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Gauge and parametrization dependence in higher derivative quantum gravity
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The structure of counterterms in higher derivative quantum gravity is reexamined. Nontrivial dependence of
charges on the gauge and parametrization is established. Explicit calculations of two-loop contributions are
carried out with the help of the generalized renormalization group method, demonstrating consistency of the
results obtained.@S0556-2821~99!04904-8#
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I. INTRODUCTION

As is well known, not all of the problems of quantum fie
theory are exhausted by the construction of theSmatrix. The
investigation of the evolution of the Universe, the behav
of quarks in quantum chromodynamics, etc., requires the
troduction of a more general object—the so-called effect
action. In addition to that, the program of the renormalizat
of theSmatrix itself has not yet been carried out in terms
the S matrix alone. Renormalization of the Green function
therefore, is the central point of the whole theory. Giv
these functions one can obtain theS-matrix elements with the
help of the reduction formulas. In this respect those prop
ties of the generating functionals which remain valid af
the transition to theS matrix is made are of special impo
tance.

We mean first of all the properties of the so-called ‘‘e
sential’’ coupling constants in the sense of Weinberg@1#.
They are defined as those independent of any redefinitio
the fields. In the context of quantum theory one can say
the renormalization of ‘‘essential’’ charges is independen
renormalizations of the fields. Separation of quantities i
‘‘essential’’ and ‘‘inessential’’ ones is convenient and we u
it below.

In this paper we shall consider the problem of the gau
and parametrization dependence of the effective action oR2

gravity.
There are two general and powerful methods of inve

gation of the gauge dependence in quantum field theory.
first of them@2# uses the Batalin-Vilkovisky formalism@3–5#
and is based on the fact that any change of gauge cond
can be presented as a~local! canonical~in the sense of ‘‘an-
tibrackets’’ @4#! transformation of the effective action. Th
canonical transformation induces a corresponding renorm
ized canonical transformation of the renormalized effect
action. This leads to the following result: the renormalizati
boils down to the redefinition of the coupling constan
~which are the coefficients of independent gauge invar
structures entering the Lagrangian! and some canonica
transformations of the fields and sources of Becchi-Rou
Stora-Tyutin~BRST! transformations. The second approa
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@6–8# consists of the introduction of some additional an
commuting source to the effective action in such a way t
the Slavnov identities for the corresponding generating fu
tional of proper vertices connect its derivatives with resp
to the gauge-fixing parameter and to the mean fields~and
sources of BRST transformations!.

The second method was used in@8# to prove the gauge
independence of the gauge-invariant divergent parts of
effective action up to terms proportional to the classi
equations of motion of the gravitational field. Together w
the general result of the first approach mentioned above
would imply some far-reaching consequences concerning
renormalization of the fields. For example, one could co
clude that the canonical transformation corresponding t
change of the gauge condition should not be renormaliz
Unfortunately, this is not the case. We will show in th
paper that the aforesaid result of@8# holds at the one-loop
level only. Introduction of the additional source mention
above requires also introducing some additional ter
needed to compensate divergences which arise becau
the presence of the new source. As a result the correspon
Slavnov identities impose only some constraints on the
vergent structures from which a nontrivial dependence1 on
the gauge follows already at the two-loop level.

Our paper is organized as follows. In Sec. II we determ
possible divergent structures which are originated due to
presence of the new source and obtain the correct Slav
identities. In Sec. III we calculate explicitly the diverge
part of the effective action at the one-loop level in arbitra
~linear! gauge and the special class of parametrizations
Sec. IV we calculate the divergence as the 1/«2 (« being the
dimensional regulator2! part at the two-loop level with the
help of the generalized renormalization group method a
show that the results obtained in Secs. III and IV satisfy
relations derived in Sec. II.

We use the highly condensed notation of DeWitt throug
out this paper. Also left derivatives with respect to antico
muting variables are used. The dimensional regularization
all divergent quantities is supposed.

1I.e., a dependence which cannot be presented as proportion
the equations of motion.

2We set 2«5d24, d being the dimensionality of the space-tim
©1999 The American Physical Society12-1
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II. GENERATING FUNCTIONALS AND SLAVNOV
IDENTITIES

A. Action, gauge fixing, and parametrization

Let us consider higher derivative quantum gravity d
scribed by an action which includes the minimal set of ter
added to the usual ones of Einstein to ensure the pow
counting renormalizability of the theory:3

S05E d4xA2gS a1R21bRmnRmn2
1

k2
~R22L!D ,

~1!

where a1 and b are arbitrary constants satisfying onlyb
Þ0, 3a11bÞ0, which imply that the graviton propagato
behaves likep24 for large momenta~see@8#!; k is the gravi-
tational constant andL is the cosmological term.

The corresponding equations of motion are

1

2
a1R2gab1

1

2
bRmnRmngab22a1RRab

22bRmnRmanb2S 2a11
1

2
b DhRgab2bhRab

1~2a11b!R;ab2
1

2k2
Rgab1

1

k2
Lgab1

1

k2
Rab50.

~2!

Renormalizability of this theory was proved in@8# in the case
of the so-called unweighted~or weighted with a functiona
containing fourth or higher derivatives! harmonic gauge con
dition. The proof in the more general case boils down to
proof of the so-called locality hypotheses. In@10# its validity
was shown most generally.

