6)

)

064015-3



MASSQ SEIDEL, SUEN, AND WALKER PHYSICAL REVIEW D59 064015

200 T T T T 1 o
1.8; _ Schwarzschild ] 105
I Standard ADM ] r
| AHBC ]
: "%
2 14 ] S
E: n [
I v | O 0.8;
1.2 . L
I 1 0.7:
1 r
0.87-w\\‘..\‘\\\\\‘l.‘\7 O_Gi,“|“.\‘.‘\‘.‘\“.’
0 20 40 60 80 100 0.0 0.2 04 0.6 0.8 1.0
/M a/M

FIG. 2. We show the area of the EH traced out for a Schwarzs- FIG. 3. We plot the raticC, of the polar to equatorial circum-
child spacetime evolved with two different methods. The dotted lineferences of the event horizons for Kerr black holes with various
shows the EH evolution with a standard-32 ADM evolution rotation parametera. The diamonds show data points obtained by
scheme. The dashed line shows the evolution with an apparent h@PpPlying our method to various Kerr spacetimes, while the solid
rizon boundary condition. The solid line shows the analytic value.line shows the analytic result. The agreement is excellent.

We note that the same method is used for both spacetimes. The

error in the standard ADM spacetime is due to inaccuracies in thé1 axisymmetric spacetimes one can define a polar circum-

spacetime metric, not the EH finder. ferenceC, and, for spacetimes with a reflection symmetry
around the equatorial plane, an equatorial circumferéhgce

the calculation is carried out using a 1D code with 200 grid!" the axisymmetric system, with/9¢ being the azimuthal

zones. It is well known that when evolved with such slicingsKilling vector, we can take the horizon coordinatésto be

and without a shift, the EH will expand outward in the radial those tied to the symmetry axis:

direction in coordinate space. At the same time, a sharp peak o

in the radial metric function develops near the EH. Because xX2=(0,0)=(6,¢). (8)

of numerical error caused by the inability to resolve this

sharp peak, the functiof(t) deviates significantly from the The polar circumferenc€,, the circumference of a line

analytic value of 16M?2 as the evolution continues. with ¢=const, is

We compare this result to the case of the dashed line in
Fig. 2, Which is obtained by applying E6) to a Schwarzs— Cp:f B /')’abd;ad?)- (9)
child spacetime constructed with the same grid parameters, const

but with an apparent horizon boundary conditid8,24]. o L
The improvement in accuracy is dramatic. The eq_uatonal C|rcum.fere.nc@e, which is the loop around
We stress that the issue here is the accuracy of the nibe horizon aty= /2, is given by
merically constructed spacetime, and not the accuracy of the
EH finding method; an identical finder is used for both the Ce= f_ Vyapdx@dx. (10
dashed and dotted lines. The errorAft) in the case of the 0=ml2
dotted line is dominated by the error in the spacetime data.
The relative numerical error in finding the function
f(t,r,0,4)=0 as the position of the EH is small compared
to the errors in the background spacetime. The agreement
the dashed line with the analytic valdgt)=167M? sug-
gests that the error il\(t) determined with the apparent
horizon boundary condition spacetime is only about 1% a%
t=100M. Though simple, this is an illustrative example of
using the horizon analysis as tool to understand the accura
of a given numerical spacetime.

What is often more interesting is n@, or C, by them-
selves, but their rati€, =C,/C. This defines an effective
Spape parameter for axisymmetric surfaces. Roughly speak-
ing, if C,>1 or C,<1, the surface is prolate or oblate, re-
spectively.

a. Shape of the analytic Kerr horizom Fig. 3 we show
he quantityC, for Kerr black holes with various rotation

rameters®. The numerical simulation of such spacetimes
as been discussed in Refg5,8,26. The Kerr spacetimes
we consider here, however, are not evolved, but rather the
analytic (stationary Kerr solution in the logarithmic radial
7,0 coordinates. The use of analytic data enables us to test

For black holes with symmetries, the definitions of somedirectly the accuracy of our horizon treatment, without being
circumferences are geometrically meaningful. For exampleaffected by the error of representing the spacetime on a nu-

2. Circumference
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FIG. 4. We plot the shape parametey for a series of event FIG. 5. The time development of the shape paramé&eis

horizons of non-rotating black holes surrounded by gravitationashown for a single black hole distorted by a Brill wave. We note
waves of varying strengths, denoted as triangles. For comparisoithat although the black hole is initially very distorte@,&2.9), it
we show the behavior of the apparent horizon, denoted as digquickly settles down to the quasi-normal mode ringing predicted by
monds. We note that, of the AH atQ,=1.8 is around 17, in  perturbation theory.
contrast with the EH, which has, around 2.5.

analysis tools of the EH, we will defer an exhaustive param-
merical grid with finite resolution. The solid line shows the &ter Séarch and discussion of the physical implications of this

analytic value[27], and the diamonds are data points Ob_result to a later paper, including a cornpar.ison with Fig. 4 of
tained by applying our methods to Kerr spacetimes and me%%]_’ Wh?re the upper bound on the d|s'Fort|0n of the apparent
suring their circumferences as described above. The agre orizon is found _to_ _be orders of ma_gmtut_mger than that
ment in the plot is excellent. of the EH. In the initial data, the AH is far inside the EH, but

b. Shape of distorted EHslext we consider the event after a short evolution in these spacetimes, the AH will
- : ; ; quickly pop out(the AH is generically spacelik¢o be closer
horizons of highly distorted black holes. An important opent0 (but still inside the EH.

guestion about the nature of black holes is the following: Is . _ : .
the event horizon always rather spherical, as suggested by While Fig. 4 showsC, for highly distorted black hole

the hoop conjecturg3,28,29? This question can be ad- vent hqrizpns lat=0, the same function also provides im-
dressed to some extent by studying the EH of black ho|e£)ortant insight into the evolution of these horlzpns._ In par-
distorted by axisymmetric gravitational waves. The initial icular, we study the case @=1.0. As shown in Fig. 5,
data construction has been described in detail in R3], When'th|s black hole evolves, |'ts horizon e\{olves FC?W?“dS
For our purposes it suffices to note that the system correSPnericity, overshoots, and oscillates about its equilibrium,
sponds to a time symmetric torus of gravitational wavesSPherical configuration. The frequency and decay rate are, to
whose amplitude and shape are specifiable as paramete}€/Y high accuracy, the quasinormal mo@@NMm) of the
which surround an Einstein-Rosen bridge. In Fig. 4 we surPlack hole as determined by perturbation theory. For com-

vey the event horizons at the initial tine-0 for a range of Parison, afit to the two lowest QNM frequencies is given by
black hole data sets with fixed Brill wave shape parametergqe dashed_ Im_e. .

