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Not all adiabatic vacua are physical states

J. Lindig*
University of Leipzig, Institute for Theoretical Physics, Augustusplatz 10, 04109 Leipzig, Germany

~Received 25 August 1998; published 11 February 1999!

Adiabatic vacua are known to be Hadamard states. We show, however, that the energy-momentum tensor of
a linear Klein-Gordon field on Robertson-Walker spaces develops a generic singularity on the initial hyper-
surface if the adiabatic vacuum is of order less than 4. Therefore, adiabatic vacua are physically reasonable
only if their order is at least 4. A certain nonlocal large momentum expansion of the mode functions has
recently been suggested to yield the subtraction terms needed to remove the ultraviolet divergences in the
energy-momentum tensor. We find that this scheme fails to reproduce the trace anomaly and therefore is not
equivalent to adiabatic regularization.@S0556-2821~99!04604-4#

PACS number~s!: 04.62.1v, 11.10.Gh
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I. INTRODUCTION

The semiclassical theory of quantized fields propaga
on a curved~globally hyperbolic! spacetime does not provid
a principle of how to choose a vacuum state. In the abse
of isometries the vacuum state cannot be associated
such symmetries of the underlying spacetime. Instead, ph
cally reasonable states~of linear fields! are required to be
Hadamard states; i.e., the corresponding two-point functi
have to possess the Hadamard singularity structure in o
to allow for standard renormalization@1,2#.

The proper choice of an initial state is not only essen
for a consistent formulation of quantum field theory
curved spacetimes. In the context of concrete applicati
the dependence of the physical effects on the initial s
becomes an equally significant aspect. This question ar
for example, in inflationary cosmology where particle cr
ation and back reaction due to quantum fields play an imp
tant role. Interest in the consideration of these effects
recently been intensified in connection with the theory
reheating after inflation@3# ~a discussion of Hadamard stat
in this case is appropriate because the quantum fluctua
satisfy linear equations of motion in the mean field appro
mation @4#!.

The concept of adiabatic vacua was introduced by Pa
in order to account for particle creation in an expanding u
verse@5#. The physical motivation behind the adiabatic pa
ticle picture is that it most closely resembles the parti
concept of a static universe during an expansion. The no
of adiabatic vacuum states was put on a solid mathema
basis by Lu¨ders and Roberts@6# who also suggested tha
adiabatic vacua and Hadamard states define the same cla
physical states on the cosmologically relevant Roberts
Walker spaces. Indeed, both concepts are intimately rela
Najmi and Ottewill @7# derived the leading asymptotic mo
mentum behavior of a second-order adiabatic vacuum a
necessary condition for Hadamard states on a qua
Euclidean space (k50). Using Fourier analysis, they com
pared the symmetric two-point function and its first deriv
tive with the Hadamard series on the initial hypersurface
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related analysis can be found in@8#. Recently, Junker has
succeeded in showing that in fact all adiabatic vacua
Hadamard states@9#. His proof exploits methods of the
theory of pseudodifferential operators and wavefront sets
manifolds.

The expectation value of the energy-momentum ten
rather than the two-point function is the essential physi
quantity to be considered because it determines the bac
action effect on the gravitational field via the semiclassi
Einstein equations

Gmn528pG^Tmn&. ~1.1!

The energy-momentum tensor involves second derivative
the two-point function. However, the method of@7# could not
be generalized to the case of a second derivative. So w
considering the energy-momentum tensor one might exp
to find further constraints on the physically admissible sta

It has recently been shown@10# that the expectation value
of the energy-momentum tensor in a conformal-like init
state@see Eq.~3.4! below# develops an initial singularity, i.e.
the limit h→h0 does not exist~h is the conformal time
parameter!. Since an initially singular energy-momentu
tensor does not satisfy Wald’s axioms@1#, such states should
not be considered physically reasonable.

In the present paper we are concerned with the questio
whether adiabatic states of linear Klein-Gordon fields
Robertson-Walker spaces~with arbitrary spatial curvature!
can lead to initial singularities as well. We show that t
order of an adiabatic vacuum must not be less than 4 for
energy-momentum tensor to be finite on the initial hypers
face. As a primary new result, we find that even thoughall
adiabatic vacua are Hadamard states@9#, they are physically
admissable only if their order is 4 at least.

