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Large N phases, gravitational instantons, and the nuts and bolts of AdS holography
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Recent results in the literature concerning holography indicate that the thermodynamics of quantum gravity
~at least with a negative cosmological constant! can be modeled by the largeN thermodynamics of quantum
field theory. We emphasize that this suggests a completely unitary evolution of processes in quantum gravity,
including black hole formation and decay, and even more extreme examples involving topology change. As
concrete examples which show that this correspondence holds even when the space-time is onlylocally
asymptotically AdS, we compute the thermodynamical phase structure of the AdS-Taub-NUT and AdS-Taub-
bolt spacetimes, and compare them to a~211!-dimensional conformal field theory~at largeN! compactified on
a squashed three-sphere and on the twisted plane.@S0556-2821~99!06302-X#

PACS number~s!: 04.70.Dy, 04.60.2m, 11.15.Pg
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I. INTRODUCTION AND MOTIVATION

The holographic principle@1,2# asserts that all of the in
formation contained in some region of space-time may
represented as a ‘‘hologram’’: a theory which lives on t
boundary of the region. The principle also requires that
theory on the boundary should contain at most one degre
freedom per Planck area. It follows from these two sim
assumptions that the maximum number of quantum deg
of freedom, which can be stored in a region bounded b
surface of areaA, will never exceed exp(A/4G) ~whereG is
Newton’s constant!. This dovetails nicely with the laws o
black hole thermodynamics~which provided some of the in
spiration for the holographic principle!, leading some inves
tigators to conclude that the holographic principle may be
essential ingredient in the construction of a complete qu
tum theory of gravity.

Recently, it has been conjectured@3,4,5# that information
about the physics of superconformal field theories~in the
largeN limit 1! may be obtained by studying the region ne
the horizon of certainp-branes, which yields a gauged supe
gravity compactification involving (p12)-dimensional
anti–de Sitter (AdSp12) space-time. The correspondence
holographic@5# because the conformal field theory~CFT!
resides on the causal boundary of AdS space-time. T
boundary is the ‘‘horosphere’’ at infinity@6#—it is a timelike
hypersurface with the topologyS13Sp, where the circleS1

is the ~Euclideanized! timelike factor.
The key feature of this AdS-CFT correspondence is

fact that fields propagating in the bulk of AdS space-time
uniquely specified by their behavior at the boundary. Th

*Email address: H. A. Chamblin@damtp.cam.ac.uk
†Email address: Roberto.Emparan@durham.ac.uk
‡Email address: cvj@pa.uky.edu
§Email address: rcm@hep.physics.mcgill.ca
1Here ‘‘N’’ refers to that of U(N) gauge theory in the simples

case ofp53, with suitable generalizations in the other cases ofp.
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allows one to calculate correlation functions in the bound
theory by calculating the effective action in the bulk for fie
configurations which asymptotically approach the giv
boundary data@5#.

Given this correspondence, one is naturally led to c
sider bulk supergravity space-times which are asymptotic
equivalent to AdS space-time. Since the AdS-CFT cor
spondence asserts that the generating functional of~largeN!
superconformal field theory propagators on the boundaryM
of AdS space-time are equivalent to supergravity partit
functions in the bulk, it is of some interest to understand h
many such distinct bulk manifoldsBi , with boundaryM,
may exist.

A more complete version of the conjecture states that
full 1/N expansion of the field theory partition functio
ZCFT(M ), on M, must be expressed as a sum over theBi :

ZCFT~M !5(
i

Z~Bi !, ~1.1!

whereZ(Bi) is thestring theory~or M-theory! partition func-
tion on Bi . The stringy part of the story controls the sho
distance bulk physics~where gravity alone would fail!. In the
stricter largeN limit, the string theory reduces to gravity
valid on space-times of low curvature@whose typical length
scale l is of the orderNf (p), where f (p) is some positive
function ofp#, and this is the regime we will focus on in thi
paper.

Recently@5,7#, this relation has been employed to stu
the largeN thermodynamics2 of conformal field theories~de-

2Of course, there is a thermodynamic limit even in finite volume
we take the number of degrees of freedom, here measured by s
power of N, to infinity. So we may indeed have phase transitio
@8#.
©1999 The American Physical Society10-1
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fined at finite temperature by Euclideanizing to period
time! on the boundaryS13Sp. ~Here, S1 is the Euclidean
time.! There are two known~asymptotically AdS! bulk so-
lutions with this boundary. The more obvious one is A
itself ~with suitable identifications!, while the other is the
Euclidean AdS-Schwarzschild solution. It was shown t
the former solution governs the low temperature phase of
boundary conformal field theory, while the latter controls t
high temperature phase. Many qualitative features of the
namics of the finite temperature field theory were reprodu
with these space-times, including the geometric behavio
spatial and temporal Wilson lines, confirming that the hi
and low temperature phases have distinct physical chara
istics. This is a dramatic demonstration of the properties~and
uses of! a holographic relationship or ‘‘duality’’ betwee
two theories.