[(0=1.0, 7,=0.0, n=2) in the language of Ref30]] rep- The oscillations of thg EH are a common dyna_mlcal fea-
resenting a quadrupolar wave centered on the black hol&!'® of black holes. In Fig. 6 we show the osqllatlon“of the
throat with a width of order M. To find the EH at the initial Hin the_two bIack_ hole colhspn simulated using the “class
time, we first evolve the initial data to a late time, and thenI _(;ogrdn’rl]ates W'tg_ the | M|s_ner sepahratlon_ pl):a_raTe\tAe}r
trace the EH backwards through the evolved data, as dd: ™ << whose coordinate location was shown in Fig. 1. We

scribed above. Figure 4 shows the EH paramtefor the show the oscillation of the single horizon which forms after
initial data as éfunction of the Brill wave amplitu@,. We the merger of the two individual black holes. The results are

see that in the range of parameters investig&@ectan be similar to those of the single distorted black hole described
rather large(almost 3 in Fig. 4 but does seem to have a above, showing the generic nature of this phenomenon.

maximum inQ, space when measuredtat0. In contrast, at

the same incident wave amplitude, the apparent horizon
(AH) has a much larger amplitude and is increasing in in- The Gaussian curvature is a local property describing the
creasing amplitude to substantially larger distortions than théwo principal radii of curvature at each point on a surface. It
EH. As this paper is restricted to the introduction of thehas been found to be very useful in analyzing the dynamics

3. Gaussian curvature
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FIG. 6. The time development of the shape param€eis FIG. 8. We show the time evolution history of the Gaussian

shown for two colliding black holes. We note again that despite thecurvature for the 2BH collisioriMisner u=2.2). In (a) we show
violent initial beginnings, the system settles down to ringing behavthe entire history of the horizon curvature, and note the repeated
ior at late times. Note that the definition of the shape parameter isscillation pattern, as in Fig. 7, here with a more complicated pat-
not appropriate until after the coalescence. tern, but still with a frequency of about W. In (b) we show the
early time behavior of the system, seeing the strong curvature near
of the AH[31], and it applies equally well to the EH surface. the systems cusp as the holes come together. We note that the line
The general formula for the Gaussian curvature of a 20f caustics is the region inside the two holes before coalescence, as
surface in a spacelike hypersurface with 3-megicis «  Indicated by the arrows.
=2R whereR is the Ricci scalar of the 2-sphere with the
induced 2-metric. fundamental period of the lowest QNM of the black hole.
Figure 7 shows the time evolution history of the GaussiamAfter aboutt=60M, the hole gradually settles down to its
curvature for the highly distorted hole studied in Fig. 5. Ho-final, spherical configuration.
rizon history diagrams like this have proved very useful in In Figs. 8a) and &b) we show a similar diagram for the
showing the development of apparent horizon surfaces itwo black hole collision(Misner u=2.2) evolved in “class
time [31], and here we apply them to the EH surface. Thel” coordinates. At late timesi has an appearance similar to
figure shows the evolution of the Gaussian curvature as that shown by the highly distorted case discussed above. At
gray-scale across the surface as a function of tinogizontal  early times, there are two separate black holes whose hori-
axis). We use the-axis embedding of the horizqdescribed zons are about to merge. The surfaces are most highly dis-
below) as the vertical axis in the plot is larger initially ~ torted along the caustic line, and the Gaussian curvature is
near the equator and then oscillates between the poles atatgest there. In Fig.(@) we show the entire history of for
equator. The checkerboard pattern is typical of a predomithis system. We see that in the early times, before coales-
nantly | =2 distortion of the horizon, as discussed in Ref.cence, the Gaussian curvature is very high near the coales-
[31] (there in the AH case The frequency of oscillation of cence pointx is in fact singular on the EH at the caustic; we
the horizon surface can be read off directly from the figureshow the curvature very close to the caustin Fig. 8b) we
We see that it has a period of aboutMy which is the show the early time behavior, so that the details of the cur-
vature can be seen around the coalescence point.

. | — — 4. Embedding diagrams and embedding histories
. .
o A - - = The use of embedding diagrams to study the intrinsic ge-
- ometry of spacetimes is not new in relativity. It is a particu-
i 5 0 @ db = Ee qi larly useful way to study a curved 2D surface on a constant

LM time slice. The embedding technique creates a fictitious 2D
adm surface in a flat 3D Euclidean space with the same geometric
FIG. 7. We show the time evolution history of the GaussianProperties as the original 2D surface in curved 3D space.
curvature for the highly distorted hol&®g=1.0). We plot the cur- This technique has been described fully in R8L], where it
vature as a gray scale using the embedgdealue as thg-axis, and ~ Was used to study AH surfaces. We follow the same embed-
t/M as thex-axis. We note that even though the hole is initially ding approach here.
very distorted with large curvature, it settles down to a damped We can perform a non-trivial test of our embedding treat-
oscillatory pattern at later times with a frequency of about117 ment by embedding the analytic Kerr horizon, and compar-
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FIG. 9. We compare the embedding of the Kerr horizon from . .
our horizon finder with the known embedding for the vahlié/ FIG. 10. We show a sequence of embedding diagrams for an EH

=0.877, at which the entire horizon cannot be embedded into fIaf"Storted by a large amplitude Brill wave. Even though the horizon

space. We notice the agreement between our finder, the diamon e?ometry IS very non-sp_herlcal &E0M, as demonstrated by the_
and the known solution. the line. cigar shaped event horizon, the system quickly becomes fairly

spherical, as shown in the time snapshotsan (b), and(c), and

ing this horizon with the embedding diagrams predicted in@lso in Fig. 5, which corresponds to this system(dnwe see that
Ref.[27]. For high-rotation Kerr black holesy(M>v3/2),  the late time horizon is essentially a Schwarzschild horizon, as it
it is not possible to embed the horizon around the pole. If1as settied down to a sphere with radiud 2

Fig. 9 we show how our EH finder finds and embeds the

correct analytic horizon up to thévalue where the embed- down towards its Kerr form. Figure 1d) shows a quadrant
ding no longer exists. of the EH embedding at time=45M. At this time, the hole

In Figs. 1Ga)—10(c) we show a time sequence of the em- has settled down to the Kerr form, in accordance with the no
bedding diagram for the black hole studied in Fig. 5. In Fig.hair theoren{21]. The shape of the EH is to high accuracy
10(d) we show the EH and Schwarzschild embeddings,
where both embeddings are normalized by the horizon mass.  t-=00 M t=124M
This normalization removes the spurious area growth caused
by errors in the numerical spacetime, as seen in Fig. 2, from
our horizon embeddings. In Fig. @ we see that the initial
embedding is very prolate, in concordance with the large
value of C, shown in Fig. 5 at=0. We also note that the
final state is indeed a Schwarzschild-like horizon, namely a
spherical black hole characterized solely by its mass.

