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Event horizons in numerical relativity. II. Analyzing the horizon
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We present techniques and methods for analyzing the dynamics of event horizons in numerically constructed
spacetimes. There are three classes of analytical tools we have investigated. The first class consists of proper
geometrical measures of the horizon which allow us a comparison with perturbation theory and powerful
global theorems. The second class involves the location and study of horizon generators. The third class
includes the induced horizon 2-metric in the generator comoving coordinates and a set of membrane-paradigm-
like quantities. Applications to several distorted, rotating, and colliding black hole spacetimes are provided as
examples of these techniques.@S0556-2821~98!09420-X#
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I. INTRODUCTION

Black holes play an important role in general relativ
and astrophysics. They are characterized both by space
singularities within them and by their horizons that cover
singularities from the outside world. In this paper we d
velop a set of tools for analyzing the dynamics of black h
horizons.

The event horizon~EH! of a black hole is defined as th
boundary of the causal past of future null infinityI1. As
such the EH surface is traced out by light rays that ne
reach future null infinity and never fall into the black ho
singularity. This surface responds to infalling matter and
diation and to the gravitational fields of external bodies.
the membrane paradigm of black holes, the horizon fu
characterizes the dynamical interactions of a black hole w
its surroundings@1#. The important role of the horizon in th
study of black holes motivates us to carry out a system
study of horizon dynamics in numerical relativity.

While much work has been done on the properties
stationary black holes and small perturbations about th
little is known about the properties of highlydynamical
black hole spacetimes. For example, the cosmic censor
conjecture@2#, which suggests that spacetime singularit
should be clothed by event horizons, demands study into
existence of horizons. The hoop conjecture@3,4#, which
states that a black hole horizon forms if and only if a mat
source becomes sufficiently compact in all directions, b
the question of how spherical must a black hole horizon
Caustics, or singular points in the congruence of phot
tracing out the horizon where new generators can join
horizon, can occur, but under what conditions do they
pear? And what are the properties of these caustics?
would also like to know to what extent one can understa
interactions of black holes with their astrophysical enviro
ment in terms of properties of the EH. Studies of most
these questions have to date only been made in very id
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ized circumstances or quasi-stationary spacetimes. But
pects of each of these open questions are amenable to s
with the numerical methods we describe.

As a result of strong field nonlinearities, black hole ho
zons are difficult to study analytically. Therefore we turn to
numerical treatment which is now routinely able to gener
highly dynamical, axisymmetric black hole spacetim
evolved beyondt5100M , whereM is the Arnowitt-Deser-
Misner ~ADM ! mass of the spacetime. Many such axisy
metric studies of highly distorted rotating and non-rotati
black holes and colliding black holes have been performe
recent years@5–8#. Three dimensional black hole evolution
are approaching the accuracy of axisymmetric calculati
@9–13#. Together with the ability to find and analyze eve
horizons, these simulations provide us with a new oppo
nity to study black hole dynamics.

We recently proposed methods for the study of the EH
numerically generated spacetimes@14#. In a series of fol-
lowup papers, we give details of the methods and their
plications to various black hole spacetimes. The first pape
this series@15#, referred to hereafter as paper I, detailed t
method for locating the EH in a dynamical spacetime, a
showed the high degree of accuracy with which the EH c
be located. In this second paper, we focus on the tools c
structed for analyzing the dynamics of the EH.

There are several aims of the present paper. We s
three different sets of tools that can be used to analyze
dynamics of the EH and how one can construct them
numerical relativity. We show how accurately the quantit
used in these tools can be constructed with present num
cally generated black hole spacetimes. We demonstrate
applicability of these tools to various spacetimes of intere
In fact, these tools apply immediately to almost all nume
cally generated black hole spacetimes we have constructe
date. This paper describes the tools that elucidate the phy
of the EH and the accuracy with which we can~or cannot!
evaluate these measures; the emphasis is not on the ph
©1999 The American Physical Society15-1
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MASSÓ, SEIDEL, SUEN, AND WALKER PHYSICAL REVIEW D59 064015
itself. The physics we learn using these tools will be d
cussed in a later paper in this series.

We have developed and present three sets of tools
analyzing the EH. First, we present a set of geometric m
sures of the horizon as a two dimensional surface in a cur
3D space-like slice of constant time. These tools inclu
proper circumferences, proper area, Gaussian curvature
embedding of the surface in Euclidean space, and the em
ding history. Second, we discuss how the horizon genera
can be constructed. This construction also gives the locu
generators that will join the horizon in the future at caus
points on the horizon surface. Third, we present a set of to
from the membrane paradigm of black holes@1# for analyz-
ing the generators and the physics they contain, such as
horizon 2-metric in generator co-moving coordinates,gab

H

and quantities derived from and connected to it, such as
expansionQH, shearsab

H , surface gravitygH , and Hajicek
field Va

H .
To illustrate the use of these horizon tools, we apply th

to several spacetimes. We consider the Schwarzschild
Kerr analytic black hole spacetimes to show the basic p
ciples involved and to test the accuracy of the methods. A
we apply them to fully nonlinear, highly dynamical blac
hole ~BH! systems, such as a distorted Schwarzschild BH
distorted Kerr BH, and the collision of two black holes~the
Misner data@16#!. Our tools can be applied to almost a
numerical black hole spacetimes we have presently c
structed, and should be applicable to future black hole sp
times as well.

The structure of this paper is as follows: In Sec. II w
briefly review the method we developed to find the locat
of the EH. In Sec. III we show various ways to extract im
portant information from the EH surface location in th
spacetime, including studying the topology, area, various
cumferences, Gaussian curvature, and geometric embed
of the surface. In Sec. IV we show how to find the actu
generators of the EH, and the information their paths
bring. In Sec. V we discuss how one can apply ideas de
oped in the membrane paradigm@1# to numerically generated
black hole spacetimes. Throughout the paper, we illust
these ideas with examples from numerically generated b
hole spacetimes.

II. LOCATING THE EH IN A NUMERICALLY
GENERATED BLACK HOLE SPACETIME

Our method for locating event horizons in numerical re
tivity was detailed in paper I. In order to define our notatio
and because our analysis here is closely related to our
finding method, we briefly review it here. The essence of
EH finding method can be summarized in four steps:

~i! At late times after the dynamical evolution we seek
analyze~that is, when the black hole spacetime has retur
to approximate stationarity, e.g., after the coalescence of
black holes or after all incident gravitation radiation has
ther radiated into the hole or into the far wave zone! the
position of the EH can often be located approximately. W
can identify a region of the late-time spacetime which co
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tains the EH, which we call the horizon containing doma
~HCD!.

~ii ! We trace the evolution of the HCD backward in tim
by tracing its outer and inner boundaries as null surfaces
function describing a null surface att5t f , xi5xf

i ,

f ~ t5t f ,xf
i !50, ~1!

satisfies the equation

]m f ]m f 50 ~2!

or

] t f 5
2gti] i f 1A~gti] i f !22gttgi j ] i f ] j f

gtt ~3!

for outgoing surfaces. The fact that this method represe
the position of the EH directly as a functionf (t,xi) is par-
ticularly convenient in our construction of horizon analys
tools, as we shall see below.

~iii ! The strength of our method stems from the fact th
the inner and outer boundaries of the HCD converge toge
quickly when integratedbackwardsin time in many cases o
interest. When the distance between the two boundaries
time slice becomes significantly less than the grid separa
used in the construction of the spacetime, we have accura
located the EH. This condition can often be met through
entire regime of interest here.

~iv! The choice of parametrization of the surface is imp
tant. For the axisymmetric spacetimes used as example
this paper, one convenient choice is

f 5h2s~ t,u! ~4!

whereh is a radial coordinate andu is a polar angular coor-
dinate. In what follows, we assume that this functi
f (t,h,u) has been obtained for the numerically construc
spacetime.

In axisymmetric two black hole spacetimes, such as th
generated in@7,17,18#, we can use the parametrization in E
~4! to trace the event horizon through the merger phase
the Čadežcoordinate system@19# where coordinates are cen
tered around each individual throat and the axis below
throat is a line of constantu, this parametrization allows u
to trace a single hole by applying an upwinded condition
the horizon at the axis before coalescence. In the rece
proposed ‘‘class I’’ coordinate system@18# where the coor-
dinates are centered around the throat and the axis, form
peanut shaped radial coordinate lines near the throats,
parametrization will represent a null surface which conta
both the horizon and the null surface which represents
locus of generators waiting to join the horizon; a simp
symmetry boundary condition on the equator suffices. T
locus can also be located in the Cˇ adežsystem by using an
alternate (r,z) parametrization, as described in paper I. W
will use simulations generated in both coordinate syste
interchangeably here.
5-2
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III. STUDYING THE EH SURFACE

A. Topology of the EH

We note that one important, but easy to obtain piece
information contained inf (t,xi)50 is the topology of the
EH at a constant time slice. In this section we show an
teresting case of the EH undergoing a change of topolo
We apply our EH finding method above to a numerica
generated spacetime representing the head-on collisio
two equal mass black holes with axisymmetry. In Fig. 1
show the functionf (t,xi)50 at two times for the case o
Misner time symmetric initial data, described by two throa
connecting two identical asymptotically flat sheets, evolv
by a code described in Ref.@7# ~the ‘‘Čadež’’ code!. The
case considered here is for the Misner parameterm52.2, for
which the initial distance between the throats is 8.92M ,
whereM is the 1/2 the ADM mass. For details of the initi
data set, see Refs.@16, 7#.