In line with our result, the adiabatic particle picture d
veloped in@11# shows that for adiabatic vacua of order 4
higher the energy-momentum tensor splits naturally into
local part containing all the ultraviolet divergences and
finite, nonlocal piece that can be viewed as being due
particle production.

In the derivation of the condition on the adiabatic ord
we employ a nonlocal large momentum expansion of
conformal-like mode functions~see the Appendix! that has
©1999 The American Physical Society11-1
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similarly been used in@10,13,14#. We show that the subtrac
tion of the leading terms of this expansion as suggeste
@12# is not equivalent to adiabatic regularization o
Robertson-Walker spaces because it fails to reproduce
trace anomaly. Besides, our proof reveals that the const
tion of states suggested in@10# effectively determines a
fourth-order adiabatic vacuum.

The paper is organized as follows. In Sec. II we revi
the basic elements of scalar field quantization in Roberts
Walker spaces including adiabatic regularization as far
necessary and give the definition of adiabatic states foll
ing @6#. In Sec. III we show that the adiabatic order of t
state must not be less than 4 to result in an initially we
behaved energy-momentum tensor. We conclude the p
with a brief summary and a technical appendix. Our me
convention isgmn5diag(1,21,21,21), and we use units
such that\5c51.

II. QUANTUM FIELDS ON ROBERTSON-WALKER
SPACES

The Robertson-Walker metric is given by

ds25a2~h!@dh22hikdxidxk#, ~2.1!

where hik denotes the metric of a three-space of const
curvaturek521,0,11 for an open, flat, and closed un
verse, respectively.

The free scalar field satisfies the Klein-Gordon equatio

~h1m21jR!w~x!50. ~2.2!

The symmetry of the Robertson-Walker metric allows
separating variables in Eq.~2.2!, and the scalar field can b
decomposed as

w~x!5
1

a~h!
E dm̃~k!@ f k~h!Fk~x!ak1 f k* ~h!Fk* ~x!ak

†#,

~2.3!

where the creation and annihilation operatorsak
† ,ak obey the

usual commutation relations. TheFk(x) are the eigenfunc-
tions of the Laplace-Beltrami operator on the three-spac
constant curvature,

D~3!Fk~x!52~k22k!Fk~x!, ~2.4!

anddm̃(k) is the measure of the corresponding set of qu
tum numbers~for details, see@15#!. The time-dependent par
of the mode function satisfies the oscillatory equation

f k9~h!1Vk
2~h! f k~h!50. ~2.5!

The frequencyVk(h) is given by

Vk
2~h!5k21a2~m22DjR!5

def

vk
22q~h!5

def

k21M2~h!,
~2.6!

with vk
25k21m2a2 and Dj51/62j. A complete set of

mode solutions to Eq.~2.5! is specified by imposing initia
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conditionsf k(h0), f k8(h0) on a Cauchy surfaceh5h0 . This
corresponds to the choice of a homogeneous vacuum st

We now give the definition of adiabatic vacua followin
@6#. Substituting the WKB ansatz

f̃ k~h!5
1

A2Wk~h!
expF2 i E

h0

h
dh8Wk~h8!G ~2.7!

into Eq. ~2.5! leads to the following equation for the fre
quencyWk :

Wk
25Vk

22
1

2 FWk9

Wk
2

3

2

Wk8
2

Wk
2 G . ~2.8!

This equation can be solved iteratively

Wk
~N11!2

5vk
22Dja2R2

1

2 FWk
~N!9

Wk
~N! 2

3

2

Wk
~N!82

Wk
~N!2 G , ~2.9!

with Wk
(0)5vk in the sense that for a finite time interval an

sufficiently largek the right-hand side~RHS! of Eq. ~2.9! is
strictly positive. ThenWk

(N) can be continued to all values o
k in such a way that it is a smooth function of time. As ea
iteration picks up two time derivatives, theNth iterative so-
lution Wk

(N) is of adiabatic order 2N. SubstitutingWk
(N) back

into Eq. ~2.7! yields a so-called approximate adiabatic mo
f̃ k

(N) .
An adiabatic vacuum state of iteration orderN is deter-

mined by a complete set of mode solutions$ f k , f k* % to Eq.
~2.5! satisfying initial conditions

f k~h0!5 f̃ k
~N!~h0!, f k8~h0!5 f̃ k

~N!8~h0!; ~2.10!

i.e., an adiabatic mode coincides with an approximate m
f̃ k

(N) on the initial Cauchy surface. With the particular for
~2.7! of the approximate adiabatic modes, these initial co
ditions read, explicitly,

f k~h0!5
1

A2Wk
~N!~h0!