We would like to emphasize that the arrow runs bo
ways in this relationship. While the existence of—and tra
sition between—two different phases of a field theory
uncontroversial concepts to most theorists, this is not
same for many processes in quantum gravity. Indeed
many of the transitions between different space-time so
tions in gravity are not completely understood, there is s
room to assume that—especially in cases involving
evaporation or formation of black holes—the quantum p
cesses may be nonunitary. It is also of considerable techn
interest as to how to describe completely such processe
they often describe space-time topology change to relate
initial and final states.

Crucially, note that in having a holographic relation b
tween field theory and gravity~at least with negative cosmo
logical constant!, we have a powerful laboratory for studyin
those bulk topology change processes which are still a ma
of debate.3 In particular, the relation to field theory~if
proved! completely removes the possibility of a nonunita
nature of the processes governing space-time topo
change in quantum gravity with negative cosmological c
stant, and we find it highly suggestive of a similar conclus
for all gravitational situations.

In the field theory examples of Refs.@5,7# ~specializing to
the casep52!, while the boundary field theory phase tra
sition takes place, the dominant contribution on the rig
hand side of Eq.~1.1! shifts from AdS4, with topologyR3

3S1, to AdS4-Schwarzschild, with topologyR23S2. This
transition was studied originally in Ref.@10#. The nature of
this phase transition is intimately associated with the fact
the gravitational potential of AdS space-time behaves m
or less like a large, perfectly insulating ‘‘box.’’ Massive pa
ticles are confined to the interior of AdS space-time, a
while massless modes may escape to infinity, the fluxes
incoming and outgoing radiation in a thermal state at infin
are equal~the causal boundary acts like a mirror!.

It was shown in Ref.@10# that there is a critical tempera
ture Tc past which thermal radiation is unstable to the fo

3See Ref.@9# for a recent discussion—with a different flavor—o
space-time topology change in this context.
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mation of a Schwarzschild black hole.@In fact, they found
that forT.Tc there are two values of the black hole mass
which the Hawking radiation can be in equilibrium with th
thermal radiation of the background. The lesser of these
masses is a point of unstable equilibrium~it has negative
specific heat!, whereas the greater mass is a point of sta
equilibrium.#

Since a phase transition in the field theory is a unita
process, this means that it would seem that there is no ‘
formation loss,’’ or loss of unitarity, in the bulk physics in
volving the nucleation and evaporation of black holes as
moves between the various phases. It would be certainly
teresting to see if this unitary conformal field theory descr
tion extends to other transitions between instantons wh
involve space-time topology change. Clearly, this would th
be in sharp contrast to the claims of recent authors@11,12#,
who have argued that whenever there is a topology chan
transition ~i.e., by black hole pair creation or some oth
process!, the superscattering matrix will not factorize into a
S matrix and its adjoint, and hence there will be a loss
quantum coherence.

It would therefore seem, at first glance, that the AdS v
sion of the holographic principle has provided us with apre-
cise argument which shows that information is not lost
black hole evolution or topology changing transitions,
least as long as the topology change occurs in a space
which is asymptotically AdS.

This suggests an interesting and vigorous program of
visiting the study of various space-time transitions betwe
many instantons of interest, now in an AdS context.

In this paper, we will extend the holography laboratory
include examples with nontrivial topology and which a
only locally asymptotically AdS. We discuss the Tau
Newman-Unti-Tamburino- ~NUT-!AdS ~TN-AdS! and
Taub-bolt-AdS ~TB-AdS! space-times. These space-tim
have a global nontrivial topology due to the fact that one
the Killing vectors has a zero-dimensional fixed point s
~‘‘nut’’ ! or a two-dimensional fixed point set~‘‘bolt’’ !. Fur-
ther, these four-dimensional space-times have Euclidean
tions which cannot be exactly matched to AdS at infinity.

We show that it is possible to have a thermally trigger
phase transition from TN-AdS to TB-AdS, which is the nat
ral generalization of the Hawking-Page phase transition fr
AdS to Schwarzschild-AdS. We also notice that in the lim
where we can use the naive field theory expectations,
results are in agreement with boundary field theory.

In the first case under study, where the bolt is anS2, the
presence of these nuts or bolts implies that the bulk supp
a nontrivial NUT charge, which in turn implies that th
boundary must be realized as anS1 bundle overS2 @i.e., the
Chern number of this Hopf fibration~denotedC1! is related
to the NUT chargeN in the bulk by the explicit relation@13#
N5(1/8p)bC1 , where b is the period of theS1 fiber at
infinity#; the boundary at infinity is a ‘‘squashed’’ three
sphere.

