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Rotation and the AdS-CFT correspondence
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In asymptotically flat space a rotating black hole cannot be in thermodynamic equilibrium because the
thermal radiation would have to be corotating faster than light far from the black hole. However in asymp-
totically anti–de Sitter space such equilibrium is possible for certain ranges of the parameters. We examine the
relationship between conformal field theory in rotating Einstein universes of dimensions two to four and
Kerr–anti–de Sitter black holes in dimensions three to five. The five-dimensional solution is new. We find
similar divergences in the partition function of the conformal field theory and the action of the black hole at the
critical angular velocity at which the Einstein universe rotates at the speed of light. This should be an inter-
esting limit in which to study largeN Yang-Mills theory.@S0556-2821~99!00106-X#

PACS number~s!: 04.70.Dy, 04.20.2q, 11.25.Hf
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I. INTRODUCTION

In Minkowski space the only Killing vector that is time
like everywhere is the time translation Killing vector]/]t.
For instance, in four-dimensional Minkowski space, the K
ing vector]/]t1V]/]f that describes a frame rotating wit
angular velocityV becomes spacelike outside the velocity
the light cylinderr sinu51/V.

This raises problems with the thermodynamic interpre
tion of the Kerr solution: a Kerr solution with a nonze
rotation parametera cannot be in equilibrium with therma
radiation in infinite space because the radiation would h
to corotate with the black hole and so would have to mo
faster than light outside the velocity of the light cylinder. T
best one can do is consider the rather artificial case of e
librium with rotating radiation in a box smaller than the v
locity of the light radius. This problem is inextricably linke
with the fact that the Hartle-Hawking state for a Kerr so
tion does not exist, as proved in Ref.@1#. The absence of the
Hartle-Hawking state has a number of important ramifi
tions, the details of which are discussed in Ref.@1#.

On the other hand, even a nonrotating Schwarzsc
black hole has to be placed in a finite sized box beca
otherwise the thermal radiation would have infinite ene
and would collapse on itself. There is also the problem t
the equilibrium is unstable because the specific heat is n
tive.

It is now well known@2,3# that the specific heat of larg
Schwarzschild anti–de Sitter black holes is positive and
the redshift in anti–de Sitter spaces acts as an effective
to remove the infinite energy problem. What was less w
known except in the rather special three dimensional c
was that anti–de Sitter boundary conditions could also
move the faster than light problem for rotating black hol
That is, in anti–de Sitter space there are Killing vectors t
are rotating with respect to the standard time translation K
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ing vector and yet are timelike everywhere. This means t
one can have rotating black holes that are in equilibrium w
rotating thermal radiation all the way out to infinity.

One would expect@4,3# the partition function of this black
hole to be related to the partition function of a conform
field theory in a rotating Einstein universe on the bound
of the anti–de Sitter space. It is the aim of this paper
examine this relationship and draw some surprising con
sions.

Of particular interest is the behavior in the limiting case
which rotational velocity in the Einstein universe at infini
approaches the speed of light. We find that the actions of
Kerr-AdS solutions in four and five dimensions have simi
divergences at the critical angular velocity to the partiti
functions of conformal field theories in rotating Einstein un
verses of one dimension lower. This is similar to the beh
ior of the three-dimensional rotating anti–de Sitter bla
holes and the corresponding conformal field theory on
two-dimensional Einstein universe or cylinder. There
however an important difference: in three dimensions o
calculates the actions of the Ban˜ados-Teitelboim-Zanelli
~BTZ! black holes relative to a reference background tha
the M50 BTZ black hole. Had one used three dimension
anti–de Sitter space as the reference background, one w
have had an extra term in the action which would have
verged as the critical angular velocity was reached.

On the conformal theory side, this choice of referen
background is reflected in a freedom to choose the vacu
energy. However, in higher dimensions there is no analo
of the M50 BTZ black hole to use as a reference bac
ground. One therefore has to use anti–de Sitter space itse
the reference background. Similarly, there is not a freed
to choose the vacuum energy in the conformal field theo
Any mismatch between the reference background for anti
Sitter black holes and the vacuum energy of the conform
field theory will become unimportant in the high-temperatu
limit for nonrotating black holes or the finite temperature b
critical angular velocity case. Thus it might be that the bla
hole–thermal conformal field theory correspondence is va
only in those limits. In that case, maybe we should not
©1999 The American Physical Society05-1
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lieve that the largeN Yang-Mills theory in the Einstein uni-
verse has a phase transition.

In the (111)-dimensional boundary of three-dimension
anti–de Sitter space, massless particles move to the le
right at the speed of light. The critical angular velocity co
responds to all the particles moving in the same direction
the temperature is scaled to zero as the angular velocity
proaches its critical value, the energy remains finite and
system approaches a Bogomol’nyi-Prasad-Sommerfi
~BPS! state.

In higher-dimensional Einstein universes, however, p
ticles can move in transverse directions as well as in
rotation direction or its opposite. At zero angular veloci
the velocity distribution of thermal particles is isotropic b
as the angular velocity is increased the velocity distribut
becomes peaked in the rotation direction. When the ro
tional velocity reaches the speed of light, the particles wo
have to be moving exclusively in the rotation direction. Th
is impossible for particles of finite energy. Thus rotating E
stein universes of dimension greater than 2 cannot appro
a finite energy BPS state as the angular velocity approa
the critical value for rotation at the speed of light.

Corresponding to this, we shall show that four- and fiv
dimensional Kerr-AdS solutions do not approach a BPS s
as the angular velocity approaches the critical value, un
the three-dimensional BTZ black hole. Nevertheless criti
angular velocity may be of interest because one might ex
that in this limit super-Yang-Mills would behave similar to
free theory. We postpone to a further paper the questio
whether this removes the apparent discrepancy between
gravitational and Yang-Mills entropies.

We should mention that critical limits on rotation hav
recently been discussed in the context of black three bra
in type IIB supergravity@5#: rotating branes are found to b
stable only up to a critical value of the angular moment
density, beyond which the specific heat becomes nega
However, our critical limit is different. It corresponds not
a thermodynamic instability, but rather to a Bose conden
tion effect in the boundary conformal field theory.