,

f k8~h0!52S iWk
~N!~h0!1

Wk
~N!8~h0!

2Wk
~N!~h0!

D f k~h0!.

~2.11!

According to this construction an adiabatic vacuum state
pends on the initial timeh0 , the order of iterationN, and the
extrapolation ofWk

(N) to small momentak. In the following
we simply write Wk instead ofWk

(N) for the adiabatic fre-
quency.

Varying the action with respect to the metric yields t
energy-momentum tensor. For a real scalar field with a
trary curvature coupling, one finds@15#
1-2
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NOT ALL ADIABATIC VACUA ARE PHYSICAL STATES PHYSICAL REVIEW D 59 064011
Tmn5~122j!]mw]nw22jw¹m¹nw

1S 2j2
1

2Dgmn]rw]rw

12jgmnwhw2jGmnw22
1

2
gmnm2w2. ~2.12!

A mode sum representation of its~bare! expectation value is
obtained by substituting the mode decomposition~2.3! into
Eq. ~2.12!. We choose the energy density and the trace as
two independent components. They take the following for

^T0
0&[«5E dm~k!

2p2a4 F3Dj~h812h2!u f ku223Djh~ u f ku2!8

1
1

2
~ u f k8u

21Vk
2u f ku2!G ,

^Tm
m&[T5E dm~k!

2p2a4 @~6Djh81m2a2!u f ku2

16Djh~ u f ku2!826Dj~ u f k8u
22Vk

2u f ku2!#,

~2.13!

where the abbreviationh5a8/a has been introduced. Th
measuredm(k) implies integration over continuous an
summation over discrete momenta:

E dm~k!55 E0

`

dkk2 if k50,21,

(
k51

`

k2 if k511.

~2.14!

We note that the dependence on the quantum state ente
expectation values~2.13! via the initial conditions satisfied
by the modesf k . As we are concerned with adiabatic stat
the modesf k satisfy the initial conditions~2.10!.

The formal expressions~2.13! are divergent and need t
be renormalized. This task can be achieved by the metho
adiabatic regularization@15,16,17#. In this scheme the renor
malized energy-momentum tensor is obtained by subtrac
from the mode integrals~2.13! their fourth-order adiabatic
expansion:

^Tmn& ren5
def

^Tmn&2^Tmn&
~4!. ~2.15!

This subtraction is to be interpreted as a renormalization
the gravitational constant, the cosmological constant, and
coupling constant of the squared curvature term in the c
sical gravitational action. As was shown in@17#, even for
closed spatial geometry (k511) the subtraction has to b
performed with the continuum measure

^Tmn&
~4!5E

0

`

dk
k2

2p2a2 T mn
~4! ~2.16!
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in order to correctly reproduce the trace anomaly. The
plicit form of the subtraction termsT mn

(4) can be found, e.g.
in @15,17#. Also, adiabatic regularization has been shown
be equivalent to covariant point splitting@17,18# and thus
results in an energy-momentum tensor satisfying Wald’s a
oms @1#.

III. INITIAL STATES AND THE ENERGY-MOMENTUM
TENSOR

In this section we show that an adiabatic vacuum mus
at least of order 4 for the expectation value of the ener
momentum tensor to be nonsingular on the initial Cauc
surface. Before proceeding with the proof we wish to give
intuitive argument in order to illuminate the problem.