For our purposes it is sufficient to consider the harmo
gauge4 following Stelle @8#:

Fm[Fm
abhab[]nhmn50, ~3!

wherehmn denotes some set of dynamical variables desc
ing the gravitational field. We recall that in the theory
gravity a natural ambiguity in the choice of such a set ex
because the generatorsDmn

a of gauge transformations of var
ables constructed from the metricgmn ~or gmn) and its deter-
minant g5detgmn in any combination have a simple form
linear in fields and their derivatives. For general constr
tions of this section it does not matter what choice we ma
We only note that the gauge in the form of Eq.~3! will
always correspond to the set of dynamical variables5 which

3Our notation is Rmn[Rman
a 5]aGmn

a 2•••, R[Rmngmn, gmn

5sgn(1,2,2,2).
4We use the flat-space metric tensor

hmn5 diag~11,21,21,21!

to raise Lorentz indices.
5They will be referred to asstandard variables.
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enter the so-called reduced expression of the metric exp
sion @see Sec. III A, Eq.~40!#. Thus the BRST transforma
tions of the Faddeev-Popov effective action with the gau
fixing term being (21/2D)FahFa , expressed in terms o
these standard variables, are

dhmn5Dmn
a Cal,

dCa52]bCaCbl,

dC̄t52D21hFtl, ~4!

wherel is an anticommuting constant parameter.

B. Green functions

We write the generating functional of Green functions
the extended form of Zinn-Justin@9# modified by Kluberg-
Stern and Zuber@6,7#:

Z@Tmn,b̄s,bt ,Kmn,Ls#

5E dhmndCsdC̄t exp$ i @S̃~hmn ,Cs ,C̄t,Kmn,Ls!

1YFsC̄s1b̄sCs1C̄tbt1Tmnhmn#%, ~5!

where

S̃5S02
1

2D
FahFa1C̄tFt

mnDmn
a Ca

1KmnDmn
a Ca1Ls]bCsCb ;

Kmn(x) (anticommuting), Ls(x) (commuting) are the
BRST transformation sources andY is a constant anticom
muting parameter.

Let us first consider the structure of divergences wh
correspond to the extra sourceY. Power counting gives, for
the degree of divergenceD of an arbitrary diagram,

D5422n222nK2nL22nY2EC22EC̄ , ~6!

wheren25number of graviton vertices with two derivative
nK,L,Y5numbers ofK,L,Y-source lines, respectively;EC
andEC̄5numbers of external ghost and antighost lines.

Also from the expression~5! we see that one can ascrib
the following ghost numbersNg to all the fields and sources

Ng@h#50, Ng@C#511, Ng@C̄#521,

Ng@K#521, Ng@L#522, Ng@Y#511.
~7!

Now from Eqs.~6! and~7! one can see that there are thr
types of divergent structures involving theY vertex:
YK, YC̄, andYLC, each of which may have arbitrary num
ber of external graviton lines. As far as we have adopted
standard covariant approach thus only Lorentz-covar
quantities may appear and therefore we have, for the gen
form of the above structures,
2-2
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YKmnPmn , ~8!

YC̄n]mQmn , ~9!

and

YLsCtMst , ~10!

whereP, Q, andM are some Lorentz-covariant tensors d
pending onhmn alone.

Thus to renormalize the Green functions we must int
duce corresponding counterterms and consider the new
erating functional6

Z@Tmn,b̄s,bt ,Kmn,Ls#

5E dhmndCsdC̄t exp$ i @S̃~hmn ,Cs ,C̄t,Kmn,Ls!

1YKmnPmn1YC̄n]mQmn

1YLsCtMst1b̄sCs1C̄tbt1Tmnhmn#% ~11!

instead of Eq.~5!.

C. Slavnov identities

Let us proceed to successive renormalization of Gr
functions corresponding to Eq.~11!. We will first consider
-

b
it-

06401
-

-
n-

n

the case whengmn* 5gmn are chosen as a parametrization
the gravitational field. Then the general result will be clea

To ensure renormalizability we work with a generatin
functional ~11! from the very beginning. We will see below
that Slavnov identities determine the structure of the poly
mials P andQ completely. They turn out to be

Pmn5a~hmn1hmn!, ~12!

Qmn5ahmn , ~13!

a being some divergent constant. Thus we set

Pmn5~hmn1hmn!,Qmn5hmn

at the zero order. Then inclusion of the counterter
~12!,~13! is just a multiplicative renormalization of th
sourceY.

1. One-loop order

To obtain Slavnov identities at this order we perform
BRST shift ~4! of integration variables in Eq.~11!:
E dhmndCsdC̄tF S Tmn1YLsCt
dMst

~0!

dhmn
1YKmnD S d

dKmn
1 iY~hmn1hmn!D

2~ b̄s1YLtMst
~0!!S d

dLs
1 iYCtMst

~0!D 1
1

D
bthFt,mn

d

dTmn
22YD

d

dD
1 iY C̄sFs

mnDmn
a CaG

3 exp$ i @S̃1YFsC̄s1YKmn~hmn1hmn!1YLsCtMst
~0!1b̄sCs1C̄tbt1Tmnhmn#%50. ~14!
Our aim is to find theD dependence of the gauge
invariant terms only. Terms containingMst

(0) in Eq. ~14! de-
pending on anticommuting fieldsCs and sourceLs are un-
important in this respect and we replace them simply
‘‘ 1••• ’’ in what follows because these terms will be om
ted in the end of the calculation anyway.

Using the ghost equation of motion

E dhmndCsdC̄t~Ft
mnDmn

a Ca2YFt1bt!

3exp$ i @S̃1YFsC̄s1YKmn~hmn1hmn!1•••

1b̄sCs1C̄tbt1Tmnhmn#%50, ~15!

