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Recent results in the literature concerning holography indicate that the thermodynamics of quantum gravity
(at least with a negative cosmological constar@n be modeled by the lardéthermodynamics of quantum
field theory. We emphasize that this suggests a completely unitary evolution of processes in quantum gravity,
including black hole formation and decay, and even more extreme examples involving topology change. As
concrete examples which show that this correspondence holds even when the space-timelasatigly
asymptotically AdS, we compute the thermodynamical phase structure of the AdS-Taub-NUT and AdS-Taub-
bolt spacetimes, and compare them {@# 1)-dimensional conformal field theofat largeN) compactified on
a squashed three-sphere and on the twisted p|8&0656-282(99)06302-X]

PACS numbegps): 04.70.Dy, 04.60-m, 11.15.Pg

I. INTRODUCTION AND MOTIVATION allows one to calculate correlation functions in the boundary
theory by calculating the effective action in the bulk for field
The holographic principl¢1,2] asserts that all of the in- configurations which asymptotically approach the given
formation contained in some region of space-time may béoundary dat5].
represented as a “hologram”: a theory which lives on the  Given this correspondence, one is naturally led to con-
boundary of the region. The principle also requires that thesider bulk supergravity space-times which are asymptotically
theory on the boundary should contain at most one degree @fquivalent to AdS space-time. Since the AdS-CFT corre-
freedom_per Planck area._ It follows from these two Simplespondence asserts that the generating functionahcge N)
assumptions that the maximum number of quantum degreeagperconformal field theory propagators on the boundiary
of freedom, which can be stored in a region bounded by &f AdS space-time are equivalent to supergravity partition
surface of ared, will never exceed exp(4G) (whereGis  fynctions in the bulk, it is of some interest to understand how
Newton’s constant This dovetails nicely with the laws of many such distinct bulk manifoldB;, with boundaryM,
black hole thermodynamidsvhich provided some of the in- 15y "exist.
spiration for the holographic principleleading some inves- A more complete version of the conjecture states that the
tigators to conclude that the holographic principle may be afy| 1/N expansion of the field theory partition function

essential ingredient in the construction of a complete quanz __ M), on M, must be expressed as a sum overBhe
tum theory of gravity.

Recently, it has been conjecturgi4,5 that information
about the physics of superconformal field theorfes the
largeN limit) may be obtained by studying the region near ZCFT(M)zz Z(B;), (1.0
the horizon of certaip-branes, which yields a gauged super- :
gravity compactification involving [+ 2)-dimensional
anti—de Sitter (Adg, ;) space-time. The correspondence is _ ) .
holographic[5] because the conformal field theo(¢FT) vyhereZ(Bi) is thest.rlng theory(or M-theory) partition func-
resides on the causal boundary of AdS space-time. Thiion onB;. The stringy part of the story controls the short
boundary is the “horosphere” at infinifys]—it is a timelike  distance bulk physicgvhere gravity alone would fail In the
hypersurface with the topologg'x SP, where the circles! ~ Stricter largeN I|_m|t, the string theory reduces_ to gravity,
is the (Euclideanizegtimelike factor. valid on space-times of low curvatufehose typical length
The key feature of this AdS-CFT correspondence is thescalel is of the orderN'™, where f(p) is some positive
fact that fields propagating in the bulk of AdS space-time ardunction ofp], and this is the regime we will focus on in this

uniquely specified by their behavior at the boundary. ThisPaper. . _
Recently[5,7], this relation has been employed to study

the largeN thermodynamicsof conformal field theoriegde-

*Email address: H. A. Chamblin@damtp.cam.ac.uk

TEmail address: Roberto.Emparan@durham.ac.uk

*Email address: cvj@pa.uky.edu 20f course, there is a thermodynamic limit even in finite volume if

SEmail address: rcm@hep.physics.mcgill.ca we take the number of degrees of freedom, here measured by some

'Here “N” refers to that of UN) gauge theory in the simplest power of N, to infinity. So we may indeed have phase transitions
case ofp= 3, with suitable generalizations in the other casep.of [8].
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fined at finite temperature by Euclideanizing to periodicmation of a Schwarzschild black holgn fact, they found
time) on the boundan8'x SP. (Here, S is the Euclidean that for T>T, there are two values of the black hole mass at
time) There are two knowigasymptotically Ad$bulk so-  which the Hawking radiation can be in equilibrium with the
lutions with this boundary. The more obvious one is AdSthermal radiation of the background. The lesser of these two
itself (with suitable identifications while the other is the masses is a point of unstable equilibriih has negative
Euclidean AdS-Schwarzschild solution. It was shown thatspecific hegt whereas the greater mass is a point of stable
the former solution governs the low temperature phase of thequilibrium]
boundary conformal field theory, while the latter controls the Since a phase transition in the field theory is a unitary
high temperature phase. Many qualitative features of the dyprocess, this means that it would seem that there is no “in-
namics of the finite temperature field theory were reproducedormation loss,” or loss of unitarity, in the bulk physics in-
with these space-times, including the geometric behavior o¥olving the nucleation and evaporation of black holes as one
spatial and temporal Wilson lines, confirming that the highmoves between the various phases. It would be certainly in-
and low temperature phases have distinct physical charactefresting to see if this unitary conformal field theory descrip-
istics. This is a dramatic demonstration of the propeaesi tion extends to other transitions between instantons which
uses of a holographic relationship or “duality” between mvc_)lve space-time topology chgnge. Clearly, this would then
two theories. be in sharp contrast to the claims of recent authfis12,