In Figs. 11a)—11(d) we show a time sequence of embed-
ding diagrams of the EH for a Bowen-York, rotating black
hole [32,25, with angular momentund =15, evolved by a
code described in Ref8]. We see from Fig. 1) that the
initial EH is quite sphericalwe make the front 45° of the
horizon transparent to facilitate viewing, hence the “pac-
man” appearance of the horizonThe Bowen-York con-
struction differs from that of a stationary Kerr hole; so this
data set can be regarded as containing a gravitational wave )

. L 000 o]
that makes the initial black hole horizon more spherical than © @00 05 1o 15 20
the oblate pure Kerr hole. At=12.4M into the evolution, as "
shown in Fig. 11b), the embedding has a shape reminiscent . 11. we show a sequence of embedding diagrams of the EH
of a napkin holder; the top and bottom sections of the horitor 4 Bowen-York rotating black hole, with angular momentdm
zon cannot be embedded as they have negative curvature a5 (a/M=0.877). We show snapshots of the horizoriattime
the axisymmetric pole, and therefore cannot be representae-o, (b) time t=12.4, and(c) time t=34.5. To allow a clearer
in a Euclidean space. At this instant in time, the extent of thesisualization of the region where the embedding fails, we make the
unembeddable region is near a maximum. Figuréc)l1 front 45° of the horizon transparent. We note that, at late times, the
shows the geometry at a later time, as the horizon settlesystem approaches the analytic Kerr embedding.

t=450M
adm
Numerical

151 Kerr R
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t=00M_ t=54M

adm |

t=40.0 Mad t=80.0M__
2.0~
1.5; \
s N\
RRTY \
05/ Numerical o 1 FIG. 13. We show the embedding history diagram of the two
0o Schwarzsehid || black hole collision generated with thea@ezcode. This diagram,
(©) (d)O-O 05 1-0p/M1-5 20 25 the famous “pair of pants” diagram, shows a time history of the

embedding of the horizon by stacking consecutive embeddings on
FIG. 12. We show a sequence of embedding diagrams of the gipp of e_ach other in time. The lines on the surf_ace show the paths of
for the two black hole head-on collision case(at time t=0, (b) the horizon gen.erators,. and show them leaving the surface at the
time t=5.4M, and (c) time t=40.0M. The simulation here was CroSsover caustic, as will be discussed below.
generated with the &lezcode. We note that at late times, as shown
in (d), the system approaches the appropriate Schwarzschild hole, To bring out the dynamics of the horizon evolution, it is
as expected. useful to show the “embedding history diagram” of the ho-
rizon instead of a series of snapshots. In Fig. 13, we show the
the same as that of an analytic Kerr holeagin=0.877, the evolution of the embedding in time for the two black hole
embedding of which is plotted as a dotted line for compari-case just discussed. In this diagram thdirection has been
son with the numerical result. We note that the value ofsuppressed; i.e., we stack gp=const cross sections of the
a/m=0.877 is the value of the rotation specified in the initial 2D embeddings from various times to create a continuous,
data solvgla J=15 Bowen-York holg and that this resultis 2D embedding history diagram. We note that this figure is
still observed late in the evolution. This is physically re- not a spacetime diagram, in that the,£) space away from
quired, as an axisymmetric system cannot radiate angulahe horizon surface has no physical or mathematical connec-
momentum. The fact that our horizon finder confirms thistion to the curved 3-1 spacetime. However, these embed-
late time behavior is a strong verification of the accuracy ofding history diagrams are a convenient and effective method
our methods. Notice that there is still a region of the horizonfor showing the evolution of the embedding of the event
that cannot be embedded, as the horizon for such a rapidlyorizon surface in coordinate time)(in the fictitious Eu-
rotating black hole is “too flat” for Euclidean space, and the clidian (p,z) space. This figure shows the geometry of the
regime in which the EH cannot be embedded matches thiadividual holes as they approach each other, with a cusp on
region for a Kerr EH, as also shown in Fig. 9. each horizon. The distance between the holes before the
In Figs. 12a)-12d) we show four snapshots of the em- merger, which is not prescribed in the embedding process for
bedding of the EH for the two black hole head-on collisiondata generated in thea@ezcoordinates, is chosen to keep
case generated with thea@ez coordinate system fop  the embedding history diagram smooth. After the merger,
=2.2. Figure 12a) shows the embedding of the EH on the one can(barely see the oscillation of the final horizon,
initial, time symmetric slice t=0). We see the two indi- which occurs at the normal mode frequency of the final black
vidual black holes, with cusps on each horizon onzfexis.  hole. In this diagram we also show the evolution of various
In Fig. 12b) we show the embedding at time-5.4, shortly  horizon generatorgphotons moving normal and tangent to
after the merging of the two holes. In Fig.(&2we see the the horizon as lines on the surface. The determination and
late time spherical behavior of the horizon, despite the sysuse of these generators will be discussed in detail in the next
tem’s tumultuous beginnings. In Fig. @@, we compare the section.
embedding of the EH at=80M, shown as a solid line, to Another interesting embedding history diagram is shown
the horizon of a Schwarzschild hole with the appropriatein Fig. 14. Here we show the embedding of thguator of
mass, shown as a dashed lifpece again, we normalize our the horizon of a Bowen-York black hole from Fig. 11. We
final embedding by the final argaAgain we see the no hair see the equator bulge out and then back in, as the hole be-
theorem at work, in that the initial condition with no charge comes more and less prolatéhe total area increases in
and no angular momentum settled down to a black hole contime). As discussed in Sec. IV we embed the equator since it
pletely described by its single parametist, allows us to show the generator motion in tfelirection.
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FIG. 14. We show the embedding history diagram for the case
of a distorted Kerr black hole. Here we suppressalaérection, and
embed only the equator at all values. Although the spacetime is
axisymmetric, so that there is npvariance, this embedding dem-
onstrates the rotation of the generators in thalirection as the
system evolves in time. This diagram is a numerical construction o
the “barber pole twist” diagram.

FIG. 15. We show the time evolution of the convergence expo-
nent ofA andC, in the low amplitude gravitational wave plus black
hole spacetime. We note second order convergence throughout the
entire run, and that the convergence rateCpfhas(smal) spikes
Fssociated with an oscillatory function, while that/Afdoes not.

discussed here; since we have not assumed the Einstein

equations hold in any of our analysis so far, constraint vio-

) o lations in the spacetime wilhot affect the convergence of
The study of numerical convergence is important for anythe system, although they could in principle cause the hori-

numerical treatments based on finite differencing, and Wgon analysis to converge to a non-physical resilhe con-

discuss it for each of our results here. We give a brief overyergence study is made by keeping the spacetime resolution

view of numerical convergence here, but for a more detailedixed in all runs and adjusting only the number of points

discussion, see Ref&33, 34. To avoid confusion with paper hich represent the horizon. We use an interpolator of order

|, we emphasize that the numerical convergence we discuggual to or higher than our evolution method on a numerical

here is the usual convergence rate of our numerical resultgyig of data.

depending on grid resolution. It ismmpletelydifferent phe- We see that the measurgand C, converge at second

nomenon than thehysicalconvergence discussed in Sec. Il orger as expected. These quantities are simply measures of

and in paper |, which is a physical attraction of null surfacese interpolated metric and the surfa@volved with a sec-

to the horizon independent of numerical treatment. ond order MacCormack methpdand so any result below
Given three solutions to a discretized equationM, and  second order would signify an error.

