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Not all adiabatic vacua are physical states
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Adiabatic vacua are known to be Hadamard states. We show, however, that the energy-momentum tensor of
a linear Klein-Gordon field on Robertson-Walker spaces develops a generic singularity on the initial hyper-
surface if the adiabatic vacuum is of order less than 4. Therefore, adiabatic vacua are physically reasonable
only if their order is at least 4. A certain nonlocal large momentum expansion of the mode functions has
recently been suggested to yield the subtraction terms needed to remove the ultraviolet divergences in the
energy-momentum tensor. We find that this scheme fails to reproduce the trace anomaly and therefore is not
equivalent to adiabatic regularizatidrs0556-282(099)04604-4

PACS numbdps): 04.62+v, 11.10.Gh

I. INTRODUCTION related analysis can be found [8]. Recently, Junker has
succeeded in showing that in fact all adiabatic vacua are
The semiclassical theory of quantized fields propagatingiadamard state$9]. His proof exploits methods of the
on a curvedglobally hyperboli¢ spacetime does not provide theory of pseudodifferential operators and wavefront sets on
a principle of how to choose a vacuum state. In the abseno@anifolds.
of isometries the vacuum state cannot be associated with The expectation value of the energy-momentum tensor
such symmetries of the underlying spacetime. Instead, physfather than the two-point function is the essential physical
cally reasonable statg®f linear field$ are required to be quantity to be considered because it determines the back re-
Hadamard states; i.e., the corresponding two-point functiongction effect on the gravitational field via the semiclassical
have to possess the Hadamard singularity structure in orddginstein equations
to allow for standard renormalizatidd,2].
The proper choice of an initial state is not only essential G,,=—87G(T,,). (1.9
for a consistent formulation of quantum field theory on
curved spacetimes. In the context of concrete application$he energy-momentum tensor involves second derivatives of
the dependence of the physical effects on the initial stat¢he two-point function. However, the method[@f could not
becomes an equally significant aspect. This question arisebe generalized to the case of a second derivative. So when
for example, in inflationary cosmology where particle cre-considering the energy-momentum tensor one might expect
ation and back reaction due to quantum fields play an importo find further constraints on the physically admissible states.
tant role. Interest in the consideration of these effects has It has recently been showWi0] that the expectation value
recently been intensified in connection with the theory ofof the energy-momentum tensor in a conformal-like initial
reheating after inflatiofi3] (a discussion of Hadamard states state[see Eq(3.4) below] develops an initial singularity, i.e.,
in this case is appropriate because the quantum fluctuationke limit »— 7, does not exist(n is the conformal time
satisfy linear equations of motion in the mean field approxi-parameter Since an initially singular energy-momentum
mation[4]). tensor does not satisfy Wald's axioifild, such states should
The concept of adiabatic vacua was introduced by Parketiot be considered physically reasonable.
in order to account for particle creation in an expanding uni- In the present paper we are concerned with the question of
verse[5]. The physical motivation behind the adiabatic par-whether adiabatic states of linear Klein-Gordon fields on
ticle picture is that it most closely resembles the particleRobertson-Walker spacesvith arbitrary spatial curvatuye
concept of a static universe during an expansion. The notionan lead to initial singularities as well. We show that the
of adiabatic vacuum states was put on a solid mathematicarder of an adiabatic vacuum must not be less than 4 for the
basis by Lders and Robert§6] who also suggested that energy-momentum tensor to be finite on the initial hypersur-
adiabatic vacua and Hadamard states define the same classSade. As a primary new result, we find that even thoadjh
physical states on the cosmologically relevant Robertsonadiabatic vacua are Hadamard std®@js they are physically
Walker spaces. Indeed, both concepts are intimately relateddmissable only if their order is 4 at least.
Najmi and Ottewill[7] derived the leading asymptotic mo- In line with our result, the adiabatic particle picture de-
mentum behavior of a second-order adiabatic vacuum as eloped in[11] shows that for adiabatic vacua of order 4 or
necessary condition for Hadamard states on a quasi-higher the energy-momentum tensor splits naturally into a
Euclidean spaceq=0). Using Fourier analysis, they com- local part containing all the ultraviolet divergences and a
pared the symmetric two-point function and its first deriva-finite, nonlocal piece that can be viewed as being due to
tive with the Hadamard series on the initial hypersurface. Aparticle production.
In the derivation of the condition on the adiabatic order,
we employ a nonlocal large momentum expansion of the
*Email address: lindig@itp.uni-leipzig.de conformal-like mode functiongsee the Appendijxthat has
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similarly been used if10,13,14. We show that the subtrac- conditionsf(7.), f.(70) on a Cauchy surface= 7. This