We would like to emphasize that the arrow runs bothWho h_ave _argued that whenever fchere is_atopology changing

transition (i.e., by black hole pair creation or some other

ways in this relationship. While the existence of—and tran- : L N
sition between—two different phases of a field theory ar roces_}; the superscattering matrix will not faptorlze into an
matrix and its adjoint, and hence there will be a loss of

uncontroversial concepts to most theorists, this is not th uantum coherence.

same for many Processes in quaptum gravity. Ipdeed, a5 |t would therefore seem, at first glance, that the AdS ver-
many of the transitions between different space-time solugjyn of the holographic principle has provided us withra-

tions in gravity are not completely understood, there is stilljse argument which shows that information is not lost in
room to assume that—especially in cases involving thg,ack hole evolution or topology changing transitions, at

evaporation or formation of black holes—the quantum projeaqt a5 Iong as the topology change occurs in a spacetime
cesses may be nonunitary. It is also of considerable technicglpich is asymptotically AdS.

interest as to how to describe completely such processes, as 1ig suggests an interesting and vigorous program of re-

they often describe space-time topology change to relate thggiting the study of various space-time transitions between

initial ar_1d final states. . ) ) ) many instantons of interest, now in an AdS context.
Crucially, note that in having a holographic relation be-\'this paper, we will extend the holography laboratory to

tween field theory and gravitiat least with negative cosmo- e de examples with nontrivial topology and which are

logical constant we have a powerful laboratory for studying only locally asymptotically AdS. We discuss the Taub-

those bulk topology change processes which are still a mattQ{ewman-Unti-Tamburino- (NUT-)AdS (TN-AdS) and

of debaté In particular, the relation to field theoryif Taub-bolt-AdS (TB-AdS) space-times. These space-times

proved completely removes the possibility of a nonunitary paye 4 global nontrivial topology due to the fact that one of

nature of the processes governing space-time topology,e Killing vectors has a zero-dimensional fixed point set

change in quantum gravity with negative cosmological con-«n ¢ ) or a two-dimensional fixed point sétbolt” ). Fur-

stant, and we find it highly suggestive of a similar conclusiony,e these four-dimensional space-times have Euclidean sec-
for all gravitational situations. o tions which cannot be exactly matched to AdS at infinity.

In the field theory examples of Refs,7] (specializing to We show that it is possible to have a thermally triggered
the casep=2), while the boundary field theory phase tran- ya5e transition from TN-AdS to TB-AdS, which is the natu-
sition tgkes place, the Fiom|nant contrlbutlon on the 3rlglhtral generalization of the Hawking-Page phase transition from
hanld side of Eq(1.1) shifts from AdS, with tzopolé)gyR AdS to Schwarzschild-AdS. We also notice that in the limits
XS', to AdS-Schwarzschild, with topologR“X S”. This  \yhere we can use the naive field theory expectations, the
transition was studied originally in Reff10]. The nature of  (aguits are in agreement with boundary field theory.
this phase transition is intimately associated with the fact that |, the first case under study, where the bolt isS&n the
the gravitational potential of AdS space-time behaves morgesence of these nuts or bolts implies that the bulk supports
or less like a large, perfectly insulating “box.” Massive par- 5 nontrivial NUT charge, which in turn implies that the
ticles are confined to the interior of AdS space-time, an oundary must be realized as shbundle overs? [i.e., the
while massless modes may escape to infinity, the fluxes fogem number of this Hopf fibratiofdenotedC,) is related
incoming and outgoing radiation in a thermal state at |nf|n|tyt0 the NUT charge\ in the bulk by the explicit relatiofi3]

are equalthe caqsal boundary acts Iilge a m_ir?r.or N=(1/87) 8C,, where 3 is the period of theS! fiber at
It was shown in Ref[10] that there is a critical tempera- infinity]: the boundary at infinity is a “squashed” three-
ture T, past which thermal radiation is unstable to the for'sphere.