This squashed three-sphere is the three-dimensional s
on which the boundary conformal field theory will be com
pactified, withb identified with the inverse temperature,
analogy with the AdS–AdS-Schwarzschild system@10#. As
0-2
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LARGE N PHASES, GRAVITATIONAL INSTANTONS, . . . PHYSICAL REVIEW D 59 064010
studied in Refs.@5,7#, we see that the bulk behavior is co
sistent with the expected phase structure of the confor
field theory on the boundary.

In the second case, the bolt is anR2, and the resulting
absence of a nontrivial fibration means that there is no
between the temperature at infinity and the squashing pa
eter. The squashing parameter describes a fixed deform
of the boundary as a twisted product ofR2 and Euclidean
time S1. In this case, the phase structure found in the b
again is consistent with that of conformal field theory on t
boundary.

II. NUTS AND BOLTS OF AdS

We now turn our attention to a particular class of metr
which are locally asymptotically equivalent to anti–de Sit
space-time: the Taub-NUT-AdS~TN-AdS! and Taub-bolt-
AdS ~TB-AdS! metrics. The metric on the Euclidean secti
of this family of solutions may be written in the form@14#

ds25V~r !~dt12n cosu dw!2

1
dr2

V~r !
1~r 22n2!~du21sin2 u dw2!, ~2.1!

where

V5
~r 21n2!22mr1 l 22~r 426n2r 223n4!

r 22n2 ~2.2!

and we are working with the usual convention (l 25
23/L), with L,0 being the cosmological constant. Herem
is a~generalized! mass parameter andr is a radial coordinate
Also, t, the analytically continued time, parametrizes a cir
S1, which is fibered over the two-sphereS2, with coordinates
u andw. The nontrivial fibration is a result of a nonvanishin
‘‘nut parameter’’n.

In the asymptotic region, the metric~2.1! becomes

ds25
l 2

r 2 dr21r 2F4n2

l 2 ~dc1cosu dw!21du21sin2 u dw2G ,
~2.3!

wherec5t/2n. One can recognize the angular part of t
metric as that of a ‘‘squashed’’ three-sphere, where 4n2/ l 2

parametrizes the squashing. This finite amount of squas
contrasts with the standard Taub-NUT solution@15# with l
50. In the latter, a squashed three-sphere also arises in
asymptotic region, but 4n2/ l 2 is replaced by 4n2/r 2 in the
angular part of the metric@cf. Eq. ~2.3!#.

Remarkably, this asymptotic metric~2.3! is still maxi-
mally symmetric, to leading order, i.e.,Rmnab5
21/l 2(gmagnb2gmbgna). Hence we can still think of thes
solutions as locally asymptotically AdS4.

A. Taub-NUT-AdS

To begin with, let us restrict our attention to nuts, t
zero-dimensional fixed point set. For a regular nut to ex
we need to satisfy the following conditions.
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~a! In order to ensure that the fixed point set is zero
mensional, it is necessary that the Killing vector]t has a
fixed point which occurs precisely when the~u,w! two-sphere
degenerates, i.e.,V(r 5n)50.

~b! In order for the ‘‘Dirac-Misner’’@16# string to be un-
observable, it is necessary that the period oft satisfy Dt
54nDw. Since we want to avoid conical singularities at t
poles of the angular spheres, thenDw52p, and therefore
Dt58pn.

~c! In general, these constraints will make the pointr
5n look like the origin ofR4 with a conical deficit. In order
to avoid a conical singularity, the fiber has to close smoot
at r 5n. This requiresDtV8(r 5n)54p, i.e., V8(r 5n)
51/2n.

Now condition~a! requires that the numerator ofV has a
double zero atr 5n. It is easy to see then that the ‘‘mass
parameterm must be

mn5n2
4n3

l 2 ~2.4!

and then

Vn~r !5
r 2n

r 1n
@11 l 22~r 2n!~r 13n!#. ~2.5!

With this, condition~c! is automatically satisfied. This is du
to the fact that the term that multiplies the cosmologic
constant vanishes at the nut and what remains is the sam
in the familiar case withL50. This means that the presenc
of a cosmological constant does not affect the nut.

It is interesting to notice that here withL,0, m does not
need to be positive in order for the nut to be regular. It is a
worth remarking thatn remains an arbitrary paramete
which will be assumed to be positive, without loss of gen
ality. That is, asn varies in this family, we see that th
squashing of the asymptotic three-spheres changes, and
for fixed cosmological constant we have a one-param
family of TN-AdS solutions.

Note that for the special casen5 l /2 the squashing in Eq
~2.3! vanishes; i.e., the asymptotic spheres are round. In f
in this special case, the geometry coincides precisely w
the AdS4 space. In order to see this, changet to the more
usualc coordinate inS3, t52nc, so that the period ofc is
4p. It is convenient to perform another coordinate change
Eq. ~2.1! by shifting r→r 1n to find

ds25
U~r !

f ~r !
dr214n2

f ~r !