Obviously, the subtraction procedure~2.15! only makes
sense if the ultraviolet divergences of the bare express
are canceled by the divergent terms of the adiabatic exp
sion, i.e., by all terms ofT mn

(4)(h) up tovk
23. As the subtrac-

tion terms are local, this cancellation has to occur at e
instant of time. In other words, the bare expressions nee
possess an asymptotic expansion for large momenta tha
produces the divergent terms of the adiabatic expansionuni-
formly with respect to time. This includes in particular th
initial time where the bare expressions are directly given
terms of the initial conditions. The simple idea is now
compare the asymptotic expansion of the bare express
for largevk with the divergent part of the adiabatic expa
sion at the initial time.

With the adiabatic initial conditions~2.11! the expectation
value of the energy-momentum tensor~2.13! at the initial
time h0 becomes

«~h0!5E dm~k!

2p2a0
4

1

4 FWk01
Vk0

2

Wk0
1

~Wk08!2

4Wk0
3

16Djh0

Wk08

Wk0
2 16Dj~h0812h0

2!
1

Wk0
G ,

T~h0!5E dm~k!

2p2a0
4

1

2 F ~6Djh081m2a0
2!

1

Wk0

26Djh0

Wk08

Wk0
2 26DjS Wk02

Vk0
2

Wk0
1

~Wk08!2

4Wk0
3 D G ,

~3.1!

where the subscript 0 indicates that the time argument of
respective quantity is set equal to the initial timeh0 , i.e.,
a0[a(h0), etc. The asymptotic expansion of the adiaba
frequencyWk for largevk can be inferred from Eq.~2.9! by
induction inN:

Wk5vkF12
q

2vk
2 ~12dN,0!2

M291q91q2

8vk
4 ~12dN,0!

1
q9

8vk
4 ~12dN,02dN,1!1O~vk

26!G . ~3.2!
1-3
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J. LINDIG PHYSICAL REVIEW D 59 064011
Then, the divergent terms of Eqs.~3.1! are readily found:

«~h0!5E dm~k!

2p2a0
4 H vk0

2
2

q0

4vk0
2

q0
2

16vk0
3 ~12dN,0!

13Djh0

M0
281q08dN,0

4vk0
3 13Dj~h0812h0

2!

3F 1

2vk0
1

q0

4vk0
3 ~12dN,0!G1O~vk0

25!J ,

T~h0!5E dm~k!

2p2a0
4 H ~6Djh081m2a0

2!

3F 1

2vk0
1

q0

4vk0
3 ~12dN,0!G

23Dj
q0

vk0
dN,023Djh0

M0
281q08dN,0

2vk0
3

13Dj
M0

29

4vk0
3 ~12dN,0!

13Dj
q09

4vk0
3 dN,11O~vk0

25!J . ~3.3!

We observe that the structure of the divergences in the
ergy density coincides with that of the adiabatic expansio
N.0. For the trace, however, this is only true ifN.1 be-
cause the term proportional toq09 ~being of adiabatic order 4!
only appears in the second and subsequent iterations in
~2.9!. So when subtracting the adiabatic expansion@15,17# in
the casesN50,1, one is effectively introducing divergen
terms that are not present at the initial moment and the
mentum integrals do not exist~at the initial timeh0).

Even though this simple comparison shows the root of
problem, it only proves the necessity of the conditionN.1
under the assumption that the adiabatic expansion yield
a
n

06401
n-
if

q.

o-

e

all

the divergences present in the theory and therefore has t
subtracted. In order to give a self-contained proof, we h
to show thatN.1 is necessary for the bare expressions
possess uniform~with respect to a finite time interval, con
taining the initial time! large momentum asymptotic beha
ior that reproduces the divergent structure of the adiab
expansion. For this purpose we represent the adiabatic m
f k in terms of a different set of mode solutionsgk , subject to
the conformal-like initial conditions

gk~h0!5
1

A2Vk~h0!
, gk8~h0!52 iVk~h0!gk~h0!.

~3.4!

As both mode solutions correspond to a homogeneous s
they are related by a diagonal Bogoliubov transformation

f k~h!5eifk@coshukgk~h!1eidk sinhukgk* ~h!#. ~3.5!