This squashed three-sphere is the three-dimensional space
on which the boundary conformal field theory will be com-
3See Ref[9] for a recent discussion—uwith a different flavor—of pactified, with 8 identified with the inverse temperature, in
space-time topology change in this context. analogy with the AdS—AdS-Schwarzschild systgtf]. As
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studied in Refs[5,7], we see that the bulk behavior is con-  (a) In order to ensure that the fixed point set is zero di-
sistent with the expected phase structure of the conformahensional, it is necessary that the Killing vector has a
field theory on the boundary. fixed point which occurs precisely when tt#&¢p) two-sphere
In the second case, the bolt is &3, and the resulting degenerates, i.eV/(r=n)=0.
absence of a nontrivial fibration means that there is no link (b) In order for the “Dirac-Misner”[16] string to be un-
between the temperature at infinity and the squashing paranebservable, it is necessary that the periodrdcfatisfy A 7
eter. The squashing parameter describes a fixed deformatiea4nA ¢. Since we want to avoid conical singularities at the
of the boundary as a twisted product Bf and Euclidean poles of the angular spheres, thar =27, and therefore
time St. In this case, the phase structure found in the bulkA r=8mn.
again is consistent with that of conformal field theory on the (c) In general, these constraints will make the paint
boundary. =n look like the origin ofR* with a conical deficit. In order
to avoid a conical singularity, the fiber has to close smoothly
Il. NUTS AND BOLTS OF AdS at r=n. This requiresA7V'(r=n)=4mx, i.e., V'(r=n)
We now turn our attention to a particular class of metrics 1’<|201V;/ condition(a) requires that the numerator ¥fhas a

which are locally asymptotically equivalent to anti—de Sittergoyple zero at =n. It is easy to see then that the “mass”
space-time: the Taub-NUT-AdG N-AdS) and Taub-bolt- parametem must be

AdS (TB-AdS) metrics. The metric on the Euclidean section

of this family of solutions may be written in the forpi4] 4n3

Mmy=n— - (2.9
ds?=V(r)(dr+2ncosf de)?

2 2 12 (4Pt sir? ) and then
V(r)+(r —n9)(de+sir 0de?), (2.1

+

where Vn(r)=%[1+I’2(r—n)(r+3n)]. (2.5

_(r?+n?)—2mr+17%(r*~6n%r?-3n%)

2.2 With this, condition(c) is automatically satisfied. This is due
2__ r]2 .

to the fact that the term that multiplies the cosmological

constant vanishes at the nut and what remains is the same as

and we are working with the usual conventioh?= in the familiar case with\ =0. This means that the presence

—3/A), with A<0 being the cosmological constant. Heme of a cosmological constant does not affect the nut.

is a(generalizefimass parameter amds a radial coordinate. It is interesting to notice that here with<<0, m does not

Also, 7, the analytically continued time, parametrizes a circleneed to be positive in order for the nut to be regular. It is also

St, which is fibered over the two-sphe®8, with coordinates  worth remarking thatn remains an arbitrary parameter,

6 and¢. The nontrivial fibration is a result of a nonvanishing which will be assumed to be positive, without loss of gener-

“nut parameter’n. ality. That is, asn varies in this family, we see that the

In the asymptotic region, the metri2.1) becomes squashing of the asymptotic three-spheres changes, and thus
2 an? ;or flixe(?c cosmé)éogiclal constant we have a one-parameter
B 2, 2 2 5 2 amily of TN-AdS solutions.

dsz—r—zdr +r |—2(d¢+cos¢9dgo) +d6*+sin’ de } Note that for the special case=1/2 the squashing in Eq.

(2.3 (2.3) vanishes; i.e., the asymptotic spheres are round. In fact,
in this special case, the geometry coincides precisely with

where ¢y=7/2n. One can recognize the angular part of thethe AdS, space. In order to see this, changéo the more

metric as that of a “squashed” three-sphere, wheré/¥  ysualy coordinate inS®, 7=2ny, so that the period of is

parametrizes the squashing. This finite amount of squashingy. It is convenient to perform another coordinate change on

contrasts with the standard Taub-NUT solut{d’®] with A Eg. (2.1) by shiftingr—r +n to find

=0. In the latter, a squashed three-sphere also arises in the

asymptotic region, but #/1? is replaced by 4%/r? in the u(r) £(r)
angular part of the metrifcf. Eq. (2.3)]. dszzmdr2+4n2m(d¢+ cosfdg)?
Remarkably, this asymptotic metri@.3) is still maxi-
mally symmetric, to leading order, i.e.R,,,z= +r2U(r)(d6?+sir? 0 de?), (2.6
- 1/I2(gwgvﬁ—gﬂﬁgm). Hence we can still think of these
solutions as locally asymptotically A4S with
A. Taub-NUT-AdS r? 4n
. . . . f(r) =1+ v 1+ —
To begin with, let us restrict our attention to nuts, the | r

zero-dimensional fixed point set. For a regular nut to exist,
we need to satisfy the following conditions. and
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2n
U(r)=1+T.