At t50 the EH has the topology of two disconnect
two-spheres represented by the solid lines centered nez
561 in the r-z plane. We note that the functionf (t
50,xi) gives not just the location of the EH, but also th
locus of the future horizon generators before they join
horizon. Att57.5M the horizon has the topology of a sing
sphere.

We treat this change of EH topology by following th
surface function backwards in time. We can trace the hori
from t575M or 100M to a ‘‘dumbell’’ shaped horizon att
57.5M . In Fig. 1, we start with this ‘‘dumbell’’ shaped
horizon. Tracing this surface backward towardst50M , we
see that the central part of the surface shrinks rapidly, and

FIG. 1. We show the topology of the EH for the collision of tw
black holes using data generated with the Cˇ adež code from the
Misner m52.2 initial data. The solid lines show the EH att50M
andt57.5M . The dotted line att50M shows the locus of genera
tors which will join the horizon in the future. We note that betwe
t50M and t57.5M the horizon undergoes a non-trivial topolog
change. We note that ‘‘crossover’’ type caustics form on the a
We shall see below that new generators join the horizon at th
points.
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left and right hand sides cross, indicating the change in
pology. At t50 the portion of the surface corresponding
the locus of photons whichwill join the horizon, but have no
yet done so, is given as a dashed line. As discussed in
IV, the crossing of the surface signals that photons are le
ing the horizon, going backwards in time. The crossed p
tion of the surface~shown as a dashed line in Fig. 1! is no
longer on the EH, but represents the surface of horizon g
erators ‘‘waiting to be born,’’ as they will join the horizon a
a future time. For the work here, we define a point on
horizon where generators cross as a caustic, and therefo
the point where the generators cross and join the horizon,
horizon has a caustic point. This caustic at the cusp in
event horizon is discussed further below and also in R
@20#.

B. Geometry of the EH surface

The function for the surfacef (t,xi), together with the
metric induced on the surface, gives the intrinsic geometry
the EH, from which important physical properties can
determined. In this section we present a set of tools wh
allow one to study the intrinsic properties of the surface.

1. Area

There has been extensive study of the surface are
black hole event horizons in general relativity@21#. The area
plays a central role in the thermodynamics of black holes.
area is a quantity directly used in analytic studies, it is i
portant to be able to study the dynamical evolution of t
area of the EH in a numerically constructed spacetime b
for understanding the spacetime and also as a diagnostic
for the accuracy of the numerical treatment.

Construction of the surface area as function of time
straightforward. Here we show how one computes the a
mainly for establishing the notation used in this paper.
surface f (t0 ,xi)50 determines the coordinate locationxi

5xi( ū,f̄), (i 51,2,3), of the surface at timet0 , where we
regard the surface as being parametrized by two surface
ordinatesx̄a5( ū,f̄), (a51,2). Denote the spatial line ele
ment of the spacelike hypersurface att5t0 by

ds25gi j dxidxj , ~5!

and so we can define an induced horizon 2-metric as

gab5gi j

]xi

] x̄a

]xj

] x̄b
. ~6!

The surface area at a timet is then given by

A~ t !5E Agdx̄1dx̄2, ~7!

whereg is the determinant ofgab .
In Fig. 2 we showA(t) for a Schwarzschild black hole

evolved with maximal slicing. The dotted line~labeled stan-
dard ADM! shows the results obtained using the stand
numerical treatment as described in Ref.@22#. In this case,

.
se
5-3
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MASSÓ, SEIDEL, SUEN, AND WALKER PHYSICAL REVIEW D59 064015
the calculation is carried out using a 1D code with 200 g
zones. It is well known that when evolved with such slicin
and without a shift, the EH will expand outward in the rad
direction in coordinate space. At the same time, a sharp p
in the radial metric function develops near the EH. Beca
of numerical error caused by the inability to resolve th
sharp peak, the functionA(t) deviates significantly from the
analytic value of 16pM2 as the evolution continues.

We compare this result to the case of the dashed lin
Fig. 2, which is obtained by applying Eq.~7! to a Schwarzs-
child spacetime constructed with the same grid parame
but with an apparent horizon boundary condition@23,24#.
The improvement in accuracy is dramatic.

We stress that the issue here is the accuracy of the
merically constructed spacetime, and not the accuracy of
EH finding method; an identical finder is used for both t
dashed and dotted lines. The error inA(t) in the case of the
dotted line is dominated by the error in the spacetime d
The relative numerical error in finding the functio
f (t,r ,u,f)50 as the position of the EH is small compar
to the errors in the background spacetime. The agreeme
the dashed line with the analytic valueA(t)516pM2 sug-
gests that the error inA(t) determined with the apparen
horizon boundary condition spacetime is only about 1%
t5100M . Though simple, this is an illustrative example
using the horizon analysis as tool to understand the accu
of a given numerical spacetime.

2. Circumference

For black holes with symmetries, the definitions of som
circumferences are geometrically meaningful. For exam

FIG. 2. We show the area of the EH traced out for a Schwa
child spacetime evolved with two different methods. The dotted l
shows the EH evolution with a standard 311 ADM evolution
scheme. The dashed line shows the evolution with an apparen
rizon boundary condition. The solid line shows the analytic val
We note that the same method is used for both spacetimes.
error in the standard ADM spacetime is due to inaccuracies in
spacetime metric, not the EH finder.
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in axisymmetric spacetimes one can define a polar circu
ferenceCp and, for spacetimes with a reflection symmet
around the equatorial plane, an equatorial circumferenceCe .
In the axisymmetric system, with]/]f being the azimuthal
Killing vector, we can take the horizon coordinatesx̄a to be
those tied to the symmetry axis:

x̄a5~ ū,f̄ !5~u,f!. ~8!

The polar circumferenceCp , the circumference of a line
with f5const, is

Cp5E
constf̄

Agabdx̄adx̄b. ~9!

The equatorial circumferenceCe , which is the loop around
the horizon atu5p/2, is given by

Ce5E
ū5p/2

Agabdx̄adx̄b. ~10!

What is often more interesting is notCp or Ce by them-
selves, but their ratioCr5Cp /Ce . This defines an effective
shape parameter for axisymmetric surfaces. Roughly sp
ing, if Cr.1 or Cr,1, the surface is prolate or oblate, r
spectively.

a. Shape of the analytic Kerr horizon.In Fig. 3 we show
the quantityCr for Kerr black holes with various rotation
parametersa. The numerical simulation of such spacetim
has been discussed in Refs.@25,8,26#. The Kerr spacetimes
we consider here, however, are not evolved, but rather
analytic ~stationary! Kerr solution in the logarithmic radia
h,u coordinates. The use of analytic data enables us to
directly the accuracy of our horizon treatment, without bei
affected by the error of representing the spacetime on a

s-
e

o-
.
he
e

FIG. 3. We plot the ratioCr of the polar to equatorial circum
ferences of the event horizons for Kerr black holes with vario
rotation parametersa. The diamonds show data points obtained
applying our method to various Kerr spacetimes, while the so
line shows the analytic result. The agreement is excellent.
5-4
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merical grid with finite resolution. The solid line shows th
analytic value@27#, and the diamonds are data points o
tained by applying our methods to Kerr spacetimes and m
suring their circumferences as described above. The ag
ment in the plot is excellent.

b. Shape of distorted EHs.Next we consider the even
horizons of highly distorted black holes. An important op
question about the nature of black holes is the following
the event horizon always rather spherical, as suggeste
the hoop conjecture@3,28,29#? This question can be ad
dressed to some extent by studying the EH of black ho
distorted by axisymmetric gravitational waves. The init
data construction has been described in detail in Ref.@30#.
For our purposes it suffices to note that the system co
sponds to a time symmetric torus of gravitational wav
whose amplitude and shape are specifiable as parame
which surround an Einstein-Rosen bridge. In Fig. 4 we s
vey the event horizons at the initial timet50 for a range of
black hole data sets with fixed Brill wave shape parame
@(s51.0, h050.0, n52) in the language of Ref.@30## rep-
resenting a quadrupolar wave centered on the black
throat with a width of order 1M . To find the EH at the initial
time, we first evolve the initial data to a late time, and th
trace the EH backwards through the evolved data, as
scribed above. Figure 4 shows the EH parameterCr for the
initial data as a function of the Brill wave amplitudeQ0 . We
see that in the range of parameters investigatedCr can be
rather large~almost 3 in Fig. 4!, but does seem to have
maximum inQ0 space when measured att50. In contrast, at
the same incident wave amplitude, the apparent hori
~AH! has a much larger amplitude and is increasing in
creasing amplitude to substantially larger distortions than
EH. As this paper is restricted to the introduction of t

FIG. 4. We plot the shape parameterCr for a series of event
horizons of non-rotating black holes surrounded by gravitatio
waves of varying strengths, denoted as triangles. For compar
we show the behavior of the apparent horizon, denoted as
monds. We note thatCr of the AH at Q051.8 is around 17, in
contrast with the EH, which hasCr around 2.5.
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analysis tools of the EH, we will defer an exhaustive para
eter search and discussion of the physical implications of
result to a later paper, including a comparison with Fig. 4
@25#, where the upper bound on the distortion of the appar
horizon is found to be orders of magnitudelarger than that
of the EH. In the initial data, the AH is far inside the EH, b
after a short evolution in these spacetimes, the AH w
quickly pop out~the AH is generically spacelike! to be closer
to ~but still inside! the EH.