tion of the leading terms of this expansion as suggested igorresponds to the choice of a homogeneous vacuum state.
[12] is not equivalent to adiabatic regularization on We now give the definition of adiabatic vacua following
Robertson-Walker spaces because it fails to reproduce th@]. Substituting the WKB ansatz

trace anomaly. Besides, our proof reveals that the construc-

tion of states suggested 0] effectively determines a 1 .
fourth-order adiabatic vacuum. T(n)= —ex;{ —i| dp'W( 77’)} (2.7
The paper is organized as follows. In Sec. Il we review V2Wi(7) 70

the basic elements of scalar field quantization in Robertson-

Walker spaces including adiabatic regularization as far a#to Eq. (2.5 leads to the following equation for the fre-
necessary and give the definition of adiabatic states followguencyW,:

ing [6]. In Sec. Il we show that the adiabatic order of the

state must not be less than 4 to result in an initially well- , o, 1 W, 3 WIQZ
behaved energy-momentum tensor. We conclude the paper W= 5w, "3 W2 (2.8
with a brief summary and a technical appendix. Our metric k k
convention isg,,=diag(1-1,-1,—-1), and we use units . . . .
such thati=c—=1. This equation can be solved iteratively
” 12
Il. QUANTUM FIELDS ON ROBERTSON-WALKER W(NH)Z— 2_ A#a?R- } VVf<N) _ E MN) 2.9
SPACES K Teic ARSI T 5 wv? |

The Robertson-Walker metric is given by
. . . with W% = o, in the sense that for a finite time interval and
ds?=a%(n)[dn*—hydx'dx'], (2.9 sufficiently largek the right-hand sidéRHS) of Eq. (2.9) is
trictly positive. ThedW() can be continued to all values of
in such a way that it is a smooth function of time. As each
iteration picks up two time derivatives, tidth iterative so-
lution W is of adiabatic order B. SubstitutingW{™) back

into Eq.(2.7) yields a so-called approximate adiabatic mode
(O+m?+ ¢R) o(x)=0. 22 TN,
An adiabatic vacuum state of iteration ordéris deter-

The symmetry of the Robertson-Walker metric allows formined by a complete set of mode solutioffg,f} to Eq.
separating variables in E€2.2), and the scalar field can be (2 5) satisfying initial conditions
decomposed as

where h;, denotes the metric of a three-space of constanf<
curvaturex=—1,0,+1 for an open, flat, and closed uni-
verse, respectively.

The free scalar field satisfies the Klein-Gordon equation

1 fl(m0) =T (o), Fr(m) =T (90); (210

€D(X)=m

| dmottm@oac ez all,
(2.3  i.e., an adiabatic mode coincides with an approximate mode

TMN on the initial Cauchy surface. With the particular form

where the creation and annihilation operatjsa, obey the (2.7) of the approximate adiabatic modes, these initial con-
usual commutation relations. Thk,(x) are the eigenfunc- ditions read, explicitly,

tions of the Laplace-Beltrami operator on the three-space of
constant curvature,

1
N P p—
A®D (x)= — (K= 1) Dy(X), (2.4 0 W
anddu (k) is the measure of the corresponding set of quan- Ny
tum numbergfor details, se¢15]). The time-dependent part w4 W™ (m0) ¢
of the mode function satisfies the oscillatory equation k(70)=—{ W (70) W) K(70).

2.1
F1()+ Q2 ) e ) =0, 25 @19

L According to this construction an adiabatic vacuum state de-
The frequency,(7) is given by 9

pends on the initial timeyy, the order of iteratiomN, and the
det det extrapolation ofW(") to small momenta. In the following
Qi(»,]):kz-f- a2(m2—A§R)=w§—q(7;)=k2+ M2(7), we simply write W, instead ofWﬁN) for the adiabatic fre-
(2.69  quency.
Varying the action with respect to the metric yields the
with wi=k?>+m?a® and A¢=1/6—¢. A complete set of energy-momentum tensor. For a real scalar field with arbi-
mode solutions to Eq2.5) is specified by imposing initial trary curvature coupling, one find45]
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T,,=(1-28d,0d,0—2E0V V@ in order to correctly reproduce the trace anomaly. The ex-
mv “ v mt v L. ) (4)
plicit form of the subtraction termg,) can be found, e.g.,
+(2§_ E)g P od o in [15,17). Also, adiabatic regularization has been shown to
2)9Ky P be equivalent to covariant point splittifd7,18 and thus