The nut is now at =0.
Now start from the following form for the metric on A4S
space-time as the Poincaball [5]:

dy?+y2dQ3

IS =4 =y

(2.7

The boundary is ay=1, and it is anS®. Changing coordi-
nates according to

r

r+1’

y2
12

(2.9

so that the boundary is now at-o, we find that the fol-
lowing metric for AdS space-time:

2

1+1/r

|2
dSzZr—z

I
+r2 1+F

X[(dy+cosh de)?+de>+sir? 0 de?]. (2.9

This AdS metric coincides precisely with the TN-AdS metric
(2.6) with n=1/2. At r=0 there is a coordinate singularity,
but this is easily seen to be just like the originf, i.e., a
nut. It is not surprising to find a slicing where AgSpace-
time contains a nut: given any point in the Poincaedl,

we can always choose coordinates such that it looks like th

origin of R%.

One can confirm that in general the TN-AdS metric is, g cases,,

distinct from AdS by comparing curvature invariants, e.g.,

R¥'R,,,, on the two spaces.

B. Taub-bolt-AdS
We begin by casting the metri@.1) in the form
ds?>=4nV(r)(dy+cosd de)?

2
r
2_ 2 2 H 2
+_V(r)+(r n?)(de?+sir? 0de?), (2.10
with
r2—2mr+n2+1"2(r*-6nr>-3n%
Vp(r)= r2-n2 )
(2.11)

where as usuay has period 4. In order to have a regular
bolt atr =r,>n, the following conditions must be met:(a)
V(rp)=0 and(b) V'(r,)=1/2n. These are rather like the
conditions for having a nut, but sineg>n, the fixed point
set of 9, is two dimensional, instead of zero dimensional.
Moreover, the zero of the numerator \é{r) atr=r, must
now be a single one.

After some simple algebra, we find that conditi@) im-
poses

PHYSICAL REVIEW D59 064010

~ _r§+n2+ 1, 6n2 3n4 -
m=my T ﬁzrb—nrb—a.(.Z)
Then we find
/ 3 (r2—n?+1%3
VY= | P (2.13

Now we require(b) to be satisfied. The ensuing equation
yieldsr, as a function oh and|:

|2

“1in

n2 4
M (1i \/1—48|—2—+144|—4). (2.19
Forr, to be real the discriminant must be non-negative. Fur-
thermore, we must take the part of the solution which corre-
sponds tap,>n. This gives

(1 V3
n<

6 12
It is only for this range of parameters that one can construct
real Euclidean TB-AdS solutionlotice, in particular, that
the AdS valud =2n lies outside this range.

It is worth noting that the properties of Taub-bolt in AdS
space-timdfor the upper branchy, ) are very different from
those of Taub-bolt space-time in an asymptotically locally
flat (ALF) space. The reason is that these upper branch TB-
AdS solutions do not go smoothly onto ALF-TB space-time
as the cosmological constant is switched off.|As taken to
fhfinity, we can see that,, —. The ALF-TB limit can be
achieved only with ther,,_ branch TB-AdS solutions. In
—2n as the cosmological constant goes to
zero, reproducing the ALF-TB value.

The lower branch family is more analogous to the
Schwarzschild-AdS solutions. In the latter, when the bolt
(the Euclidean horizonis much smaller than the AdS scale,
it resembles closely the corresponding asymptotically flat
bolt. It is only when the black hole grows enough in size that
the AdS structure shows up. By contrast, for the upper brach
TB-AdS solutions, the fact that they live in anti—-de Sitter
space is always relevant.

Interestingly, the global topology of the TB-AdS solution
is quite unlike that of TN-AdS. Arguments similar to those
put forward in Ref[17] lead to the conclusion that this so-
lution has the topology of:P>—{0}, where the removed
“point” {0} corresponds to the squashed three-sphere at in-
finity. Furthermore, the bolt itself may be interpreted as the
two-cycle inCP? with odd self-intersection number; i.e., this
space-time does not admit any spin strucfure.

12

(2.1

=Nmax-

“This would suggest that there might be problems with interpret-
ing this as a supergravity compactification. Recall, however, that
there is the possibility of introducing a generalized spin structure
[18], particularly in the case dofP?. Even without that possibility,
we expect that holography in Ad%and related space-times a
property which exists independently of the possibility of supergrav-
ity compactifications.
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Now that we have understood the structure of the TN-
AdS and TB-AdS solutions, we need to examine the possi-
bility of transitions between them. In order to understand the
conditions for this phase transition, we need to calculate the
actions for TN-AdS and TB-AdS space-times.