While Fig. 4 showsCr for highly distorted black hole
event horizons att50, the same function also provides im
portant insight into the evolution of these horizons. In p
ticular, we study the case ofQ51.0. As shown in Fig. 5,
when this black hole evolves, its horizon evolves towa
sphericity, overshoots, and oscillates about its equilibriu
spherical configuration. The frequency and decay rate are
very high accuracy, the quasinormal mode~QNM! of the
black hole as determined by perturbation theory. For co
parison, a fit to the two lowest QNM frequencies is given
the dashed line.

The oscillations of the EH are a common dynamical fe
ture of black holes. In Fig. 6 we show the oscillation of t
EH in the two black hole collision simulated using the ‘‘cla
I’’ coordinates with the Misner separation parame
m52.2, whose coordinate location was shown in Fig. 1. W
show the oscillation of the single horizon which forms aft
the merger of the two individual black holes. The results
similar to those of the single distorted black hole describ
above, showing the generic nature of this phenomenon.

3. Gaussian curvature

The Gaussian curvature is a local property describing
two principal radii of curvature at each point on a surface
has been found to be very useful in analyzing the dynam

l
n,
a-

FIG. 5. The time development of the shape parameterCr is
shown for a single black hole distorted by a Brill wave. We no
that although the black hole is initially very distorted (Cr52.9), it
quickly settles down to the quasi-normal mode ringing predicted
perturbation theory.
5-5
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MASSÓ, SEIDEL, SUEN, AND WALKER PHYSICAL REVIEW D59 064015
of the AH @31#, and it applies equally well to the EH surfac
The general formula for the Gaussian curvature of a
surface in a spacelike hypersurface with 3-metricgi j is k
52R whereR is the Ricci scalar of the 2-sphere with th
induced 2-metric.

Figure 7 shows the time evolution history of the Gauss
curvature for the highly distorted hole studied in Fig. 5. H
rizon history diagrams like this have proved very useful
showing the development of apparent horizon surfaces
time @31#, and here we apply them to the EH surface. T
figure shows the evolution of the Gaussian curvature a
gray-scale across the surface as a function of time~horizontal
axis!. We use thez-axis embedding of the horizon~described
below! as the vertical axis in the plots.k is larger initially
near the equator and then oscillates between the poles
equator. The checkerboard pattern is typical of a predo
nantly l 52 distortion of the horizon, as discussed in R
@31# ~there in the AH case!. The frequency of oscillation o
the horizon surface can be read off directly from the figu
We see that it has a period of about 17M , which is the

FIG. 6. The time development of the shape parameterCr is
shown for two colliding black holes. We note again that despite
violent initial beginnings, the system settles down to ringing beh
ior at late times. Note that the definition of the shape paramete
not appropriate until after the coalescence.

FIG. 7. We show the time evolution history of the Gauss
curvature for the highly distorted hole (Q051.0). We plot the cur-
vature as a gray scale using the embeddedz value as they-axis, and
t/M as thex-axis. We note that even though the hole is initia
very distorted with large curvature, it settles down to a damp
oscillatory pattern at later times with a frequency of about 17M .
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fundamental period of the lowest QNM of the black ho
After about t560M , the hole gradually settles down to it
final, spherical configuration.

In Figs. 8~a! and 8~b! we show a similar diagram for the
two black hole collision~Misner m52.2) evolved in ‘‘class
I’’ coordinates. At late times,k has an appearance similar
that shown by the highly distorted case discussed above
early times, there are two separate black holes whose h
zons are about to merge. The surfaces are most highly
torted along the caustic line, and the Gaussian curvatur
largest there. In Fig. 8~a! we show the entire history ofk for
this system. We see that in the early times, before coa
cence, the Gaussian curvature is very high near the coa
cence point~k is in fact singular on the EH at the caustic; w
show the curvature very close to the caustic!. In Fig. 8~b! we
show the early time behavior, so that the details of the c
vature can be seen around the coalescence point.

4. Embedding diagrams and embedding histories

The use of embedding diagrams to study the intrinsic
ometry of spacetimes is not new in relativity. It is a partic
larly useful way to study a curved 2D surface on a const
time slice. The embedding technique creates a fictitious
surface in a flat 3D Euclidean space with the same geome
properties as the original 2D surface in curved 3D spa
This technique has been described fully in Ref.@31#, where it
was used to study AH surfaces. We follow the same emb
ding approach here.

We can perform a non-trivial test of our embedding tre
ment by embedding the analytic Kerr horizon, and comp

e
-
is

d

FIG. 8. We show the time evolution history of the Gaussi
curvature for the 2BH collision~Misner m52.2). In ~a! we show
the entire history of the horizon curvature, and note the repea
oscillation pattern, as in Fig. 7, here with a more complicated p
tern, but still with a frequency of about 17M . In ~b! we show the
early time behavior of the system, seeing the strong curvature
the systems cusp as the holes come together. We note that the
of caustics is the region inside the two holes before coalescenc
indicated by the arrows.
5-6
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ing this horizon with the embedding diagrams predicted
Ref. @27#. For high-rotation Kerr black holes (a/M.)/2),
it is not possible to embed the horizon around the pole
Fig. 9 we show how our EH finder finds and embeds
correct analytic horizon up to theu value where the embed
ding no longer exists.

In Figs. 10~a!–10~c! we show a time sequence of the em
bedding diagram for the black hole studied in Fig. 5. In F
10~d! we show the EH and Schwarzschild embeddin
where both embeddings are normalized by the horizon m
This normalization removes the spurious area growth cau
by errors in the numerical spacetime, as seen in Fig. 2, f
our horizon embeddings. In Fig. 10~a! we see that the initia
embedding is very prolate, in concordance with the la
value of Cr shown in Fig. 5 att50. We also note that the
final state is indeed a Schwarzschild-like horizon, namel
spherical black hole characterized solely by its mass.

In Figs. 11~a!–11~d! we show a time sequence of embe
ding diagrams of the EH for a Bowen-York, rotating bla
hole @32,25#, with angular momentumJ515, evolved by a
code described in Ref.@8#. We see from Fig. 11~a! that the
initial EH is quite spherical~we make the front 45° of the
horizon transparent to facilitate viewing, hence the ‘‘pa
man’’ appearance of the horizon!. The Bowen-York con-
struction differs from that of a stationary Kerr hole; so th
data set can be regarded as containing a gravitational w
that makes the initial black hole horizon more spherical th
the oblate pure Kerr hole. Att512.4M into the evolution, as
shown in Fig. 11~b!, the embedding has a shape reminisc
of a napkin holder; the top and bottom sections of the h
zon cannot be embedded as they have negative curvatu
the axisymmetric pole, and therefore cannot be represe
in a Euclidean space. At this instant in time, the extent of
unembeddable region is near a maximum. Figure 11~c!
shows the geometry at a later time, as the horizon se

FIG. 9. We compare the embedding of the Kerr horizon fro
our horizon finder with the known embedding for the valuea/M
50.877, at which the entire horizon cannot be embedded into
space. We notice the agreement between our finder, the diam
and the known solution, the line.
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down towards its Kerr form. Figure 11~d! shows a quadran
of the EH embedding at timet545M . At this time, the hole
has settled down to the Kerr form, in accordance with the
hair theorem@21#. The shape of the EH is to high accurac

at
ds,

FIG. 10. We show a sequence of embedding diagrams for an
distorted by a large amplitude Brill wave. Even though the horiz
geometry is very non-spherical att50M , as demonstrated by th
cigar shaped event horizon, the system quickly becomes fa
spherical, as shown in the time snapshots in~a!, ~b!, and ~c!, and
also in Fig. 5, which corresponds to this system. In~d! we see that
the late time horizon is essentially a Schwarzschild horizon, a
has settled down to a sphere with radius 2M .