H at resolutionsAx, Ax/q, and Ax/g® the convergence  Additionally, we measurébut do not showthe average

exponent is defined as convergence of the-coordinate of the embedding over the

entire surface (in the embedding procedure, only the

C. Numerical convergence of the horizon measures

log L—M z-coordinate is integrated; thecoordinate is exactly given
o= M-H (11) as a function ok and the metric The embedding converges
log q at first order. This is to be expected, since we use a first order

integration over the derivative of the surface to form the

where the minus sign is simple subtraction for numbers, anémbeddings. Since the embedding is only measured, not
a combination of interpolation onto a common grid and re-evolved, this first order nature is satisfactory. We note that
duction via a norm operator for fields. The measuarandi- using a higher order integration scheme would not substan-
cates that the error in a numerical solution is of ordef. tially improve the accuracy of our embeddings, since we

In Fig. 15 we show the numerical convergence exponentsannot remove integrals over derivatives of the surface from
of the horizon area\ and ratio of circumference§, in a  our embedding procedure.
slightly distorted single black hole evolving in timeg
=0.1, 7,=0, aoz;.o, r_1=2). We choqse t_his case for our IV. HORIZON GENERATORS
convergence studies since the spacetime is quite accurate so
effects of numerical error in the background spacetime are We have already seen examples of generators of the ho-
minimized, and we can directly test our horizon treatmentsizon in several of the above figures. In this section we show
(we see similar convergence results for all the spacetimethat the horizon generators can be located in a numerical
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spacetime using information already constructed in our 040 T T T
surface-based horizon finder. We will use these generators to K
study the motion and dynamics of black hole event horizons.
A. Formulation 0.30¢ ]
The EH is generated by null geodesics. With the EH
given by f(t,x')=0, the null geodesics that generates the -
surface satisfies T o20f ]
=
e A(x*)g*P g 4f 12
dt - (X )g Bl ( ) _ ]
_ _ | 0.10F :
where A(x*) is a scalar function of the four coordinates. I ]
Notice that in terms of, the generators satisfy a first order
equation, rather than the more complicated second order geo- ;
desic equation. We choose the normalizatfgix*) to be eooLY . ]
0.0 0.2 0.4 0.6 0.8 1.0
1 a/M
M= ——
A(XH) gtﬁaﬁf 13 FIG. 16. We show horizon generator angular velocidy/dt

foraM =1 black hole with values ci/M between 0 and 1 as solid
so that the null vector tangent to the null geodesics is givenliamonds. We compare these results with the analytic value, shown

by as a solid line. We note the excellent agreement
iB
. ( 1 9 &ﬂf)_ (14) black diamonds. We compare these results with the analytic
'9'*0,f result, Eq.(15), shown as a solid line. We note that the

] ] ) . o . results agree with the analytically expected value.
Notice that with this choice, the null geodesimiat affinely

parametrized, but instead, adapted to the global time coordi-
natet used in the numerical calculation of the spacetime C. Horizon generators in dynamical spacetimes

itself. . :
One important advantage of determining the null genera: We now apply_ these techniques to the study Of. the trajec-
tories of the horizon generators for three numerically con-

tor using Egs(12) and (13) is that in this formulation, the structed dynamical spacetimes,

trajectories obtained are guaranteed to lie on the EH. This i8 We first consider the low amplitude Brill wave plus black

in contrast to numerically integrating the second order geo; : : .
desic equation directly. As shown in paper |, integration ofhOle spacetime considered abow@,€0.1). In this space-

the geodesic equation directly can lead to spurious tangemi%!:lteh(\a,\;eth?npeucstt%gz?asprg?jrigl?l ee:/soiﬁgonelgetrg?o?:Cv%rjllz)rii.
drifting effects which can significantly affect the position of d namicaIJI sliced sg hericaly,s acetirge we also expect
the horizon generators. This difference can lead to errors d & y P P ' P

interpretation, as described in paper I. The importance o;ome non-spherical deflection to be noticeable in the genera-

obtaining accurate trajectories of the horizon generators i\?vrjér\]/\:ﬁeshg\rﬁve:g'tzrd;:]leslt;r;o?;t?lOtt'nga;Zetggfg rt?ant(iﬁebe-
clear. Generators of the horizon contain all the information gener 9 Udhen, ST
enerator locationfy, versusé, itself, evolving in time.

of the dynamics of the EH. The entire membrane formulatio ) . .
described Sec. V is based on these trajectories. Thus, ina quatorial plane symmetry requwes_there be no deflection at
; e equator, and axisymmetry requires that there be no de-

curate location of the generators due to tangential driftin ) i . .
can make analysis of the horizon dynamics via the generato ‘Llecuon at the pole; thus the entire generator defl.ectlon must
impossible. occur between the equator _and thg pole. In the intermediate
region, the generators oscillate with a quasi-normal mode
frequency with an amplitude dying down at late times. In
Fig. 17, we show the deflection quantiy..— 6, evolving in
We briefly study the motion of generators in the analytictime, and note that the deflection is small, but displays this
Kerr case. In this case, a generator will rotate in theexpected behavior.
¢-direction on the horizon with a rate In Fig. 14, the “barber pole twist” diagram, we have seen
the ¢ motion of the generators in Kerr-like spacetimes. In
d_¢_ a 15 Fig. 18, we plot the quantitg¢/dt of the photons versus
dt ~ 2M?+2M(M?—a?)? 19 fime. We see that they settle down to a constant value at late
times, with

B. Analytic Kerr case as a test case

In Fig. 16 we showd¢/dt for various Kerr spacetimes.
We measure thep location of the horizon generators, nu- d—¢(t=50M):0 293 (16)
merically differentiate in time, and show the result as solid dt U
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FIG. 19. In this diagram we analyze the trajectories of the pho-
o tons before and after they join the horizon for the case of two
_ colliding black holes(Misner u=2.2). Slices of the horizon are
S o shown at=0, 1.9M, 2.7M, and 3.M. We note that generators not
= originally on the horizor(shown by inward pointing arrows on this
FIG. 17. We show the angular deflection of generators for afigure) cross over each other at a line of caustics onztais and
horizon with a low amplitude Brill wave initially incident on a join the horizon as the holes collide. For example, the two photons
black hole. We show the deflection by plotting the angular locationlabeledA andA’ join the horizon at=2.7M, crossing over at the
of the generatorsye,, minus their late time positiord,, versus  point shown as an open circle. At tinte=3.1M they are on the
their late time position,dy, evolving in time for all generators. horizon at the points shown as solid circles. The second black hole
From the figure it is clear that the angular deflection occurs aways not shown, as the system has equatorial plane symmetry.
from the equator and pole, as is obvious from simple symmetry
arguments.

quite accurate, although late time errors in the numerical
spacetime lead to the observed small difference from the

This is to be compared to the analytic value of 0.296 giveneXPreCted value m;uhe_ generator”an_gular velo_cny. :
. - L2 urning to the “pair of pants” diagram, Fig. 13, which
by Eqg.(15) with a/M =0.877, denoted by the dashed line in ! -
: . shows the embedding of two colliding BHs, we see that the
the figure. We see that the measured value=880M differs . : :
from the analytic value by about 1%, which demonstrated'0St Interesting fe_ature .Of the generators is that some of
that the hole is settling down to a Kerr black hole at Iatethem leave the horizofgoing b_ackvyards n tln)eat the In-
times, and that the determination of the horizon generators i8€" S€am of the pants. There is a line of caustic points on the
z-axis extending backward from the “crotch” point where
0.36 e the two horizons merge. It is at these points along the caustic
h line in the history diagram that photons originally travelling
in the causal past of null infinityd~(Z*)] join the horizon
as generators. As discussed above, only the surface of the
0341 - horizon has been embedded; the photons that have left the
— ] embedding diagram have also left the embedding space, and
their paths are only shown to denote their joining the hori-
zon.
0.32 . In Fig. 19 we show the coordinate location of the genera-
: ] tors and horizon surface found using thad@zcode. The
EH location at various times is shown by heavy solid lines.
The t=0 surface is the horizon of two distinct BHs at the
030 . initial time, which evolves to a single, merged horizon,
S N shown att=3.1IM. We see that generators which start out-

