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Gauge and parametrization dependence in higher derivative quantum gravity
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The structure of counterterms in higher derivative quantum gravity is reexamined. Nontrivial dependence of
charges on the gauge and parametrization is established. Explicit calculations of two-loop contributions are
carried out with the help of the generalized renormalization group method, demonstrating consistency of the
results obtained.S0556-282(199)04904-§

PACS numbd(s): 04.60.Ds, 11.10.Gh

I. INTRODUCTION [6—8] consists of the introduction of some additional anti-
commuting source to the effective action in such a way that
As is well known, not all of the problems of quantum field the Slavnov identities for the corresponding generating func-
theory are exhausted by the construction of $meatrix. The  tional of proper vertices connect its derivatives with respect
investigation of the evolution of the Universe, the behaviorto the gauge-fixing parameter and to the mean fi¢tsl
of quarks in quantum chromodynamics, etc., requires the insources of BRST transformations
troduction of a more general object—the so-called effective The second method was used[BJ to prove the gauge
action. In addition to that, the program of the renorma“zaﬁonindependence of the gauge-invariant divergent parts of the
of the Smatrix itself has not yet been carried out in terms ofeffective action up to terms proportional to the classical
the S matrix alone. Renormalization of the Green functions,equations of motion of the gravitational field. Together with
therefore, is the central point of the whole theory. Givenihe general result of the first approach mentioned above this
these functions one can obtain lﬁma_tnx elements with the would imply some far-reaching consequences concerning the
help of the reduction formulas. In this respect those properzo, g majization of the fields. For example, one could con-
:Ir?es t?;:g%o%e?oe;ﬁg?ﬂ;‘:ﬂ;tﬁnﬂz dVthaIl(r:Q (;feﬁsggi;ﬂ'rgp%fﬁerclude that the canonical trg_nsformation corresponding _to a
tance. change of the gauge condition should not _be renorr_nallz_ed.
We mean first of all the properties of the so-called “eS_Unfortunater, this is r_10t the case. We will show in this
paper that the aforesaid result [&] holds at the one-loop

sential” coupling constants in the sense of Weinbgtg Lonlv. Introducti f the additional ioned
They are defined as those independent of any redefinition ¢EV€! only. Introduction of the additional source mentione

the fields. In the context of quantum theory one can say the#P0V€ requires also introducing some additional terms
the renormalization of “essential” charges is independent of’€€ded to compensate divergences which arise because of
renormalizations of the fields. Separation of quantities intdghe presence of the new source. As a result the corresponding
“essential” and “inessential” ones is convenient and we useSlavnov identities impose only some constraints on the di-
it below. vergent structures from which a nontrivial dependérme

In this paper we shall consider the problem of the gaugdhe gauge follows already at the two-loop level. _
and parametrization dependence of the effective actidtfof ~ OUr paper is organized as follows. In Sec. Il we determine
gravity. possible divergent structures which are originated due to the

There are two general and powerful methods of investiPresence of the new source and obtain the correct Slavnov
gation of the gauge dependence in quantum field theory. Thiglentities. In Se<_:. Il we calculate explicitly the_dlver_gent
first of them[2] uses the Batalin-Vilkovisky formalisfig—5] ~ Part of the effective action at the one-loop level in arbitrary
and is based on the fact that any change of gauge conditiojnéan gauge and the special class of parametrizations. In
can be presented ag(lacal) canonical(in the sense of “an- S_ec. IV_We calculate the divergence as the?1(e beln_g the
tibrackets” [4]) transformation of the effective action. This dimensional regulatdr part at the two-loop level with the
canonical transformation induces a corresponding renormaflélp of the generalized renormalization group method and
ized canonical transformation of the renormalized effectiveSNOW that the results obtained in Secs. Ill and IV satisfy the
action. This leads to the following result: the renormalizationrelations derived in Sec. II. . _
boils down to the redefinition of the coupling constants Ve use the highly condensed notation of DeWitt through-
(which are the coefficients of independent gauge invarianfUt this paper. Also left derivatives with respect to anticom-
structures entering the Lagrangiaand some canonical Muting variables are used. The dimensional regularization of
transformations of the fields and sources of Becchi-Rouet@!l divergent quantities is supposed.
Stora-Tyutin(BRST) transformations. The second approach

1l.e., a dependence which cannot be presented as proportional to
*Email address: kirill@theor.phys.msu.su the equations of motion.

TEmail address: petr@theor.phys.msu.su 2We set 2=d—4, d being the dimensionality of the space-time.
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[l. GENERATING FUNCTIONALS AND SLAVNOV enter the so-called reduced expression of the metric expan-
IDENTITIES sion [see Sec. llIA, Eq40)]. Thus the BRST transforma-

tions of the Faddeev-Popov effective action with the gauge-

fixing term being  1/2A)F*0IF,, expressed in terms of

Let us consider higher derivative quantum gravity de-these standard variables, are

scribed by an action which includes the minimal set of terms

added to the usual ones of Einstein to ensure the power- oh,,=Dj,Ca\,

counting renormalizability of the theory:

A. Action, gauge fixing, and parametrization

8C,=—dPC,Cp\,
1
a1R2+BRWR“”—E(R—2A) : =

S [ a%=g

8C™=—AT10OF", 4

1

@ where\ is an anticommuting constant parameter.
where a; and B are arbitrary constants satisfying on/
#0, 3a;+ B#0, which imply that the graviton propagator B. Green functions