The identity cosh2 uk2sinh2 uk51 ensures that the normaliza

tion constraintf kf k*
82 f k* f k85 i is preserved. The Bogoliubov

coefficients are determined by the initial conditions satisfi
by the modesf k and gk . Their particular combinations ap
pearing in the representation of the energy-momentum te
are

cosh 2uk5
1

2 F Vk0

Wk0
1

Wk0

Vk0
1

Wk0

Vk0
S Wk08

2Wk0
2 D 2G ,

sinh 2uk cosdk5
1

2 F Vk0

Wk0
2

Wk0

Vk0
2

Wk0

Vk0
S Wk08

2Wk0
2 D 2G ,

sinh 2uk sindk52
Wk08

2Wk0
2 . ~3.6!

The energy-momentum tensor~2.13! can now be expresse
in terms of the modesgk and the Bogoliubov coefficients. A
the problem of the initial singularity is less severe in t
energy density, we will show the following calculation on
for the trace:
T5E dm~k!

2p2a4 „~6Djh81m2a2!@cosh 2ukugku21sinh 2ukR~e2 idkgk
2!#26Dj$cosh 2uk~ ugk8u

22Vk
2ugku2!

1sinh 2ukR@e2 idk~gk8
22Vk

2gk
2!#%16Djh$cosh 2uk~ ugku2!81sinh 2ukR@e2 idk~gk

2!#%…. ~3.7!
The next step consists in finding the large momentum beh
ior of Eq. ~3.7!. For this purpose we make use of a
asymptotic expansion of the mode solutionsgk that has simi-
larly been used in@10,13,14#. The mode functionsgk satisfy
the oscillatory equation~2.5!. Adding Vk0

2 on both sides
yields

gk91Vk0
2 gk52~Vk

22Vk0
2 !gk[2DV2gk . ~3.8!
v-The key point is thatDV2 is independent ofk. Moreover, it
vanishes at the initial time: DV2(h0)50. The quantityVk0

2

is strictly positive for sufficiently large momentumk so that
Eq. ~3.8! possesses the homogeneous solutione2 iVk0(h2h0).
Then, with the help of the ansatz

gk~h!5
e2 iVk0~h2h0!

A2Vk0

@11g̃k~h!# ~3.9!
1-4
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and using the initial conditions~3.4!, the mode equation~3.8!
can be transformed into the following integral equation:

g̃k~h!5
i

2Vk0
E

h0

h
dh8~e2iVk0~h2h8!21!DV2~h8!

3@11g̃k~h8!#. ~3.10!

This equation can be solved by iteration starting withg̃k
(0)

[0. As each iteration increases the power ofVk0
21 by 1 the

iterative solution yields an expansion ofg̃k in inverse powers
of Vk0 on the finite time interval@h0 ,h#. The details of this
expansion as well as the result forg̃k are displayed in the
Appendix.

It remains to derive the asymptotic expansion of the B
goliubov parameters~3.6! for largeVk0 . For this purpose we
solve Eq.~2.8! iteratively starting withVk instead ofvk . By
induction inÑ (Ñ is the number of iterations with respect
Vk), we find

Wk
~Ñ!5VkF12~12d Ñ,0!

M29

8Vk
4 1O~Vk

26!G ,

5vkF12
q

2vk
22

q21M29~12d Ñ,0!

8vk
4 1O~vk

26!G ,

~3.11!

where the second line is obtained by means ofVk
25vk

22q.

The frequencyWk
(Ñ) yields all terms up tovk

23 of a fourth-

order adiabatic frequency only ifÑ.0 as can be seen b
comparing Eq.~3.11! with Eq. ~3.2!.

With the help of relation~3.11! it is now straightforward
to calculate the asymptotics of the Bogoliubov parame
~3.6!:

cosh 2uk511O~Vk0
26!,

sinh 2uk cosdk5~12d Ñ,0!
M0

29

8Vk0
4 1O~Vk0

26!,

sinh 2uk sindk52
M0

28

4Vk0
3 1O~Vk0

25!. ~3.12!

Equipped with these expansions, we finally isolate the div
gent terms in the trace of the energy-momentum tensor:

T~h!5E dm~k!

2p2a4 H ~6Djh81m2a2!

3S 1

2Vk0
2

DV2

4Vk0
3 D 23Djh

M28

2Vk0
3 1

3Dj

4Vk0
3

3@M292d Ñ,0M0
29 cos 2Vk0~h2h0!#1O~Vk0

24!J .