] side the EH(denoted by inward pointing triangles in the
figure) move inwards, cross on theaxis, and join the hori-
zon. This crossing of generators of the EH in the two black
oM hole collision is crucial to a recent understanding of the
structure of the horizon in the Misner spacetime. Further
FIG. 18. We plot the generator angular velocity/dt for a  analysis of the nature of such lines of caustics is possible and
horizon generator on the equator wéor the distorted Kerr black underway[35]. Coupled with new techniques for evolving
hole. We note that, although this quantity is not constant in time, itmultiple black hole spacetimes, our techniques should allow
approaches the analytic value of 0.296 at late times, as the horiza@n increase in our understanding of how the generators be-
settles down to its Kerr form. have in dynamical multiple black hole spacetimes.

do/dt

028 .. ... ..., Livvins [ Lo [
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25T R R R AR AR RERERAAN tent to which this can be used in numerical relativity as a tool

to investigate black hole dynamics. The theoretical basis for
this study is based on the membrane paradigtR) [1]. The
i MP views the black hole as a 2-surface in a 3-space with the
— vl /4 properties of a viscous fluid. In many ways, the EH in a
2.0 &/'\F l — dynamical spacetime is like a soap bubble perturbed by ex-
I ; o " ] ternal influences. The MP is particularly valuable in provid-
I P - ] ing an intuitive understanding of how a BH reacts to its
Ty \ ! surroundings.
- \ ‘ There has been much study of gravitational interactions
L5l ' VL b using the MP in quasi-stationary situatidi®6,37. With the
) P vy advent of numerical identification of the EH and generators
! ] described above, we can now start to consider applying the
i foo ] MP to fully non-linear and dynamical spacetimes. With this
" goal in mind, we demonstrate how to construct the MP quan-
) 0' 1 tities on a numerically located EH and examine the accuracy
% | ) A Lo, Lo [ Loveniiv, . H H
o 10 20 30 10 50 of these constructions in several testbed spacetimes.

A. Formulation
FIG. 20. We show the convergence rofind 6 for the horizon

generators in the low amplitude Brill wave spacetime. The conver- W? begin by discussing the MP fp,rmal'sm with the .goal
gence exponents, and o, are plotted versus time. We note that Of Peing able to construct MP quantities on our numerically
the radial location of the generators converges at second order, blgcated horizons. The membrane paradigm requires the
the angular location converges at somewhat less than second ordéhoice of a time slicing, splitting up spacetime into an “ab-
This is unsurprising since the evolution equation for the generatogolute space” and a “universal timef1]. To apply the MP
angular location is dominated by an interpolation of the numericato numerical relativity, we choose the universal time to be
derivative of the horizon surface. the same as the time coordinatased in the numerical evo-
lution. This implies that the time coordinate used in the nu-
merical evolution has to be well behaved on the EH. This is
We can measure convergence of the generator locationthe case for all of the black hole spacetimes we have numeri-
just as we measured convergence of horizon measures. Sincally constructed.
the generator location is an ODE integration with coeffi- e define the four vector to be the tangent to the hori-
cients determined by the surface location and the derivativegon generators, and we normalize it as in Etyd) above,
of the surface, the appropriate test is to keep the number gfjth t being considered as the “universal time.” This vector
generators fixed, while changing the spacing of the surfacgs in the full 4-dimensional space, which we index with
We can then measure the differences in generator locationgyeek lettersy, »,...=(0,1,2,3). On the 2D spacelike sec-

as a function of spacing of the surface and form a converjon of the EH at constart;, we choose spacelike 2D coor-

D. Numerical convergence of the generators

gence measure for each generator, which can then be aver . . .
aged over all generators inatesx® which we index with lower case Roman letters,
We show the result of performing this operation on theﬁ)’?s’”i'e:(z’g)’ which arecomovingwith the horizon genera-

radial and angular positions of the generators in Fig. 20
using the low amplitude Brill wave plus black hole space-

. d
time considered above. We note that the radial position of I

the generatorgsolid ling), which is non-oscillatory, con- at
verges at second order. However, the angular position o

(dashed ling has spikes typical of an oscillatory function, wheret is the comoving generator time coordinfehich is
but converges below second order. This lower order conveiidentical to the time in the simulation by E@l4)]. In a
gence is due to the principal term in the angular generatocoordinate basis, we have the spatial basis vectors
position evolution being théinterpolated derivative of the

]
(17)

& at

horizon surface. That is, since we interpolate second order - d
spatial derivatives of the surface for the generator sources, €a= = (18
the evolution of the generator angular positions has error X7l

terms larger than the\q? terms. This convergence order

could possibly be increased by using fourth order spatialvhich are orthogonal td by construction. We define the
derivatives and very high order interpolators. fourth basis vecton by

V. MEMBRANE PARADIGM n-n=0
We now turn to a detailed analysis of the information .
carried by the congruence of horizon generators and the ex- n-l=-1
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n-e,=0. (199 D¢=L1-V is the projection of the covariant derivative along
| into the horizon section. |” denotes covariant differentia-
The induced metric on the 2D horizon section is tion on the horizon sectiorC,,,,, is the Weyl tensor and
H T, is the energy-momentum tensor.
=ekerd,, . (20 i _ i i
Yab= €aCYur The comparison of Eqs(25—(27) with the evolution

In the membrane paradiam the description of the d namgaquations for a 2D viscous fluid gives meaning to the hori-
. . € paradig P . y zon quantities, Eq(21)—(24). One finds that Eq(25) de-
ics of the horizon is given in terms of the horizon surface

" the sh H th ion@H d th scribes the response of a fluid to a gravitational tidal field,
gravity gy, thé shearo,,, the expansio » an € Eq. (26) describes the energy conservation of the viscous

Hajicek field 2z . They are defined as flow, and Eq.(27) is the corresponding Navier-Stokes equa-
tion of the fluid flow. The surface density of the mass-energy

oH= E i In det " (21) of the fluid is identified as- © /87, the surface pressure is
2 9t gn/8m, and the momentum density corresponds to

—QH/87. The dynamics of the EH of a black hole can be
37213 understood in analogy to the motion of a fluid on a soap
o=~ — - 0"y, (22 bubble. In the following section, we show how these “fluid”
at guantities can be constructed for an EH located in a numeri-
cal simulation.