U~r !
~dc1cosu dw!2

1r 2U~r !~du21sin2 u dw2!, ~2.6!

with

f ~r !511
r 2

l 2 S 11
4n

r D
and
0-3
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CHAMBLIN, EMPARAN, JOHNSON, AND MYERS PHYSICAL REVIEW D59 064010
U~r !511
2n

r
.

The nut is now atr 50.
Now start from the following form for the metric on AdS4

space-time as the Poincare´ ball @5#:

ds254
dy21y2dV3

2

~12y2/ l 2!2 . ~2.7!

The boundary is aty5 l , and it is anS3. Changing coordi-
nates according to

y2

l 2 5
r

r 1 l
, ~2.8!

so that the boundary is now atr→`, we find that the fol-
lowing metric for AdS4 space-time:

ds25
l 2

r 2 S dr2

11 l /r D1r 2S 11
l

r D
3@~dc1cosu dw!21du21sin2 u dw2#. ~2.9!

This AdS metric coincides precisely with the TN-AdS met
~2.6! with n5 l /2. At r 50 there is a coordinate singularity
but this is easily seen to be just like the origin ofR4, i.e., a
nut. It is not surprising to find a slicing where AdS4 space-
time contains a nut: given any point in the Poincare´ ball,
we can always choose coordinates such that it looks like
origin of R4.

One can confirm that in general the TN-AdS metric
distinct from AdS4 by comparing curvature invariants, e.g
RmnRmn , on the two spaces.

B. Taub-bolt-AdS

We begin by casting the metric~2.1! in the form

ds254n2V~r !~dc1cosu dw!2

1
dr2

V~r !
1~r 22n2!~du21sin2 u dw2!, ~2.10!

with

Vb~r !5
r 222mr1n21 l 22~r 426n2r 223n4!

r 22n2 ,

~2.11!

where as usualc has period 4p. In order to have a regula
bolt at r 5r b.n, the following conditions must be met:~a!
V(r b)50 and ~b! V8(r b)51/2n. These are rather like th
conditions for having a nut, but sincer b.n, the fixed point
set of ]c is two dimensional, instead of zero dimension
Moreover, the zero of the numerator ofV(r ) at r 5r b must
now be a single one.

After some simple algebra, we find that condition~a! im-
poses
06401
e

.

m5mb5
r b

21n2

2r b
1

1

2l 2 S r b
326n2r b23

n4

r b
D . ~2.12!

Then we find

V8~r b!5
3

l 2 S r b
22n21 l 2/3

r b
D . ~2.13!

Now we require~b! to be satisfied. The ensuing equatio
yields r b as a function ofn and l:

r b65
l 2

12n S 16A1248
n2

l 2 1144
n4

l 4 D . ~2.14!

For r b to be real the discriminant must be non-negative. F
thermore, we must take the part of the solution which cor
sponds tor b.n. This gives

n<S 1

6
2
)

12D
1/2

l 5nmax. ~2.15!

It is only for this range of parameters that one can constru
real Euclidean TB-AdS solutions.Notice, in particular, that
the AdS valuel 52n lies outside this range.

It is worth noting that the properties of Taub-bolt in Ad
space-time~for the upper branchr b1! are very different from
those of Taub-bolt space-time in an asymptotically loca
flat ~ALF! space. The reason is that these upper branch
AdS solutions do not go smoothly onto ALF-TB space-tim
as the cosmological constant is switched off. Asl is taken to
infinity, we can see thatr b1→`. The ALF-TB limit can be
achieved only with ther b2 branch TB-AdS solutions. In
those cases,r b2→2n as the cosmological constant goes
zero, reproducing the ALF-TB value.

The lower branch family is more analogous to t
Schwarzschild-AdS solutions. In the latter, when the b
~the Euclidean horizon! is much smaller than the AdS scal
it resembles closely the corresponding asymptotically
bolt. It is only when the black hole grows enough in size th
the AdS structure shows up. By contrast, for the upper br
TB-AdS solutions, the fact that they live in anti–de Sitt
space is always relevant.

Interestingly, the global topology of the TB-AdS solutio
is quite unlike that of TN-AdS. Arguments similar to thos
put forward in Ref.@17# lead to the conclusion that this so
lution has the topology ofCP22$0%, where the removed
‘‘point’’ $0% corresponds to the squashed three-sphere a
finity. Furthermore, the bolt itself may be interpreted as
two-cycle inCP2 with odd self-intersection number; i.e., th
space-time does not admit any spin structure.4

4This would suggest that there might be problems with interp
ing this as a supergravity compactification. Recall, however, t
there is the possibility of introducing a generalized spin struct
@18#, particularly in the case ofCP2. Even without that possibility,
we expect that holography in AdS4 ~and related space-times! is a
property which exists independently of the possibility of supergr
ity compactifications.
0-4



N
ss
th
th

d

nc
a
n

im
tr

e-
he

uc
to
d

ic
is

at
la
n

d
e

us
n
a

o
S
ll
d

S

as
e
e-

e-
pe-

ns

nal
ble

r
an

-

nch
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Now that we have understood the structure of the T
AdS and TB-AdS solutions, we need to examine the po
bility of transitions between them. In order to understand
conditions for this phase transition, we need to calculate
actions for TN-AdS and TB-AdS space-times.