. 74 . . .
behaves likep™" for large momentdsee[8]); k is the gravi- We write the generating functional of Green functions in
tational constant and is the cosmological term. the extended form of Zinn-Justi®] modified by Kluberg-
The corresponding equations of motion are Stern and Zubef6,7]:
1 1 y724 Qo pv | o
5iR?gP+ 5 BRUR,,, 0% 20, RROF Z[T*.B% B K™, L7]
1 =f dh,,dC,dC exp{i[S(h,,,C,,C"K"",L?)
— 2R, RHF — 201+58|0 Rg*#— BOR*A
+YF,C7+BC,+C"B,+T#h,, 1}, (5)
+(2a,+ B)RP L Rg#+ L agehs LRes=g
o ! - - - =VU.
1 212 g K2 g 2 where
~ 1 _

@ S —So- 5 FUOF,+CTFA'DL,C,
Renormalizability of this theory was proved][ig] in the case
of the so-called unweightetbr weighted with a functional +K#'D§,C,+L79PC,Cg;

containing fourth or higher derivativeearmonic gauge con- ) ) ) " )
dition. The proof in the more general case boils down to the*"(x) (anticommuting), L?(x) (commuting) are the
proof of the so-called locality hypotheses.[Ir0] its validity =~ BRST transformation sources afis a constant anticom-

was shown most generally. muting parameter. ' .
For our purposes it is sufficient to consider the harmonic L€t us first consider the structure of divergences which
gaugé following Stelle[8]: correspond to the extra sour¥e Power counting gives, for

the degree of divergend® of an arbitrary diagram,

F,=F*h,z=d"h,,=0, 3
wotw TaB ot @ D=4-2n,—2n¢—n, —2ny—Ec—2EZ, (6)

whereh,,, denotes some set of dynamical variables describ- _ . . . R
ing the gravitational field. We recall that in the theory of wheren, = number of graviton vertlc_es with two d(_envatwes,
gravity a natural ambiguity in the choice of such a set existd!k.Ly=numbers ofK,L,Y-source lines, respectivelytc

. . andEz=numbers of external ghost and antighost lines.
because the generat@i of gauge transformations of vari- . .
v : L . Also from the expressiofb) we see that one can ascribe
ables constructed from the metdg,, (or g#*) and its deter-

. . il . the following ghost numberd to all the fields and sources:
minantg=detg,,, in any combination have a simple form

linear in fields and their derivatives. For general construc- _ _ =_
tions of this section it does not matter what choice we make. Ng[h]=0, Ng[C]=+1, NgC]=-1,

We only note that the gauge in the form of E®) will NJK]=—1, Ng[L]=-2, NgY]=+L.

always correspond to the set of dynamical variablesich )
Now from Eqgs.(6) and(7) one can see that there are three
%Our notation is R, = RY,, =%, -, R=R,,0*", 0,, types Ef divergent structures involving th¥ vertex:
=sgn(+,—,—,—). YK, YC, andYLC, each of which may have arbitrary num-
*We use the flat-space metric tensor ber of external graviton lines. As far as we have adopted the
7=diag(+1,-1,-1,—-1) standard covariant approach thus only Lorentz-covariant
to raise Lorentz indices. quantities may appear and therefore we have, for the general
5They will be referred to astandard variables form of the above structures,
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YKE'P,,, (8)  the case Whelg;yzgw are chosen as a parametrization of
the gravitational field. Then the general result will be clear.

YCHQuy, ©) To ensure renormalizability we work with a generating
and functional (11) from the very beginning. We will see below
YL°C™™M,,, (100  that Slavnov identities determine the structure of the polyno-

mials P andQ completely. They turn out to be
whereP, Q, andM are some Lorentz-covariant tensors de-
pending onh,,, alone. Pu=almn,thy,,), 12
Thus to renormalize the Green functions we must intro-
duce corresponding counterterms and consider the new gen-
erating functiondl Quv=2ahy,, (13

nv Qo uv | o
ZLTE 7B KA L] a being some divergent constant. Thus we set

zf dh,,dC,dC"exp{i[%(h,,,C,,C",K*" L")

o P,uV:(??;LV—’_h,uV)!Q,uV:h,uV
+YK“P,,+YC'9#Q,,

at the zero order. Then inclusion of the counterterms
(12),(13) is just a multiplicative renormalization of the

instead of Eq(5). sourcey.

+YL'C'M,,+B°C,+C"B,+T*h,, 1} (1))

C. Slavnov identities 1. One-loop order

Let us proceed to successive renormalization of Green To obtain Slavnov identities at this order we perform a
functions corresponding to Eql1). We will first consider BRST shift(4) of integration variables in Eq11):

MO
gT +YK/’LV)

nv

1
wv orT
T#"+YLC sh

o
W‘FlY(’U“V"‘ h,uv))

f dh,,dC,dC"

—(B,+YL' M) 2 iveM© +£ﬁ OFrur 2 —2YAi+|YC"F‘”D“ .Ca
g gT 5Lo- gT A T 5T/J’ dA
TS o v o~ (0) L po o7 v —
X exp{i[2+YF,C7+YK*"(n,,+h,,)+YLC'MP+8°C,+C"B,+T""h,,]}=0. (14)