In Sec. II we calculate the partition function for conform
invariant free fields in rotating Einstein universes of dime
sion two, three, and four in the critical angular velocity lim
In Secs. III, IV, and V, we calculate the entropy and actio
for rotating anti–de Sitter black holes in the correspond
dimensions and find agreement with the conformal field
the behavior near the critical angular velocity.

The metric for rotating anti–de Sitter black holes in d
mensions higher than four was not previously known. O
solutions have other interesting applications, particula
when regarded as solutions of gauge supergravity in five
mensions, which we will discuss elsewhere@6#.

II. CONFORMALLY INVARIANT FIELDS IN ROTATING
EINSTEIN UNIVERSES

The Maldacena conjecture@4,3# implies that the thermo-
dynamics of quantum gravity with a negative cosmologi
constant can be modeled by the largeN thermodynamics of
quantum field theory. We are interested here in probing
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correspondence in the limit that the boundary is rotating
the speed of light; that is, we want to study the largeN
thermodynamics of conformal field theories in an Einste
universe rotating at the speed of light.

The details of the boundary conformal field theory ul
mately depend on the details of the bulk supergravity~or
string! theory, but generic features such as the divergenc
the entropy in this critical limit should be independent of t
precise features of the theory. Thus we are led to making
following simplification: instead of considering, for exampl
the largeN limit of N54 super Yang-Mills~SYM! theory in
four dimensions we can just look at the behavior of conf
mal scalar fields in a rotating Einstein universe. We find t
this does indeed give us generic thermodynamic feature
high temperature which agree with those found from the b
theory.

To go further than this, we would have to embed t
rotating black hole solutions within a theory for which w
know the corresponding conformal field theory. For instan
we could embed the five-dimensional anti–de Sitter–K
black holes into IIB supergravity in ten dimensions; we th
know that the corresponding conformal field theory is t
largeN limit of N54 SYM theory. However, since we can
not calculate quantities in the largeN limit of the latter, to
obtain the subleading behavior of the partition functi
would require some approximations or models such as th
used in the discussion of rotating three branes in Ref.@5#. It
would be interesting to show that the perturbative SYM c
culation gives a discrepancy of 4/3 in the entropy as o
expects from the results of Ref.@7#.

Of course in two dimensions we can do better than th
the two-dimensional conformal field theory is well unde
stood in the context of an old framework@8#, where the
correspond between bulk and boundary is effectively p
vided by the modular invariance of the boundary conform
field theory @9,10#. In recent months, the conformal fiel
theory~CFT! has been discussed in some detail, for exam
in Ref. @11#, and one should be able to obtain the sublead
dependences of the partition function on the angular velo
V. We leave this issue to future work.

It is interesting to note here that there is no equivalent
the zero mass BTZ black hole in higher dimensions. Sin
the correspondence between the bulk theory and the bo
ary conformal field theory is clearest when one takes
background to be the BTZ black hole, the corresponde
between the conformal field theory and supergravity in
anti–de Sitter background may only be approximate
higher dimensions, valid for high temperature. This is o
reason why it is useful to investigate what happens in
critical angular velocity limit.

Let us start with an analysis of conformal fields in a tw
dimensional rotating Einstein universe; the metric on a c
inder is

ds252dT21dF2, ~2.1!

where we need to identifyF;F1bV, and both the inverse
temperatureb and the angular velocityV are dimensionless
Now consider modes of a conformally coupled scalar fie
5-2



fre
m

n

e
on

l s

th

r

ee
th

tri
ni

la
r

e

te

ion
or

on

ll

rial

i-

n-
ng

tail
it
ral

h
he

r
be-

at-

he

at
ar-

ROTATION AND THE AdS-CFT CORRESPONDENCE PHYSICAL REVIEW D59 064005
propagating in this background; for harmonic modes, the
quencyv is equal in magnitude to the angular momentu
quantum numberL. So we can write the partition functio
for conformally invariant scalar fields as

lnZ52( ln~12e2b~v2LV!!2( ln~12e2b~v1LV!!,

~2.2!

where the first term counts left moving modes and the s
ond term counts right moving modes. The partition functi
is manifestly singular as one takes the limitV→61; in this
limit, all the particles rotate in one direction. Provided thatb
is small we can approximate the summation by an integra
that

lnZ'
p2

6b~12V2!
, ~2.3!

which agrees with the high-temperature result found in
next section~3.12! up to a factor and a scalel. Note that the
form of this result could also be derived by requiring confo
mal invariance in the high-temperature limit.

Let us now consider the conformal field theory in thr
dimensions; a hypersurface of constant large radius in
four-dimensional anti–de Sitter–Kerr metric has a me
which is proportional to a three-dimensional Einstein u
verse

ds252dT21dQ21sin2 Q dF2, ~2.4!

whereF must be identified modulobV with b and V di-
mensionless. Now consider a conformally coupled sca
field propagating in this background: the field equation fo
harmonic scalar is

S ¹2
Rg

8 D5S ¹2
1

4Dw50, ~2.5!

where ¹ is the d’Alambertian andRg is the Ricci scalar.
Modes of frequencyv satisfy the constraint

v25L~L11!1
1

4
5S L1

1

2D 2

, ~2.6!

whereL is the angular momentum quantum number. Th
the partition function can be written as

lnZ52 (
L50

`

(
m52L

L

ln~12e2b~v2mV!!. ~2.7!

For smallb we can approximate this summation as the in
gral

lnZ'2E
0

`

dxLE
2xL

xL
dxM ln~12e2b~xL2VxM !!

5
1

b2E0

`

dyE
2y

y

dx ln~12e2~y2Vx!!. ~2.8!
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We are interested in the divergence of the partition funct
when V→61; this divergence arises from the modes f
which the frequency is almost equal toumu. Of course the
frequency can never be quite equal toumu, but for largem
the argument of the logarithm in Eq.~2.7! becomes very
small. So picking out the modes for whichy5uxu in Eq. ~2.8!
we find that the leading order divergence in the partiti
function at smallb is

lnZ'
p2

6b2~12V2!
, ~2.9!

which agrees in functional form with the limit that we wi
find for the bulk action in Sec. IV. In the critical limit, all the
particles are rotating at the speed of light in the equato
plane.