C. Action calculation

The Euclidean action is given by the form\9,2Q

1 1
l=——— d4x\/§(R—2A)——j d3x\/y0,
167G J m 87 Jom FIG. 1. Plot ofr,, as a function of, up ton,,,, which limits the

(2.16  existence of TB-AdS solutions. The straight lines aye:2n (dot-
ted ling andr,=(3+/10)n (dashed ling

where M is a compact region of the spacetime, with bound-
ary dM (which we will ultimately send to infinity Herevy,,, py R T (27
is the induced metric oM, and ©® is the trace of the Volb(R)=2nf dapf (rz—nz)drj f sinfdéde
extrinsic curvature ofdM in M. Of course, both of the 0 T 0o
terms above diverge as the boundary goes to infinity. Hence, (2.19
to produce a finite and well-defined action as the boundaryq
dM goes to infinity, we will subtract an infinite contribution
from a background or reference space-time solution. 4x R (27

For a background to be suitable for a given space-time V0|n(R):2nf dlﬂJ (fz—nz)dff f singdéde,
whose action we wish to compute, we must match the metric " 0o (2.20
that it induces oM to the metric induced by the space- '
time ondM, to an order that is sufficient to ensure that thesg that the total volume difference is given as the limit, as
difference disappears in the limit where we takef to in- R, of Vol,(R) — Vol,(R). Recalling that we must ensure
finity. Here this does not seem to be possible using A#S  that the induced metrics of TN-AdS and TB-AdS space-
a reference solution. However, given the asymptotic structimes match on the hypersurface<(R), we see that we
ture of the TN-AdS and TB-AdS instantons, it is natural to myst rescale the nut parametey of TN-AdS space-time to
use TN-AdS space-time as the background for solutions dex(r)n, (wheren, is the nut parameter of TB-AdS space-
scribed by the metri€2.1) which have the same asymptotic time), in order that their Euclidean times have the same pe-
behavior. It follows that the action of TN-AdS space-time iSyjoq to sufficiently high order[The functionA(r)2 is ob-
defined to bezerg because it is regarded as the ground stateined by expanding the ratio of the metric functions

The calculation of the action of TB-AdS space-time rela'V(r,n,m) obtained in each cade.
tive to TN-AdS space-time is just the “nutty” generalization | this way we find
of the calculation$10,7] of the action of AdS-Schwarzschild
space-time relative to AdS space-time. Just as with these
previous calculations, the surface term in E2}16) does not Np="Np
make any contribution. It follows that we just need to focus

on the bulk contribution. Since we are in four dimensionspytting all of this together one therefore obtains the final

and working with solutions of the vacuum Einstein equa-resylt for the action of TB-AdS space-time after considerable
tions, it follows that the Ricci scalar is given Bs=4A, and  zjgepra;

the bulk action term assumes the form

0

|2(mb_mn)
1+T

+O(R4)>. (2.21

A I an((rb—n)z(rﬁ—Gnrb—nz)
3 b= " =2

= 4y o= —— Gl ry—2n

I pre Md X\0 87TGI2VOI(M)' (2.17 b

We can now analyze for which values of the nut parameter
We now need to compare the infinite volume contribution ofthe action of TB-AdS space-time is larger or smaller than
TB-AdS space-time to the infinite contribution of TN-AdS that of TN-AdS space-time, i.e., whekgis positive or nega-
space-time; this difference should give us a finite, physicalljtive. A short inspection shows thgj is positive only in the
meaningful answer. For both metrics, one calculates the deange h<r,<(3+ \/10)n (of course, we are always consid-
terminant as eringr,=n). Figure 1 is a plot of =r, as a function of, in

the allowed range of variableg<n,,. We also include the

Jg=2n(r2—n?)sineé. (2.18  linesr=2n (dotted ling andr = (3+ /10)n (dashed ling
We can see that we always hayg>2n from Eq.(2.14).

Taking as our hypersurfacgM the fixed radius surface  Note thatr,. —2n asn—0. The lower branch_ lies en-
=R, the volume contributions from TB-AdS and TN-AdS tirely betweenr =2n andr = (3+ /10)n, and so the action
space-times thus take the explicit form is always positive for these solutions. On the upper branch

). (2.22
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For the upper branch solutions, the action and entropy be-
S come

4 4

~ Tosg O, S= T iomn0). (3.4

1= 36Gn2

The entropy coincides in this limit with the limiting value of
Apoi/4G, showing that in the high temperature regime the
effect of the nontrivial topological fibering of the manifold
(the contribution from the Misner strifd.6]) becomes invis-

—-n ible, as could be expected.
nax Note that the lower branch solutioihich have higher
FIG. 2. EntropySas a function of. action and lower entropyhave the following behavior at
high temperature in the limiA —O:
r,+ , the action is positive for the smallest valueg gf (the 2
largest .values oh), but asrp. grows (n becomes smalljé,r rp=2n+0(n%), Ib—L+O(n4),
the action becomes negative. The crossover point, li,e., G
=0, lies atn=ng;=1(7—210)"76. )
S= ﬂ+O(n4). (3.5
Ill. SOME THERMODYNAMICS G