~3.13!

The term proportional toM0
29 cos 2Vk0(h2h0) does not van-

ish for Ñ50. Since the integral*dm(k)Vk0
23 cos 2Vk0(h

2h0) diverges logarithmically in the limith→h0 , it leads to
an initial singularity. All other divergent terms are indee
06401
-

rs

r-

local and coincide with the divergence structure of the ad
batic expansion because we have

1

Vk0
3 5

1

k3 1O~k25!,
1

Vk0
2

DV2

2Vk0
3 5

1

k
2

M2

2k3 1O~k25!.

~3.14!

We conclude, then, that the large momentum behavior of
divergent terms of the bare trace is uniform on the time
terval @h0 ,h# only if Ñ.0. In other words, an adiabati
vacuum state must beat least of adiabatic order 4for the
renormalized energy-momentum tensor to be finite on
initial Cauchy surface. Therefore, only adiabatic states
order 4 or higher are reasonable physical states. Some
marks are in order.

As the term causing the initial singularity is proportion
to Dj, the problem of the dependence on the order of
adiabatic vacuum only affects nonconformally coupl
fields.

Since the expansion in inverse powers ofVk0 reproduces
the local divergences of the adiabatic expansion, one co
ask, why not subtract the leading terms of this expans
instead of the adiabatic ones? The answer is that even tho
these subtractions are covariantly conserved, they fail to
produce the trace anomaly. To see this we rewrite the re
malized energy-momentum tensor~2.15! according to

^Tmn& ren5^Tmn&2^Tmn&div1^Tmn&div2^Tmn&
~4! ~3.15!

and calculate the finite difference~with now Ñ.0)

^Tmn&
diff[^Tmn&div2^Tmn&

~4!, ~3.16!

where ^Tmn&div denotes all divergent terms of the inver
Vk0 expansion~i.e., up toVk0

23). The result can be repre
sented as

Tdiff5Tanomaly2
1

8p2 H ~m42m2DjR13~Dj!2¹m¹mR!

3 ln
ma

M0
1

1

a2 S m4

4
g001m2DjG002

1

2
~1!H00D

2
3m4

4
1

m2

36a2 ~1218Dj!R2
1

12
Dj¹m¹mR

2
1

4
~Dj!2R22

k

6a4 @6Djh81m2a2~1236Dj!#

1
3

a2 ~Dj!2@2~h81h2!R1hR8#

1
M0

2

2a4 ~6Djh81m2a2!J . ~3.17!

HereGmn is the Einstein tensor, and the definition of(1)Hmn

can be found, e.g., in@16#. Here Tanomaly is the anomalous
trace@19#:
1-5
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Tanomaly5 lim
m→0

^Tm
m& ren2 K S lim

m→0
Tm

m D L ren

52
1

2880p2FRmnRmn2
1

3
R21~30j26!¹m¹mR

190~Dj!2R2G . ~3.18!

The energy density«diff is calculated likewise. The covarian
conservation of̂ Tmn&

diff has explicitly been checked. Be
sides the trace anomaly,Tdiff contains the logarithmic term
which give rise to the so-called anomalous scaling as we
the renormalization scale dependence@20#.

So we see that even though^Tmn&div is covariantly con-
served and has the correct local singularity structure, its s
traction does not yield the correct renormalized ener
momentum tensor as it cannot reproduce the trace anom

IV. CONCLUSIONS

Since all adiabatic vacua are Hadamard states@9#, they are
usually considered physically admissible quantum state
linear Klein-Gordon fields on Robertson-Walker spac
However, we find that the corresponding energy-momen
tensor develops a generic singularity on the initial Cauc
surface if the order of the adiabatic state is less than 4.
divergent terms of the large momentum asymptotics of
energy-momentum tensor only coincide with those of
adiabatic expansion if the adiabatic vacuum is at leas
order 4. As a result, an adiabatic vacuum state only resul
an energy-momentum tensor satisfying Wald’s axioms
thus is aphysically reasonablestate if it isat least of order
4.