The metric of the four-dimensional rotating Einstein un
verse can be written as

ds252dT21dQ21sin2 Q dF21cos2 Q dC2,
~2.10!

whereF andC must be identified modulobV1 andbV2 .
We have only approximated the partition function for co
formally coupled scalar fields in lower-dimensional rotati
Einstein universes. However in Ref.@12# the thermodynam-
ics of conformally coupled scalars were discussed in de
for a four-dimensional rotating Einstein universe in the lim
in which one of the angular velocities vanishes. The gene
form for the partition function found in Ref.@12# is quite
complex, but it takes a simple form whenb is small: one
finds that

lnZ'
p3

90b3~12V2!
, ~2.11!

whereV is the angular velocity, which agrees in form wit
the bulk result to leading order. In principle we could use t
partition function density given in Ref.@12# to probe the
correspondence between subleading terms.

Let us now try to approximate the partition function fo
general angular velocities using the same techniques as
fore. Consider a conformally invariant scalar field propag
ing in this background; the field equation is

S ¹2
Rg

6 D5~¹21!w50, ~2.12!

and so modes of the field have frequenciesv which satisfy

v25L~L12!115~L11!2, ~2.13!

whereL is the orbital angular momentum number. Then t
partition function may be written as

lnZ52 (
L,m1 ,m2

ln~12e2b~v2m1V12m2V2!!, ~2.14!

wherem1 andm2 are orbital quantum numbers. Suppose th
V250; then we expect the dominant contribution to the p
5-3
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S. W. HAWKING, C. J. HUNTER, AND M. M. TAYLOR-ROBINSON PHYSICAL REVIEW D59 064005
tition function in the critical angular velocity limit to be from
the m156L modes. However, there is a constraint on t
angular momentum quantum numbers

um1u1um2u<L, ~2.15!

and so we need to setm250. The dominant contribution to
the partition function at high temperature can be expresse

lnZ'2
1

b3E0

`

dx@ ln~12e[11x~12V!] !

1 ln~12e[11x~11V!] !#

5
p2

6b3~12V2!
, ~2.16!

which agrees with the result~2.11! in functional dependence
although not coefficient.

For general angular velocities we find that the factor

~L2m1V12m2V2! ~2.17!

only approaches zero in the limitV1 ,V2→1. Thus we ex-
pect that there is a divergent contribution to the partit
function only when either or both ofV1 andV2 tend to 1, as
we will find when we look at the black hole metric.

Setting V15V2[V, the dominant contribution to the
partition function will come from modes for which the boun
~2.15! is saturated. Then we find that

lnZ'2
1

b3E0

`

dx x@ ln~12e2x~12V!!1 ln~12e2x~12V!!#

5
z~3!

b3~12V2!2
, ~2.18!

which has the correct dependence onb andV to agree with
the bulk result found in Sec. V.

III. ROTATING BLACK HOLES IN THREE DIMENSIONS

A. The BTZ black hole

The Euclidean Einstein action in three dimensions can
written as

I 352
1

16pE d3xAg@Rg12l 2#, ~3.1!

with the three-dimensional Einstein constant set to 1. T
Lorentzian section of the BTZ black hole solution first d
cussed in Ref.@14# is

ds252N2dT21r2~NFdT1dF!21S y

r D 2

N22dy2,

~3.2!

where the squared lapseN2, the angular shiftNf, and the
angular metricr2 are given by
06400
as

e

e

N25S yl

r D 2

~y22y1
2 !,

NF52
j

2r2
, r25y21

1

2
~ml222y1

2 !, ~3.3!

with the position of the outer horizon defined by

y1
2 5ml22A12S j l

mD 2

. ~3.4!

Note that in these conventions anti–de Sitter spacetime is
m521,j 50 solution. Cosmic censorship requires the exi
ence of an event horizon, which in turn requires eitherm
521, j 50, or m>u j u l . This bound in fact coincides with
the supersymmetry bound: regarded as a solution of
equations of motion of gauged supergravity with zero gra
tini, extreme black holes withm5u j u l have one exact super
symmetry. Both them50 and them521 black holes have
two exact supersymmetries. In higher-dimensional an
de Sitter Kerr black holes the cosmic censorship bound d
not coincide with the supersymmetry bound.

The temperature of the black hole is given by

TH5
A2ml

2p F 12~ j l /m!2

11A12~ j l /m!2G 1/2

. ~3.5!

There has been a great deal of interest recently in the B
black hole; the action was first calculated in Ref.@14# and
has also been discussed in Ref.@11#. However, the action
was calculated with respect to the zero mass black hole b
ground, while in the present context we are interested in
action with respect to anti–de Sitter space itself. The rea
for this is that in higher dimensions there is no analogue
the zero mass black hole as a background.1

To calculate the action of the rotating black hole one fi
needs to analytically continue botht→ i t and j→2 i j̄ . Us-
ing the Euclidean section one finds the action as a functio
m, l, and j̄ . The physical result is then obtained by analy
cally continuing the angular momentum parameter. Tak
the background to be anti–de Sitter space we then find
the Euclidean action~for m>0) is given by

I 352
p

8A2ml
F11Af

f G1/2

@3mAf 2~21m!#, ~3.6!

where f 512( j l /m)2. This action diverges in general asf
approaches zero, i.e., as we approach the cosmological

1The metric for which one replaces the lapse function (11 l 2y2)
by l 2y2 certainly plays a distinguished role in all dimensions, sin
this is the metric that one obtains from branes in the decoup
limit. It is not, however, true that this metric is the natural bac
ground for rotating black holes in dimensions higher than three
in the high-temperature limit the distinction between the ba
grounds will only affect subleading contributions to the action.
5-4
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ROTATION AND THE AdS-CFT CORRESPONDENCE PHYSICAL REVIEW D59 064005
supersymmetry bound. One would expect the action to
verge to positive infinity in this limit; from the gravitationa
instanton point of view, this implies that there is zero pro
ability for anti–de Sitter spacetime to decay into a supersy
metric BTZ black hole.