We have performed a covariant computation of the actionThese are the values obtained in the-0 Taub-NUT or bolt
as distinct from a Hamiltonian calculation, which would action calculations of Ref.13]. This is entirely consistent
have required a specific time slicing. Such a calculatiorwith the observation, made in Sec. Il B, that the lower branch
would have identified a periodic time in an Arnowitt-Deser- bolt solutions tend to thé =0 solutions in this limit.
Misner (ADM) manner [21], using the temperaturel Focusing on the upper branch solutiofvghich will al-
=1/(8wn). We expect that such a calculation would haveways be more stable: see latere immediately seethat the
shown that the action decomposes into contributions fronfree energyF~V,T3N*? and entropyS~V,T2N*? (V, is
the Hamiltonian at infinity and the Misner strings, in addition the spatial volume of the field thegrywhich corresponds to
to the usual terms corresponding to the area of the[B&lt  the expected high temperature behavior of a field theory in
We will not carry out a Hamiltonian calculation here, in- three space-time dimensions. It is important to note that the
stead moving on to compute various state functions angrowth withN is slower tharN?, confirming that theN is not

hence study the physics of the present situation. associated with the gauge theory Nf D2-branes in 10
We have for the entropy the formuld=(Bdz—1)I.  spacetime dimensions, but rather the more exotic field theory
Lengthy algebraic manipulations finally yield the entropy in associated wittN M2-branes in 11 dimensiongThe former
a simple form flows to the latter in the infrare23].) The powerN®?
counts the number of degrees of freedom of the theory,
. 2 n? showing that we are in, roughly speaking, a deconfined phase
S= E(rb_n) 1+1247). 3D ofthe theory. TheN®? factor was first noted in Ref24] as

associated with the entropy &f coincidentM 2-branes. We
This is manifestly positive. It should be noted that this ex-consider our present calculations, with their holographic in-
pression differs fromA,,/4G: there are contributions to terpretation, as independent support for the conclusion of
the entropy from the nut charge and nut potential at the bolRef. [24] that the (2+1)-dimensional CFT ha®(N*?) de-

[22]. grees of freedon(This also follows from the results of Refs.
We plot the entropy as a function ofin Fig. 2, including [5,7] for the AdS—AdS,-Schwarzschild case, once the ap-
that of the lower branch solutions. propriate conversions have been made.
We can compute the thermodynamic enekyy Recall that Taub-bolt-AdS solutions only existed for

<Npmax: the radius of the bolt becomes unphysical. This

means that below a certain temperatdig,=21/(87N 40,

the solution does not exist, and the TN-AdS solution is the

allowed one. Above that temperature, there is apparently a

wherem, , are the mass parameters for TB-AdS and TN-transition to the TB-AdS solution as is evident from the dis-

AdS space-times as given in Eq2.4) and (2.12 above. played plots in Figs. 2 and 3. However, the transitiof gt,

Sincer,>2n, the energy is strictly positive. is merely an artifact of the fact that we not truly in the ther-
We are particularly interested in the very high tempera-

ture regimen— 0. In this limit we have

1 (rb—n)3(rb+7n):mb—mn, 32

E=d5l= 3G rp—2n G

2 SCrucially, use the fact that this is an 11-dimensional supergravity
LT 7 . . )
[, =——2n+0(n3). 33 compactification; soG~I1 (in units where the 11-dimensional
b+ 6n (n%) @3 Planck length is unityand|~N,
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C IV. TOPOLOGICALLY TRIVIAL NUTS AND BOLTS

The Taub-NUT-AdS family of metrics contains solutions
where the angular spherég,¢) are replaced by planes or
hyperboloids. For vanishing nut charge, the solutions corre-
spond to topological black hol¢&5], studied in Ref[26] in

n their M-theory context.

—

A. Planar nuts and bolts

Let us focus first on the plandor toroida) solutions

FIG. 3. Specific hea€, at constant volume, as a function rf n 2 g2
It diverges sharply at=n,y- ds?=V(r)| dr+ |—2(Xdy_ydx) + W
modynamic limit. More careful consideration below will re- r’—n? ) )
veal the transition to be at a higher temperafligg . + Tz (dx7+dyY), (4.2)
In order to study the thermal stability of the system, it is
convenient to examine the specific he@t=—£3d;S= where, now,
—nd,S. The analytical expression, however, is not very il- s - 4
luminating. Instead, we provide in Fi@ a plot of C as a V= —2mr+17%(r"=6n°r°—3n"% 4.2
function of n, which remains positive for the upper branch r’—n? : '
solutions, negative for the lower branch solutions, and begins ] ) ) .
to grow rapidly neafT ., for both branches. The coordinatex,y here have dimensions of length. Notice

that the fibration is now trivial: there are no Misner strings.