FIG. 11. We show a sequence of embedding diagrams of the
for a Bowen-York rotating black hole, with angular momentumJ
515 (a/M50.877). We show snapshots of the horizon at~a! time
t50, ~b! time t512.4, and~c! time t534.5. To allow a clearer
visualization of the region where the embedding fails, we make
front 45° of the horizon transparent. We note that, at late times,
system approaches the analytic Kerr embedding.
5-7
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the same as that of an analytic Kerr hole ofa/m50.877, the
embedding of which is plotted as a dotted line for compa
son with the numerical result. We note that the value
a/m50.877 is the value of the rotation specified in the init
data solve~a J515 Bowen-York hole!, and that this result is
still observed late in the evolution. This is physically r
quired, as an axisymmetric system cannot radiate ang
momentum. The fact that our horizon finder confirms t
late time behavior is a strong verification of the accuracy
our methods. Notice that there is still a region of the horiz
that cannot be embedded, as the horizon for such a rap
rotating black hole is ‘‘too flat’’ for Euclidean space, and th
regime in which the EH cannot be embedded matches
region for a Kerr EH, as also shown in Fig. 9.

In Figs. 12~a!–12~d! we show four snapshots of the em
bedding of the EH for the two black hole head-on collisi
case generated with the Cˇ adež coordinate system form
52.2. Figure 12~a! shows the embedding of the EH on th
initial, time symmetric slice (t50). We see the two indi-
vidual black holes, with cusps on each horizon on thez axis.
In Fig. 12~b! we show the embedding at timet55.4, shortly
after the merging of the two holes. In Fig. 12~c! we see the
late time spherical behavior of the horizon, despite the s
tem’s tumultuous beginnings. In Fig. 12~d!, we compare the
embedding of the EH att580M , shown as a solid line, to
the horizon of a Schwarzschild hole with the appropri
mass, shown as a dashed line~once again, we normalize ou
final embedding by the final area!. Again we see the no hai
theorem at work, in that the initial condition with no charg
and no angular momentum settled down to a black hole c
pletely described by its single parameter,M .

FIG. 12. We show a sequence of embedding diagrams of the
for the two black hole head-on collision case at~a! time t50, ~b!
time t55.4M , and ~c! time t540.0M . The simulation here was
generated with the Cˇ adežcode. We note that at late times, as sho
in ~d!, the system approaches the appropriate Schwarzschild
as expected.
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To bring out the dynamics of the horizon evolution, it
useful to show the ‘‘embedding history diagram’’ of the h
rizon instead of a series of snapshots. In Fig. 13, we show
evolution of the embedding in time for the two black ho
case just discussed. In this diagram thef direction has been
suppressed; i.e., we stack upf5const cross sections of th
2D embeddings from various times to create a continuo
2D embedding history diagram. We note that this figure
not a spacetime diagram, in that the (r,z) space away from
the horizon surface has no physical or mathematical conn
tion to the curved 311 spacetime. However, these embe
ding history diagrams are a convenient and effective met
for showing the evolution of the embedding of the eve
horizon surface in coordinate time (t) in the fictitious Eu-
clidian (r,z) space. This figure shows the geometry of t
individual holes as they approach each other, with a cusp
each horizon. The distance between the holes before
merger, which is not prescribed in the embedding process
data generated in the Cˇ adežcoordinates, is chosen to kee
the embedding history diagram smooth. After the merg
one can~barely! see the oscillation of the final horizon
which occurs at the normal mode frequency of the final bla
hole. In this diagram we also show the evolution of vario
horizon generators~photons moving normal and tangent
the horizon! as lines on the surface. The determination a
use of these generators will be discussed in detail in the n
section.

Another interesting embedding history diagram is sho
in Fig. 14. Here we show the embedding of theequatorof
the horizon of a Bowen-York black hole from Fig. 11. W
see the equator bulge out and then back in, as the hole
comes more and less prolate~the total area increases i
time!. As discussed in Sec. IV we embed the equator sinc
allows us to show the generator motion in thef direction.

H

le,

FIG. 13. We show the embedding history diagram of the t
black hole collision generated with the Cˇ adežcode. This diagram,
the famous ‘‘pair of pants’’ diagram, shows a time history of t
embedding of the horizon by stacking consecutive embeddings
top of each other in time. The lines on the surface show the path
the horizon generators, and show them leaving the surface a
crossover caustic, as will be discussed below.
5-8
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C. Numerical convergence of the horizon measures

The study of numerical convergence is important for a
numerical treatments based on finite differencing, and
discuss it for each of our results here. We give a brief ov
view of numerical convergence here, but for a more deta
discussion, see Refs.@33, 34#. To avoid confusion with pape
I, we emphasize that the numerical convergence we dis
here is the usual convergence rate of our numerical res
depending on grid resolution. It is acompletelydifferent phe-
nomenon than thephysicalconvergence discussed in Sec.
and in paper I, which is a physical attraction of null surfac
to the horizon independent of numerical treatment.

Given three solutions to a discretized equation,L, M , and
H at resolutionsDx, Dx/q, and Dx/q2, the convergence
exponent is defined as

s5

log
L2M

M2H

log q
~11!

where the minus sign is simple subtraction for numbers,
a combination of interpolation onto a common grid and
duction via a norm operator for fields. The measures indi-
cates that the error in a numerical solution is of orderDxs.

In Fig. 15 we show the numerical convergence expone
of the horizon areaA and ratio of circumferencesCr in a
slightly distorted single black hole evolving in time (Q0
50.1, h050, s051.0, n52). We choose this case for ou
convergence studies since the spacetime is quite accura
effects of numerical error in the background spacetime
minimized, and we can directly test our horizon treatme
~we see similar convergence results for all the spaceti

FIG. 14. We show the embedding history diagram for the c
of a distorted Kerr black hole. Here we suppress theu direction, and
embed only the equator at allf values. Although the spacetime
axisymmetric, so that there is nof variance, this embedding dem
onstrates the rotation of the generators in thef direction as the
system evolves in time. This diagram is a numerical constructio
the ‘‘barber pole twist’’ diagram.
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discussed here; since we have not assumed the Ein
equations hold in any of our analysis so far, constraint v
lations in the spacetime willnot affect the convergence o
the system, although they could in principle cause the h
zon analysis to converge to a non-physical result!. The con-
vergence study is made by keeping the spacetime resolu
fixed in all runs and adjusting only the number of poin
which represent the horizon. We use an interpolator of or
equal to or higher than our evolution method on a numer
grid of data.

We see that the measuresA and Cr converge at second
order as expected. These quantities are simply measure
the interpolated metric and the surface~evolved with a sec-
ond order MacCormack method!, and so any result below
second order would signify an error.

Additionally, we measure~but do not show! the average
convergence of thez-coordinate of the embedding over th
entire surface ~in the embedding procedure, only th
z-coordinate is integrated; ther-coordinate is exactly given
as a function ofz and the metric!. The embedding converge
at first order. This is to be expected, since we use a first o
integration over the derivative of the surface to form t
embeddings. Since the embedding is only measured,
evolved, this first order nature is satisfactory. We note t
using a higher order integration scheme would not subs
tially improve the accuracy of our embeddings, since
cannot remove integrals over derivatives of the surface fr
our embedding procedure.

IV. HORIZON GENERATORS

We have already seen examples of generators of the
rizon in several of the above figures. In this section we sh
that the horizon generators can be located in a numer

e

f

FIG. 15. We show the time evolution of the convergence ex
nent ofA andCr in the low amplitude gravitational wave plus blac
hole spacetime. We note second order convergence throughou
entire run, and that the convergence rate ofCr has ~small! spikes
associated with an oscillatory function, while that ofA does not.
5-9
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MASSÓ, SEIDEL, SUEN, AND WALKER PHYSICAL REVIEW D59 064015
spacetime using information already constructed in
surface-based horizon finder. We will use these generato
study the motion and dynamics of black hole event horizo

A. Formulation

The EH is generated by null geodesics. With the E
given by f (t,xi)50, the null geodesics that generates t
surface satisfies

dxa

dt
5A~xm!gab]b f , ~12!

where A(xm) is a scalar function of the four coordinate
Notice that in terms off , the generators satisfy a first ord
equation, rather than the more complicated second order
desic equation. We choose the normalizationA(xm) to be

A~xm!5
1

gtb]b f
~13!

so that the null vector tangent to the null geodesics is gi
by

l m5S 1,
gib]b f

gta]a f D . ~14!

Notice that with this choice, the null geodesic isnot affinely
parametrized, but instead, adapted to the global time coo
nate t used in the numerical calculation of the spaceti
itself.

One important advantage of determining the null gene
tor using Eqs.~12! and ~13! is that in this formulation, the
trajectories obtained are guaranteed to lie on the EH. Th
in contrast to numerically integrating the second order g
desic equation directly. As shown in paper I, integration
the geodesic equation directly can lead to spurious tange
drifting effects which can significantly affect the position
the horizon generators. This difference can lead to error
interpretation, as described in paper I. The importance
obtaining accurate trajectories of the horizon generator
clear. Generators of the horizon contain all the informat
of the dynamics of the EH. The entire membrane formulat
described Sec. V is based on these trajectories. Thus, i
curate location of the generators due to tangential drift
can make analysis of the horizon dynamics via the genera
impossible.