It is straightforward to show that the energyM, angular
momentumJ, angular velocityV, and entropySare given by

M5
1

8
~m11!, J5

j

8
, ~3.7!

S5
1

2
pr~y1!, V52

j

2r2~y1!
.

Note that the zero of energy is defined with respect to
anti–de Sitter space rather than them50 black hole.

The asymptotic form of the Euclidean section of the BT
metric is

ds25y2l 2 dt21y2 dF21
dy2

y2l 2
. ~3.8!

Regularity of the solution on the boundary of the Euclide
section aty5y1 requires that we must identifyt;t1b and
F;F1 ibV, whereb is the inverse temperature. The latt
identification is necessary because the boundary is a fi
point set of the Killing vector

k5]t1 iV]F . ~3.9!

The net result of these identifications is that after one a
lytically continues back to Lorentzian signature one fin
that the boundary at infinity is conformal to an Einstein u
verse rotating at angular velocityV.

In the limit thatV→6 l the surface is effectively rotating
at the speed of light: this gives the critical angular veloc
limit. Looking back at the form of the metric for the BTZ
black hole we find that this limit implies that

V52
j l 2

m~11Af !
→6 l , ~3.10!

which in turn requires thatf→0. Hence in three dimension
the cosmological and supersymmetry limits coincide with
critical angular velocity limit. However, the temperature ne
essarily vanishes while in the conformal field theory we ha
only probed the high-temperature limit. This suggests t
one should be able to find a more general critical angu
velocity limit. This is indeed the case: if we rewrite the BT
metric in Kerr form we will be able to find nonextreme stat
for which the boundary is rotating at the speed of light.

It is useful to rescale the time coordinate so thatb̂ is both
finite and dimensionless in the critical limit

b̂5Af lb'
2p

A2m
, ~3.11!
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where the latter equality applies form large. In this limit of
small b̂ the action for the BTZ black hole diverges as

I 3'
p2

8l b̂~12V̂!
, ~3.12!

where V̂5 l 21V and is hence dimensionless. We wou
need to know the CFT partition function at low temperatu
to compare with the CFT and bulk results.

B. Alternative metric for the BTZ black hole

To elucidate the thermodynamic properties of the bla
hole as one takes the cosmological and supersymmetric
it is useful to rewrite the metric in the alternative form

ds252
D r

r 2 S dt2
a

J
df D 2

1
r 2 dr2

D r

1
1

r 2S a dt2
1

J
~r 21a2!df D 2

, ~3.13!

where we define

D r5~r 21a2!~11 l 2r 2!22Mr 2. ~3.14!

The motivation for writing the metric in this form is that
then resembles the higher-dimensional anti–de Sitter–K
solutions. We have chosen the normalization of the time
angular coordinates so that the latter has the usual period
the former has normrl at spatial infinity. Rewriting the BTZ
black hole metric in Kerr-Schild and Boyer-Lindquist typ
coordinates was discussed recently in Ref.@13# in the context
of studying the global structure of the black hole. Using t
coordinate transformations

T5t, F5f1al2t, ~3.15!

R25
1

J
~r 21a2!, ~3.16!

with J512a2/ l 2, followed by a shifting of the radial coor
dinate, we can bring the metric back into the usual B
form. The horizons are defined by the zero points ofD r ,
with the event horizon being at

r 1
2 5

1

2l 2
~2M212a2l 2!1

1

2l 2
A~11a2l 222M !224a2l 2.

~3.17!

Expressed in terms of the variables (M ,a) the supersymme-
try and cosmic censorship conditions become

M>
1

2
~11uau l !2, ~3.18!

where the choice of sign ofa determines which Killing
spinor is conserved in the BPS limit. In the special caseM̄
5-5
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S. W. HAWKING, C. J. HUNTER, AND M. M. TAYLOR-ROBINSON PHYSICAL REVIEW D59 064005
[0 both supersymmetries are preserved; this is true for aa
and not just for the limiting valueuau l→1 which saturates
Eq. ~3.18!.

As is the case in higher dimensions, theM50 metric is
identified three-dimensional anti–de Sitter space. One
calculate the inverse temperature of the black hole to be

b t54p
r 1

2 1a2

D r8~r 1!
. ~3.19!

In the calculation of the action, only the volume term co
tributes; the appropriate background is theM50 solution
with the imaginary time coordinate scaled so that the geo
etry matches on a hypersurface of large radius

t→S 12
M

l 2R2D t. ~3.20!

Then the action is given by

I 352
p~r 1

2 1a2!

JD r8~r 1!
@r 1

2 l 21a2l 22M #. ~3.21!

In this coordinate system the thermodynamic quantities
be written as

M 85
M

4J
, J85

Ma

2J2
,

V85
Ja

~r 1
2 1a2!

, S5
p

2Jr 1
~r 1

2 1a2!. ~3.22!

We now have to decide how to take the limit of critic
angular velocity in this coordinate system. The key poin
that this coordinate system is not adapted to the rota
Einstein universe on the boundary. The angular velocity
the black hole in this coordinate system vanishes in the li
al→1 and is always smaller in magnitude thanl.

In both this and following sections, we shall adhere to
notation that primed thermodynamic quantities are expres
with respect to the Kerr coordinate system while unprim
thermodynamic quantities are expressed with respect to
Einstein universe coordinate system. We also assume f
here onwards thata is positive.

The angular velocity of the rotating Einstein universe
given by

V5V81al2; ~3.23!

that is, we need to define the angular velocity with respec
the coordinates (T,F). Now suppose thatV5 l (12e)
wheree is small. This requires that

e5~12al !
~r 1

2 2a/ l !

~r 1
2 1a2!

. ~3.24!
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For the Einstein universe on the boundary to be rotating
the critical angular velocity, eitheral51 or r 1

2 5a/ l . Note
that not only the action but also the entropy is divergent
the limit al51.