6It is easy to see that inclusion of additional structures~8!–~10!
into the action does not alter the expression~6! for D.
y

introducing the generating functional of proper verticesG̃,

G̃@hmn ,Cs ,C̄t,Kmn,Ls,Y#5W@Tmn,b̄s,bt ,Kmn,Ls,Y#,

2b̄sCs2C̄tbt2Tmnhmn , W[2 i ln Z, ~16!

hmn5
dW

dTmn
, Cs5

dW

db̄s
, C̄t52

dW

dbt
, ~17!

and noting that

dG̃

dD
5

dW

dD
, ~18!

we rewrite Eq.~14! as the Slavnov identity forG̃:
2-3
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dG̃

dhmn
F dG̃

dKmn
1Y~hmn1hmn!G1

dG̃

dCs

dG̃

dLs

1
1

D
hFt

dG̃

dC̄t

12YD
dG̃

dD
1Y

dG̃

dC̄t

C̄t1•••50.

~19!

To simplify Eq. ~19! we introduce the reduced generatin
functional

G5G̃1
1

2D
FahFa2YKmn~hmn1hmn!2YFsC̄s.

Then Eq.~19! reduces to

dG

dhmn

dG

dKmn
1

dG

dCs

dG

dLs
12YD

dG

dD
1YKmn

dG

dKmn
1•••50.

~20!

The ghost equation of motion written in terms ofG is

Ft
mn

dG

dKmn
2

dG

dC̄t
50. ~21!

Now let us separate theY-independent part ofG from the
part linear inY:

G5G11YG2 . ~22!

Then Eq.~20! gives an ordinary Slavnov identity forG1 ,

dG1

dhmn

dG1

dKmn
1

dG1

dCs

dG1

dLs
50, ~23!

and an equation involvingG2 :

2
dG1

dhmn

dG2

dKmn
1

dG2

dhmn

dG1

dKmn
2

dG1

dCs

dG2

dLs
2

dG2

dCs

dG1

dLs

12D
dG1

dD
1Kmn

dG1

dKmn
1•••50. ~24!
06401
Finally, we omit all but the terms depending onhmn only
and obtain, in the first order,

2
dS0

dhmn

dG2
div~1!

dKmn
12D

dVdiv~1!

dD
1•••50, ~25!

where V denotes the gauge invariant part ofG1 and the
superscriptdiv(1) denotes the one-loop divergent part of t
corresponding quantities.

As we knowG2
div(1)5KmnPmn

(1) , P(1) being some diver-
gent polynom inhmn .

Thus, dropping the terms proportional toKmn again and
the symbol ‘‘1••• ’’ we obtain the following equation for
the gauge invariant termsVdiv(1) of the effective action:7

2D
dVdiv~1!

dD
5

dS0

dhmn
Pmn

~1! . ~26!

The left hand side of this equation is gauge invariant a
thus so is the right hand side. ThereforePmn

(1) has the form
mentioned above. The corresponding form ofQmn

(1) follows
from Eq. ~21!.

To make the Green functions finite at the one-loop le
we must redefine the initial effective actionS,

S→S~1!5S2G1
div~1! , ~27!

and the sourceY,8

Y→Y~12a~1!!. ~28!

As explained in@8# subtraction ofG1
div(1) boils down to a

redefinition of all the fields in such a way thatS (1) is invari-
ant under renormalized set of BRST transformations
which we do not introduce new notation.

2. Two-loop order

We perform a renormalized BRST transformation of in
gration variables in the generating functional of Green fu
tions finite at the one-loop level,
Z[1]@Tmn,b̄s,bt ,Kmn,Ls,Y#5E dhmndCsdC̄t exp$ i @S̃~1!1Y~12a~1!!FsC̄s

1~12a~1!!YKmn~hmn1hmn!1•••1b̄sCs1C̄tbt1Tmnhmn#%, ~29!

and obtain the following Slavnov identity:

7We will see in Sec. III that the non-gauge-invariant terms inG1
div depending onhmn only are absent.

8We should also include counterterms of the typeYLC, but they are irrelevant to the issue and replaced by ‘‘1••• ’’ as we have mentioned
above.
2-4
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E dhmndCsdC̄tF @Tmn1Y~12a~1!!Kmn#S d

dKmn
1 iY~12a~1!!~hmn1hmn!D

2b̄s
d

dLs
1

1

D
bthFt,mn

d

dTmn
22Y~12a~1!!DS d

dD
1 i

dG1
div~1!

dD
D 1 iY~12a~1!!C̄sFs

mnDmn
a Ca1•••G

3exp$ i @S̃~1!1Y~12a~1!!FsC̄s1Y~12a~1!!Kmn~hmn1hmn!1•••1b̄sCs1C̄tbt1Tmnhmn#%50. ~30!

To evaluate the term9

E dhmndCsdC̄tYD
dG1

div~1!

dD
exp$ i @S̃~1!1Y~12a~1!!FsC̄s

1~12a~1!!YKmn~hmn1hmn!1•••1b̄sCs1C̄tbt1Tmnhmn#%, ~31!

we use Eq.~26! and equation of motion of theh field which is obtained from~29!,10

YE dhmndCsdC̄tS dS̃

dhmn
2

dG1
div~1!

dhmn
1TmnD exp$ i ~S̃~1!1Y~12a~1!!FsC̄s

1Y~12a~1!!Kmn~hmn1hmn!1•••1b̄sCs1C̄tbt1Tmnhmn!%50. ~32!
in

e
i-

rt
f

to a
-
c-

o-
In the two-loop approximation we may write

a~1!E dhmndCsdC̄t
dG1

div~1!

dhmn
exp$ i •••%5a~1!

dG1
div~1!

dhmn
Z[1] .