B. Analytic Kerr case as a test case

We briefly study the motion of generators in the analy
Kerr case. In this case, a generator will rotate in
f-direction on the horizon with a rate

df

dt
5

a

2M212M ~M22a2!1/2. ~15!

In Fig. 16 we showdf/dt for various Kerr spacetimes
We measure thef location of the horizon generators, nu
merically differentiate in time, and show the result as so
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black diamonds. We compare these results with the ana
result, Eq. ~15!, shown as a solid line. We note that th
results agree with the analytically expected value.

C. Horizon generators in dynamical spacetimes

We now apply these techniques to the study of the tra
tories of the horizon generators for three numerically co
structed dynamical spacetimes.

We first consider the low amplitude Brill wave plus blac
hole spacetime considered above (Q050.1). In this space-
time we expect a non-spherical evolution in the generat
Rather than just moving radially, as the generators would
a dynamically sliced spherical spacetime, we also exp
some non-spherical deflection to be noticeable in the gen
tors. We show this deflection by plotting the difference b
tween the generator angular location,ugen, and the late time
generator location,u0 , versusu0 itself, evolving in time.
Equatorial plane symmetry requires there be no deflectio
the equator, and axisymmetry requires that there be no
flection at the pole; thus the entire generator deflection m
occur between the equator and the pole. In the intermed
region, the generators oscillate with a quasi-normal mo
frequency with an amplitude dying down at late times.
Fig. 17, we show the deflection quantityugen2u0 evolving in
time, and note that the deflection is small, but displays t
expected behavior.

In Fig. 14, the ‘‘barber pole twist’’ diagram, we have see
the f motion of the generators in Kerr-like spacetimes.
Fig. 18, we plot the quantitydf/dt of the photons versus
time. We see that they settle down to a constant value at
times, with

df

dt
~ t550M !50.293. ~16!

FIG. 16. We show horizon generator angular velocity,df/dt
for a M51 black hole with values ofa/M between 0 and 1 as solid
diamonds. We compare these results with the analytic value, sh
as a solid line. We note the excellent agreement
5-10
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This is to be compared to the analytic value of 0.296 giv
by Eq.~15! with a/M50.877, denoted by the dashed line
the figure. We see that the measured value att550M differs
from the analytic value by about 1%, which demonstra
that the hole is settling down to a Kerr black hole at la
times, and that the determination of the horizon generato

FIG. 17. We show the angular deflection of generators fo
horizon with a low amplitude Brill wave initially incident on a
black hole. We show the deflection by plotting the angular locat
of the generators,ugen, minus their late time position,u0 , versus
their late time position,u0 , evolving in time for all generators
From the figure it is clear that the angular deflection occurs aw
from the equator and pole, as is obvious from simple symme
arguments.

FIG. 18. We plot the generator angular velocitydf/dt for a
horizon generator on the equator vst for the distorted Kerr black
hole. We note that, although this quantity is not constant in time
approaches the analytic value of 0.296 at late times, as the ho
settles down to its Kerr form.
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quite accurate, although late time errors in the numer
spacetime lead to the observed small difference from
expected value in the generator angular velocity.

Turning to the ‘‘pair of pants’’ diagram, Fig. 13, which
shows the embedding of two colliding BHs, we see that
most interesting feature of the generators is that some
them leave the horizon~going backwards in time! at the in-
ner seam of the pants. There is a line of caustic points on
z-axis extending backward from the ‘‘crotch’’ point wher
the two horizons merge. It is at these points along the cau
line in the history diagram that photons originally travellin
in the causal past of null infinity@J2(I1)# join the horizon
as generators. As discussed above, only the surface o
horizon has been embedded; the photons that have lef
embedding diagram have also left the embedding space,
their paths are only shown to denote their joining the ho
zon.

In Fig. 19 we show the coordinate location of the gene
tors and horizon surface found using the Cˇ adežcode. The
EH location at various times is shown by heavy solid line
The t50 surface is the horizon of two distinct BHs at th
initial time, which evolves to a single, merged horizo
shown att53.1M . We see that generators which start ou
side the EH~denoted by inward pointing triangles in th
figure! move inwards, cross on thez-axis, and join the hori-
zon. This crossing of generators of the EH in the two bla
hole collision is crucial to a recent understanding of t
structure of the horizon in the Misner spacetime. Furth
analysis of the nature of such lines of caustics is possible
underway@35#. Coupled with new techniques for evolvin
multiple black hole spacetimes, our techniques should al
an increase in our understanding of how the generators
have in dynamical multiple black hole spacetimes.
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y
y
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on

FIG. 19. In this diagram we analyze the trajectories of the p
tons before and after they join the horizon for the case of t
colliding black holes~Misner m52.2). Slices of the horizon are
shown att50, 1.9M , 2.7M , and 3.1M . We note that generators no
originally on the horizon~shown by inward pointing arrows on thi
figure! cross over each other at a line of caustics on thez-axis and
join the horizon as the holes collide. For example, the two phot
labeledA andA8 join the horizon att52.7M , crossing over at the
point shown as an open circle. At timet53.1M they are on the
horizon at the points shown as solid circles. The second black
is not shown, as the system has equatorial plane symmetry.
5-11
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D. Numerical convergence of the generators

We can measure convergence of the generator locati
just as we measured convergence of horizon measures. S
the generator location is an ODE integration with coe
cients determined by the surface location and the derivat
of the surface, the appropriate test is to keep the numbe
generators fixed, while changing the spacing of the surfa
We can then measure the differences in generator locat
as a function of spacing of the surface and form a conv
gence measure for each generator, which can then be a
aged over all generators.

We show the result of performing this operation on t
radial and angular positions of the generators in Fig.
using the low amplitude Brill wave plus black hole spac
time considered above. We note that the radial position
the generators~solid line!, which is non-oscillatory, con-
verges at second order. However, the angular posi
~dashed line! has spikes typical of an oscillatory function
but converges below second order. This lower order con
gence is due to the principal term in the angular gener
position evolution being the~interpolated! derivative of the
horizon surface. That is, since we interpolate second o
spatial derivatives of the surface for the generator sour
the evolution of the generator angular positions has e
terms larger than theDq2 terms. This convergence orde
could possibly be increased by using fourth order spa
derivatives and very high order interpolators.

V. MEMBRANE PARADIGM

We now turn to a detailed analysis of the informati
carried by the congruence of horizon generators and the

FIG. 20. We show the convergence ofr andu for the horizon
generators in the low amplitude Brill wave spacetime. The conv
gence exponentss r and su are plotted versus time. We note th
the radial location of the generators converges at second order
the angular location converges at somewhat less than second o
This is unsurprising since the evolution equation for the gener
angular location is dominated by an interpolation of the numer
derivative of the horizon surface.
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tent to which this can be used in numerical relativity as a t
to investigate black hole dynamics. The theoretical basis
this study is based on the membrane paradigm~MP! @1#. The
MP views the black hole as a 2-surface in a 3-space with
properties of a viscous fluid. In many ways, the EH in
dynamical spacetime is like a soap bubble perturbed by
ternal influences. The MP is particularly valuable in provi
ing an intuitive understanding of how a BH reacts to
surroundings.

There has been much study of gravitational interactio
using the MP in quasi-stationary situations@36,37#. With the
advent of numerical identification of the EH and generat
described above, we can now start to consider applying
MP to fully non-linear and dynamical spacetimes. With th
goal in mind, we demonstrate how to construct the MP qu
tities on a numerically located EH and examine the accur
of these constructions in several testbed spacetimes.

A. Formulation

We begin by discussing the MP formalism with the go
of being able to construct MP quantities on our numerica
located horizons. The membrane paradigm requires
choice of a time slicing, splitting up spacetime into an ‘‘a
solute space’’ and a ‘‘universal time’’@1#. To apply the MP
to numerical relativity, we choose the universal time to
the same as the time coordinatet used in the numerical evo
lution. This implies that the time coordinate used in the n
merical evolution has to be well behaved on the EH. This
the case for all of the black hole spacetimes we have num
cally constructed.

We define the four vectorlW to be the tangent to the hori
zon generators, and we normalize it as in Eq.~14! above,
with t being considered as the ‘‘universal time.’’ This vect
is in the full 4-dimensional space, which we index wi
Greek letters,m,n,...5(0,1,2,3). On the 2D spacelike se
tion of the EH at constantt, we choose spacelike 2D coo
dinatesx̄a which we index with lower case Roman letter
a,b,...5(2,3), which arecomovingwith the horizon genera-
tors, i.e.,

lW5
]

]t
U

xa

5
]

] t̄
~17!

where t̄ is the comoving generator time coordinate@which is
identical to the time in the simulation by Eq.~14!#. In a
coordinate basis, we have the spatial basis vectors

eWa5
]

]xaU
t

~18!

which are orthogonal tolW by construction. We define the
fourth basis vectornW by

nW •nW 50

nW • lW521
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nW •eWa50. ~19!