Let us explore the limitr 1
2 5a/ l first; it is straightforward

to show that this coincides with the supersymmetry lim
This means that in every supersymmetric black hole
boundary is effectively rotating at the speed of light, which
apparent from the limit ofV given in Eq. ~3.7!. Cosmic
censorship requires thatr 1

2 >a/ l and hence the rotating Ein
stein universe never rotates faster than the speed of light.
another way, any BTZ black hole can be in equilibrium wi
thermal radiation in infinite space, no matter what its mass

The metric of a supersymmetric BTZ black hole is

ds252 l 2y2 dT21
j l

2
~dT2 l 21 dF!21y2 df21

dy2

l 2y2
.

~3.25!

Now starting from the black hole metric~3.13! and using the
coordinate transformations

T5t, F5f1al2t,

y25
1

J
~r 22a/ l !, ~3.26!

the general supersymmetric metric can also be expresse

ds252 l 2y2dT21y2 dF21
dy2

l 2y2

1
al~11al !2

J2
~dT2 l 21 dF!2. ~3.27!

Correspondence between the two metrics requires that

m5 j l 5
2al

~12al !2
. ~3.28!

So a supersymmetric black hole has a mass which dive
as we take the limital→1. This is apparent if we define th
thermodynamic quantities with respect to the coordina
(T,F). The energy and inverse temperature are unchan
(M[M 8 andb t[b) while

J5
Ma

2J~11 l 2r 1
2 !

. ~3.29!

So the mass and angular momentum ofany black hole di-
verge as we take the limital→1. It is useful to consider
~very nonextreme! black holes which are at high temper
ture; this requires thatr 1l @1 and so if we define a dimen
sionless inverse temperature

b̄5 lb'
2p

lr 1
, ~3.30!
5-6
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we find that the other thermodynamic quantities behave
al→1 as

I 352
p2

lJb̄
, S5

p2

lJb̄
,

M5
p2

2lJb̄2
, J5

1

4l 2J
, ~3.31!

where the latter two quantities are defined with respect to
dimensionless temperature. These thermodynamic quan
are consistent both with the thermodynamic relations,
with the result for the partition function of the correspondi
conformal field theory.

IV. ROTATING BLACK HOLES IN FOUR DIMENSIONS

Rotating black holes in four dimensions with asympto
AdS behavior were first constructed by Carter@15# many
years ago. There has been interest in such solutions rec
as solitons ofN52 gauged supergravity in four dimension
@16# and in the context of topological black holes@17#. The
metric is

ds252
D r

r2Fdt2
a

J
sin2 ud f G2

1
r2

D r
dr21

r2

Du
du2

1
sin2 uDu

r2 Fa dt2
~r 21a2!

J
dfG2

, ~4.1!

where

r25r 21a2 cos2 u,

D r5~r 21a2!~11 l 2r 2!22Mr ,

Du512 l 2a2 cos2 u,

J512 l 2a2. ~4.2!

The parameterM is related to the mass,a to the angular
momentum, andl 252L/3 whereL is the~negative! cosmo-
logical constant. The solution is valid fora2, l 2, but be-
comes singular in the limita25 l 2 which is the focus of our
attention here. The event horizon is located atr 5r 1 , the
largest root of the polynomialD r . One can define a critica
mass parameterMe such that@17#

Mel 5
1

3A6
@A~11a2l 2!2112a2l 212~11a2l 2!#

3@A~11a2l 2!2112a2l 22~11a2l 2!#1/2. ~4.3!

Cosmic censorship requires thatM>Me with the limiting
case representing an extreme black hole. In the limit of c
cal angular velocity, the bound becomes
06400
r
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Ml>
8

3A3
, ~4.4!

which we will see implies that physical black holes must
at least as large as the cosmological scale. The angula
locity V8 is

V85
Ja

~r 1
2 1a2!

, ~4.5!

while the area of the horizon is

A54p
r 1

2 1a2

J
, ~4.6!

and the inverse temperature is

b t5
4p~r 1

2 1a2!

G r8~r 1!
5

4p~r 1
2 1a2!

r 1@3l 2r 1
2 1~11a2l 2!2a2/r 1

2 #
.

~4.7!

We should mention here the issue of the normalization of
Killing vectors and the rescaling of the associated coor
nates. One choice of normalization of the Killing vecto
ensures that the associated conserved quantities genera
SO~3,2! algebra: this was the natural choice in the context
Ref. @16#. Here we have chosen the metric so that the co
dinate f has the usual periodicity while the norm of th
imaginary time Killing vector at infinity islr . Note that we
are referring to the issue of the normalization of the K
coordinates rather than to the relative shifts between K
and Einstein universe coordinates.

If we Wick rotate both the time coordinate and the ang
lar momentum parameter

t52 i t and a5 ia, ~4.8!

then we obtain a real Euclidean metric where the radial
ordinate is greater than the largest root ofD r . The surface
r 5r 1 is a bolt of the corotating Killing vector,j5]t
1 iV]f . However, an identification of imaginary time coo
dinates must also include a rotation throughibV in f; that
is, we identify the points

~t,r ,u,f!;~t1b,r ,u,f1 ibV!. ~4.9!

We now want to calculate the Euclidean action, defined

I 452
1

16pE d4xAg@Rg16l 2#, ~4.10!

where we have set the gravitational constant to 1. The ch
of background is made by noting that theM50 Kerr-AdS
metric is actually the AdS metric in nonstandard coordina
@18#. If we make the implicit coordinate transformations

T5t, F5f2al2t,

y cosQ5r cosu,
5-7
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y25
1

J
@r 2Du1a2 sin2 u#, ~4.11!

this takes the AdS metric

ds̃252~11 l 2y2!dT21
1

11 l 2y2
dy2

1y2~dQ21sin2 Q dF2!, ~4.12!

to theM50 Kerr-AdS form. To calculate the action we nee
to match the induced Euclidean metrics on a hypersurfac
constant radiusR by scaling the background time coordina
as

t→S 12
M

l 2R3D t, ~4.13!

and then we find that

I 452
p~r 1

2 1a2!2~ l 2r 1
2 21!

Jr 1D r8~r 1!

52
p~r 1

2 1a2!2~ l 2r 1
2 21!