~ Our aim is to find theA depgnderg)cg of the gauge- inyroducing the generating functional of proper vertiggs
invariant terms only. Terms contalnlrlg( ) in Eqg. (14) de-

pending on anticommuting fieldS, and source.” are un-
|mportant in this respect and we replace them simply by F[h,mCmCT KHY, Lo, Y]=W[ T4, 87, 8, K~*,L7,Y],

“+..."in what follows because these terms will be omit-
ted in the end of the calculation anyway. _B°C —C"8.—T*h =—ilnzZ 16
Using the ghost equation of motion B7Co=CTB: mr ’ (16)
N oW c SW o oW a7
f dh,,dC,dC(F#'D%,C,~YF,+5,) S AP T T -8B,
X exp{i[3 +YF,Co+YK-Y( Dot hy)+- - and noting that
+B°C,+C7B,+TH = ~
B7C,+C7B+TH"h,, ]}=0, (15 di aw .
dA " dA 18
81t is easy to see that inclusion of additional structu{@s-(10) _
into the action does not alter the expressiénfor D. we rewrite Eq.(14) as the Slavnov identity fof':
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or
oh,,

or
1) ol

oT oo
ToC, s

+Y( 77/.LV+ h,uv)

+1DF 5F+2YAdF+Y51:E+ =0
AT TsC, dA ~ sc. 7 '

(19
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Finally, we omit all but the terms depending by, only
and obtain, in the first order,

% 5ngv(l) +2A do® +...=0 25
_5h,uv SK MY dA B (25)

where () denotes the gauge invariant part Bf and the
superscriptliv (1) denotes the one-loop divergent part of the

To simplify Eqg. (19) we introduce the reduced generating corresponding quantities.

functional

1 _
P=T+ 5 F IR~ YK (7, +h,,)~ YF,C".

Then Eq.(19) reduces to

oI oI N oI or L ovA dr Ly K or -
oh,, sk 6C, sLC dA SK MY ’
(20)
The ghost equation of motion written in termsIofis
oI
g ——=0. (21
SK#*Y 5CT

Now let us separate th¥independent part of from the

part linear inY:

Then Eq.(20) gives an ordinary Slavnov identity fdr,,

or, or, &I, ér'y
H —=0, (23)
oh,, skrv - 6C, sL
and an equation involvingy',:
ory or, or, ory oryér, or, or;

oh,, sk#v  6h,, skrr  8C, 57 6C, sLO

Iy S
d_A 5K/’“j

+...=0. (24)

As we knowT'§*®M=k#P()  P® being some diver-
gent polynom inh .

Thus, dropping the terms proportional k&' again and
the symbol “+--.” we obtain the following equation for
the gauge invariant term@9"” () of the effective actior:

deiv(l) 580
— (1)
A an Py (26)

y2%

2A

The left hand side of this equation is gauge invariant and
thus so is the right hand side. Therefd?€) has the form
mentioned above. The corresponding form@fﬁ} follows
from Eq. (21).

To make the Green functions finite at the one-loop level
we must redefine the initial effective actian

35 -3W=3 -1l 27)
and the sourcy ®
Y—Y(1-aW). (28

As explained i8] subtraction of""*(*) boils down to a
redefinition of all the fields in such a way th&t" is invari-
ant under renormalized set of BRST transformations for
which we do not introduce new notation.

2. Two-loop order

We perform a renormalized BRST transformation of inte-
gration variables in the generating functional of Green func-
tions finite at the one-loop level,

ZU[ TR g7 B, KHY L9, Y] = f dh,,,dC,dCexp{i[S M+ Y(1-a)F,C”

+(1=a) YK (5, +h,,) 4+ B7C,+CB,+ T, 1), (29)

and obtain the following Slavnov identity:

"We will see in Sec. Ill that the non-gauge-invariant termsFi_W depending orh,,, only are absent.
8We should also include counterterms of the tyleC, but they are irrelevant to the issue and replaced by *- " as we have mentioned

above.
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f dh,,dC,dC"
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[T+ Y(1—a®)KA] i+iY(1—a<l))(77 thy)
SK#Y S

_ s 1 drdiv® _
_po__ . T UV _ _ A1) R S H _ A1) TCMVA @
B 5LU+AﬁTDF e 2Y(1-aM)A| qr+i— g | +iY(1-a¥)CFL'D] Cot
xexp{i[S M +Y(1-a)F,Co+Y(1—aD)KA(5,,+h,,) + -+ B7C,+CB,+ T+, 1}=0.  (30)
To evaluate the tert
. Fdiv(l) ~ o
f dh,,dC,dCYA dlA expli[S P +Y(1-a?)F,C”
+(1-a)YK* (g, +h,,)+ - +B°C,+C7B,+T*h,,1}, (3D
we use Eq(26) and equation of motion of thie field which is obtained fron29),*°
_[ 65 erd@ ~ _
T — 14 i(S@ —_a® T
Yj dh,,dC,dC Sh.,  oh,, +T*7 ) exp{i(EY+Y(1-aY)F,C
+Y(1-aM)K#"(q,,+h,,)+ - +B7C,+C7B,+T#"h,,)} =0. (32)
|
In the two-loop approximation we may write F[11=F[1”+YF[21] (35
Srdiv() div(1) . . . .
a(l)J dh,,dC dcr - expli---}=a r11 Z11] gives an ordinary Slavnov identity
14 ag 6 v 5 ” .
) g ot srith st st
Finally, using the ghost equation of motion =
Y, asmg e 9 q oh,, skrv 6C, sL” (39
sT sl
nr ——=0, 33)  and an identity involving L' :
SKHY  5CT 33 y g
1 1 1 1 1 1 1 1
written in terms of the one-loop finite reduced generating _ 5F[1] 5F[2] 5F[2] 5F[1 : _ 5F[1] 5F[2] _ 5F[2] 5F[1]
functional of proper vertices, oh,, skrv  h,, skrr  6C, sLo  OC, sL°
~ 1 - art STdiv(D)
P =T - F OF = YK (5,,,+ hy,,) = YF,C, +2A dAl +a® 5; (7 th)+---=0. (37)

we rewrite the rest of Eq30) as in Sec. Il C 1 and obtain the
following Slavnov identity for one-loop finite proper verti-
ces, valid up to two-loop order:

Sritl sritl . STl sritl CovA dritl
oh,, skrv 8C, sLC dA
div(1)
+YdV——(p,,+h,)+--=0, (39
5h,u,v Nuv A% ’

where terms explicitly dependent d&*” and a, are in-
cluded in “+ - - - for simplicity. Again the separation

®Again evaluation of the gauge invariant partofI'$"*M/dA is
needed only.
Oe use the property?=0.

Mmv

Thus for the two-loop gauge-invariant divergent part
Qdv@) of the one-loop finite generating functional of
proper vertices we have

S5 [1]div(2)
_ _SO PP oA —
5h#,, My dA
div(1)
+a® sn (nlu,,+ hM,,)ZO. (38

nv

Hstrictly speaking, a non-gauge-invariant term corresponding to a
nonlinear reparametrization of the fidhdshould appear in the two-
loop approximation. However, on account of the well-known struc-
ture of this term8] it does not change the final res(®9), as one
can easily verify. If we were to carry out the renormalization pro-
cedure to all orders, we would deal with it more carefully.
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Again it follows from Egs.(38),33) that P{)=a(®)(5,,  expansions of all the quantities entering EL).in powers of

+h,,), QELZV): a(z)h,w. the dynamical quantum variablég, around the background
Thus we obtain the following identity for the one- and field g,,, up to second order.

two-loop divergent gauge-invariant parts of the effective ac- NOw we note that the form of the graviton propagator is,

tion: of course, parametrization dependent and this dependence
complicates all calculations considerably. However, it is fic-
dQ[ildiv() 50 div(d) titious in the sense that it always can be removed bgear
A —gx— = —a(l)T(Wﬁ ) redefinition of the quantum variables. Such a change does
2%

not mix different orders in the loop expansion and therefore
does not alter the values of the one-loop divergent part in
(Puvt ). (39 particular> We will show below that our calculations are
highly simplified if the linear part of the metric expansion is
Had we used any other parametrization of the gravitathosen to have the simplest foim, :
tional field, P and P(® would have such a form that pro- N o
vides the gauge invariance of the produég¢/sh,,,)P g“”_gﬂ”+hﬂ”+ahhw+bh““h”

uvo

Sy
(2)
+a .

whereh,,, denotes the set of standard variables. Therefore +ch?g,,+dh,zh*?g,,+0O(h3) (40)
. . y2% af )% ’

the result39) holds in general ih,,, denotes a quantum part

of the covariant components of the metric field. wherea,b,c,d are arbitrary constantsg,,, denotes the full

Thus we see that in the presence of the new so¥it®  metric field, and all raising of indices is done by means of
renormalization procedure differs from the usual one subiye inverse background metrigg“”: g,.,g*"=4", h
stantially. Although the renormalized Green functions satisfy_, g**. Any parametrizationg* somehow constructed
the same Slavnov identities as the bare ones, the renormq}brﬁ“’the metricg,,, and its dete?r:winant has a background
ization equatiorjof the type(39)] for their divergent parts in expansion reduciﬁe to E40)

(n+1) th-loop order cannot be obtained by a simple omit- o

: - . o To show the advantage of such a choice of the back-
ting of the finite parts of the Slavnov identities for the Green . . o .
fur?ctions renomqalized up ta th-loop order. The correct ground metric expansion we note that it is only the linear

: ... part of thi i hich in f ibutes to th -
procedure presented above leads to the Slavnov |dent|t|n{)sar of this expansion which in fact contributes to the curva

which just impose some nontrivial constraints on the form of ure Ri,q; expansion. Really, this tensor has the following

the gauge-dependent divergent structures of the Green fund
tions.

ErUCtU re:

R=[~dL+IT-IT. @1

Ill. CALCULATION OF THE ONE-LOOP DIVERGENT

Suppose at the moment that we have chosen our coordi-
PART OF Q

nate system in such a way tht= 0 at any fixed point of
In the previous section we have obtained the relatish space-time? Then

which identifies(moduloterms proportional to the equations

of motion ofh field) the A derivatives of the two-loop gauge- R=dI'=dl'+ ' 'y —I'1I'y

invariant divergent part of the effective action with the varia- . 3

tional derivatives of the corresponding one-loop part up to Fo(I'y+175) = (I’ +I'z) +O(h%),

some coefficient being defined by divergent parts of dia- .
grams with one insertion of th¥ vertex. To prove this co- Where subscripts 1 and 2 denote part$ aff the correspond-

efficient is not zero we present explicit calculations of thelnd PQWth? inh. V{f may rewrite this expression in explicitly
valuesI'8" ™ and 142 jn an arbitrary gauge of the type ©OVarantiorm &

