PHYSICAL REVIEW D, VOLUME 59, 064005

Rotation and the AdS-CFT correspondence

S. W. Hawking® C. J. Hunter’, and M. M. Taylor-Robinsoh
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street,
Cambridge CB3 9EW, United Kingdom
(Received 19 November 1998; published 1 February 1999

In asymptotically flat space a rotating black hole cannot be in thermodynamic equilibrium because the
thermal radiation would have to be corotating faster than light far from the black hole. However in asymp-
totically anti—de Sitter space such equilibrium is possible for certain ranges of the parameters. We examine the
relationship between conformal field theory in rotating Einstein universes of dimensions two to four and
Kerr—anti—de Sitter black holes in dimensions three to five. The five-dimensional solution is new. We find
similar divergences in the partition function of the conformal field theory and the action of the black hole at the
critical angular velocity at which the Einstein universe rotates at the speed of light. This should be an inter-
esting limit in which to study larg®l Yang-Mills theory.[S0556-282(199)00106-X

PACS numbsgps): 04.70.Dy, 04.20-q, 11.25.Hf

I. INTRODUCTION ing vector and yet are timelike everywhere. This means that
one can have rotating black holes that are in equilibrium with
In Minkowski space the only Killing vector that is time- rotating thermal radiation all the way out to infinity.
like everywhere is the time translation Killing vectéfat. One would expedt4,3] the partition function of this black
For instance, in four-dimensional Minkowski space, the Kill- hole to be related to the partition function of a conformal
ing vectord/ gt+Qdl d¢ that describes a frame rotating with field theory in a rotating Einstein universe on the boundary
angular velocity) becomes spacelike outside the velocity of of the anti—de Sitter space. It is the aim of this paper to
the light cylinderr sin 6=1/Q). examine this relationship and draw some surprising conclu-
This raises problems with the thermodynamic interpretasjons.
tion of the Kerr solution: a Kerr solution with a nonzero  of particular interest is the behavior in the limiting case in
rotation parametea cannot be in equilibrium with thermal \yhich rotational velocity in the Einstein universe at infinity
radiation in infinite space because the radiation would hav%tpproaches the speed of light. We find that the actions of the

to corotate with the black hole and so would have to movece . ags solutions in four and five dimensions have similar
faster than light outside the velocity of the light cylinder. Thedivergences at the critical angular velocity to the partition

k_)es_t one can do_ls cons_ld_er the rather artificial case of €AUnctions of conformal field theories in rotating Einstein uni-
librium with rotating radiation in a box smaller than the ve-

locity of the light radius. This problem is inextricably linked VErses of one dimension lower. This is similar to the behav-

with the fact that the Hartle-Hawking state for a Kerr solu- <" of the three-dimensional rotating anti-de Sitter black
tion does not exist, as proved in REE]. The absence of the holes and the corresponding conformal field theory on the

Hartle-Hawking state has a number of important ramificatWo-dimensional Einstein universe or cylinder. There is,
tions, the details of which are discussed in Rél. however an important difference: in three dimensions one

black hole has to be placed in a finite sized box becaustBTZ) black holes relative to a reference background that is
otherwise the thermal radiation would have infinite energythe M =0 BTZ black hole. Had one used three dimensional
and would collapse on itself. There is also the problem tha@nti—de Sitter space as the reference background, one would
the equilibrium is unstable because the specific heat is negéave had an extra term in the action which would have di-
tive. verged as the critical angular velocity was reached.

It is now well known[2,3] that the specific heat of large On the conformal theory side, this choice of reference
Schwarzschild anti—de Sitter black holes is positive and thabackground is reflected in a freedom to choose the vacuum
the redshift in anti—de Sitter spaces acts as an effective boxnergy. However, in higher dimensions there is no analogue
to remove the infinite energy problem. What was less wellof the M=0 BTZ black hole to use as a reference back-
known except in the rather special three dimensional casground. One therefore has to use anti—de Sitter space itself as
was that anti—de Sitter boundary conditions could also rethe reference background. Similarly, there is not a freedom
move the faster than light problem for rotating black holes.to choose the vacuum energy in the conformal field theory.
That is, in anti—de Sitter space there are Killing vectors thaiAny mismatch between the reference background for anti—de
are rotating with respect to the standard time translation Kill-Sitter black holes and the vacuum energy of the conformal

field theory will become unimportant in the high-temperature
limit for nonrotating black holes or the finite temperature but

*Email address: swhi@damtp.cam.ac.uk critical angular velocity case. Thus it might be that the black
"Email address: C.J.Hunter@damtp.cam.ac.uk hole—thermal conformal field theory correspondence is valid
*Email address: M.M.Taylor-Robinson@damtp.cam.ac.uk only in those limits. In that case, maybe we should not be-

0556-2821/99/5%)/064005%13)/$15.00 59 064005-1 ©1999 The American Physical Society