C. Action calculation

The Euclidean action is given by the formula@19,20#

I 52
1

16pG E
M

d4xAg~R22L!2
1

8p E
]M

d3xAgQ,

~2.16!

whereM is a compact region of the spacetime, with boun
ary ]M ~which we will ultimately send to infinity!. Heregmn

is the induced metric on]M, and Q is the trace of the
extrinsic curvature of]M in M. Of course, both of the
terms above diverge as the boundary goes to infinity. He
to produce a finite and well-defined action as the bound
]M goes to infinity, we will subtract an infinite contributio
from a background or reference space-time solution.

For a background to be suitable for a given space-t
whose action we wish to compute, we must match the me
that it induces on]M to the metric induced by the spac
time on]M, to an order that is sufficient to ensure that t
difference disappears in the limit where we take]M to in-
finity. Here this does not seem to be possible using AdS4 as
a reference solution. However, given the asymptotic str
ture of the TN-AdS and TB-AdS instantons, it is natural
use TN-AdS space-time as the background for solutions
scribed by the metric~2.1! which have the same asymptot
behavior. It follows that the action of TN-AdS space-time
defined to bezero, because it is regarded as the ground st

The calculation of the action of TB-AdS space-time re
tive to TN-AdS space-time is just the ‘‘nutty’’ generalizatio
of the calculations@10,7# of the action of AdS-Schwarzschil
space-time relative to AdS space-time. Just as with th
previous calculations, the surface term in Eq.~2.16! does not
make any contribution. It follows that we just need to foc
on the bulk contribution. Since we are in four dimensio
and working with solutions of the vacuum Einstein equ
tions, it follows that the Ricci scalar is given asR54L, and
the bulk action term assumes the form

I 52
L

8pG E
M

d4xAg5
3

8pGl2
Vol~M !. ~2.17!

We now need to compare the infinite volume contribution
TB-AdS space-time to the infinite contribution of TN-Ad
space-time; this difference should give us a finite, physica
meaningful answer. For both metrics, one calculates the
terminant as

Ag52n~r 22n2!sinu. ~2.18!

Taking as our hypersurface]M the fixed radius surfacer
5R, the volume contributions from TB-AdS and TN-Ad
space-times thus take the explicit form
06401
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Volb~R!52nE
0

4p

dcE
r b

R

~r 22n2!drE
0

pE
0

2p

sinu du dw

~2.19!

and

Voln~R!52nE
0

4p

dcE
n

R

~r 22n2!drE
0

pE
0

2p

sinu du dw,

~2.20!

so that the total volume difference is given as the limit,
R→`, of Volb(R)2Voln(R). Recalling that we must ensur
that the induced metrics of TN-AdS and TB-AdS spac
times match on the hypersurface (r 5R), we see that we
must rescale the nut parameternn of TN-AdS space-time to
l(r )nb ~where nb is the nut parameter of TB-AdS spac
time!, in order that their Euclidean times have the same
riod to sufficiently high order.@The functionl(r )2 is ob-
tained by expanding the ratio of the metric functio
V(r ,n,m) obtained in each case.#

In this way we find

nb5nnS 11
l 2~mb2mn!

R3 1O~R24! D . ~2.21!

Putting all of this together one therefore obtains the fi
result for the action of TB-AdS space-time after considera
algebra:

I b52
2pn

Gl2 S ~r b2n!2~r b
226nrb2n2!

r b22n D . ~2.22!

We can now analyze for which values of the nut parameten
the action of TB-AdS space-time is larger or smaller th
that of TN-AdS space-time, i.e., whereI b is positive or nega-
tive. A short inspection shows thatI b is positive only in the
range 2n,r b,(31A10)n ~of course, we are always consid
eringr b>n!. Figure 1 is a plot ofr 5r b as a function ofn, in
the allowed range of variablesr b,nmax. We also include the
lines r 52n ~dotted line! and r 5(31A10)n ~dashed line!.

We can see that we always haver b.2n from Eq. ~2.14!.
Note thatr b1→2n asn→0. The lower branchr b2 lies en-
tirely betweenr 52n and r 5(31A10)n, and so the action
is always positive for these solutions. On the upper bra

FIG. 1. Plot ofr b as a function ofn, up tonmax, which limits the
existence of TB-AdS solutions. The straight lines arer b52n ~dot-
ted line! and r b5(31A10)n ~dashed line!.
0-5
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r b1 , the action is positive for the smallest values ofr b1 ~the
largest values ofn!, but asr b1 grows ~n becomes smaller!,
the action becomes negative. The crossover point, i.e.I b

50, lies atn5ncrit5 l (722A10)1/2/6.