(3) and an arbitrary parametrization with the only restriction _ ,
being the linearity of group generators. We prefer this way to R=R+V(I'1+T'5)=V(I'1+I',)+1'1['1 =11 +0(h®),

direct computation of diagrams withMainsertion because it ) . )
allows us to verify the relatiofi39). valid therefore in every coordinate system. In terms of the

Lagrangian linear in curvature scalar all full derivatives of

second order may be dropped out. In quadratic terms these

derivatives are multiplied by the zeroth-order quantities
In general the metric is an arbitrary function of the dy- R.,, R, etc., when the second variation of the action is

namical variables. The only restriction is that this functionbeing calculated. Integrating by parts one can easily verify

must be nondegenerate. For example, if dynamical variables

are chosen ag:;y:gw(—g)r,g:detgﬂ,,, then we should

; _ 1. ; * _
avoid _the case of = T4 otherW|se,. deg),,=1 .and ON€  12The corresponding Jacobian is éx@0)- - - ]=1 in the dimen-
more independent variable must be introduced in addition tQjona) regularization.

the set ofg;;, . Recall thatl” andT" are constructed frorg,,, andg,,, , respec-
To calculate one-loop divergences the background fieldively. N
method is used11-13. Accordingly, we should first find  “Note thatl'; , are tensors.

A. Arbitrary parametrizations
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by means of power counting that these terms do not contribzero at infinity. We do not introduce background ghost fields

ute to the one-loop divergent part of the effective action. or their sources because renormalization of these fields plays
It follows from the above discussion that the dependencao role in this section or in Sec. IV.

on the parametrization appears only in terms withiowte- In the one-loop approximation we expand the gauge fixed

rivatives in the second variation of the action if the reducedaction

expansion40) is used.

B. One-loop invariance on shell Sy1=So(9,h) - %Fa(g)vﬁza(g)‘/—g

To calculate the one-loop divergent part of the effective
action in arbitrary gauge and parametrization we shall use _
the fact that the dependence on parametem,b,c,d ap- around the extremdi, satisfying the classical equations of
pears in terms proportional to the equations of motion onlymotion
As far as theA dependence is concerned the corresponding
result follows directly from Eq(26). 5S41(g,h)
To prove the on-shell independenceab,c,d we note it LU
first of all that these parameters appear in the second varia- Ny
tion of the action only in terms having the form

f S _

@[gw]z,

Where[gl*w]z denotes the second order part of the reduced

metric expansiori40). Xf dh. dC dgf{detg V2}1/2
Next, calculating generators of the gauge transformations mree my

of dynamical variables belonging to the class of parametri-
zations described above and passing to the set of standard

T#'=0 (42)

up to the second order, and obtain

Z[T+"]= exp{i[ Syr(g,h) + T#"he ]}

X detF3"(9)Dy,,(9,h)

variables again one easily sees that these generators just co- i 62S,:(g.h)
incide with the ordinary ones of the metric field transforma- X exp{— hw—k;(hw—"ﬁw)(haﬁ—"ﬁaﬁ) .
tions; i.e., they are,b,c,d independent and therefore so is 2 0N, 0Nap

the ghost contribution.

Thus the on-shell invariance is proved. As far as we have supposed the background fipldy
and the sourcd to disappear out of some finite region of
space-time one can choose a solutioof Eq. (42) to be zero

According to the background field method we separate thet infinity. Thus the shift of integration variablés—h+h
quantum field parh’ , from the external fieldyy,, : does not change boundary conditions licend we have, for

the generating functional of connected Green functions,

C. Background field method

g::V: g:LkLV+ h;V

Then we expand the metric fielgl,, in powers ofhfw and - - i 5239f(g7ﬁ)
perform a linear transformation dif , bringing this expan- W=Sy¢(g,h)+T#"h,,,+5Trin———

) mv 2 oh,,0h .z
sion to the form of Eq(40).

Imposing the background Lorentz gauge on the quantum , ) o
field h,,,, —iTrinF2"(9)D;,(g,h) —5Tring,, V2

F.(9)=F:(g)h,z=V"h,,,

] ) ) To perform a Legendre transformation we calculate
we have, for the generating functional of Green functions,

Z[TH]= f dh,,dC,dC™{ detg,,, v} h o= W
)
1
X exp i(So(g,h)——F“(g)VzFa(g) ~ s [i 8%Sy¢(g,h
24 =h,,+— —Trln—gf(g )
By sTRv| 2 oh,,6h.g

X \/—_g—l—CTF‘;V(g)ijVCaJrT“”hW)].
—iTrin F‘T“’(g)ijy(g,ﬁ)]