S. W. HAWKING, C. J. HUNTER, AND M. M. TAYLOR-ROBINSON PHYSICAL REVIEW 19 064005

lieve that the largéN Yang-Mills theory in the Einstein uni- correspondence in the limit that the boundary is rotating at
verse has a phase transition. the speed of light; that is, we want to study the lafde
In the (1+ 1)-dimensional boundary of three-dimensional thermodynamics of conformal field theories in an Einstein
anti—de Sitter space, massless particles move to the left amiverse rotating at the speed of light.
right at the speed of light. The critical angular velocity cor- The details of the boundary conformal field theory ulti-
responds to all the particles moving in the same direction. linately depend on the details of the bulk supergrayity
the temperature is scaled to zero as the angular velocity atring) theory, but generic features such as the divergence of
proaches its critical value, the energy remains finite and théhe entropy in this critical limit should be independent of the
system approaches a Bogomol'nyi-Prasad-Sommerfielgrecise features of the theory. Thus we are led to making the
(BP9 state. following simplification: instead of considering, for example,
In higher-dimensional Einstein universes, however, parthe largeN limit of A'=4 super Yang-MillSSYM) theory in
ticles can move in transverse directions as well as in théour dimensions we can just look at the behavior of confor-
rotation direction or its opposite. At zero angular velocity, mal scalar fields in a rotating Einstein universe. We find that
the velocity distribution of thermal particles is isotropic but this does indeed give us generic thermodynamic features at
as the angular velocity is increased the velocity distributiorhigh temperature which agree with those found from the bulk
becomes peaked in the rotation direction. When the rotatheory.
tional velocity reaches the speed of light, the particles would To go further than this, we would have to embed the
have to be moving exclusively in the rotation direction. Thisrotating black hole solutions within a theory for which we
is impossible for particles of finite energy. Thus rotating Ein-know the corresponding conformal field theory. For instance,
stein universes of dimension greater than 2 cannot approaake could embed the five-dimensional anti—de Sitter—Kerr
a finite energy BPS state as the angular velocity approachddack holes into 1B supergravity in ten dimensions; we then
the critical value for rotation at the speed of light. know that the corresponding conformal field theory is the
Corresponding to this, we shall show that four- and five-largeN limit of =4 SYM theory. However, since we can-
dimensional Kerr-AdS solutions do not approach a BPS stataot calculate quantities in the lardé limit of the latter, to
as the angular velocity approaches the critical value, unlikebtain the subleading behavior of the partition function
the three-dimensional BTZ black hole. Nevertheless criticalvould require some approximations or models such as those
angular velocity may be of interest because one might expectsed in the discussion of rotating three branes in Rgf.It
that in this limit super-Yang-Mills would behave similar to a would be interesting to show that the perturbative SYM cal-
free theory. We postpone to a further paper the question afulation gives a discrepancy of 4/3 in the entropy as one
whether this removes the apparent discrepancy between tlesxpects from the results of Rdf].
gravitational and Yang-Mills entropies. Of course in two dimensions we can do better than this:
We should mention that critical limits on rotation have the two-dimensional conformal field theory is well under-
recently been discussed in the context of black three branesood in the context of an old framewoil8], where the
in type IIB supergravity5]: rotating branes are found to be correspond between bulk and boundary is effectively pro-
stable only up to a critical value of the angular momentumvided by the modular invariance of the boundary conformal
density, beyond which the specific heat becomes negativéield theory[9,10]. In recent months, the conformal field
However, our critical limit is different. It corresponds not to theory(CFT) has been discussed in some detail, for example
a thermodynamic instability, but rather to a Bose condensain Ref.[11], and one should be able to obtain the subleading
tion effect in the boundary conformal field theory. dependences of the partition function on the angular velocity
In Sec. Il we calculate the partition function for conformal ). We leave this issue to future work.
invariant free fields in rotating Einstein universes of dimen- It is interesting to note here that there is no equivalent of
sion two, three, and four in the critical angular velocity limit. the zero mass BTZ black hole in higher dimensions. Since
In Secs. I, IV, and V, we calculate the entropy and actionsthe correspondence between the bulk theory and the bound-
for rotating anti—de Sitter black holes in the correspondingary conformal field theory is clearest when one takes the
dimensions and find agreement with the conformal field inbackground to be the BTZ black hole, the correspondence
the behavior near the critical angular velocity. between the conformal field theory and supergravity in the
The metric for rotating anti—de Sitter black holes in di- anti—de Sitter background may only be approximate in
mensions higher than four was not previously known. Outhigher dimensions, valid for high temperature. This is one
solutions have other interesting applications, particularlyreason why it is useful to investigate what happens in the
when regarded as solutions of gauge supergravity in five dieritical angular velocity limit.
mensions, which we will discuss elsewhé6g. Let us start with an analysis of conformal fields in a two-
dimensional rotating Einstein universe; the metric on a cyl-
Il. CONFORMALLY INVARIANT FIELDS IN ROTATING inder s
EINSTEIN UNIVERSES dszz—dT2+d<D2, (2.1