~12 l 2a2!@3l 2r 1
4 1~11 l 2a2!r 1

2 2a2#
. ~4.14!

Features of this result are as follows. The action is posi
for r 1

2 <1/l 2 and negative for largerr 1 ; just as for
Schwarzschild anti–de Sitter this indicates that there i
phase transition as one increases the mass. The actio
clearly divergent for extreme black holes as one would
pect. There is also a divergence whenJ→0; for small ra-
dius black holes the action diverges to positive infinity, wh
for large radius black holes the action diverges to nega
infinity. In the special caser 1

2 5a/ l the action is finite and
positive in the limital→1.

Defining the mass and the angular momentum of
black hole as

M 85
1

8pE ¹adT b dSab, J85
1

4pE ¹adJb dSab,

~4.15!

where T and J are the generators of time translation a
rotation, respectively, and one integrates the difference
tween the generators in the spacetime and the backgro
over a celestial sphere at infinity, then we find that

M 85
M

J
, J85

aM

J2
. ~4.16!

Allowing for the differences in normalization of the gener
tors, these values agree with those given in Ref.@16#. Using
the usual thermodynamic relations we can check that
entropy is

S5p
r 1

2 1a2

J
, ~4.17!
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as expected. Note that none of the extreme black holes
supersymmetric: in four dimensions there needs to be a n
vanishing electric charge for such black holes, regarded
solutions of a gauged supergravity theory, to be supers
metric.

It is well known that small Schwarzschild anti–de Sitt
black holes are thermodynamically unstable in the sense
their heat capacity is negative, just as for Schwarzsch
black holes in flat space. We find such an instability in
mensionsd>4 for black holes whose radius is less than
critical radius which is dimension dependent but is appro
mately 1/l . One can show that small rotating black holes a
also unstable in this sense but only for rotation parameter
order 0.1l 21 or less ~again the precise limit is dimensio
dependent!; larger angular velocities stabilize the blac
holes. In three dimensions no anti–de Sitter black holes h
negative specific heat.

To take the limit of critical angular velocity, we need t
use the coordinate system adapted to the rotating Eins
universe. As in three dimensions the angular velocity of
Einstein universe is given by

V5V81al2, ~4.18!

and is defined with respect to the coordinates (T,F). Defin-
ing V5 l (12e) as before we find that

e5~12al !
~r 1

2 2a/ l !

~r 1
2 1a2!

. ~4.19!

Rotation at the critical angular velocity hence requires t
eitheral51 or r 1

2 5a/ l , as in three dimensions. Generical
the thermodynamics of the four-dimensional black hole
similar to those of the BTZ black hole, and in fact to those
higher-dimensional black holes also. The (r 1 ,a) plane for a
single parameter black hole in a general dimension is ill
trated in Fig. 1.

There is, however, a novelty compared to the thr
dimensional case. The cosmological bound permits soluti
with r 1

2 ,a/ l ; for example, in the limiting caseal51, the
extreme solution hasr 1

2 5a2/3. To preserve the Lorentzia
signature of the metric we require thatal<1, and soV8. l
in the limit r 1

2 ,a/ l . That is, only for sufficiently large black
holes can one have the rotating black hole in equilibriu
with thermal radiation in infinite space. This is reflected
the fact that the action changes sign atr 151/l . In the limit
of zero curvature—by takingl to zero—we find, as expected
that there are no rotating black holes for which there is
Killing vector which is timelike right out to infinity.

One can rewrite the thermodynamic quantities of t
black hole with respect to the coordinate system (T,F). The
temperature is unchanged (b[b t) while the energy and an
gular momentum are given by

M5M 8, J5
aM

J~11 l 2r 1
2 !

. ~4.20!
5-8
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We are particularly interested in the limit of the action
al→1 at high temperature. Defining a dimensionless qu
tity

b̂5 lb'
4p

3lr 1
, ~4.21!

where the latter relation applies in the high-temperat
limit, the action diverges as

I 452
8p3

27l 2b̄2~12al !
. ~4.22!

The other thermodynamic quantities behave to leading o
as

~12V!5~12al !, M5
16p3

27l 2b̄3~12al !
,

J5
p

3l 3b̄~12al !
, S5

8p3

9l 2b̄2~12al !
. ~4.23!

The entropy diverges at the critical value, as do the ene
and the angular momentum. Note that the divergence of
angular momentum is subleading inb̄. As we stated in the
Introduction, there is no sense in which one can take
energy to be finite in the critical limit. If we takeM to be
fixed, thenM must approach zero in the limit. However a
cording to Eq.~4.4! there is no horizon unless the mass p
rameterM is of the cosmological scale.

FIG. 1. Plot of black hole radiusr 1 againstal. For r 1,1/l , the
action is positive, whilst the action blows up along the lineal51.
The lower line denotes the radius of the extreme black holer c as a
function of a. In the hatched regionr c

2<r 1
2 ,a/ l the Einstein uni-

verse on the boundary rotates faster than the speed of light.
action is finite and positive atr 1

2 5a/ l but infinite and positive for
extreme black holes. In three dimensions the supersymmetric
coincides withr 1

2 5a/ l , while in five and higher dimensions th
cosmological bound is atr c50.
06400
-

e

er

y
e

e

-

V. ROTATING BLACK HOLES IN FIVE DIMENSIONS

A. Single parameter anti–de Sitter–Kerr black holes

We now consider rotating black holes within a fiv
dimensional anti–de Sitter background. In five dimensio
the rotation group is SO(4)>SU(2)L3SU(2)R . Black holes
may be characterized by two independent projections of
angular momentum vector which may be denoted as the
gular momentaJL and JR . This is the most natural param
etrization when one considers the conformal field theory
scribing such states but the usual construction of K
metrics in higher dimensions will use instead two parame
Jf andJc which we choose such that

JL,R5~Jf6Jc!, ~5.1!

where we express the metric on the three sphere in the f

ds25du21sin2 u df21cos2 u dc2. ~5.2!

The two classes of special cases may be represented b
limits

JR50⇒Jf5Jc , ~5.3!

JL5JR⇒Jc50. ~5.4!