We suppose that the background figlg,— »,, and the

sourceT#” are absent out of some finite region of space-

time. Integration is carried out in all fields,, tending to and
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I'(g,h)=wW(g,h)—h,,T*"

o i 8Sy(gh) .
= —_ 9~ 7 nv a
ng(g,h)+2TrIn 30N i TrinF£7(9)D,,(9,h)
i 5 |i 8%Syi(g.h) ~
— — 2_Tpv____ ! _ 9N T y72% a
2TrIngMV T sTev| 2 Tr In 3, 0N i TrinF£7(9)D,,(9,h)
i 8Sy1(g,h) i
= —_ PR e | M a - 2.
ng(g,h)+2TrIn 5,00 0p i TrinF4£*(g)Dy,(g,h) 2TrIngMV : (43
|
EqQ. (42) was used in the last passage. . 1
Obtaining the relation39) in Sec. Il we used the flat Qdiv() = 5 fd“x
backgroundz,,. Had we started with an arbitrary back- 32m°e

ground metricg,,, instead ofz,, we would have modulo

[ mv 2
terms proportional to the equations of motion XNTO(CIRTR,, +CoR™+ C5R+CaA +Co),

dQ[t1div(2) 50 div(D) where
20 ————=—a¥ Ou- (44)
dA 09,, * 133 1oa§Jr 10a; 291
C1=——=, Cp=—Fr -,
We wroteg,,, instead ofg,,, in Eq. (44) because it is 10 B 656 60
sufficient to verify this relation in the casg,,=0.
~ 1 [300f 530, 21
D. Calculation of Q4v® C3= 7~ (301+B)kzt B2 * 23 T
Let us first reveal some “essential” properties of charges.
As R? gravity is renormalizable we can wri@?"*®) in 1 [28a, }
C = 1
the form 4 (3a1+B)k2{ B
) 1
Qdiv() = . fd4X —g _ 3 [15&’% & Z
327ce Cs + .
(3a,+p)%k* 282 B 8
X (CLR¥'R,,, +CoR?+c3R+CyA +C5), (45) Calculation ofc, in the flat space-time is presented in

) o Appendix A. Combination of the two results gives
wherec;,i=1,...,5 aresome gauge- and parametrization-

dependent coefficients. _ _ 1
As we know from Sec. Ill BQ?"") is gauge and param- Q4" =—— f d*x
etrization independent on shell. It is obvious that the only 327

scalar which can be constructed from Ef) to transform

Q) Eq. (45, is X =g(c1R*'R,,,+ C,R?+C3R+CaA +Cs),

47
1
P(R—4A)= —2(3a;+B)VR. (46)  Where
133 10 ) 5 773
It follows from these simple facts thay,i=1,2,5 and the G170 2T 9@ T 3% 180
combination 45+ c, do not depend on,a,b,c,d.
Thus we may simplify the calculation @*®) in arbi- 171 400
trary gauge and parametrization if divide it into two parts. 4cy+ c4=—2{3— —T},
(1) Calculation of Q4*() in the case of the simplest Bk

gauge and parametrization. We cho@}ngw and the

minimal gauge. 1 3 1
(2) Calculation of the coefficient, alone in arbitrary 042_% u 25+; tv 145+;+20”’
gauge and parametrization. In this part we may obviously
consider the space-time as flat. 1 /5 1
The correct result of the first part of our program was 05:_(_+_),
obtained in[14]: Bk 2 8a?
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3a; 1 B d
a=7+1 u=a+4c+ 7, LﬁAnk(L)=5Ank()\L)|>\=l=(1—k)Ank(L) (51)
1 and
v=b+4d—§, S=Ap.
d
IV. CALCULATION OF THE TWO-LOOP DIVERGENT B(L) = 5L An(L)= nk(L+XB(L))|x 0, (52

PART OF Q

As follows from Eq.(39) the nontrivial dependence on the whatever meaning has to be assignedtal .
gauge parameteX (i.e., which is not zero modulo equations  Thus we obtain
of motion) is contained in terms proportional toe?/ To
calculate the latter we use the renormalization group method.

a oo
It is very convenient to apply the generalized version of the ,3(|_)=(5— 1)A1()\|_) :gl —kA; (L), (53

renormalization group equations given [ib5,16. For the A=1
sake of completeness we give an account of this method
following [16]. P %
(5—1) > And\L)
A. Generalized renormalization group method =n =1
The idea of this approach is to obtain renormalization d
group equations without explicit distinguishing of different = dx E An 1k L— xz [Aq (L)
charges, i.e., in terms of the whole Lagrangian. k= x=0
Let us consider the bare Lagrangiah as a functional of (54)
the initial Lagrangiari:
To relateA,, andA,_1,_; we substitutd — &L in Eq.
2)6{ ] (48) (54), differentiate with respect tg¢ n—1 times and seg
=0
) The result is
where symbolA (L) means that the corresponding counter-
part is calculated for the Lagrangian Independence of the q
b - .
L® from the mass scale implies nA,(L)= d_XAnfl,nfl(L‘l'XAll(L)) (55)
5 x=0
B(L)= ( - )Al(L) (49)
B. Calculation of Q@!15i*®
S S To apply the relation
Lo —1]Ay(L)=B(L) 5-An-1(L), (50)
oL SL
— g2 1d — A L+XxA(L)] (56)
where the so-called generalized beta-functjgfl) is de- 1/e? 2dx’ 1t W
fined by
dL to the case of
pP—; =—eL+B(L),
d,LL Lb L= Lgf+ pr
We do not have to muse upon the concrete sense which ) 1
the operations/ 5L possesses. Using the loop expansion of =V—9g| ;;R°+ BR,, ,R*"— E(R_ZA)
An,
1
—F DF“+CTF’”D“ Ca (57

An<L)=k§n An(L), S 2A

we note first of all that the gauge-fixing term is not renor-
malized if the linear gauge is uséske, e.g/,8,10]). Also the
AnAL) = NTR*AL(L), renormalization of the ghost part of the effective action is
immaterial as long as only the one-loop expression is needed
(N being a constaitwe can express the operations/sL  in Eq. (56).
and B(L) &/ 6L in terms of the ordinary differentiation Thus to calculateﬂﬁlg'”(z) we rewriteLy+xA4(L) as

and noting the homogeneity of functionas, (L),
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V=9 (a1+xC)R?+(B+xC)R,, R~ I
XC3)

o , I

apply the one-loop resu(@7), differentiate it with respect to
X, and setx=0.