III. SOME THERMODYNAMICS

We have performed a covariant computation of the acti
as distinct from a Hamiltonian calculation, which wou
have required a specific time slicing. Such a calculat
would have identified a periodic time in an Arnowitt-Dese
Misner ~ADM ! manner @21#, using the temperatureT
51/(8pn). We expect that such a calculation would ha
shown that the action decomposes into contributions fr
the Hamiltonian at infinity and the Misner strings, in additio
to the usual terms corresponding to the area of the bolt@22#.

We will not carry out a Hamiltonian calculation here, in
stead moving on to compute various state functions
hence study the physics of the present situation.

We have for the entropy the formulaS5(b]b21)I .
Lengthy algebraic manipulations finally yield the entropy
a simple form

S5
p

G
~r b2n!2S 1112

n2

l 2 D . ~3.1!

This is manifestly positive. It should be noted that this e
pression differs fromAbolt/4G: there are contributions to
the entropy from the nut charge and nut potential at the
@22#.

We plot the entropy as a function ofn in Fig. 2, including
that of the lower branch solutions.

We can compute the thermodynamic energyE:

E5]bI 5
1

2Gl2
~r b2n!3~r b17n!

r b22n
5

mb2mn

G
, ~3.2!

where mb,n are the mass parameters for TB-AdS and T
AdS space-times as given in Eqs.~2.4! and ~2.12! above.
Sincer b.2n, the energy is strictly positive.

We are particularly interested in the very high tempe
ture regimen→0. In this limit we have

r b15
l 2

6n
22n1O~n3!. ~3.3!

FIG. 2. EntropyS as a function ofn.
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For the upper branch solutions, the action and entropy
come

I 52
p l 4

108Gn2 1O~n0!, S5
p l 4

36Gn2 1O~n0!. ~3.4!

The entropy coincides in this limit with the limiting value o
Abolt/4G, showing that in the high temperature regime t
effect of the nontrivial topological fibering of the manifol
~the contribution from the Misner string@16#! becomes invis-
ible, as could be expected.

Note that the lower branch solutions~which have higher
action and lower entropy! have the following behavior a
high temperature in the limitL→0:

r b52n1O~n3!, I b5
pn2

G
1O~n4!,

S5
pn2

G
1O~n4!. ~3.5!

These are the values obtained in theL50 Taub-NUT or bolt
action calculations of Ref.@13#. This is entirely consisten
with the observation, made in Sec. II B, that the lower bran
bolt solutions tend to theL50 solutions in this limit.

Focusing on the upper branch solutions~which will al-
ways be more stable: see later!, we immediately see5 that the
free energyF;V2T3N3/2 and entropyS;V2T2N3/2 ~V2 is
the spatial volume of the field theory!, which corresponds to
the expected high temperature behavior of a field theory
three space-time dimensions. It is important to note that
growth withN is slower thanN2, confirming that theN is not
associated with the gauge theory ofN D2-branes in 10
spacetime dimensions, but rather the more exotic field the
associated withN M2-branes in 11 dimensions.~The former
flows to the latter in the infrared@23#.! The powerN3/2

counts the number of degrees of freedom of the theo
showing that we are in, roughly speaking, a deconfined ph
of the theory. TheN3/2 factor was first noted in Ref.@24# as
associated with the entropy ofN coincidentM2-branes. We
consider our present calculations, with their holographic
terpretation, as independent support for the conclusion
Ref. @24# that the (211)-dimensional CFT hasO(N3/2) de-
grees of freedom.~This also follows from the results of Refs
@5,7# for the AdS4–AdS4-Schwarzschild case, once the a
propriate conversions have been made.!

Recall that Taub-bolt-AdS solutions only existed forn
,nmax; the radius of the bolt becomes unphysical. Th
means that below a certain temperatureTmin51/(8pnmax),
the solution does not exist, and the TN-AdS solution is
allowed one. Above that temperature, there is apparent
transition to the TB-AdS solution as is evident from the d
played plots in Figs. 2 and 3. However, the transition atTmin
is merely an artifact of the fact that we not truly in the the

5Crucially, use the fact that this is an 11-dimensional supergra
compactification; soG; l 27 ~in units where the 11-dimensiona
Planck length is unity! and l;N1/6.
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LARGE N PHASES, GRAVITATIONAL INSTANTONS, . . . PHYSICAL REVIEW D 59 064010
modynamic limit. More careful consideration below will re
veal the transition to be at a higher temperatureTcrit .

In order to study the thermal stability of the system, it
convenient to examine the specific heatC52b]bS5
2n]nS. The analytical expression, however, is not very
luminating. Instead, we provide in Fig. 3 a plot of C as a
function of n, which remains positive for the upper branc
solutions, negative for the lower branch solutions, and beg
to grow rapidly nearTmin for both branches.