The induced metric on the 2D horizon section is

gab
H 5ea

meb
ngmn . ~20!

In the membrane paradigm the description of the dyna
ics of the horizon is given in terms of the horizon surfa
gravity gH , the shearsab

H , the expansionQH, and the
Hajicek fieldVa

H . They are defined as

QH5
1

2

]

] t̄
ln det gH ~21!

sab
H 5

1

2 S ]gab
H

] t̄
2QHgab

H D ~22!

¹ lW lW5gHlW ~23!

Va
H52nW •¹alW. ~24!

These quantities are dependent on the choice of time
ordinate t, as they explicitly involvelW in their definition.
That is, they are gaugedependentmeasures of the horizo
dynamics. In the formulation of the membrane paradi
given in Ref. @1#, a particular time slicing is chosen for
stationary black hole, e.g., a Kerr black hole. In this slicin
without perturbation,gH and VH take on special value
while QH and sab

H vanish. For small perturbations about
Kerr horizon,gH andVH are first order slicing dependent. I
the formulation given in Ref.@1#, time slicings of the per-
turbed black hole are chosen so that the surface gravitygH
remains unchanged in time. In our application of the me
brane paradigm to numerical relativity, as we are mostly
terested in highly dynamical and fully nonlinear interaction
we do not put such restrictions on the time slicing. Rath
we let the time slicing be determined by the natural choice
the numerical evolution~maximal slicing for most cases pre
sented in this paper!. We expect that the new features intr
duced by different slicings will become familiar when th
formulation is used in more black hole studies, and hopefu
allow further insight into the slicing conditions and nume
cal evolutions.

The horizon quantities~21!–~24! satisfy the following:
The ‘‘tidal force equation’’

Dtsab
H 1~QH2gH!sab

H 52Cambnl ml n[2E ab
H , ~25!

the ‘‘focusing equation’’

DtQH5gHQH2
1

2
QH

2 2sab
H sH

ab28pTmn
ml n, ~26!

and the ‘‘Hajicek equation’’

DtVa
H1~sa

Hc1 1
2 da

cQH!Vc
H1QHVa

H

5~gh1 1
2 QH! ,a2sa

Hb
ib18pTaml m. ~27!
06401
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Dt5' l •¹ is the projection of the covariant derivative alon
l into the horizon section. ‘‘i’’ denotes covariant differentia-
tion on the horizon section.Cmnrs is the Weyl tensor and
Tmn is the energy-momentum tensor.

The comparison of Eqs.~25!–~27! with the evolution
equations for a 2D viscous fluid gives meaning to the ho
zon quantities, Eq.~21!–~24!. One finds that Eq.~25! de-
scribes the response of a fluid to a gravitational tidal fie
Eq. ~26! describes the energy conservation of the visco
flow, and Eq.~27! is the corresponding Navier-Stokes equ
tion of the fluid flow. The surface density of the mass-ene
of the fluid is identified as2QH/8p, the surface pressure i
gH/8p, and the momentum density corresponds
2Va

H/8p. The dynamics of the EH of a black hole can b
understood in analogy to the motion of a fluid on a so
bubble. In the following section, we show how these ‘‘fluid
quantities can be constructed for an EH located in a num
cal simulation.

B. Constructing membrane quantities

Oncef (t,xi)50 is given, we obtainlW as given in Eq.~14!
in a straightforward manner. Next, we define the comov
coordinatesx̄a (a51,2) on the horizon section by (ū,f̄).
Then we have

eWa5~]ū ,]f̄!5~pW ,qW !. ~28!

The coordinate components of the two basis vectors can
obtained by

pW 5]ū5pr] r1pu]u1pf]f , ~29!

wherepr is defined to be

pr5
]r

]ū
5

difference in r for neighboring generators

difference in ū for neighboring generators
,

~30!

and likewise forpu,pf. We use this definition in a discret
fashion, differencing over generator locations, and theref
our basis vectors will always have a discretization er
based on the initial spacing of generators inū space. As the
coordinatesū and f̄ are chosen to be comoving, we hav
pt505qt. For the axisymmetric cases considered here,
pick f5f̄ and thusqW 5]/]f, the azimuthal killing vector.

The horizon two-metric is then written as

gab
H 5S gūū

H
gūf̄

H

gūf̄
H

gf̄f̄
H D . ~31!

The individual components are defined by, e.g.,

gūū
H

5gi j p
ipj . ~32!

Solving fornW is particularly troublesome. We use the fo
lowing, geometrically motivated, method. When we solv
for ] t f in Eq. ~3!, we solved the quadratic equation choosi
5-13
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the positive root for the outgoing null surface. We could a
have chosen the negative root, and found an evolution e
tion for the ingoing null surface. Let us call the ingoing
evolution equation] t

2 f , and Eq.~3! ] t
1 f temporarily. We

will use the notation]m
6 f 5(] t

6 f ,] i f ). Thus, we can form

two null vectorsLW andNW as

Lm5~] t
1 f ,] i f !

Nm5~] t
2 f ,] i f !. ~33!

From Eq.~2! it is clear that bothLW andNW are null, and thatLW

is simply lW with a different normalization.
However, it is also clear thatNW •eWa50. To see this, recal

that eWa has only spatial components; so

Nmea
m5ea

i Ni5ea
i ] i f 5ea

i Li5Lmea
m50 ~34!

since LW is proportional tolW which is orthogonal toeWa by
construction.

So now all that remains is to find a normalization su
that nW • lW521. This is straightforward. SincelW5LW /A(xu),
using Eq.~13! it is clear that

NW • lW5
gmn]m

1 f ]n
2 f

gta]a
1 f

[B~xm!: ~35!

and so we can definenW by rescalingNW by B(xm):

nW 52NW /B~xm!. ~36!

We note we can use Eq.~19! to measure how accurately th
nW and lW orthogonality witheWa is maintained.

Once the horizon 2-metricgab
H and full set of comoving

vectors, (lW,nW ,pW ,qW ) are obtained, we can form the expansio
shear, and Hajicek fields via Eqs.~21!–~24!. From Eq.~24!,
the surface gravity is

gH5Gmn
t l ml n, ~37!

for our particular parametrization oflW.
There are several terms in the definitions of the membr

quantities which require careful numerical and analyti
treatment in order to be evaluated in our framework. In p
ticular, in order to evaluate the horizon quantities accurat
we must be able to evaluate]gab /] t̄ , preferably without
taking numerical time derivatives. From Eq.~32!, the hori-
zon 2-metricg has two types of terms, those due to t
comoving basis vectorspW andqW , and those due to the spac
time 4-metric,gi j . Thus using the chain rule to evalua
]gab /] t̄ will yield terms like ]gi j /] t̄ and]pi /] t̄ .

The derivatives along the generators of the spacet
metric can be evaluated using the metric evolution equatio
We note that this is the first point we have used the evolu
equations forgi j , and therefore the accuracy with which o
spacetime obeys these evolution equations enters can
into our quantities. In other words, if the relationship b
06401
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e
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tween ] tg and 2aK is only obeyed to a given order, w
cannot expect our quantities which use this relationship to
obeyed at a higher order. By virtue ofl t51,

]gi j

] t̄
[ l m]mgi j 522aKi j 1Dib j1D jb i l

kgi j ,k ~38!

whereKi j is the extrinsic curvature of the 3-surface.Ki j and
gi j are both readily available in the numerically construct
spacetime.

We can find the terms]pi /] t̄ by commuting partial de-
rivatives, namely,

]pi

] t̄
5

]

] t̄

]xi

]ū
5

] l i

]ū
. ~39!

The time derivative ofpW is the spatial derivative oflW. We
can evaluate the spatial derivative oflW with a single time
slice finite difference of our surface and surface quantiti
and thus find the required time derivatives. To summar
expanding the time derivative of the horizon metric using
chain rule, and using the above two techniques, we can
the ]gab /] t̄ terms in a single time slice.

Thus, we have a method for finding the four horizo
quantities which describe the kinematics of the horizon s
face. This method is contained entirely in a single 3-sli
We should note that it is also possible to create the me
brane quantities in a direct fashion using numerical deri
tives in time to evaluate the expansion and shear. We
this the ‘‘time difference’’ evaluation of the expansion, a
opposed to the ‘‘single slice’’ evaluation. We find that th
single slice method invariably gives smoother and more
curate data for the membrane quantities than the time dif
ence method.

An additional difficulty comes in evaluating the horizo
equations, Eq.~25!–~27!. Two terms pose a difficulty there
D t̄Za andsa

b
ib , whereZ is any tensor on the horizon. Luck

ily, we only need to evaluate these terms as a check; we
not use the horizon equations in our evolution. Thus we
use first order accurate methods to evaluate these if nee

We first turn our attention toDt̄Za . First we introduce a
Christoffel symbol for the (t̄ ,ū,f̄) coordinates@e.g., the null
horizon 3-surface in co-moving coordinates, which we w
here index with (q,r ,...)#. We denote this as(3)Gq

rs . We
find

D t̄Za5
]Za

] t̄
2 ~3!Gq

a t̄Zq . ~40!