_ ; ; The topology of the boundary at- is thereforeR3. How-
Tin<T<Tgi=1/(8wn.). Above T, it goes negative. . . ,
ng meancgtthat(thz 'TIK}-AdS solutigl;l is sgll releva?]t above®Ver although the boundary is topologically a direct product

Tmin- As the specific heat of the TB-AdS solution is positive, of the E_ucll‘lde_an t,|,me line and the spatial plabe_y), the
however, we can have a stable bolt as well, and therefore m%roduc_t IS tvy|sted or warped and the pqundary IS not flat.
' i . k An immediate consequence of the trivial topology is that
can n'uc.le_a}te Iong-llvgd bolt SOIUI'OOS' . the Euclidean time perio@ will not be fixed, as it was in the
This |n|t|al'conclu5|on tha’; there is a phase transition to 8pherical case, by the value of the nut paraniateihere-
(nearly coexistence phase is modified by the fact that wegre in the present case, we can vary the temperature of the
have not taken the limi—c. To see how the modification  gystem while leaving fixed. In other wordsn labels differ-
comes about, first recall thaafter convertingG~1"" and  ent sectors of the theory, characterizing the “warpage” of
|~N™) there is a positive power & multiplying the action  the productRx R2. For each sector, we can consider the
Ip, and remember thdt, is the differencebetween that of phase structure as a function of temperature separately.
AdS-TB and AdS-TN space-times. In the absence of Misner strings, we expect the entropy of
Therefore, in the thermodynamic limit where we take thethe solutions to receive contributions solely from the area of
number of degrees of freedofmeasured byN) to infinity, bolts. This expectation will be confirmed below.
the action difference imfinite. We must conclude therefore Let us now proceed to examine the fixed-point sets of the
that the true phase transition takes place wheresigeof |, isometry generated by, —the planar nuts and bolts. Nuts
changes, which is aTg;. The free energy is continuous Will appear as fixed-point sets at=n. One finds that the
there, but the energl is discontinuous, and so we conclude mass parameter must take the value
that it is afirst order phase transition: The degrees of free- 3
dom are distinct in each case, as shown by the fact that the -_ 41
. ) L my, 2 4.3
amount of entropy associated with thermal radiation in the |
TN-AdS solution is vastly exceeded by the amount which
can be stored in the area of the b@nd Misner stringsin
the TB-AdS solution(Notice that this analysis and discus-
sion also applies to the AdSAdS,-Schwarzschild case
studied in Refs[5,7], although the more complex thermody-
namic conclusions made about the same bulk physics in Ref. o
[10] are more general, as they are not restricted to the lirge Notice thatVi(r) has a double zero at=n. This is, the
limit of this context) solution must be regarded as an extremal, zero-temperature
We remark again that although this represents the physics
of transitions between very different gravitational solutions,
the complete physics is very plausibly described by the uni- SNote that if , x, andy are all compactified on &varped torus
tary conformal field theory living on the twisted three-sphereT?, consistency will demand that the perigcbe fixed in terms of
at the boundary. n. We will not do such a compactification here.

Notice, however, that the actiof®.22 is positive for

so that

(r—n)2(r+3n)

Vn(r)= —lw (44)
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background, since the Euclidean timecan be identified
with arbitrary period. In fact, when=0 we simply recover

the AdS metric in horospheric coordinates =€ 1/z). It is

PHYSICAL REVIEW D59 064010

The action is, for,>n, always negative. Therefore, as in
then=0 case, there are no phase transitions as a function of
the temperature and the system stays always in the “decon-

also interesting to note that the mass parameter is negatifaed” phase.
for all other cases. This might be an indication that the CFT Finally, the entropy
defined on these boundary geometries might be unstable. Al-

though we have not checked this point, these backgrounds

are presumably nonsupersymmetric fot 0.

Now let us find Taub-bolt-AdS solutions, whe#e has a
two-dimensional fixed-point set at some radiusr,>n. In
this case we find that the mass parameter has to be

1(, ., 3n
mb=ﬁz rb—6n rb—w .

(4.5

LA(r5—n%) _ Ao
4G1? 4G

S=(Baz—1)I= (4.11)

reproduces the Bekenstein-Hawkify] result, as it should
in the absence of Misner strings.

At high temperatures the entropy behaves in the confor-
mally invariant way,S~ 8~2. In this regime, the nontrivial
warpage forn#0 is invisible. However, at lower tempera-
tures the entropy departs from the CFT behavior. This is as

This time, Euclidean regularity at the bolt requires the periodeXpected, since the warpage breaks conformal invariance by

of 7to be

4w _471'|2 Iy
’B_V’(rb)_ 3 ri—n?

(4.9

introducing a nonvanishing scale, namely, the mass param-
eterm.

B. No hyperbolic nuts
There is also the possibility of having hyperbolic, instead

As 1, varies fromn to infinity, we cover the whole tempera- of spheric or planar, fixed-point sets @f. The metric to be
ture range from O tee. Notice thatm, can be either negative, ysed is, in this case,

zero, or positive. When=0 we recover the standard results

for Schwarzschild-Adgspacetime.

ds?=V(r)[dr+2n(cosh6—1)d¢]?