The result of this calculation is presented in Appendix B.

Now we are in position to verify the identitid4).

As follows from the resultB1) on the mass shell the left
hand side of Eq(44) is

1 A xCuA+xCy
— —XC3 E‘FT

(58)

dQ[l]dlv(Z)

1/e2 4
28— = )zfd x\V—g(AA +B),

A= — W2+ Sw(—20v a1+ 200

+3wa 14 40/3x¢—1/3a~ - 10)},

ow -2
B:W(ll% +5), w=u+7v,

while Eq. (47) gives, for the right hand side,

a®

fd“x J=g(AA+B),

3211'

~ 1
A=—{26w—20wa *+20v+3wa?
BK?

+40/3a— 1/3a~1- 10},

B

{1/4a™?+5}.
B2k4

We see that Eq(44) is really satisfiet? and the coeffi-
cienta® turns out to be equal te- Aw/327%¢. 6 Note that

150ne can easily verify that the resul47) and (B1) satisfy Eq.

(44) exactly, i.e., even off mass shell. In other words, the functional

ZQ[JS]d'”(Z) is gauge independent on “mass shell” determined by

the “action” Qi)
180f course, this value 0&™® could be determined already from
Eqgs.(26),(47).

PHYSICAL REVIEW D 59 064012

dQdiv)/dA is not zero even if the unweightétianday
gauge conditiom —0 is used.

V. CONCLUSION

We have shown in this paper that generally the divergent
parts of the effective action oR? gravity depend on the
gauge and parametrization nontrivially—this dependence can
not be presented as proportional to the equations of motion.
The renormalization procedure in the presence of the new
anticommuting sourc® turned out to be more complicated
than the usual one: the renormalization equation correspond-
ing to the modified generating functional cannot be obtained
by a naive extracting of divergent terms in Slavnov identi-
ties. We have considered the renormalization of modified
Green functions at one- and two-loop levels and obtained
renormalization equations corresponding to the insertion of
the Y sourceEgs.(26),(39)]. Also explicit calculation of the
one- and two-loop divergent parts has been carried out, con-
firming our results and demonstrating that the nontrivial
gauge dependence of the divergent parts of the effective ac-
tion actually exists in arbitrarlorent? gauge and arbitrary
parametrizations except those satisfyimgr 0.1’

We emphasize that this nontrivial dependence is due to
the presence of the Einstein term in the Lagrangian. Had we
considered a theory with the Lagrangian containing the
higher derivative terms only, we would not have had such a
dependence.

Our conclusion does not contradict the equivalence theo-
rem[20] in view of the general results ¢2,21]. Their va-
lidity in the present case is verified in Appendix B. However,
these results do not allow us to say that the renormalization
of the coupling constants is independent of the renormaliza-
tion of fields(as in the case of two-dimensional chiral theo-
ries[21], for examplé, because renormalization of the New-
tonian gravitational constark cannot be separated from
renormalization of the gravitational field: one can always
perform additional redefinitions of the constdntand the
metric field which compensate each other. This is a conse-
quence of the fact that is an “inessential” coupling con-
stant.

Finally, we note that our results are in agreement with the
general statements §22].
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APPENDIX A

In this appendix we present calculation of the one-loop
divergent part of the effective action in the flat space-time.
According to algorithm derived ih17] we should first

calculate the part oﬁzsgf with four derivatives:

YFor the construction of the parametrization satisfying 0 see
[18,19.
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Bh Oh#”

a1+'8 thth4 v

8*Syrla=

+ (A1)

A1 A,0A”, A,=V*h
2 2A v

Then we substitut& ,—n,, n, being a vector witmi

=1, and calculate the “propagator”K(n‘l)“ﬁ 9 WhICh is
the inverse of the operatoKg) 5 Syi/oh,,6h,p

pv,af™
(KN) iy, ap(KN™H870= 570,
(Kn—1yaB.7s
=1/29*7gP*+g*’g#") + A,g*Fg”°
+B1(g*"n®n’+g*°’nPn7+gfn*n’+ gf°nn”)
+C1(g%n"n’+g”°n*nf)+ D n*nPn7n?,
where
A;=—(A+4AB+AD—C?)/Z,
B,=—B/(1+2B),

C,=(4AB+AD-C-C?)]/Z,

D,=—(16AB+4AD+D+4B—4C?)/Z
+4B/(1+2B),

Z=1+4A+4B+2C+D+3(4AB+AD-C?),

the coefficientsA,B,C,D being defined front 4;:

We have multiplied the initial Lagrangian byglfor conve-

nience.