The horizon ‘‘3-metric,’’ gqr , is simply given bygab if
q,rÞ t̄ and 0 elsewhere. Thus(3)Gq

rs can be simply evalu-
ated as

~3!Gq
a t̄5

1
2 gqr~g ra, t̄1g r t̄ ,a2g t̄ a,r !5 1

2 gqbgab, t̄ . ~41!

Thus we can easily evaluate Eq.~40! as
5-14
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Dt̄Za5
]Za

] t̄
2

1

2
gbcgba, t̄Za . ~42!

The only term which we cannot calculate in a single slice
]Za /] t̄ , but we can simply calculate that by storing th
quantityZa at three time steps and then use a centered t
derivative to evaluate the term at the middle step after
three steps are taken.

The termsa
b

ib is evaluated directly, e.g.,

sa
b

ib5sa
b

,b1 ~2!Gb
cbsa

c , ~43!

and the 4 independent non-zero terms of(2)Ga
bc are evalu-

ated directly from spatial derivatives of the horizon 2-metr

C. Test and applications of MP quantities

In this section we apply the membrane quantities to a
of testbed analytical and numerical black hole spacetim
that have been computed using codes described in R
@5,8#. Our aim here is to probe whether these tools can
used in a practical way to explore the dynamics of black h
horizons in numerically generated spacetimes. We will c
sider the physics of these quantities, for a set of interes
spacetimes, in a future paper.

1. Flat space

Flat space in Minkowski coordinates,

ds252dt21dr21r 2dV2, ~44!

allows us to test our expressions forQ against easily under
standable analytic solutions. Although flat space has no
it does have null surfaces, and our construction carries o
to them.

Most notably, we know that for spherical null surfaces
flat space, the expansion of a sphere of radiusr is

Q5
1

A
]A
]t

5
2

r
~45!

since, in flat space,A54pr 2 and ]r /]t5c51. Using this
relationship, we can trivially check our expressions forQ.
Additionally, we can form]A/]t from integrals of the ex-
pansion, which carries over into the dynamical black h
case, where we can compare this integral ofQH with a nu-
merically calculated]A/]t. Evaluating the expansion in fla
space gives the expected answer.

2. Analytic Schwarzschild spacetime

We next turn to the analytic Schwarzschild spacetime
scribed in standard coordinates,

ds25S 12
2M

r Ddt21
dr2

S 12
2M

r D 1r 2dV2. ~46!

In this spacetime, the expected results are that the gener
and surface will be attracted backwards in time towards
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true horizon~at r 52M ), that QH , sab
H and Va

H approach
zero exponentially as the surface approaches the true h
zon, and thatgH approaches the analytic value of 1/2M .
Moreover, we can check that the relationship between
integral of the expansion and the area change holds in
spacetime by numerically differentiating the horizon are
which allows another test of our expressions. These relat
ships are obeyed.

In analytic Schwarzschild spacetime we can trivia
evaluate the above expressions forlW, Q andgH on an arbi-
trary null sphere of radiusr to find

lW5S 1,12
2M

r
,0,0D , ~47!

Q5
2

r
l r5

2

r S 12
2M

r D , ~48!

gH5
2M

r 2

l tl r

12
2M

r

5
2M

r 2 . ~49!

Note that l r and Q vanish on the horizon (r 52M ) as ex-
pected, andgH takes the value 1/2M . We check these rela
tionships for surfaces away from the horizon and we see
our surfaces give the analytic results for all null spheres
the spacetime.

Additionally, each of the horizon equations, Eq.~25!–
~27!, should be obeyed in this spacetime. We evaluate o
the focusing equation violation, however, since the tid
force equation contains the electric part of the Weyl tens
E ab

H , which causes this equation not to be a check on
membrane quantities alone, and the Hajicek equation is tr
ally satisfied with a spherically symmetricgH andVa

H50.
The vanishing of the focusing equation violation allow

us a strong check on our method. Since the focusing equa
requires the covariant derivative of the expansion,DtQ, we
expect the focusing equation to be obeyed as accuratel
DtQ is evaluated. Recall, we evaluateDtQ by taking a cen-
tered finite difference in time; so we expect the focusi
equation violation in our spacetime to converge towards z
at O(Dt2). We test this by finding a surface in the analyt
Schwarzschild background first using a Courant factorl
50.2 and thenl50.4, doubling the time step. We then me
sure the focusing equation violation in these two runs. If
result is converging towards zero, the focusing equation v
lation should be 4 times larger in thel50.4 case. We dem
onstrate this convergence in Fig. 21 by plotting the focus
equation violation withl50.2 as a line and by plotting on
quarter the focusing equation violation withl50.4 as dia-
monds. The demonstration that these two sets of data are
same indicates that we are converging towards a sur
which satisfies the focusing equations. We note that, as
surface becomes very close to the actual horizon, the fo
ing equation is zero at levels close to machine precision
both simulations; so convergence can no longer be obse
numerically.
5-15



in
n-
al
le

ve
.
le

ly

ic
th
o

lu
, w

a
ce

o
o
an

e

tly
ate
ese
nto

, due
e

we
by
an-
ting

le
n of
n
ssed
lar

l be
ing
ge-

a

y.
how

le
tors,
ses
er

tio
t

ac
ta
is
ar
ch
ti-

i-
inte-
et-
ild
r in
and
lent
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3. Maximally sliced Schwarzschild spacetime

With the advent of new hyperbolic systems for the E
stein equations@38–40# and apparent horizon boundary co
ditions @24,10#, long time highly accurate one dimension
evolutions of a maximally sliced Schwarzschild black ho
are quite readily available, and so we can use these
accurate spacetimes to test our horizon finding method
this section, we consider a maximally sliced black ho
evolved with the eigen-method code described in Ref.@39#,
which allows long time evolution with an exceptional
small error.

We first can test the evaluation of the horizon 2-metr
gab . In the case of no angular generator motion, where
generators are chosen to be identically on the points
which the horizon surfacef (t,xi) is evolved, the horizon
2-metricgab and the induced surface 2-metric used to eva
ate area and circumferences should be identical. That is
should get the same answer evaluating Eq.~7! whether we
use gab as defined by Eq.~6! or Eq. ~20!. Moreover, the
vectors pW and qW should have components~0,0,1,0! and
~0,0,0,1! respectively. We see both of these features to m
chine precision in the maximally sliced Schwarzschild spa
times.

Spherical symmetry also leads to a vanishing shear;
expression for the shear vanishes to machine precision. H
ever, the expressions for the expansion are non-trivial,
since we have a very small~but non-zero! area growth due to
numerical error, we can very accurately measure how w

FIG. 21. We show the violation of the focusing equation,F, for
a given sized time step as a solid line, and one quarter the viola
for double the time step as diamonds, for a surface integrated in
analytic Schwarzschild spacetime. The fact that these data are
incident indicates that we are converging towards a null surf
which satisfies the focusing equation. The surface in question s
at r 52.4M at t530. The exponential shrinking of the violation
directly due to the exponential approach of the expansion tow
zero. Note also that as the focusing equation approaches ma
precision levels~here 10214) convergence fails, since both quan
ties are effectively zero.
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the expansion measures area change.
We choose two trial surfaces for our test, one sligh

outside the horizon and one slightly inside, and integr
them backwards in time. As expected from paper I, th
surfaces converge towards each other rapidly, and lock o
the same surface, but have some non-trivial area change
to the ‘‘locking on’’ process before the surfaces join th
horizon, and due to numerical error afterwards. In Fig. 22
plot ]A/]t calculated by differentiating the area reported
the code, and also by integrals over the surface of the exp
sion. We see that these quantities agree, strongly indica
that our evaluation of the expansion is correct.

4. Small distortion non-rotating black holes

We turn to the small distortion Brill wave plus black ho
spacetime considered above. We first test if our evaluatio
the horizon two-metric,gab , gives measures of the horizo
geometry which are consistent with the measures discu
in Sec. III B. Since the generators will experience angu
deflection, integrals to form areas and circumferences wil
over different coordinate locations when using the comov
and induced two-metric. Moreover, the measure of the
ometry using the horizon two-metric will be measured on
non-regular grid inu,f space~but a regular grid inū,f̄
space!, and will therefore have an additional inaccurac
Nonetheless, we see good agreement. In Fig. 23, we s
the difference in evaluatingCp ~not Cr) using the comoving
and induced two-metric in the Brill-wave plus black ho
spacetime. We show the difference for 38 and 76 genera
respectively. Note as the number of generators increa
~therefore reducing numerical error in the integration ov

n
he
co-
e
rts

ds
ine

FIG. 22. We show]A/]t evaluated by taking both the numer
cal derivative of the area calculated by the code and surface
grals of the expansion found from the comoving horizon two m
ric. We use a very accurate maximally sliced Schwarzsch
spacetime which has a very small, but non-zero, numerical erro
the spacetime. We integrate two surfaces, one originally inside
the other originally outside the event horizon. We note the excel
agreement between the two measures of]A/]t.
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the horizon metric due to generator deflection!, the results
converge towards the same solution, or the differences c
verge towards zero.