The former case will be considered in the next subsect
As for the stationary asymptotically flat solutions construc
by Myers and Perry@19#, the single parameter Kerr–anti–d
Sitter solution in d dimensions follows straightforwardly
from the four-dimensional solution. It is convenient to wri
it in the form

ds252
D r

r2S dt2
a

J
sin2 u df D 2

1
r2

D r
dr21

r2

Du
du2

1
Du sin2 u

r2 Fa dt2
~r 21a2!

J
dfG2

1r 2 cos2 u dVd24
2 ,

~5.5!

wheredVd24
2 is the unit round metric on the (d24) sphere

and

D r5~r 21a2!~11 l 2r 2!22Mr 52d,

Du512a2l 2 cos2 u,

J512a2l 2,

r25r 21a2 cos2 u. ~5.6!

The angular velocity on the horizon in all dimensions is

V85
Ja

~r 1
2 1a2!

. ~5.7!

The thermodynamics of single parameter solutions are
nerically similar in all dimensions. In five dimensions we c
solve explicitly for the horizon position finding that

he

it
5-9
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r 1
2 5

1

2l 2
@A~12a2l 2!218Ml 22~12a2l 2!#. ~5.8!

The condition for a horizon to exist is thatr 1 must be real,
which requires that 2M>a2. The volume of the horizon is

V5
2p2

J
r 1~r 1

2 1a2!, ~5.9!

and the inverse temperature is

b t54p
~r 1

2 1a2!

D r8~r 1!
5

2p~r 1
2 1a2!

r 1~2l 2r 1
2 111a2l 2!

. ~5.10!

It is useful to note that theM50 Kerr–anti–de Sitter solu
tion reduces to the anti–de Sitter background, with poi
identified in the angular directions, for alld: this follows
from the same coordinate transformation as for the fo
dimensional solution. The same coordinate transforma
also brings theMÞ0 solution into a manifestly asymptot
cally anti–de Sitter form.

In calculating the action the appropriate background is
M50 solution, with the imaginary time coordinate rescal
so that the induced metric on a hypersurface of large radiuR
matches that of theMÞ0 solution. This requires that w
scale

t→S 12
M

R4l 2D t. ~5.11!

The volume term in the action is given by

I 552
1

16pE d5x~Rg112l 2! ~5.12!

~with the gravitational constant equal to one! and the surface
term does not contribute. Evaluating the volume term
find that the action is given by

I 55
p2

4J

~r 1
2 1a2!2~12 l 2r 1

2 !

r 1~2l 2r 1
2 111a2l 2!

. ~5.13!

This action has the same generic features as in the lo
dimensional cases, namely~i! the sign changes at the critica
radiusr 1

2 51/l 2, ~ii ! the action diverges asJ→0 except for
black holes of the critical radiusr 1

2 5a/ l .
It is straightforward to show that the mass and angu

momentum of the rotating black hole with respect to t
anti–de Sitter background are given by

M 85
3pM

4J
, Jf8 5

pMa

2J2
. ~5.14!

Then the usual thermodynamic relations give the entropy
the black hole as

S5b~M1VJ!2I 55p2
r 1~r 1

2 1a2!

2J
, ~5.15!
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which is related to the horizon volume in the expected w
It is interesting to note that both the temperature and

entropy vanish for black holes with horizons atr 150, even
though the mass and angular momentum can be nonz
Since a necessary~though nonsufficient! condition for a
black hole to be supersymmetric is that the temperature v
ishes, only states for which the bound 2M5a2 is saturated
could be supersymmetric.

Just as the four-dimensional rotating black holes are s
tions ofN52 gauged supergravity in four dimensions, so w
can regard the five-dimensional solutions as solutions o
five-dimensional gauged supergravity theory. However, a
the four-dimensional case, the black holes do not prese
any supersymmetry for nonzero mass unless they
charged.

One can see this as follows. Supersymmetry requires
existence of a supercovariantly constant spinore satisfying

dCm5D̂me5S ¹m1
1

2
i l gmD e50, ~5.16!

whereC is the gravitino,D̂ is the supercovariant derivative
¹ is the covariant derivative, andg is a five-dimensional
gamma matrix. The integrability condition then becomes

@D̂m ,D̂n#e50⇒~Rmnabg
ab12l 2gmn!e50, ~5.17!

wherea,b are tangent space indices. It is straightforward
verify that all components of the bracketed expression van
for the background while for the rotating black hole the i
tegrability conditions reduce to

M

J
gae50. ~5.18!

Hence only in the zero mass black hole—anti–de Si
space itself—is any supersymmetry preserved. We exp
that supersymmetry can be preserved if we include char
but leave this as an issue to be explored elsewhere@6#. Gen-
eral static charged solutions ofN52 gauged supergravity in
five dimensions have been discussed recently in Ref.@20#;
one can construct the natural generalizations to general
tionary black holes starting from the neutral five-dimensio
stationary solutions given here. One can also construct s
tions for which the horizon is hyperbolical rather than sphe
cal; such solutions are analogous to those discussed in
@17#.

Taking the limit of critical angular velocity requires tha
we move to the coordinates (T,F) which are adapted to the
rotating Einstein universe. Then lettingV5 l (12e) with e
defined as in Eq.~4.19! we find that in the critical limit either
r 1

2 5a/ l or al51. Since cosmic censorship requires thatr 1

>0 with equality in the extreme limit, we can again ha
solutions for whichV. l which in turn implies that the black
holes cannot be in equilibrium with radiation right out
infinity. As in four dimensions the action changes sign at
critical valuer 1

2 5a/ l .
The thermodynamic quantities relative to the coordin

system (T,F) areb[b t , M[M 8, and
5-10
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JF5
pMa

2J~11 l 2r 1
2 !

. ~5.19!

In the limit al→1 at high temperature such that

b̄5 lb'
p

lr 1
, ~5.20!

we can express the thermodynamic quantities as

I 5'2
p5

8l 3Jb̄3
, M'

3p5

8l 3Jb̄4
,

JF'
p3

2l 4Jb̄2
, S'

p5

2l 3Jb̄3
, ~5.21!

where the energy and angular momentum are defined
respect to the dimensionless temperature. Note that the
gular momentum is again subleading inb̄ dependence rela
tive to the mass and the action. The divergence at crit
angular velocity is in agreement with that of the conform
field theory.