Finally, using the ghost equation of motion

Ft
mn

dG [1]

dKmn
2

dG [1]

dC̄t
50, ~33!

written in terms of the one-loop finite reduced generat
functional of proper vertices,

G [1]5G̃ [1]1
1

2D
FahFa2YKmn~hmn1hmn!2YFsC̄s,

we rewrite the rest of Eq.~30! as in Sec. II C 1 and obtain th
following Slavnov identity for one-loop finite proper vert
ces, valid up to two-loop order:

dG [1]

dhmn

dG [1]

dKmn
1

dG [1]

dCs

dG [1]

dLs
12YD

dG [1]

dD

1Ya~1!
dG1

div~1!

dhmn
~hmn1hmn!1•••50, ~34!

where terms explicitly dependent onKmn and C̄s are in-
cluded in ‘‘1••• ’’ for simplicity. Again the separation

9Again evaluation of the gauge invariant part ofD dG1
div(1)/dD is

needed only.
10We use the propertyY250.
06401
g

G [1]5G1
[1]1YG2

[1] ~35!

gives an ordinary Slavnov identity

dG1
[1]

dhmn

dG1
[1]

dKmn
1

dG1
[1]

dCs

dG1
[1]

dLs
50 ~36!

and an identity involvingG2
[1] :

2
dG1

[1]

dhmn

dG2
[1]

dKmn
1

dG2
[1]

dhmn

dG1
[1]

dKmn
2

dG1
[1]

dCs

dG2
[1]

dLs
2

dG2
[1]

dCs

dG1
[1]

dLs

12D
dG1

[1]

dD
1a~1!

dG1
div~1!

dhmn
~hmn1hmn!1•••50. ~37!

Thus for the two-loop gauge-invariant divergent pa
V [1]div(2) of the one-loop finite generating functional o
proper vertices we have11

2
dS0

dhmn
Pmn

~2!12D
dV [1]div~2!

dD

1a~1!
dVdiv~1!

dhmn
~hmn1hmn!50. ~38!

11Strictly speaking, a non-gauge-invariant term corresponding
nonlinear reparametrization of the fieldh should appear in the two
loop approximation. However, on account of the well-known stru
ture of this term@8# it does not change the final result~39!, as one
can easily verify. If we were to carry out the renormalization pr
cedure to all orders, we would deal with it more carefully.
2-5
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Again it follows from Eqs.~38!,~33! that Pmn
(2)5a(2)(hmn

1hmn), Qmn
(2)5a(2)hmn .

Thus we obtain the following identity for the one- an
two-loop divergent gauge-invariant parts of the effective
tion:

2D
dV [1]div~2!

dD
52a~1!

dVdiv~1!

dhmn
~hmn1hmn!

1a~2!
dS0

dhmn
~hmn1hmn!. ~39!

Had we used any other parametrization of the grav
tional field, P(1) andP(2) would have such a form that pro
vides the gauge invariance of the product (dS0 /dhmn)Pmn ,
wherehmn denotes the set of standard variables. Theref
the result~39! holds in general ifhmn denotes a quantum pa
of the covariant components of the metric field.

Thus we see that in the presence of the new sourceY the
renormalization procedure differs from the usual one s
stantially. Although the renormalized Green functions sati
the same Slavnov identities as the bare ones, the renor
ization equation@of the type~39!# for their divergent parts in
(n11) th-loop order cannot be obtained by a simple om
ting of the finite parts of the Slavnov identities for the Gre
functions renormalized up ton th-loop order. The correc
procedure presented above leads to the Slavnov iden
which just impose some nontrivial constraints on the form
the gauge-dependent divergent structures of the Green f
tions.

III. CALCULATION OF THE ONE-LOOP DIVERGENT
PART OF V

In the previous section we have obtained the relation~39!
which identifies~moduloterms proportional to the equation
of motion ofh field! theD derivatives of the two-loop gauge
invariant divergent part of the effective action with the var
tional derivatives of the corresponding one-loop part up
some coefficient being defined by divergent parts of d
grams with one insertion of theY vertex. To prove this co-
efficient is not zero we present explicit calculations of t
valuesG1

div(1) andG1
[1]div(2) in an arbitrary gauge of the typ

~3! and an arbitrary parametrization with the only restricti
being the linearity of group generators. We prefer this way
direct computation of diagrams with aY insertion because i
allows us to verify the relation~39!.

A. Arbitrary parametrizations

In general the metric is an arbitrary function of the d
namical variables. The only restriction is that this functi
must be nondegenerate. For example, if dynamical varia
are chosen asgmn* 5gmn(2g) r ,g5detgmn , then we should
avoid the case ofr 52 1

4 ; otherwise, detgmn* 51 and one
more independent variable must be introduced in addition
the set ofgmn* .

To calculate one-loop divergences the background fi
method is used@11–13#. Accordingly, we should first find
06401
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expansions of all the quantities entering Eq.~1! in powers of
the dynamical quantum variableshmn around the background
field gmn up to second order.

Now we note that the form of the graviton propagator
of course, parametrization dependent and this depend
complicates all calculations considerably. However, it is fi
titious in the sense that it always can be removed by alinear
redefinition of the quantum variables. Such a change d
not mix different orders in the loop expansion and theref
does not alter the values of the one-loop divergent par
particular.12 We will show below that our calculations ar
highly simplified if the linear part of the metric expansion
chosen to have the simplest formhmn :

gmn5gmn1hmn1ahhmn1bhmahn
a

1ch2gmn1dhabhabgmn1O~h3!, ~40!

wherea,b,c,d are arbitrary constants,gmn denotes the full
metric field, and all raising of indices is done by means
the inverse background metricgmn: gmagan5dm

n , h
[hmngmn. Any parametrizationgmn* somehow constructed
from the metricgmn and its determinant has a backgrou
expansion reducible to Eq.~40!.