1 results in an energy-momentum tensor satisfying Wald's axi-
+2£9,,¢0¢~ £G,,¢°~ 50,,m*e? (212  Omslll

IIl. INITIAL STATES AND THE ENERGY-MOMENTUM

A mode sum representation of ifisare expectation value is TENSOR

obtained by substituting the mode decompositi@rB) into

Eq.(2.12. We choose the energy density and the trace as the In this section we show that an adiabatic vacuum must be

two independent components. They take the following format least of order 4 for the expectation value of the energy-

momentum tensor to be nonsingular on the initial Cauchy

o du(k) , ) ) - surface. Before proceeding with the proof we wish to give an

(Tho)=e= f 2m2at 3Ag(h"+2h%)[fi|*—3A&h(|f]%) intuitive argument in order to illuminate the problem.
Obviously, the subtraction proceduf2.15 only makes

sense if the ultraviolet divergences of the bare expressions

are canceled by the divergent terms of the adiabatic expan-

1
AT
sion, i.e., by all terms of () up tow ®. As the subtrac-

du(k) tion terms are local, this cancellation has to occur at each
(T )=T= f 2—2?[(6A§h’+m2a2)|fk|2 instant of time. In other words, the bare expressions need to
7 possess an asymptotic expansion for large momenta that re-

+BAEN(|F ]2 —BAE(|fL12— Q2] produces the divergent terms of the adiabatic expansipn

formly with respect to time. This includes in particular the
(213 initial time where the bare expressions are directly given in
terms of the initial conditions. The simple idea is now to
compare the asymptotic expansion of the bare expressions
for large w, with the divergent part of the adiabatic expan-
sion at the initial time
With the adiabatic initial condition€.11) the expectation

where the abbreviatioh=a’/a has been introduced. The
measuredu (k) implies integration over continuous and
summation over discrete momenta:

dkik® if k=01, value of the energy-momentum tens@.13 at the initial
0 time 7y becomes
J du(=1 (2.14
K2 if k=+1. _ f du(k) 1[ - Qo (Wio')?
k=1 e(10)= 2772a3 2| Vo Wio W

We note that the dependence on the quantum state enters the W' 1
expectation value$2.13 via the initial conditions satisfied +6A§hOW+GA§(h{)+ 2h(2)) W—}
by the modes, . As we are concerned with adiabatic states, ko ko
the moded, satisfy the initial condition$2.10).

The formal expression€.13 are divergent and need to T( ):f du(k) E[(GAgh’wLmzaz)i
be renormalized. This task can be achieved by the method of o szaé 2 0 "W,
adiabatic regularizatiofi5,16,17. In this scheme the renor-
malized energy-momentum tensor is obtained by subtracting
from the mode integral$2.13 their fourth-order adiabatic
expansion:

!

Wio
7~ 6A¢

—6A ehoy

Wio—

Q_ﬁo N (Wko’)z)}
Wi 4Wio® | |’

(3.2

(T.) d_ef<_|_ Y (T, )@ 2.15 where the subscript 0 indicates that the time argument of the
pv/ren—A = py wvloe ' respective quantity is set equal to the initial timyg, i.e.,

This subtraction is to be interpreted as a renormalization o 0=2(70), €tc. The asymptotic expansion of the adiabatic
L ; requencyW, for large wy can be inferred from Eq2.9) by

the gravitational constant, the cosmological constant, and the LA

: ; Induction inN:

coupling constant of the squared curvature term in the clas-
sical gravitational action. As was shown [i47], even for

2// " 2
closed spatial geometryc +1) the subtraction has to be  \y —,|1- 4 1 s g +q 1—s
performed with the continuum measure k= @k 2w§( o Buwy ( N0
oo [Tak X @ i <
(Tun@= | dkg 2 T, (2.16 * gt (17 9no~ Sua) + Ol ) |. (3.2
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Then, the divergent terms of Eq&.1) are readily found:

du(k) | o do a5
S(Wo)—fz a | 2 4wk0 16w3 (1- 5No)