Vil =gyl (23)
B. Constructing membrane quantities

H— —_ _). i . -
Qa=—n-Val. (24 Oncef(t,x') =0 is given, we obtain as given in Eq(14)

d'rj a straighiorward manner. Next, we define the goLnoving
coordinatesx? (a=1,2) on the horizon section by§(¢).
Then we have

These quantities are dependent on the choice of time ¢

ordinatet, as they explicitly involvel in their definition.
That is, they are gaugeependenmeasures of the horizon
dynamics. In the formulation of the membrane paradigm ~ . - -

given in Ref.[1], a particular time slicing is chosen for a €a=(J5.95)=(P.0). (28)
stationary black hole, e.g., a Kerr black hole. In this slicing,The coordinate components of the two basis vectors can be
without perturbation,gy and Qy take on special values piained by

while ®" and o}, vanish. For small perturbations about a

Kerr horizon,gy and(},, are first order slicing dependent. In 5: J=p" 9, +plo,+ p¢ﬁ¢, (29)

the formulation given in Ref[1], time slicings of the per-

turbed black hole are chosen so that the surface grayjty wherep' is defined to be

remains unchanged in time. In our application of the mem-

brane paradigm to numerical relativity, as we are mostly in- _, dr _ difference inr for neighboring generators
terested in highly dynamical and fully nonlinear interactions, T . — . . !

we do not pu% S)L/JCP]/ restrictions on }c/he time slicing. Rather, 99  difference in ¢ for neighboring generat?ég)

we let the time slicing be determined by the natural choice of

the numerical evolutiotmaximal slicing for most cases pre- and likewise forp?,p?. We use this definition in a discrete
sented in this papgrWe expect that the new features intro- fashion, differencing over generator locations, and therefore
duced by different slicings will become familiar when the oyr pasis vectors will always have a discretization error

formulation is used in more black hole studies, and hopefullybased on the initial spacing of generators%space As the

allow further insight into the slicing conditions and numeri- i — .
coordinatesd and ¢ are chosen to be comoving, we have

cal evolutions. PN . . :
The horizon quantitie€21)—(24) satisfy the following: p'=0=q". For the axisymmetric cases considered here, we

The “tidal force equation” pick ¢= ¢ and thusq=d/d¢, the azimuthal killing vector.
The horizon two-metric is then written as

Doyt (On=Gu)ogs=~Caunil1"= £, (25) .
., (m m)

the “focusing equation” Yar=| u |- (31
1 Yoo Yoo
D©®y=g,0"- §®a—0§b0ﬂb_87ﬁw“|”, (26)  The individual components are defined by, e.g.,
H o

and the “Hajicek equation” Yoo=0iiP'P (32
DO+ (d+ 1 5500+ 0 ,,0f Solving forn is particularly troublesome. We use the fol-
lowing, geometrically motivated, method. When we solved
=(Oht 3 Oh) a— AT 8mT,, 1" (27 for 4,f in Eq. (3), we solved the quadratic equation choosing
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the positive root for the outgoing null surface. We could alsotween ;g and 22K is only obeyed to a given order, we
have chosen the negative root, and found an evolution equ@annot expect our quantities which use this relationship to be
tion for the ingoing null surface. Let us call the ingoing obeyed at a higher order. By virtue Bf=1,

evolution equatiory, f, and Eq.(3) 4, f temporarily. We

will use the notationy,, f=(4; f,4f ). Thus, we can form 9g;; 1% 4 = — 20K +D B4 D. B¢ 39
two null vectorsL andN as gt w0 =~ 2aK+ DiB+ Dy BilTG
_ +
L,=(d f.aif) whereK;; is the extrinsic curvature of the 3-surfa¢g; and

g;; are both readily available in the numerically constructed
spacetime.

We can find the termsipi/at_by commuting partial de-
rivatives, namely,

N,=(; f,af ). (33)

From Eq.(2) it is clear that boti. andN are null, and thakt
is simply I with a different normalization.
However, it is also clear thai-e,=0. To see this, recall ap aax ol
thate, has only spatial components; so a_t_: a_t—a_g: 3_7 (39
N et=e,N;=elaf=eL;=L,el=0 (34) . L . o
The time derivative ofp is the spatial derivative of. We
since L is proportional tol which is orthogonal tee, by  can evaluate the spatial derivative bfwith a single time
construction. slice finite difference of our surface and surface quantities,
So now all that remains is to find a normalization suchand thus find the required time derivatives. To summarize,
thatn-I=—1. This is straightforward. Sincé=L/A(x"), expanding the time derivative of the horizon metric using the
using Eq.(13) it is clear that chain rulefnd using the above two techniques, we can find
the dy,p/dt terms in a single time slice.

.. g, faf Thus, we have a method for finding the four horizon

N-T= gi@o’ f =B(x*): (35 guantities which describe the kinematics of the horizon sur-

face. This method is contained entirely in a single 3-slice.

and so we can define by rescalingN by B(x*): We should note that it is also possible to create the mem-
brane quantities in a direct fashion using numerical deriva-

n=—N/B(X"). (36) tives in time to evaluate the expansion and shear. We call

this the “time difference” evaluation of the expansion, as
We note we can use E¢L9) to measure how accurately the opposed_ to the “single s'lice” e_valuation. We find that the
nandi’ orthogonality Withéa is maintained. single slice method invariably gives _s_moother and_ more ac-

Once the horizon 2-metrig!}, and full set of comoving curate data for the membrane quantities than the time differ-

ence method.

An additional difficulty comes in evaluating the horizon
equations, Eq(25—(27). Two terms pose a difficulty there,
D.Z, and agub, whereZ is any tensor on the horizon. Luck-
gu=T" 1417 37) ily, we only negd to evalufe\te these terms as a check; we do

pyt not use the horizon equations in our evolution. Thus we can
. o use first order accurate methods to evaluate these if need be.
for our particular parametrization of

There are several terms in the definitions of the membrane We first turn our attention 1@z, . F_lrSt we introduce a
quantities which require careful numerical and analyticalChristoffel symbol for the {6, ¢) coordinatese.qg., the null -
treatment in order to be evaluated in our framework. In parherizon 3-surface in co-moving coordlngtes,swhlch we will
ticular, in order to evaluate the horizon quantities accuratelyhere index with ¢,r,...)]. We denote this as®T. We

we must be able to evaluatéyab/at_, preferably without ind
taking numerical time derivatives. From E@2), the hori-

vectors, (ﬁﬁﬁ) are obtained, we can form the expansion,
shear, and Hajicek fields via Eq21)—(24). From Eq.(24),
the surface gravity is

; YA
zon 2—.metr|c?/ has tw9 typef of terms, those due to the DTZa=—_a—(3)anTZq- (40)
comoving basis vectong andq, and those due to the space- at
time 4-metric,g;; . Thus using the chain rule to evaluate
dyap!dt will yield terms like ag;; /t andap'/4t. The horizon “3-metric,” vy, , is simply given by y,y if

The derivatives along the generators of the spacetim@,r#t and O elsewhere. Thu$)T'% ¢ can be simply evalu-
metric can be evaluated using the metric evolution equationsited as
We note that this is the first point we have used the evolution
equations foig;;, and therefore the accuracy with which our Ol =3 Y (Yratt Yita— Yiar) = 3 Y Vapr- (41
spacetime obeys these evolution equations enters can enter
into our quantities. In other words, if the relationship be-Thus we can easily evaluate E40) as
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0z, 1 true horizon(at r=2M), that®,, o5, and Q! approach
DiZ,=—— —ybcybajza. (42 zero exponentially as the surface approaches the true hori-
a2 zon, and thatgy approaches the analytic value of M2