This result is supported by the adiabatic particle pict
developed in@11#. There, this restricted class of adiaba
vacua is shown to lead to a natural physical interpretation
the structure of the energy-momentum tensor. It splits int
local part ~vacuum polarization! containing all the diver-
gences which have to be subtracted and a nonlocal piece
to particle creation.

We have further shown that the subtraction of the div
gent terms of the nonlocal large momentum expansion~3.13!
~cf. the Appendix! as suggested in@12# does not result in the
correct renormalized energy-momentum tensor of a sc
field on a Robertson-Walker space because it fails to re
duce the trace anomaly. Nevertheless, this expansion ca
useful in practical calculations of the energy-momentum t
sor as the differencêTmn&

diff between the divergent term
~3.13! and the adiabatic subtractions has been calculated
plicitly, Eq. ~3.17!. Only the remaining part needs to be ca
culated numerically.
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APPENDIX

In this appendix we wish to derive an asymptotic expa
sion of the conformal-like mode functionsgk in inverse pow-
ers ofVk0 , i.e., for large momentum. The Volterra-type in
tegral equation~3.10! ~which holds for sufficiently largek!
serves us as the starting point. The iteration procedure

g̃k
~n11!~h!5

i

2Vk0
E

h0

h
dh8Kk~h,h8!@11g̃k

~n!~h8!#,

~A1!

with g̃k
(0)(h)[0, converges uniformly on the time interva

@h,h0# ~for fixed k!. According to Eq.~3.10!, the kernel
Kk(h,h8) is given by

Kk~h,h8!5
def

@e2iVk0~h2h8!21#DV2~h8!. ~A2!

As a result of the iteration, the solutiong̃k(h) has the series
representation

g̃k~h!5 (
n51

` S i

2Vk0
D nE

h0

h
dh1Kk~h,h1!¯

3E
h0

hn21
dhnKk~hn21 ,hn!. ~A3!

The estimate

ug̃k~h!u<expH 1

Vk0
E

h0

h
dh8uDV2~h8!uJ 21 ~A4!

shows thatg̃k(h) remains bounded and goes to zero ask
→`. An asymptotic expansion ofg̃k(h) in inverse powers
of Vk0 can now be achieved by expanding each addend
the series~A3!. For this purpose we provide repeatedly int
gration by parts@DV2: i.e., R(h) is assumed to be smooth#
to the most inner integral of thenth addend and find

E
h0

hn21
dhnKk~hn21 ,hn!

52E
h0

hn21
dhnDV2~hn!2 (

m50

` S 2 i

2Vk0
D m11

3@DV2~m!
~hn21!2DV2~m!

~h0!e2iVk0~hn212h0!#.

~A5!

As all subsequent integrations have the same structure,
are treated likewise. The result is an asymptotic series for
nth addend of Eq.~A3! with leading term
1-6
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1

n! S 2 i

2Vk0
E

h0

h
dh8DV2~h8! D n

1O~Vk0
2~n11!!.

Consequently, all terms contributing tog̃k(h) up to order
Vk0

2n are contained in the firstn addends of Eq.~A3!. If
n54, we find, for example,

Rg̃k~h!52
1

4Vk0
2 FDV21

1

2
I 1

2G
1

1

8Vk0
3 DV0

28 sin 2Vk0~h2h0!

1
1

16Vk0
4 FDV292DV0

29 cos 2Vk0~h2h0!

1DV28I 11
5

2
~DV2!2

1DV0
28I 1 cos 2Vk0~h2h0!

1
1

2
DV2I 1

21I 1I 21
1

4!
I 1

4G1O~Vk0
25!,
d
n-

tt.

. R

. D

4

06401
Ig̃k~h!52
1

2Vk0
I 11

1

8Vk0
3

3FDV282DV0
28 cos 2Vk0~h2h0!

1DV2I 11I 21
1

3!
I 1

3G
2

1

16Vk0
4 @DV0

29 sin 2Vk0~h2h0!

2DV0
28I 1 sin 2Vk0~h2h0!#1O~Vk0

25!,

~A6!

where the abbreviation

I m5E
h0

h
dh8@DV2~h8!#m

has been used. Note that Eq.~A6! already contains all terms
contributing to the divergences of the trace~3.13!.
m
d-

d,

n-
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