% N,0

M2
+3A¢h, +3A&(h)+2h2)

ka

1 Qo
2wyq 4a)k0

—3 (1= 6n0) |+ O(wyg )}

)
T(n0)= f > z(aé (6A¢hg+m*ag)

X

+0pdn0
~30¢ S by 3A§ho—23_

2"
0
+3A§K30(1_ 5N,0)

+3A§%— SnatO(wig )] 3.3
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the divergences present in the theory and therefore has to be
subtracted. In order to give a self-contained proof, we have
to show thatN>1 is necessary for the bare expressions to
possess unifornfwith respect to a finite time interval, con-
taining the initial time large momentum asymptotic behav-
ior that reproduces the divergent structure of the adiabatic
expansion. For this purpose we represent the adiabatic modes
f\ in terms of a different set of mode solutiogg, subject to

the conformal-like initial conditions

1
=— (19)=—1Q ) ).
9k(70) 20, 70) k(70 kK(70) 9 70 o

As both mode solutions correspond to a homogeneous state,
they are related by a diagonal Bogoliubov transformation

f(7)=€'?{coshd,gi(n)+e'*ksinho,gi (7)]. (3.5

The identity coshé,—sint? 6,=1 ensures that the normaliza-
tion constraintf f¥ —f# f; =i is preserved. The Bogoliubov
coefficients are determined by the initial conditions satisfied
by the moded, andg,. Their particular combinations ap-
pearing in the representation of the energy-momentum tensor
are

Qo Wio Wig[ Wig \?
cosh 2, = Z{Wko—’_ QkO+ Qko(ZWEO) }
We observe that the structure of the divergences in the en-
ergy density coincides with that of the adiabatic expansion if
N>0. For the trace, however, this is only trueNf>1 be-
cause the term proportional ¢ (being of adiabatic ordern4
only appears in the second and subsequent iterations in Eq. . ] Wyo
(2.9). So when subtracting the adiabatic expangitih 17 in sinh 20, sin 6= — 57~
the casedN=0,1, one is effectively introducing divergent
terms that are not present at the initial moment and the mofhe energy-momentum tens(®.13 can now be expressed
mentum integrals do not exigat the initial time,). in terms of the modeg, and the Bogoliubov coefficients. As

Even though this simple comparison shows the root of thehe problem of the initial singularity is less severe in the
problem, it only proves the necessity of the conditir 1 energy density, we will show the following calculation only
under the assumption that the adiabatic expansion yields aflbr the trace:

1
sinh 26, cosé= 5{__ 0«

(3.6

du(k )
= f —Zgz(a‘)‘ ((6A¢h’ +m?a?)[cosh 2| g,| 2+ sinh B R(e~%g2)]— 6A £{cosh By (| gy 2 — Q2[gil?)

+sinh BR[ e "%(g, >~ QFg7) 1} + 6A gh{cosh Dy(|gy|?)’ +sinh B R[e " (gd) 1}). 3.7

The next step consists in finding the large momentum behavFhe key point is that ()2 is independent ok. Moreover, it
ior of Eq. (3.7). For this purpose we make use of an vanishes at the initial ime: AQ?(7,) =0. The quantity22,

asymptotic expansion of the mode solutignghat has simi-  is strictly positive for sufficiently large momentuknso that
larly been used if10,13,14. The mode functiongy satisfy  Eq. (3.8) possesses the homogeneous solugiotiko(7~70),

the oscillatory equatior(2.5). Adding Qﬁo on both sides Then, with the help of the ansatz

yields

e~ Q7= m0)

gk(n)szo

[1+8(m)] (3.9

g,k,+Qﬁogk:_(Qi_Qio)ng_Aﬂzgk' (3.8
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and using the initial condition@.4), the mode equatio(8.8) local and coincide with the divergence structure of the adia-
can be transformed into the following integral equation:  batic expansion because we have
i )
Gu(m) = J d7’ (€217~ —1)AQ2(7") 1 1 . 1 A02 1 M?
ko a3, i@ TOk™), 0o 205 K >3 HOK™®).
X[1+Gu(7")]. (3.10 (3.19
This equation can be solved by iteration starting vg{f
=0. As each iteration increases the powerﬁ)j‘ol by 1 the
iterative solution yields an expansion@f in inverse powers
of Qo on the finite time interva] ny, 7]. The details of this
expansion as well as the result fgg are displayed in the
Appendix.
It remains to derive the asymptotic expansion of the Bo-
goliubov parameter&3.6) for large(},,. For this purpose we marks are in order.