Notice, however, that the action~2.22! is positive for
Tmin,T,Tcrit51/(8pncrit). Above Tcrit , it goes negative.
This means that the TN-AdS solution is still relevant abo
Tmin . As the specific heat of the TB-AdS solution is positiv
however, we can have a stable bolt as well, and therefore
can nucleate long-lived bolt solutions.

This initial conclusion that there is a phase transition t
~nearly! coexistence phase is modified by the fact that
have not taken the limitN→`. To see how the modification
comes about, first recall that~after convertingG; l 27 and
l;N1/6! there is a positive power ofN multiplying the action
I b , and remember thatI b is the differencebetween that of
AdS-TB and AdS-TN space-times.

Therefore, in the thermodynamic limit where we take t
number of degrees of freedom~measured byN! to infinity,
the action difference isinfinite. We must conclude therefor
that the true phase transition takes place where thesignof I b

changes, which is atTcrit . The free energy is continuou
there, but the energyE is discontinuous, and so we conclud
that it is afirst orderphase transition: The degrees of fre
dom are distinct in each case, as shown by the fact that
amount of entropy associated with thermal radiation in
TN-AdS solution is vastly exceeded by the amount wh
can be stored in the area of the bolt~and Misner strings! in
the TB-AdS solution.~Notice that this analysis and discu
sion also applies to the AdS4–AdS4-Schwarzschild case
studied in Refs.@5,7#, although the more complex thermod
namic conclusions made about the same bulk physics in
@10# are more general, as they are not restricted to the largN
limit of this context.!

We remark again that although this represents the phy
of transitions between very different gravitational solution
the complete physics is very plausibly described by the u
tary conformal field theory living on the twisted three-sphe
at the boundary.

FIG. 3. Specific heatC, at constant volume, as a function ofn.
It diverges sharply atn5nmax.
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IV. TOPOLOGICALLY TRIVIAL NUTS AND BOLTS

The Taub-NUT-AdS family of metrics contains solution
where the angular spheres~u,w! are replaced by planes o
hyperboloids. For vanishing nut charge, the solutions co
spond to topological black holes@25#, studied in Ref.@26# in
their M-theory context.

A. Planar nuts and bolts

Let us focus first on the planar~or toroidal! solutions

ds25V~r !S dt1
n

l 2 ~xdy2ydx! D 2

1
dr2

V~r !

1
r 22n2

l 2 ~dx21dy2!, ~4.1!

where, now,

V5
22mr1 l 22~r 426n2r 223n4!

r 22n2 . ~4.2!

The coordinatesx,y here have dimensions of length. Notic
that the fibration is now trivial: there are no Misner string
The topology of the boundary atr→` is thereforeR3. How-
ever, although the boundary is topologically a direct prod
of the Euclidean time line and the spatial plane~x,y!, the
product is ‘‘twisted’’ or warped and the boundary is not fla

An immediate consequence of the trivial topology is th
the Euclidean time periodb will not be fixed, as it was in the
spherical case, by the value of the nut parameter6 n. There-
fore, in the present case, we can vary the temperature o
system while leavingn fixed. In other words,n labels differ-
ent sectors of the theory, characterizing the ‘‘warpage’’
the productR3R2. For each sector, we can consider t
phase structure as a function of temperature separately.

In the absence of Misner strings, we expect the entropy
the solutions to receive contributions solely from the area
bolts. This expectation will be confirmed below.

Let us now proceed to examine the fixed-point sets of
isometry generated by]t—the planar nuts and bolts. Nut
will appear as fixed-point sets atr 5n. One finds that the
mass parameter must take the value

mn52
4n3

l 2 ~4.3!

so that

Vn~r !5
~r 2n!2~r 13n!

l 2~r 1n!
. ~4.4!

Notice thatVn(r ) has a double zero atr 5n. This is, the
solution must be regarded as an extremal, zero-tempera

6Note that ift, x, andy are all compactified on a~warped! torus
T3, consistency will demand that the periodb be fixed in terms of
n. We will not do such a compactification here.
0-7
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CHAMBLIN, EMPARAN, JOHNSON, AND MYERS PHYSICAL REVIEW D59 064010
background, since the Euclidean timet can be identified
with arbitrary period. In fact, whenn50 we simply recover
the AdS4 metric in horospheric coordinates (r 51/z). It is
also interesting to note that the mass parameter is neg
for all other cases. This might be an indication that the C
defined on these boundary geometries might be unstable
though we have not checked this point, these backgrou
are presumably nonsupersymmetric fornÞ0.

Now let us find Taub-bolt-AdS solutions, where]t has a
two-dimensional fixed-point set at some radiusr 5r b.n. In
this case we find that the mass parameter has to be

mb5
1

2l 2 S r b
326n2r b2

3n4

r b
D . ~4.5!

This time, Euclidean regularity at the bolt requires the per
of t to be

b5
4p

V8~r b!
5

4p l 2

3

r b

r b
22n2 . ~4.6!