To show the advantage of such a choice of the ba
ground metric expansion we note that it is only the line
part of this expansion which in fact contributes to the curv
ture Rnab

m expansion. Really, this tensor has the followin
structure:

R5]G2]G1GG2GG. ~41!

Suppose at the moment that we have chosen our coo
nate system in such a way thatG 5 0 at any fixed point of
space-time.13 Then

R5]G2]G1G1G12G1G1

1]~G11G2!2]~G11G2!1O~h3!,

where subscripts 1 and 2 denote parts ofG of the correspond-
ing powers inh. We may rewrite this expression in explicitl
covariant form as14

R5R1¹~G11G2!2¹~G11G2!1G1G12G1G11O~h3!,

valid therefore in every coordinate system. In terms of
Lagrangian linear in curvature scalar all full derivatives
second order may be dropped out. In quadratic terms th
derivatives are multiplied by the zeroth-order quantit
Rmn , R, etc., when the second variation of the action
being calculated. Integrating by parts one can easily ve

12The corresponding Jacobian is exp@d(0)•••#51 in the dimen-
sional regularization.

13Recall thatG andG are constructed fromgmn andgmn , respec-
tively.

14Note thatG1,2 are tensors.
2-6



tri

nc

e

ive
us

ly
in

ar

ce

on
tr
d
t
a
is

th

tu

,

e

lds
lays

ed

f

f

GAUGE AND PARAMETRIZATION DEPENDENCE IN . . . PHYSICAL REVIEW D 59 064012
by means of power counting that these terms do not con
ute to the one-loop divergent part of the effective action.

It follows from the above discussion that the depende
on the parametrization appears only in terms withouth de-
rivatives in the second variation of the action if the reduc
expansion~40! is used.

B. One-loop invariance on shell

To calculate the one-loop divergent part of the effect
action in arbitrary gauge and parametrization we shall
the fact that the dependence on parametersD,a,b,c,d ap-
pears in terms proportional to the equations of motion on
As far as theD dependence is concerned the correspond
result follows directly from Eq.~26!.

To prove the on-shell independence ofa,b,c,d we note
first of all that these parameters appear in the second v
tion of the action only in terms having the form

E dS

dgmn
@gmn* #2 ,

where @gmn* #2 denotes the second order part of the redu
metric expansion~40!.

Next, calculating generators of the gauge transformati
of dynamical variables belonging to the class of parame
zations described above and passing to the set of stan
variables again one easily sees that these generators jus
incide with the ordinary ones of the metric field transform
tions; i.e., they area,b,c,d independent and therefore so
the ghost contribution.

Thus the on-shell invariance is proved.

C. Background field method

According to the background field method we separate
quantum field parthmn* from the external fieldgmn* :

gmn* 5gmn* 1hmn* .

Then we expand the metric fieldgmn in powers ofhmn* and
perform a linear transformation onhmn* bringing this expan-
sion to the form of Eq.~40!.

Imposing the background Lorentz gauge on the quan
field hmn ,

Fm~g![Fm
ab~g!hab[¹nhmn ,

we have, for the generating functional of Green functions

Z@Tmn#5E dhmndCsdC̄t$ detgmn¹2%1/2

3expH i S S0~g,h!2
1

2D
Fa~g!¹2Fa~g!

3A2g1C̄tFt
mn~g!Dmn

a Ca1TmnhmnD J .

We suppose that the background fieldgmn2hmn and the
sourceTmn are absent out of some finite region of spac
time. Integration is carried out in all fieldshmn tending to
06401
b-

e

d

e

.
g

ia-

d

s
i-
ard
co-
-

e

m

-

zero at infinity. We do not introduce background ghost fie
or their sources because renormalization of these fields p
no role in this section or in Sec. IV.

In the one-loop approximation we expand the gauge fix
action

Sg f[S0~g,h!2
1

2D
Fa~g!¹2Fa~g!A2g

around the extremalh̃, satisfying the classical equations o
motion

dSg f~g,h!

dhmn
1Tmn50 ~42!

up to the second order, and obtain

Z@Tmn#5 exp$ i @Sg f~g,h̃!1Tmnh̃mn#%

3E dhmndCsdC̄t$detgmn¹2%1/2

3detFb
mn~g!Dmn

a ~g,h!

3 expH i

2

d2Sg f~g,h̃!

dhmndhab
~hmn2h̃mn!~hab2h̃ab!J .

As far as we have supposed the background fieldg2h
and the sourceT to disappear out of some finite region o
space-time one can choose a solutionh̃ of Eq. ~42! to be zero
at infinity. Thus the shift of integration variablesh→h1h̃
does not change boundary conditions forh and we have, for
the generating functional of connected Green functions,

W5Sg f~g,h̃!1Tmnh̃mn1
i

2
Tr ln

d2Sg f~g,h̃!

dhmndhab

2 i Tr ln Ft
mn~g!Dmn

a ~g,h̃!2
i

2
Tr ln gmn¹2.

To perform a Legendre transformation we calculate

hmn[
dW

dTmn

5h̃mn1
d

dTmnH i

2
Tr ln

d2Sg f~g,h̃!

dhmndhab

2 i Tr ln Ft
mn~g!Dmn

a ~g,h̃!J
and
2-7
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G~g,h!5W~g,h!2hmnTmn

5Sg f~g,h̃!1
i

2
Tr ln

d2Sg f~g,h̃!

dhmndhab
2 i Tr ln Ft

mn~g!Dmn
a ~g,h̃!