golve !Eq.(?.i?) 'tf r‘.atlvely starting W'_tmk !nsteaq Ofwy.. By As the term causing the initial singularity is proportional
induction inN (N is the number of iterations with respect to 4 A&, the problem of the dependence on the order of the

We conclude, then, that the large momentum behavior of the
divergent terms of the bare trace is uniform on the time in-

terval [ 79, 7] only if N>0. In other words, an adiabatic
vacuum state must bat least of adiabatic order 4or the
renormalized energy-momentum tensor to be finite on the
initial Cauchy surface. Therefore, only adiabatic states of
order 4 or higher are reasonable physical states. Some re-

), we find adiabatic vacuum only affects nonconformally coupled
~ 2" fields.
W=y 1- (1~ )894 +0(Q, 9|, Since the expansion in inverse powers(hf, reproduces

the local divergences of the adiabatic expansion, one could
q q2+M2”(1_bTuo) ] } f’iSk, why not su_btrac_t the leading terms Qf this expansion

—— T ‘ (0 °) instead of the adiabatic ones? The answer is that even though
20 8wy these subtractions are covariantly conserved, they fail to re-

(3.1)  produce the trace anomaly. To see this we rewrite the renor-
malized energy-momentum tens@:.15 according to

where the second line is obtained by mean$)$f wz—q.

The frequencyW{" yields all terms up tavy ° of a fourth- (T rer= (T = (T v+ (T b= (T ud@ (3.15
order adiabatic frequency only >0 as can be seen by
comparing Eq(3.11) with Eq. (3.2 and calculate the finite differendevith now N>0)
With the help of relation3.11) it is now straightforward
t(c:; g)glculate the asymptotics of the Bogoliubov parameters <Tw>diffz(Tw>div_<TW><4>, (3.16
cosh®,=1+ O(QEOG), where (T ,,)qy denotes all d|vergent terms of the inverse
o Qo expansion(i.e., up toQ,s). The result can be repre-
sinh 2, Cosd= (1 85, 0) - +O(2id), sented as
800
M2’ T panomay__* [(m —M?A£R+3(A€)?VAV ,R)
sinh 2, sin 6= — W+O(Q,;O5). (3.12
ko
1(m? 1
Equipped with these expansions, we finally isolate the diver- X InﬁlvL —z(m—goo+ M?A £Goo— 5 MHoo
gent terms in the trace of the energy-momentum tensor: Mo a”l 4 2
du(k) 3m* -
T(nN= | 5257 (6A¢£h’ +m?a?) ~ 7 T3z (17 18R 5 ALVAV R
2 2! 1 K
x( 1 A93 A M Asf ~ 7 (AOPR? = —[6A¢h + mPa%(1-364¢)]
ZQKO 4Qk 2Qk0 4Qk0

3
. . . + (A8 2(h" +h*)R+hR']
X[M?' = 65 M3 cos Ao 7— 70) 1+ O0(Qig) 1 - a

M2
(3.13 + z—ai(eAgh' +m2a?)|. (3.17

The term proportional té/ (2)" cos A o(n— 7g) does not van-

ish for N=0. Since the integralfdu(k)Qs cosAyo(n  HereG,, is the Einstein tensor, and the definition @H ,
— o) diverges logarithmically in the limig— 7, itleadsto  can be found e.g., iil6]. Here Ta°MaVis the anomalous
an initial singularity. All other divergent terms are indeed trace[19]:
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Tanomah |im <Tﬁ>ren_<( lim T,ﬁ >ren APPENDIX
m-0 m-0 In this appendix we wish to derive an asymptotic expan-
1, sion of the conformal-like mode functiogg in inverse pow-
=~ 2a8072 ¥ Rur ™ 3R+ (306-6)VAV,R ers of O, i.e., for large momentum. The Volterra-type in-
tegral equation3.10 (which holds for sufficiently large)
serves us as the starting point. The iteration procedure
+90(A£)%R?|. (3.18
The energy densityd‘f;.fifs calculated likewise. The covariant ()= -5 ndn’Kk( 2 [L+TM (7)1,
conservation of(T,,)™ has explicitly been checked. Be- ko J mg
sides the trace anomaly“™ contains the logarithmic terms (A1)
which give rise to the so-called anomalous scaling as wellas ) o
the renormalization scale dependefh26]. with §(?(7)=0, converges uniformly on the time interval