As we said above, we can thermally excite each of the 2

sectors labeled by, keepingn fixed. This requires us to
study the thermodynamics of TB-AdS solutions above a TN-

+ +(r2—n?)(d6?+sint? 6de?), (4.12

V(r)

AdS background with the same nut charge. As usual, in or-

der to match the geometries at large radRisve must set

BnVVn(R)=BpVV(R). (4.7

We must also match the values of the nut charges, but this

with

Ve —(r’+n?—-2mr+1"?(r*-6n%r2—3n%

- r2_[.]2

(4.13

turns out to yield a contribution to the action that vanishes as

R—o0 and, therefore, will be neglected. The computation o
the action, which is reduced to a difference of volume terms

is straightforward and yields

I L2 [r,—n
b= 12GI?\ry+n

(r3+2nr,+3n?) |, 4.9

where L2 accounts for the area of the,y) plane, —L/2
=x,y<L/2.
Now we find

L2

E=8nGH

(rp—Nn)2(rp+2n). (4.9

Notice that, forn#0, this is different from the value

L2 L% (rp—n)3(rp+3n)
47612 (M~ M) =g . !

(4.10

sThe coordinates6,¢) parametrize a hyperboloid and, upon

appropriate quotients, surfaces of any genus higher than 1.
The fibration is trivial, and, again, there are no Misner
strings.

However, if we try to make =n into a fixed point ofg ,,
we find thatV(r) becomes negative far close enough to
(and bigger thann. That is,V vanishes at some>n, and
instead of a nut, we find a bolt. Thus there are no hyperbolic
nuts.

One could study the thermodynamics of these solutions
by taking as a background a singular, extremal bolt. How-
ever, the holographic significance of these solutions is ob-
scure, as it is fon=0, where it has been argued that these
systems are likely to be unstalji26].

V. CONCLUSIONS

Having proposed that it should be instructive to revisit the
program of studying various quantum gravity processes in
the light of the holographic principléas embodied by the
use of AdS space-timgwe have enlarged the arena some-

which could, perhaps, have been expected. This means thahat by studying some examples which are dolyally as-
in this case one should not think ofas a parameter directly ymptotically AdS space-time.

related to the mass.

The boundary conformal field theory is the Euclideanized
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(2+1)-dimensional superconformal field theory compacti-include spacelike topology change. We intend to report on
fied on a squashed three-sphere, in one case, and a twistkdther examples in the near future.

plane in another, mapping its phase structure to that of Taub-
NUT-AdS and Taub-bolt-AdS systems in the bulk.

We find that at high an¢to a lesser exteptow tempera- A.C. would like to thank Stephen Hawking and Chris
tures, the thermodynamic properties of the theory are thos”unter for useful conversations. C.V.J. and R.C.M. would
we expect from general considerations and are consistefike to thank Miao Li for a useful conversation. A.C. is sup-
with the properties of the dual conformal field theory, includ- ported by Pembroke College, Cambridge, England. R.E. is
ing an unambiguous phase transitionTaf. It would be  Supported by EPSRC through grant GR/L3816&) and by

interesting to study further the properties of the field theorydfant UPV 063.310-EB225/9%pain. C.V.J.'s research was
at intermediate and low temperatures. supported by a NSF Career grant PHY97-3310K) and

In Sec. Il C we suggested thgt Ags‘pace—tir_ne could nqt gluspl;c)%{:gt bSH,\Tgééé%i%‘%gi B'):.Osdg.ll\zﬂéiéezﬁag&vz?s
be used as a background solution in the action calculations,, 4 NSFE grant PHY94-07194TP, UCSB. C.V.J. thanks
This is because we were unable to embed the asymptotige mempers and staff of the Abdus Salam International Cen-
squashed® into AdS, space-time. If this were possible, the ter for Theoretical Physics at Trieste, the organizers and par-
phase structure could be even more complicated by the inicipants of the Trieste Spring School on “Non-Perturbative
troduction of an Adg phase. However, the fact that our re- Aspects of String Theory and Supersymmetric Gauge
sults are consistent with the field theory equivalence suggesteheory” for a stimulating atmosphere, and the Physics De-
that our calculations are correct without such a contributiorpartment of Columbia University for hospitality. C.V.J. and
(at least at high temperatujes R.C.M. would like to thank the staff of the Aspen Center for
We now have three concrete families of holographic ex-Physics and the participants and organizers of the program
amples of the map between the laye finite temperature “M-Theory and Black Holes,” for another stimulating atmo-
properties of (2 1)-dimensional field theory and gravi- sphere for research. We all thank the members and staff of
ty: that of Refs[5,7] and those presented here. the Institute for Theoretical Physics and the Physics Depart-
As we stressed in the Introduction, this program hasment, UCSB, and the participants and organizers of the
sharpened the debate about the nature of various instant¢String Duality” workshop and the “Strings” conference
calculations in quantum gravity and may provide a practicafor atmospheres no less stimulating than those already men-
answer to the question of the unitarity of processes whichioned.
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