We turn next to the expansion on the horizon. For
physical setup considered here, a gravitational wave incid
on a black hole, but with the wave centered at the throat,
expect the horizon to grow att50 and then, as time
progresses, become static. This should show up as a pos
expansion decreasing towards zero as time progresses. H
ever, we also know that our spacetime has spurious
growth of the horizon due to a numerical error in the spa
time, as found in previous studies of the AH. This shou
appear as a positive, and increasing, expansion at later ti
In Fig. 24 we show the expansion for this spacetime, and
exactly this behavior. However, a few features of the exp
sion should be noted. First, note that, at late times, the
pansion is not terribly smooth in time. Second, note th
near the axis (u50), the expansion is somewhat oscillator
At late time and near the axis the numerically construc
spacetime is less accurate. We see that our membrane
digm quantities as analysis tools are very sensitive detec
of these errors in the numerically generated spacetime.

This detection of error leads us to study how these qu
tities behave with changing resolution in the construction
the numerical spacetime. In Fig. 25 we take the same w
parameters used above with resolutions of 200354 and
300380 to generate two spacetimes. In Fig. 25, we show
area change predicted by integrating the expansion ove
2-surface. We see that, att50, where area change is caus
by infalling gravitational radiation and the spacetime is s
quite accurate, both systems give the same result, but at

FIG. 23. We demonstrate that the generator co-moving me
gives accurate evaluations of the polar circumference,Cp , in the
spacetime with small amplitude Brill waves initially on the throa
We show this by formingCp

sfc from the induced surface metric an
Cp

gen from the co-moving generator horizon 2-metric. We taking t
difference of the two measures with different numbers of genera
used to form the horizon 2-metric. Clearly, as more generators
used the two methods become closer and the differences conv
towards zero.
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times, the expansion due to spurious numerical error is c
siderably larger in the lower resolution spacetime, and
expansion appears to be converging towards zero. In the
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FIG. 24. We show the evolution of the expansion in time for t
horizon interacting with a small amplitude Brill wave. Two featur
are of interest here. First, we note the initial expansion is quite la
but drops quickly, as the horizon swallows the initially incide
gravitational radiation. This initial growth is concentrated near
equator, as the gravitational wave has a sin2 u form. Second, we
note that at later times the expansion is growing, as expected f
the spurious horizon growth due to numerical error, and this gro
has no angular dependence. We also note a small amount of n
on the horizon near the axis, due to spacetime inaccuracies th

FIG. 25. We study the behavior of the expansion with a mod
ate and high resolution numerically generated spacetime. At e
times when area growth is due to accurately modeled gravitatio
phenomena, the expansion should be unchanged by adjustin
spacetime. At late times, when area growth is due to spurious
merical error, the area growth should is smaller with a higher re
lution simulation, as the spacetime is converging~at roughly second
order! towards a zero-area-growth solution.
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resolution spacetime, the expansion is fairly inaccurate n
the pole, as the system is very susceptible to axis insta
ties, but this noise does not show up in the calculation of a
change, as sinu terms in the integral of the expansion d
stroy this contribution near the pole.

We next turn to the shear. In this spacetime, we expe
non-zero shear since there is generator motion, but we
expect the shearsab to be diagonal, since the spacetime
non-rotating and axisymmetric. In Figs. 26 and 27 we p
the evolution ofsūū and the trace of the shear,sa

a in time.
We note that the shear is largest near the equator, and
ishes on the pole, as symmetry arguments require it m
~There can be no shear at the pole in axisymmetry, o
expansion, since shear at the pole would imply af depen-
dence of the generator motion.! We also note that the trac
of the shear vanishes to machine precision in Fig. 27.

FIG. 26. We showsuu on the horizon for the low amplitude
distortion case considered. We note that there is no shear a
poles, and the shear is maximal near the equator.

FIG. 27. We show the trace of the shear,su
u1sf

f , on the hori-
zon for the low amplitude distortion case considered. We note t
even though the shear and the horizon two-metric are of order u
this quantity effectively vanishes to machine precision.
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Finally, to test the surface gravity, we turn to the focusi
equation, which is a complicated combination of the surfa
gravity, shear, and expansion. If this equation is roughly s
isfied in our spacetime, then we have a strong verificat
that we are indeed measuring the membrane quantities
propriately. We test this by taking the averaged value of
focusing equation violation@or the left and right hand side
of Eq. ~26!# over the surface. In Fig. 28 we show these a
erages evolving in time in our moderate and high resolut
spacetimes. We note that the focusing equation violatio
small, being substantially smaller than the square of
shear and the expansion. However, it is clear that the ev
ation of the focusing equation violation is also sensitive
errors in the numerical spacetime and interpolations. No
which is generated from the discrete and inaccurate feat
of the spacetime, is clear in Fig. 28. However, we also
serve that, with more spacetime resolution, the focus
equation violation converges towards zero at approxima
second order, as expected.

From the experiments in these two numerical spacetim
we conclude that our construction is appropriate for meas
ing and generating membrane paradigm type analysis q
tities in numerical spacetimes. These quantities are sens
detectors of the error in numerical spacetimes, and they
low us to measure detailed properties of the event hori
and its dynamics.

VI. CONCLUSIONS

In this paper, we have developed a set of tools with wh
one can measure and understand the dynamics of even
rizons in numerically generated spacetimes. We have sh

he

t,
y,

FIG. 28. We show the norm of the focusing equation over
surface in the high resolution and medium resolution spacetim
We note several features. First, this quantity is noisy, but sm
compared to the square of the shear and expansion, both of w
enter into the equation. Second, we note that with an increasi
accurate spacetime, the focusing equation converges towards
at approximately second order.
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that standard geometric measures of the horizon are us
tools for understanding horizon dynamics. We have inve
gated the behavior of the generators of the horizon in sev
spacetimes, including two black hole spacetimes, where
rizons contain caustics, through which generators leave
horizon. Finally we presented a construction which app
the membrane paradigm to numerical relativity. We dem
strated that this construction was effective on analytic spa
times, and is also applicable to numerically generated sp
times. We also note that our techniques are applicable to
null surface and so could potentially be useful for study
null surface dynamics in spacetimes without black holes
away from black holes. We look forward to more accura
dynamical black hole spacetimes, so that we can use t
quantities for a detailed horizon analysis in numerical re
tivity.
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@19# A. Čadež, Ph.D. thesis, University of North Carolina at Chap

Hill, Chapel Hill, North Carolina, 1971.
,

@20# R. Matzneret al., Science270, 941 ~1995!.
@21# S. W. Hawking and G. F. R. Ellis,The Large Scale Structure

of Spacetime~Cambridge University Press, Cambridge, E
gland, 1973!.

@22# D. Bernstein, D. Hobill, and L. Smarr, inFrontiers in Numeri-
cal Relativity, edited by C. Evans, L. Finn, and D. Hobi
~Cambridge University Press, Cambridge, England, 1989!, pp.
57–73.

@23# E. Seidel and W.-M. Suen, Phys. Rev. Lett.69, 1845~1992!.
@24# P. Anninoset al., Phys. Rev. D51, 5562~1995!.
@25# S. Brandt and E. Seidel, Phys. Rev. D54, 1403~1996!.
@26# S. Brandt and E. Seidel, Phys. Rev. D52, 870 ~1995!.
@27# L. L. Smarr, Phys. Rev. D7, 289 ~1973!.
@28# E. Flanagan, Phys. Rev. D44, 2409~1991!.
@29# E. Flanagan, Phys. Rev. D46, 1429~1992!.
@30# D. Bernstein, D. Hobill, E. Seidel, and L. Smarr, Phys. Rev.

50, 3760~1994!.
@31# P. Anninoset al., Phys. Rev. D50, 3801~1994!.
@32# J. Bowen and J. W. York, Phys. Rev. D21, 2047~1980!.
@33# M. Choptuik, Phys. Rev. D44, 3124~1991!.
@34# C. Bona, J. Carot, and J. Masso´ ~in preparation!.
@35# P. Walker, Ph.D. thesis, University of Illinois at Urbana

Champaign, Urbana, Illinois~in preparation!.
@36# W. M. Suen, R. H. Price, and I. Redmount, Phys. Rev. D37,

2761 ~1988!.
@37# R. H. Price and K. S. Thorne, Phys. Rev. D33, 915 ~1986!.
@38# C. Bona, J. Masso´, E. Seidel, and J. Stela, Phys. Rev. D56,

3405 ~1997!.
@39# A. Arbona, C. Bona, J. Masso´, and J. Stela~in preparation!.
@40# M. Scheelet al., Phys. Rev. D56, 6320~1997!.
5-19