So we see that even thougfi,,)qy is covariantly con-  [7,70] (for fixed k). According to Eq.(3.10, the kernel
served and has the correct local singularity structure, its sub<k(7,7") is given by
traction does not yield the correct renormalized energy-

momentum tensor as it cannot reproduce the trace anomaly.
def

K (7,1")=[e2(7= 1) —11AQ2%(7"). A2
IV. CONCLUSIONS mm') =1 ] (n") (A2)

Since all adiabatic vacua are Hadamard ste@dgshey are  As a result of the iteration, the soluti@(7) has the series
usually considered physically admissible quantum states qfpresentation

linear Klein-Gordon fields on Robertson-Walker spaces.
However, we find that the corresponding energy-momentum

tensor develops a generic singularity on the initial Cauchy i i \N [y

surface if the order of the adiabatic state is less than 4. The Gu(m)= > (—) f dn,Ki(m,71) -
divergent terms of the large momentum asymptotics of the n=1 | 2Quo/ Jy,

energy-momentum tensor only coincide with those of the _—

adiabatic expansion if the adiabatic vacuum is at least of xf d 7K (7n—1,7n)- (A3)

order 4. As a result, an adiabatic vacuum state only results in o
an energy-momentum tensor satisfying Wald’'s axioms and ]
thus is aphysically reasonablstate if it isat least of order ~ The estimate
4.
This result is supported by the adiabatic particle picture L
developed in[11]. There, this restricted class of adiabatic ~ n., 2
vacua is shown to lead to a natural physical interpretation of [G( 7;)|$exp[Q—ko Jnod” [AQ%(y )|} -1 A
the structure of the energy-momentum tensor. It splits into a
local part (vacuum polarizatioh Containing all the diver- shows tha@k( 7]) remains bounded and goes to zerokas
gences which have to be subtracted and a nonlocal piece dug«. An asymptotic expansion () in inverse powers
to particle creation. of 0, can now be achieved by expanding each addend of
We have further shown that the subtraction of the diver-the SerieiA?,)_ For this purpose we provide repeatec”y inte-
gent terms of the nonlocal large momentum expan&ohd  gration by part§ AQ2: i.e., R(7) is assumed to be smodth

(cf. the Appendix as suggested if12] does not result in the to the most inner integral of theth addend and find
correct renormalized energy-momentum tensor of a scalar
field on a Robertson-Walker space because it fails to repro-
duce the trace anomaly. Nevertheless, this expansion can be (,
useful in practical calculations of the energy-momentum ten- J d7.Ki(7n_1,7n)

sor as the differencéTM,,)diff between the divergent terms 0

(3.13 and the adiabatic subtractions has been calculated ex- _ o _j\m+l
plicitly, Eq. (3._17). Only the remaining part needs to be cal- = _f " d7,AQ%(7,)— >, (W)
culated numerically. 70 m=0 kO

X[AQ2 " (7_1) = AQ?™ () €2 ol 17 70)],
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1

n
= +0(Q " Y).

i jnd IAQZ( r)
2040 )y g

Consequently, all terms contributing (») up to order
Q.4 are contained in the first addends of Eq(A3). If

n=4, we find, for example,

RGw(n)=— >

1
2,72
203, 2 2"
1 ,
+ —5AQZ sin2Q.4(7— 7o)
8040

+

T [AQZ"—AQSH cos Ao 7= 170)
0

, 5
+AOZ I+ 5 (AQ%)?
+A03 1, cos 2y 7— 70)

+ O(leos)v

1 1
+ 5 A0+ 10+ 51

PHYSICAL REVIEW D 59 064011

1 1
Zﬁk(ﬂ):—mlﬁm

x| AQZ —AQ2 cos 22o( 7~ 1)

1
-+AQ%1+|Z+§TQ

1 "o
- mmﬂ% sin 2Qyo( 7— 10)

—AQZ 1 sin20,0( 7= 76)]+O(Q),
(A6)

where the abbreviation
K ' 2 r\m
Im=1 dn'[AQ%(7n")]
70

has been used. Note that E46) already contains all terms
contributing to the divergences of the tra@13).
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