B. General five-dimensional AdS-Kerr solution

The metric for the two parameter five-dimensional rot
ing black hole is given by

ds252
D

r2S dt2
a sin2 u

Ja
df2

b cos2 u

Jb
dc D 2

1
Du sin2 u

r2 S a dt2
~r 21a2!

Ja
df D 2

1
Du cos2 u

r2 S b dt2
~r 21b2!

Jb
dc D 2

1
r2

D
dr2

1
r2

Du
du21

~11r 2l 2!

r 2r2 S ab dt2
b~r 21a2!sin2 u

Ja
df

2
a~r 21b2!cos2 u

Jb
dc D 2

, ~5.22!

where

D5
1

r 2
~r 21a2!~r 21b2!~11r 2l 2!22M ,

Du5~12a2l 2 cos2 u2b2l 2 sin2 u!,

r25~r 21a2 cos2 u1b2 sin2 u!,

Ja5~12a2l 2!, Jb5~12b2l 2!. ~5.23!

It should be straightforward to construct the metric for ge
eral rotating black holes in anti–de Sitter backgrounds
higher dimension. As for the single parameter solution,
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M50 metric is anti–de Sitter space, with points identified
the angular directions. Using the coordinate transformati

Jay2 sin2 Q5~r 21a2!sin2 u,

Jby2 cos2 Q5~r 21b2!cos2 u,

F5f1al2t,

C5c1bl2t, ~5.24!

the metric can be brought into a form which is manifes
asymptotic to anti–de Sitter spacetime. The parametersa and
b are constrained such thata2,b2< l 22 and the metric is only
singular if either or both parameters saturate this limit.

Defining the action as in Eq.~5.12! we find that

I 552
pb l 2

4JaJb
@~r 1

2 1a2!~r 1
2 1b2!2Ml 22#, ~5.25!

where the inverse temperature is given by

b t5
4p~r 1

2 1a2!~r 1
2 1b2!

r 1
2 D8~r 1!

, ~5.26!

and r 1 is the location of the horizon defined by

~r 1
2 1a2!~r 1

2 1b2!~11r 1
2 l 2!52Mr 1

2 . ~5.27!

For reala, b, and l there are two real roots to this equatio
when a5b these coincide to give an extreme black ho
when

r c
25

1

4l 2
~A118a2l 221!,

2Mcl
25

1

16
~A118a2l 22114a2l 2!

3~3A118a2l 21514a2l 2!. ~5.28!

The entropy of the general two parameter black hole is gi
by

S5
p2

2r 1JaJb
~r 1

2 1a2!~r 1
2 1b2!, ~5.29!

while the mass and angular momenta are

M 85
3pM

4JaJb
, Jf8 5

pMa

2Ja
2

, Jc85
pMb

2Jb
2

, ~5.30!

with the angular velocities on the horizon being

Vf8 5Ja

a

r 1
2 1a2

, Vc85Jb

b

r 1
2 1b2

. ~5.31!

Since the black hole is singular only when either or both
Ja andJb tend to zero, we should look in particular at th
5-11
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latter case for which the two rotation parametersa andb are
equal in magnitude. Then we can write the metric in t
transformed coordinates as

ds252~11y2l 2!dT21y2~dQ21sin2 Q dF2

1cos2 Q dC2!1
2M

y2J2
~dT2a sin2 Q dF

2a cos2QdC!2

1
y4 dy2

@y4~11y2l 2!2~2M /J2!y21~2Ma2/J3!#
, ~5.32!

whereJ512a2l 2. The position of the horizon of the ex
treme solution in these coordinates is

y25
1

4J
@4a2l 2211A118a2l 2#. ~5.33!

In the critical limit, al→1, the size of the black hole be
comes infinite in this coordinate system.

One can check to see whether the integrability condit
~5.17! is satisfied by the black hole metric~5.32!. Preserva-
tion of supersymmetry requires that

M

J2
gae50, ~5.34!

and hence only in the zero mass black hole is any supers
metry preserved. We have not checked the integrability c
dition in the general two parameter rotating black hole but
not expect supersymmetry to be preserved. In three dim
sions the integrability condition is trivially satisfied since t
BTZ black hole is locally anti–de Sitter and supersymme
preservation relates to global effects. In higher dimension
does not seem possible to satisfy the integrability conditi
without including gauge fields.

The Einstein universe rotates at the speed of light in
least some directions either when one or both ofJa andJb
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vanish or whenr 1
2 5a/ l or when r 1

2 5b/ l . The action is
singular when either or both ofJa and Jb are zero and
when the black hole is extreme. The action is positive
r 1<1/l ; there is a phase transition as the mass of the bl
hole increases.

If r 1
2 5a/ l the action will be positive and finite whenJa

vanishes and positive and infinite whenJb vanishes. For
lr 1

2 ,max@a,b# there will be directions in the Einstein un
verse which are rotating faster than the speed of light. In
limiting casea5b the action diverges for allr 1 asJ tends
to zero.

In the high-temperature limit, the action for the equal p
rameter rotating black hole diverges as

I 552
p5

8l 3J2b̄3
, ~5.35!

with b̄'p/(r 1l )!1. The other thermodynamic quantitie
follow easily from this expression, and are in agreement w
those derived from the conformal field theory in Sec. II.

We should mention what we expect to happen in hig
dimensions. A generic rotating black hole ind dimensions
will be classified by @(d21)/2# rotation parametersai ,
where@x# denotes the integer part ofx. Thus we expect both
the action and the metric to be singular if any of theai
vanish. Provided that the black hole horizon is atr 1.1/l the
action should diverge to negative infinity in the critical limi
behaving as

I d;2
1

bd22)
i

e i

, ~5.36!

wheree i512V i and the product is taken over alli such that
ai l→1. The b dependence follows from conformal invar
ance, whilst one should be able to derive thee i dependence
by looking at the behavior of the spherical harmonics.
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