PHYSICAL REVIEW D 59 064012

Second, we calculate the pa#t of 52ng containing two
derivatives substitutiny ,—n, again,

(Wn)

1
Mv,aB:@{guvgaB_ (gpvnanﬁ+ gaﬁn,uny)

- g,u.agl/ﬁ—’_ (g,u.ﬁnvna+ gl/a/n/.LnB)}l (AZ)

and the partM without derivatives,

4Au 4Av
M Mv,aﬁzﬁgﬂvgaﬁ—’—ﬁguagvﬁ!

whereu=a+4c+3%, v=b+4d—3.
The one-loop divergent part of the effective action has the
form!®

=t [ ax=g
&
1
x| 5 (Kn™H(Wn)(Kn™H(Wn)—(Kn~ (M) |,
(A3)
where the matrix product of
(KN 1w (WD) 4y 05 .M, o5 IS SUppOSEd.
A simple calculation gives
div(1) _ 1 4
Qfja = d*xv—g(csA +cs), (A4)
327T28

where

1
—|+v 145-!—;4—20

|

APPENDIX B

In this appendix the result of the calculation of the two-
loop divergent as the &7 part of the effective action is pre-
sented. Also, the validity of the general statementg2¢i#1]
is verified.

Following the algorithm derived in Sec. IV B we obtain

183ince the space-time is flat, the contributions of the Faddeev-
Popov ghosts and of the “third” ghost are equal to zero.
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1
mf d*x \/—9(022R2+ C3R+CoA +Csy), (B1)

[1]div(2) _
_‘Q'llsz -

1
c22=E(200/27a3— 416/%?+ 1697/54 — 25/36),

Cao= {82(— 1/4u?—T7/20v — 49/4?) + 5(— 3/4u?a 1 — 11/2uv @~ 1 —5uv + 10/«
IBZkZ

—11Aa t-5/2u—7/4v?%a - 352+ 70/ a— 712 o~ *—35/2) — 9/16u’a?
—15/2va~ - 3/8uv a2 7/16ua " 2+ 5/2u—5/2v%a 1 - 1/1&%a~?— 2502+ 100/3 «
—5/6va”1—7/4% a~?—272/3 — 200/9°+ 1220 — 1/24a~ - 731/18,

1
Cao= {26%(U%+ 14uv + 4W?) + 8(6u?a~ 1+ 44uv o~ *+ 40up + 1402 1+ 280?)
,82k2

+9/202a %+ 60uv a1+ 3uva ?—150a 1+ 5/M4ua 2+ 10u+2002a " 1+ 1/2v2a 2
+20w?—5va 1+ 5/1% a2+ 808/3)},

1
Csp=——1{8(—Ldua 2—5u—T7/4va ?—35)—15/0a 1-3/8ua -5/ a -5/ a?
ﬂ3k4

—1/8 a 3—50 +50/3¢—5/122¢~ 1+ 5/8a *>—1/8a 32— 79}.

To show that the gauge and parametrization dependence can be absorbed by a field renormalization we first remove the
one-loop divergenceglt?) by the following redefinition of charges and fields,

g,u,v—>g/.w(1+ 512)1

1 1 1
AN—=AN(1+ 61N), E_)E 1+51E )

a;—ay(1+d1aq), B—B(1+618),

where
o=t 8,7 = —2
12 ! 3272
2¢h+cs/2\
SIN=— cr3 v
32m2e
—C -C

o100 = ) = )
v 327 a; ! 32m%e B

and we have introduced a notatiob for the gauge- and parametrization-independent part of the coeffizient

Co=ch— -2
37— %3 4
As seen from the above equations renormalizations of the gravitational constant and of the metric field cannot be separated
from each other. This property is inherent to any metrical theory of gravity with the Lagrangian containing terms linear in
curvature and holds at any order of perturbation theory.
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To make the theory finite at the two-loop level we should take into account counterterms which arise in second order from
the one-loop redefinitions of the charges and fields which were made above. Correspondingly, we extract these counterterms
from the two-loop order resuliB1), rewriting coefficient,, c4, andcs, as”®

K
032: E C3C4 +

BZkZ

{82(— 1/4u?—T7/2uv — 4914 ?) + 8(— 3l4ua 1= 11/ 2uv e~ 1= 5uv — 7/4v?a~1— 35 2)

—9/16u%a ?—15/uva - 3/8uva ?+15/4ua” t—5/16ua 2= 5/2u—5/2%a 1 — 1/16w%a 2
— 2502+ 5/4p a~ 1 —5/48 o~ 2—202/3 — 200/ + 1220 — 1/24a~>—731/18,

1
ca=k?{c3/4— 12c§i}+W{52(u2+ 14uv +4%?) + 8(3ua™ 14 22uv @™ 1+ 20uv + 7Tv2a 1+ 14W?)

+9/4u2a %+ 30uva T+ 3/2uva %~ 15ua” 1+ 5/4ua %+ 10u+ 10v2a 1+ 1/4v2a 2+ 10?2

—5va”1+5/12 o~ %+ 808/% + 400/3x*— 2000+ 50~ 1+ 1/120~ 2+ 205/3,

— 12 —Achy—
Csp=k“C5(Cy—4cC3) K

Now it is easy to verify that

{50/3a+ 5/4a~1—15/8a~ %+ 1/120 3+ 54}.

1
ACgp+ Cap— K?(2C4Cy+ CaI4— 1205) = W{400/9a2+ 288x+5a~1—1/120~2—847/9,

which means that after subtraction of the counterterms corresponding to the one-loop renormalization of charges and fields is
made the two-loop divergent part of the effective action becomes gauge and parametrization independent on shell. Therefore
the gauge and parametrization dependence can be absorbed by a field renormalization or by renormalization of the Newtonian

constant.

1%The one-loop redefinitions do not affect the coefficiept.
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