As r b varies fromn to infinity, we cover the whole tempera
ture range from 0 tò . Notice thatmb can be either negative
zero, or positive. Whenn50 we recover the standard resu
for Schwarzschild-AdS4 spacetime.

As we said above, we can thermally excite each of
sectors labeled byn, keepingn fixed. This requires us to
study the thermodynamics of TB-AdS solutions above a T
AdS background with the same nut charge. As usual, in
der to match the geometries at large radiusR, we must set

bnAVn~R!5bbAVb~R!. ~4.7!

We must also match the values of the nut charges, but
turns out to yield a contribution to the action that vanishes
R→` and, therefore, will be neglected. The computation
the action, which is reduced to a difference of volume term
is straightforward and yields

I b52
L2

12Gl2 S r b2n

r b1n
~r b

212nrb13n2! D , ~4.8!

where L2 accounts for the area of the~x,y! plane, 2L/2
<x,y<L/2.

Now we find

E5
L2

8pGl4
~r b2n!2~r b12n!. ~4.9!

Notice that, fornÞ0, this is different from the value

L2

4pGl2
~mb2mn!5

L2

8pGl4
~r b2n!3~r b13n!

r b
,

~4.10!

which could, perhaps, have been expected. This means
in this case one should not think ofm as a parameter directl
related to the mass.
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The action is, forr b.n, always negative. Therefore, as
then50 case, there are no phase transitions as a functio
the temperature and the system stays always in the ‘‘dec
fined’’ phase.

Finally, the entropy

S5~b]b21!I 5
L2~r b

22n2!

4Gl2
5

Abolt

4G
~4.11!

reproduces the Bekenstein-Hawking@27# result, as it should
in the absence of Misner strings.

At high temperatures the entropy behaves in the con
mally invariant way,S;b22. In this regime, the nontrivial
warpage fornÞ0 is invisible. However, at lower tempera
tures the entropy departs from the CFT behavior. This is
expected, since the warpage breaks conformal invarianc
introducing a nonvanishing scale, namely, the mass par
eterm.

B. No hyperbolic nuts

There is also the possibility of having hyperbolic, inste
of spheric or planar, fixed-point sets of]t . The metric to be
used is, in this case,

ds25V~r !@dt12n~coshu21!dw#2

1
dr2

V~r !
1~r 22n2!~du21sinh2 u dw2!, ~4.12!

with

V5
2~r 21n2!22mr1 l 22~r 426n2r 223n4!

r 22n2 .

~4.13!

The coordinates~u,w! parametrize a hyperboloid and, upo
appropriate quotients, surfaces of any genus higher tha
The fibration is trivial, and, again, there are no Misn
strings.

However, if we try to maker 5n into a fixed point of]t ,
we find thatV(r ) becomes negative forr close enough to
~and bigger than! n. That is,V vanishes at somer .n, and
instead of a nut, we find a bolt. Thus there are no hyperb
nuts.

One could study the thermodynamics of these soluti
by taking as a background a singular, extremal bolt. Ho
ever, the holographic significance of these solutions is
scure, as it is forn50, where it has been argued that the
systems are likely to be unstable@26#.

V. CONCLUSIONS

Having proposed that it should be instructive to revisit t
program of studying various quantum gravity processes
the light of the holographic principle~as embodied by the
use of AdS space-time!, we have enlarged the arena som
what by studying some examples which are onlylocally as-
ymptotically AdS space-time.

The boundary conformal field theory is the Euclideaniz
0-8
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(211)-dimensional superconformal field theory compac
fied on a squashed three-sphere, in one case, and a tw
plane in another, mapping its phase structure to that of Ta
NUT-AdS and Taub-bolt-AdS systems in the bulk.

We find that at high and~to a lesser extent! low tempera-
tures, the thermodynamic properties of the theory are th
we expect from general considerations and are consis
with the properties of the dual conformal field theory, inclu
ing an unambiguous phase transition atTcrit . It would be
interesting to study further the properties of the field the
at intermediate and low temperatures.

In Sec. II C we suggested that AdS4 space-time could no
be used as a background solution in the action calculati
This is because we were unable to embed the asymp
squashedS3 into AdS4 space-time. If this were possible, th
phase structure could be even more complicated by the
troduction of an AdS4 phase. However, the fact that our r
sults are consistent with the field theory equivalence sugg
that our calculations are correct without such a contribut
~at least at high temperatures!.

We now have three concrete families of holographic
amples of the map between the largeN, finite temperature
properties of (211)-dimensional field theory and grav
ty: that of Refs.@5,7# and those presented here.

As we stressed in the Introduction, this program h
sharpened the debate about the nature of various insta
calculations in quantum gravity and may provide a practi
answer to the question of the unitarity of processes wh
tt
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include spacelike topology change. We intend to report
further examples in the near future.
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