2
i

2
Tr ln gmn¹22Tmn

d

dTmnH i

2
Tr ln

d2Sg f~g,h̃!

dhmndhab
2 i Tr ln Ft

mn~g!Dmn
a ~g,h̃!J

5Sg f~g,h!1
i

2
Tr ln

d2Sg f~g,h!

dhmndhab
2 i Tr ln Ft

mn~g!Dmn
a ~g,h!2

i

2
Tr ln gmn¹2; ~43!
t
-

es

n-

-
nl

.
t

s

as

in
Eq. ~42! was used in the last passage.
Obtaining the relation~39! in Sec. II we used the fla

backgroundhmn . Had we started with an arbitrary back
ground metricgmn instead ofhmn we would have modulo
terms proportional to the equations of motion

2D
dV [1]div~2!

dD
52a~1!

dVdiv~1!

dgmn
gmn . ~44!

We wrote gmn instead ofgmn in Eq. ~44! because it is
sufficient to verify this relation in the casehmn50.

D. Calculation of Vdiv„1…

Let us first reveal some ‘‘essential’’ properties of charg
As R2 gravity is renormalizable we can writeVdiv(1) in

the form

Vdiv~1!5
1

32p2«
E d4xA2g

3~c1RmnRmn1c2R21c3R1c4L1c5!, ~45!

where ci ,i 51, . . . ,5 aresome gauge- and parametrizatio
dependent coefficients.

As we know from Sec. III B,Vdiv(1) is gauge and param
etrization independent on shell. It is obvious that the o
scalar which can be constructed from Eq.~2! to transform
Vdiv(1) Eq. ~45!, is

1

k2
~R24L!522~3a11b!¹2R. ~46!

It follows from these simple facts thatci ,i 51,2,5 and the
combination 4c31c4 do not depend onD,a,b,c,d.

Thus we may simplify the calculation ofVdiv(1) in arbi-
trary gauge and parametrization if divide it into two parts

~1! Calculation of Vdiv(1) in the case of the simples
gauge and parametrization. We choosegmn* 5gmn and the
minimal gauge.

~2! Calculation of the coefficientc4 alone in arbitrary
gauge and parametrization. In this part we may obviou
consider the space-time as flat.

The correct result of the first part of our program w
obtained in@14#:
06401
.

y

ly

Vdiv~1!5
1

32p2«
E d4x

3A2g~c1RmnRmn1c2R21c3R1c4L1c5!,

where

c15
133

10
, c25

10a1
2

b2
1

10a1

6b
2

291

60
,

c352
1

~3a11b!k2F30a1
2

b2
1

53a1

2b
1

21

4 G ,

c45
1

~3a11b!k2F28a1

b
19G ,

c55
3

~3a11b!2k4F15a1
2

2b2
1

5a1

b
1

7

8G .

Calculation ofc4 in the flat space-time is presented
Appendix A. Combination of the two results gives

Vdiv~1!5
1

32p2«
E d4x

3A2g~c1RmnRmn1c2R21c3R1c4L1c5!,

~47!

where

c15
133

10
, c25

10

9
a22

5

3
a2

773

180
,

4c31c45
1

bk2F 1

3a
1102

40a

3 G ,
c452

1

bk2FuS 2d1
3

a D1vS 14d1
1

a
120D G ,

c55
1

b2k4S 5

2
1

1

8a2D ,
2-8
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a5
3a1

b
11, u5a14c1

1

4
,

v5b14d2
1

2
, d[Db.

IV. CALCULATION OF THE TWO-LOOP DIVERGENT
PART OF V

As follows from Eq.~39! the nontrivial dependence on th
gauge parameterD ~i.e., which is not zero modulo equation
of motion! is contained in terms proportional to 1/«2. To
calculate the latter we use the renormalization group meth
It is very convenient to apply the generalized version of
renormalization group equations given in@15,16#. For the
sake of completeness we give an account of this met
following @16#.

A. Generalized renormalization group method

The idea of this approach is to obtain renormalizat
group equations without explicit distinguishing of differe
charges, i.e., in terms of the whole Lagrangian.

Let us consider the bare LagrangianLb as a functional of
the initial LagrangianL:

Lb5~m2! «H L1 (
n51

`
An~L !

«n J , ~48!

where symbolAn(L) means that the corresponding count
part is calculated for the LagrangianL. Independence of the
Lb from the mass scale implies

b~L !5S L
d

dL
21DA1~L !, ~49!

S L
d

dL
21DAn~L !5b~L !

d

dL
An21~L !, ~50!

where the so-called generalized beta-functionb(L) is de-
fined by

m2
dL

dm2U
Lb

52«L1b~L !,

We do not have to muse upon the concrete sense w
the operationd/dL possesses. Using the loop expansion
An ,

An~L !5 (
k5n

`

Ank~L !,

and noting the homogeneity of functionalsAnk(L),

Ank~lL !5l12kAnk~L !,

(l being a constant!, we can express the operationsLd/dL
andb(L)d/dL in terms of the ordinary differentiation
06401
d.
e

d

-
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f

L
d

dL
Ank~L !5

]

]l
Ank~lL !ul515~12k!Ank~L ! ~51!

and

b~L !
d

dL
Ank~L !5

d

dx
Ank~L1xb~L !!ux50 , ~52!

whatever meaning has to be assigned tod/dL.
Thus we obtain

b~L !5S ]

]l
21DA1~lL !U

l51

5 (
k51

`

2kA1k~L !, ~53!

S ]

]l
21D (

k5n

`

Ank~lL !U
l51

5
d

dx (
k5n21

`

An21,kS L2x(
l 51

`

lA1l~L !DU
x50

.

~54!