. _ ) .. Moreover, we can check that the relationship between the
The only term which we cannot calculate in a single slice iSpegral of the expansion and the area change holds in this
dZ,1dt, but we can simply calculate that by storing the spacetime by numerically differentiating the horizon area,
quantityZ, at three time steps and then use a centered timghich allows another test of our expressions. These relation-
derivative to evaluate the term at the middle step after alkhips are obeyed.

three steps aLe t_aken. _ In analytic Schwarzschild spacetime we can trivially
The termoy, is evaluated directly, e.g., evaluate the above expressions for® andg,, on an arbi-
trary null sphere of radius to find
o= 0np T DT 0%, (43 y P
and the 4 independent non-zero terms{®d1'?3,; are evalu- c (., 2M
. : o c. . =111 ,0,0/, 47
ated directly from spatial derivatives of the horizon 2-metric. r
C. Test and applications of MP quantities o 2 r 2( ZM) 48
In this section we apply the membrane quantities to a set r r r’
of testbed analytical and numerical black hole spacetimes
that have been computed using codes described in Refs. 2M T 2M
[5,8]. Our aim here is to probe whether these tools can be = 7T oM 12 (49
used in a practical way to explore the dynamics of black hole - —
horizons in numerically generated spacetimes. We will con- r
sider the physics of these quantities, for a set of interestin?\I ) .
spacetimes, in a future paper. ote thatl" and ® vanish on the horizonr&2M) as ex-
pected, andy takes the value 1M. We check these rela-
1. Flat space tionships for surfaces away from the horizon and we see that

our surfaces give the analytic results for all null spheres in
the spacetime.
ds?= —dt2+ dr2+r2dQ2, (44) Additionally, each of the horizon equations, E@5)—
(27), should be obeyed in this spacetime. We evaluate only
allows us to test our expressions f@ragainst easily under- the focusing equation violation, however, since the tidal
standable analytic solutions. Although flat space has no EHorce equation contains the electric part of the Weyl tensor,
it does have null surfaces, and our construction carries ovef+,, which causes this equation not to be a check on the

Flat space in Minkowski coordinates,

to them. membrane quantities alone, and the Hajicek equation is trivi-
Most notably, we know that for spherical null surfaces inally satisfied with a spherically symmetrig;, and Q5=0.
flat space, the expansion of a sphere of radiis The vanishing of the focusing equation violation allows

us a strong check on our method. Since the focusing equation
= i ‘9;4: E (45) requires the covariant derivative of the expansibg), we
Aa r expect the focusing equation to be obeyed as accurately as
) ) ’ ) ) D,0 is evaluated. Recall, we evaludlg® by taking a cen-
since, in flat spaced=4xr" and gr/gt=c=1. Using this  eeq finite difference in time; so we expect the focusing
relationship, we can trivially check our expressions @r  ¢qyation violation in our spacetime to converge towards zero
Additionally, we can formd.A/dt from integrals of the ex- 5t O(At?). We test this by finding a surface in the analytic
pansion, which carries over into the dynamical black holeg.nwarzschild background first using a Courant factor

case, where we can compare this integra®of with a nu- —q 2 and then. = 0.4, doubling the time step. We then mea-
merically calculated?A/dt. Evaluating the expansion in flat g e the focusing equation violation in these two runs. If the
space gives the expected answer. result is converging towards zero, the focusing equation vio-

lation should be 4 times larger in the=0.4 case. We dem-
onstrate this convergence in Fig. 21 by plotting the focusing
We next turn to the analytic Schwarzschild spacetime deequation violation witth =0.2 as a line and by plotting one

2. Analytic Schwarzschild spacetime

scribed in standard coordinates, quarter the focusing equation violation with=0.4 as dia-
) monds. The demonstration that these two sets of data are the
dsz:(l_ﬂ de2 dr +r2d02. (46) same indicates that we are converging towards a surface
r 2M which satisfies the focusing equations. We note that, as the
- T) surface becomes very close to the actual horizon, the focus-

ing equation is zero at levels close to machine precision in
In this spacetime, the expected results are that the generatdysth simulations; so convergence can no longer be observed
and surface will be attracted backwards in time towards theumerically.
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FIG. 22. We show A/ dt evaluated by taking both the numeri-

FIG. 21. We show the violation of the focusing equatiBpfor  cal derivative of the area calculated by the code and surface inte-
a given sized time step as a solid line, and one quarter the violatiograls of the expansion found from the comoving horizon two met-
for double the time step as diamonds, for a surface integrated in th§c. We use a very accurate maximally sliced Schwarzschild
analytic Schwarzschild spacetime. The fact that these data are cgpacetime which has a very small, but non-zero, numerical error in
incident indicates that we are converging towards a null surfacghe spacetime. We integrate two surfaces, one originally inside and
which satisfies the focusing equation. The surface in question startge other originally outside the event horizon. We note the excellent
atr=2.4M att=30. The exponential shrinking of the violation is agreement between the two measureg.4fat.
directly due to the exponential approach of the expansion towards
zero. Note also that as the focusing equation approaches machinﬁ .
precision levelghere 10'% convergence fails, since both quanti- the expansion measures area change.

ties are effectively zero. We choose two trial surfaces for our test, one slightly
outside the horizon and one slightly inside, and integrate
3. Maximally sliced Schwarzschild spacetime them backwards in time. As expected from paper I, these

surfaces converge towards each other rapidly, and lock onto

With the advent of new hyperbolic systems for the Ein-ihe same surface, but have some non-trivial area change, due
stein equation§38—-4Q and apparent horizon boundary con- 1, the “locking on” process before the surfaces join the

ditions [24,10}, long time highly accurate one dimensional hqrizon, and due to numerical error afterwards. In Fig. 22 we

evolutions of a maximally sliced Schwarzschild black hole o 5 /4t calculated by differentiating the area reported by
are quite readily available, and so we can use these Vely\q code, and also by integrals over the surface of the expan-

accurate spacetimes to test our horizon finding method. 1gjon \We see that these quantities agree, strongly indicating
this section, we consider a maximally sliced black holeinat our evaluation of the expansion is correct.

evolved with the eigen-method code described in R&9],
which allows long time evolution with an exceptionally o _
small error. 4. Small distortion non-rotating black holes

We first can test the evaluation of the horizon 2-metric, We turn to the small distortion Brill wave plus black hole
vap- In the case of no angular generator motion, where th@pacetime considered above. We first test if our evaluation of
generators are chosen to be identically on the points othe horizon two-metricy,;,, gives measures of the horizon
which the horizon surfacé(t,x') is evolved, the horizon geometry which are consistent with the measures discussed
2-metricy,;, and the induced surface 2-metric used to evaluin Sec. Il B. Since the generators will experience angular
ate area and circumferences should be identical. That is, weeflection, integrals to form areas and circumferences will be
should get the same answer evaluating &y.whether we  over different coordinate locations when using the comoving
use y,, as defined by Eq(6) or Eq. (20). Moreover, the and induced two-metric. Moreover, the measure of the ge-
vectors 5 and a should have component®,0,1,0 and ometry using the horizon two-metric will be measurgd_on a
(0,0,0,2 respectively. We see both of these features to manon-regular grid inf,¢ space(but a regular grid ing,¢
chine precision in the maximally sliced Schwarzschild spacespace, and will therefore have an additional inaccuracy.
times. Nonetheless, we see good agreement. In Fig. 23, we show

Spherical symmetry also leads to a vanishing shear; ouhe difference in evaluating, (notC,) using the comoving
expression for the shear vanishes to machine precision. Hovend induced two-metric in the Brill-wave plus black hole
ever, the expressions for the expansion are non-trivial, andpacetime. We show the difference for 38 and 76 generators,
since we have a very smdbhut non-zerparea growth due to  respectively. Note as the number of generators increases
numerical error, we can very accurately measure how wel(therefore reducing numerical error in the integration over
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FIG. 24. We show the evolution of the expansion in time for the

FIG. 23. We demonstrate that the generator co-moving metriorizon interacting with a small amplitude Brill wave. Two features
gives accurate evaluations of the polar circumfereig, in the  are of interest here. First, we note the initial expansion is quite large
spacetime with small amplitude Brill waves initially on the throat. but drops quickly, as the horizon swallows the initially incident
We show this by forming:f,fc from the induced surface metric and gravitational radiation. This initial growth is concentrated near the
Cp°"from the co-moving generator horizon 2-metric. We taking theequator, as the gravitational wave has & girfiorm. Second, we
difference of the two measures with different numbers of generatoraote that at later times the expansion is growing, as expected from
used to form the horizon 2-metric. Clearly, as more generators arthe spurious horizon growth due to numerical error, and this growth
used the two methods become closer and the differences converpas no angular dependence. We also note a small amount of noise
towards zero. on the horizon near the axis, due to spacetime inaccuracies there.

the horizon metric due to generator deflecfiothe results  times, the expansion due to spurious numerical error is con-
converge towards the same solution, or the differences corsiderably larger in the lower resolution spacetime, and the
verge towards zero. expansion appears to be converging towards zero. In the high

We turn next to the expansion on the horizon. For the
physical setup considered here, a gravitational wave incident
on a black hole, but with the wave centered at the throat, we
expect the horizon to grow at=0 and then, as time I A
progresses, become static. This should show up as a positive LOf ------ Background 200x54 /A
expansion decreasing towards zero as time progresses. How- I Background 300x80 K
ever, we also know that our spacetime has spurious area
growth of the horizon due to a numerical error in the space-
time, as found in previous studies of the AH. This should
appear as a positive, and increasing, expansion at later times.
In Fig. 24 we show the expansion for this spacetime, and see
exactly this behavior. However, a few features of the expan-
sion should be noted. First, note that, at late times, the ex-
pansion is not terribly smooth in time. Second, note that,
near the axis §=0), the expansion is somewhat oscillatory.
At late time and near the axis the numerically constructed
spacetime is less accurate. We see that our membrane para-
digm quantities as analysis tools are very sensitive detectors
of these errors in the numerically generated spacetime.

This detection of error leads us to study how these quan-

tities behaye with cha_mging re_solution in the construction of FIG. 25. We study the behavior of the expansion with a moder-
the numerical spacetime. In Fig. 25 we take the same Wavgis ang high resolution numerically generated spacetime. At early
parameters used above with resolutions of 268 and (imes when area growth is due to accurately modeled gravitational
300% 80 to generate two spacetimes. In Fig. 25, we show th@henomena, the expansion should be unchanged by adjusting the
area change predicted by integrating the expansion over thgacetime. At late times, when area growth is due to spurious nu-
2-surface. We see that, &0, where area change is caused merical error, the area growth should is smaller with a higher reso-
by infalling gravitational radiation and the spacetime is still lution simulation, as the spacetime is convergiagroughly second
quite accurate, both systems give the same result, but at laterde) towards a zero-area-growth solution.

1-27|\\||\\|\\\\\\\\\\IIII\\II\II\\\I\\

0.8 S

dA/dt from Expansion
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FIG. 26. We showo,, on the horizon for the low amplitude 0 10 m%,lo 30 40
distortion case considered. We note that there is no shear at the adn
poles, and the shear is maximal near the equator. FIG. 28. We show the norm of the focusing equation over the

surface in the high resolution and medium resolution spacetimes.

resolution spacetime, the expansion is fairly inaccurate neaf/eé note several features. First, this quantity is noisy, but small
the pole, as the system is very susceptible to axis instabilicompared to the square of the shear and expansion, both of which
ties, but this noise does not show up in the calculation of aregnter into the equatlon. Secon_d, we not_e that with an increasingly
change, as sifi terms in the integral of the expansion de- accurate spacetime, the focusing equation converges towards zero
stroy this contribution near the pole. ai approximately second order.

We next turn to the shear. In this spacetime, we expect a
non-zero shear since there is generator motion, but we also Finally, to test the surface gravity, we turn to the focusing
expect the shear,;, to be diagonal, since the spacetime is equation, which is a complicated combination of the surface
non-rotating and axisymmetric. In Figs. 26 and 27 we plotgravity, shear, and expansion. If this equation is roughly sat-
the evolution ofo; and the trace of the shear? in time. isfied in our spacetime, then we have a strong verification
We note that the shear is largest near the equator, and vaflat we are indeed measuring the membrane quantities ap-
ishes on the pole, as symmetry arguments require it musp_roprl_ately. We test_th|s_by taking the aver_aged value_of the
(There can be no shear at the pole in axisymmetry, om)tocusmg equation violatiofor the I_eft and right hand sides
expansion, since shear at the pole would implyp depen-  Of Ed. (26)] over the surface. In Fig. 28 we show these av-
dence of the generator motign.We also note that the trace €rages evolving in time in our moderate and high resolution

of the shear vanishes to machine precision in Fig. 27. spacetimes. We note that the focusing equation violation is
small, being substantially smaller than the square of the

shear and the expansion. However, it is clear that the evalu-
ation of the focusing equation violation is also sensitive to

.8 errors in the numerical spacetime and interpolations. Noise,
6x10" which is generated from the discrete and inaccurate features
of the spacetime, is clear in Fig. 28. However, we also ob-
serve that, with more spacetime resolution, the focusing
equation violation converges towards zero at approximately
second order, as expected.

From the experiments in these two numerical spacetimes
we conclude that our construction is appropriate for measur-
ing and generating membrane paradigm type analysis quan-
tities in numerical spacetimes. These quantities are sensitive
detectors of the error in numerical spacetimes, and they al-
low us to measure detailed properties of the event horizon
and its dynamics.

18
Bxlo

18

45107

~18
gxlo

VI. CONCLUSIONS
FIG. 27. We show the trace of the sheaf,+ ¢, on the hori-

zon for the low amplitude distortion case considered. We note that, In this paper, we have developed a set of tools with which
even though the shear and the horizon two-metric are of order unitygne can measure and understand the dynamics of event ho-
this quantity effectively vanishes to machine precision. rizons in numerically generated spacetimes. We have shown
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