To relateAnn andAn21,n21 we substituteL→j21L in Eq.
~54!, differentiate with respect toj n21 times and setj
50.

The result is

nAnn~L !5
d

dx
An21,n21~L1xA11~L !!U

x50

. ~55!

B. Calculation of V1/«2
†1‡div„2…

To apply the relation

2«2V1/«2
[1]div~2!

5
1

2

d

dx
A11@L1xA11~L !#U

x50

~56!

to the case of

L5Lg f1L f p

5A2gS a1R21bRmnRmn2
1

k2
~R22L!D

2
1

2D
FahFa1C̄tFt

mnDmn
a Ca ~57!

we note first of all that the gauge-fixing term is not reno
malized if the linear gauge is used~see, e.g.,@8,10#!. Also the
renormalization of the ghost part of the effective action
immaterial as long as only the one-loop expression is nee
in Eq. ~56!.

Thus to calculateV1/«2
[1]div(2) we rewriteL01xA11(L) as
2-9
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A2gS ~a11xc2!R21~b1xc1!RmnRmn2
1

S 1

k2
2xc3D 21

3H R22F S 1

k2
2xc3D 21S L

k2
1

xc4L1xc5

2 D G J D ,

~58!

apply the one-loop result~47!, differentiate it with respect to
x, and setx50.

The result of this calculation is presented in Appendix
Now we are in position to verify the identity~44!.
As follows from the result~B1! on the mass shell the lef

hand side of Eq.~44! is

2D
dV1/«2

[1]div~2!

dD
5

1

~32p2«!2E d4xA2g~AL1B!,

A5
21

b2k2
$2d2w21dw~220va21120v

13wa21140/3a21/3a21210!%,

B5
dw

b3k4
~1/4a2215!, w[u17v,

while Eq. ~47! gives, for the right hand side,

2a~1!gmn

dVdiv~1!

dgmn

5
a~1!

32p2«
E d4x A2g~ÃL1B̃!,

Ã5
1

bk2
$2dw220va21120v13wa21

140/3a21/3a21210%,

B̃52
1

b2k4
$1/4a2215%.

We see that Eq.~44! is really satisfied15 and the coeffi-
cient a(1) turns out to be equal to2Dw/32p2«.16 Note that

15One can easily verify that the results~47! and ~B1! satisfy Eq.
~44! exactly, i.e., even off mass shell. In other words, the functio
«2V1/«2

[1]div(2) is gauge independent on ‘‘mass shell’’ determined
the ‘‘action’’ «Vdiv(1).

16Of course, this value ofa(1) could be determined already from
Eqs.~26!,~47!.
06401
.

dV [1]div(2)/dD is not zero even if the unweighted~Landau!
gauge conditionD→0 is used.

V. CONCLUSION

We have shown in this paper that generally the diverg
parts of the effective action ofR2 gravity depend on the
gauge and parametrization nontrivially—this dependence
not be presented as proportional to the equations of mot
The renormalization procedure in the presence of the n
anticommuting sourceY turned out to be more complicate
than the usual one: the renormalization equation correspo
ing to the modified generating functional cannot be obtain
by a naive extracting of divergent terms in Slavnov iden
ties. We have considered the renormalization of modifi
Green functions at one- and two-loop levels and obtain
renormalization equations corresponding to the insertion
theY source@Eqs.~26!,~39!#. Also explicit calculation of the
one- and two-loop divergent parts has been carried out, c
firming our results and demonstrating that the nontriv
gauge dependence of the divergent parts of the effective
tion actually exists in arbitrary~Lorentz! gauge and arbitrary
parametrizations except those satisfyingw50.17

We emphasize that this nontrivial dependence is due
the presence of the Einstein term in the Lagrangian. Had
considered a theory with the Lagrangian containing
higher derivative terms only, we would not have had suc
dependence.

Our conclusion does not contradict the equivalence th
rem @20# in view of the general results of@2,21#. Their va-
lidity in the present case is verified in Appendix B. Howeve
these results do not allow us to say that the renormaliza
of the coupling constants is independent of the renormal
tion of fields ~as in the case of two-dimensional chiral the
ries @21#, for example!, because renormalization of the New
tonian gravitational constantk cannot be separated from
renormalization of the gravitational field: one can alwa
perform additional redefinitions of the constantk and the
metric field which compensate each other. This is a con
quence of the fact thatk is an ‘‘inessential’’ coupling con-
stant.

Finally, we note that our results are in agreement with
general statements of@22#.
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APPENDIX A

In this appendix we present calculation of the one-lo
divergent part of the effective action in the flat space-tim

According to algorithm derived in@17# we should first
calculate the part ofd2Sg f with four derivatives:l

17For the construction of the parametrization satisfyingw50 see
@18,19#.
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d2Sg fu45S a11
b

4 Dhh2h1
b

4
hmnhhmn

22S a11
b

4 D ~¹A!hh1S a11
b

2 D ~¹A!2

1S b

2
2

1

2D DAnhAn, An[¹mhmn . ~A1!

Then we substitute¹m→nm , nm being a vector withnm
2

51, and calculate the ‘‘propagator’’ (Kn21)ab,gd which is
the inverse of the operator (Kn)mn,ab5d2Sg f /dhmndhab :

~Kn!mn,ab~Kn21!ab,gd5dmn
gd ,

~Kn21!ab,gd

51/2~gaggbd1gadgbg!1A1gabggd

1B1~gagnbnd1gadnbng1gbgnand1gbdnang!

1C1~gabngnd1ggdnanb!1D1nanbngnd,

where

A152~A14AB1AD2C2!/Z,

B152B/~112B!,

C15~4AB1AD2C2C2!/Z,

D152~16AB14AD1D14B24C2!/Z

14B/~112B!,

Z5114A14B12C1D13~4AB1AD2C2!,

the coefficientsA,B,C,D being defined fromLg f :

A511
4a1

b
,

B5
1

2S 1

bD
21D ,

C5212
4a1

b
,

D521
4a1

b
.

We have multiplied the initial Lagrangian by 4/b for conve-
nience.
06401
Second, we calculate the partW of d2Sg f containing two
derivatives substituting¹m→nm again,

~Wn!mn,ab5
1

k2b
$gmngab2~gmnnanb1gabnmnn!

2gmagnb1~gmbnnna1gnanmnb!%, ~A2!

and the partM without derivatives,

Mmn,ab5
4Lu

bk2
gmngab1

4Lv

bk2
gmagnb ,

whereu5a14c1 1
4 , v5b14d2 1

2 .
The one-loop divergent part of the effective action has

form18

Vdiv~1!5
1

32p2«
tr E d4xA2g

3S 1

2
~Kn21!~Wn!~Kn21!~Wn!2~Kn21!~M ! D ,

~A3!

where the matrix product o
(Kn21)mn,ab ,(Wn)mn,ab ,Mmn,ab is supposed.

A simple calculation gives

V f lat
div~1!5

1

32p2«
E d4xA2g~c4L1c5!, ~A4!

where

c452
1

bk2FuS 2d1
3

a D1vS 14d1
1

a
120D G ,

c55
1

b2k4S 5

2
1

1

8a2D , d[Db.

APPENDIX B

In this appendix the result of the calculation of the tw
loop divergent as the 1/«2 part of the effective action is pre
sented. Also, the validity of the general statements of@2,21#
is verified.

Following the algorithm derived in Sec. IV B we obtain

18Since the space-time is flat, the contributions of the Fadde
Popov ghosts and of the ‘‘third’’ ghost are equal to zero.
2-11
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2V1/«2
[1]div~2!

5
1

2~32p2«!2E d4xA2g~c22R
21c32R1c42L1c52!, ~B1!

c225
1

b
~200/27a32416/9a211697/54a225/36!,

c325
1

b2k2
$d2~21/4u227/2uv249/4v2!1d~23/4u2a21211/2uva2125uv110/3ua

21/12ua2125/2u27/4v2a21235v2170/3va27/12va21235/2v !29/16u2a22

215/2uva2123/8uva2227/16ua2215/2u25/2v2a2121/16v2a22225v21100/3va

25/6va2127/48va222272/3v2200/9a21122a21/24a222731/18%,

c425
1

b2k2
$2d2~u2114uv149v2!1d~6u2a21144uva21140uv114v2a211280v2!

19/2u2a22160uva2113uva22215ua2115/4ua22110u120v2a2111/2v2a22

1200v225va2115/12va221808/3v%,

c525
1

b3k4
$d~21/4ua2225u27/4va22235v !215/2ua2123/8ua2325/2va2125/2va22

21/8va23250v150/3a25/12a2115/8a2221/8a23279%.

To show that the gauge and parametrization dependence can be absorbed by a field renormalization we first re
one-loop divergences~47! by the following redefinition of charges and fields,

gmn→gmn~11d1Z!,

l→l~11d1l!,
1

k2
→

1

k2S 11d1

1

k2D ,

a1→a1~11d1a1!, b→b~11d1b!,

where

d1

1

k2
1d1Z5

c3

32p2«
,

d1l52
2c3

i 1c5/2l

32p2«
,

d1a15
2c2

32p2«a1

, d1b5
2c1

32p2«b
,

and we have introduced a notationc3
i for the gauge- and parametrization-independent part of the coefficientc3 :

c3[c3
i 2

c4

4
.

As seen from the above equations renormalizations of the gravitational constant and of the metric field cannot be s
from each other. This property is inherent to any metrical theory of gravity with the Lagrangian containing terms lin
curvature and holds at any order of perturbation theory.
064012-12
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To make the theory finite at the two-loop level we should take into account counterterms which arise in second ord
the one-loop redefinitions of the charges and fields which were made above. Correspondingly, we extract these cou
from the two-loop order result~B1!, rewriting coefficientsc32, c42, andc52 as19

c325
k2

2
c3

i c41
1

b2k2
$d2~21/4u227/2uv249/4v2!1d~23/4u2a21211/2uva2125uv27/4v2a21235v2!

29/16u2a22215/2uva2123/8uva22115/4ua2125/16ua2225/2u25/2v2a2121/16v2a22

225v215/4va2125/48va222202/3v2200/9a21122a21/24a222731/18%,

c425k2$c4
2/4212c3i

2 %1
1

b2k2
$d2~u2114uv149v2!1d~3u2a21122uva21120uv17v2a211140v2!

19/4u2a22130uva2113/2uva22215ua2115/4ua22110u110v2a2111/4v2a221100v2

25va2115/12va221808/3v1400/3a22200a15a2111/12a221205/3%,

c525k2c5~c424c3
i !2

1

b3k4
$50/3a15/4a21215/8a2211/12a23154%.

Now it is easy to verify that

4c321c422k2~2c3ic41c4
2/4212c3i

2 !5
1

b2k2
$400/9a21288a15a2121/12a222847/9%,

which means that after subtraction of the counterterms corresponding to the one-loop renormalization of charges and
made the two-loop divergent part of the effective action becomes gauge and parametrization independent on shell.
the gauge and parametrization dependence can be absorbed by a field renormalization or by renormalization of the N
constant.

19The one-loop redefinitions do not affect the coefficientc22.
n-

.
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