The Maldacena conjectufd,3] implies that the thermo-
dynamics of quantum gravity with a negative cosmologicalwhere we need to identiffp ~® + B2, and both the inverse
constant can be modeled by the lafdehermodynamics of temperaturg8 and the angular velocit{2 are dimensionless.
guantum field theory. We are interested here in probing thé&low consider modes of a conformally coupled scalar field,
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propagating in this background; for harmonic modes, the freWe are interested in the divergence of the partition function
guencyw is equal in magnitude to the angular momentumwhen ) — *1; this divergence arises from the modes for
quantum numbet. So we can write the partition function which the frequency is almost equal fm|. Of course the

for conformally invariant scalar fields as frequency can never be quite equal|to|, but for largem
the argument of the logarithm in E@2.7) becomes very
Inz=—3 In(1—e ALy |n(1—e Ao+l small. So picking out the modes for whigh= |x| in Eq. (2.9

we find that the leading order divergence in the partition
(2.2 function at smallg is

where the first term counts left moving modes and the sec- 2
ond term counts right moving modes. The partition function In Z~ —, (2.9
is manifestly singular as one takes the liflit->=1; in this 68°(1-Q°)

limit, all the particles rotate in one direction. Provided tjgat

is small we can approximate the summation by an integral s hich agrees in functional form with the limit that we will

ind for the bulk action in Sec. IV. In the critical limit, all the

that particles are rotating at the speed of light in the equatorial
2 plane.
Z~— (2.3 The metric of the four-dimensional rotating Einstein uni-
68(1-Q?) verse can be written as
which agrees with the high-temperature result found in the ds?’=—dT?+dO2+sir* © dd2+cog O d¥?,
next section3.12 up to a factor and a scaleNote that the (2.10
form of this result could also be derived by requiring confor- ] -
mal invariance in the high-temperature limit. where® and¥ must be identified modul@Q, and B(,.

Let us now consider the conformal field theory in three'We have only approximated the partition function for con-
dimensions; a hypersurface of constant large radius in thiormally coupled scalar fields in lower-dimensional rotating
four-dimensional anti—-de Sitter—Kerr metric has a metricEinstein universes. However in R¢f.2] the thermodynam-

which is proportional to a three-dimensional Einstein uni-ICS Of conformally coupled scalars were discussed in detail
verse for a four-dimensional rotating Einstein universe in the limit

in which one of the angular velocities vanishes. The general
ds?’=—dT?+dO®2%+sir? © dd?, (2.4)  form for the partition function found in Ref12] is quite
complex, but it takes a simple form whehis small: one
where® must be identified modul@Q with 8 andQ di-  finds that
mensionless. Now consider a conformally coupled scalar

field propagating in this background: the field equation for a 3

i i InZ~ ———, (2.1)
harmonic scalar is 908%(1—0?)
(V— E) = ( V— 1) =0, (2.5 where(} is the angular velocity, which agrees in form with
8 4 the bulk result to leading order. In principle we could use the

) , ] ) o partition function density given in Refl2] to probe the
whereV is the d’Alambertian andR; is the Ricci scalar.  correspondence between subleading terms.

Modes of frequency» satisfy the constraint Let us now try to approximate the partition function for
2 general angular velocities using the same techniques as be-
w?=L(L+1)+ 1 =lL+2]|, (2.6  fore. Consider a conformally invariant scalar field propagat-
4 2 ing in this background; the field equation is

wherelL is the angular momentum quantum number. Then Ry
the partition function can be written as V-5~ (V-De=0 (212

iz i i In(1— e~ Alo-ma) 2.7 and so modes of the field have frequenaiesvhich satisfy
L=0m=—L w?=L(L+2)+1=(L+1)? (2.13

For smallg we can approximate this summation as the Inte_WhereL is the orbital angular momentum number. Then the

gral partition function may be written as
[} XL
~ — _ a— B —Qx%x\m)
InZ J'O dXLJ'deXM In(1—e L M) InZ=— E |n(1—e*ﬂ(w*m191*m292)), (2.14
L,my,my
= ifmdyfy dxIn(1—e~ (V=) (2.8 wherem,; andm, are orbital quantum numbers. Suppose that
B?Jo -y Q,=0; then we expect the dominant contribution to the par-
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tition function in the critical angular velocity limit to be from , [V 2 , 2
the m;= =L modes. However, there is a constraint on the N*= W (Y=y$),
angular momentum quantum numbers

j

M|+ [myl <L, (2.19 e
2p?

1
N?=———= pP=y?+s(mi72-y3), (33
and so we need to sat,=0. The dominant contribution to

the partition function at high temperature can be expressed ggih the position of the outer horizon defined by

SO _ All+x(1-Q)] o J
inz ﬂBJO dx{In(1-e ) y2 —mi-2 1‘(5) | )
+In(1—eltHxa2l)] Note that in these conventions anti—de Sitter spacetime is the
) m= —1,j =0 solution. Cosmic censorship requires the exist-
_ m (2.16 ence of an event horizon, which in turn requires either
683(1-03?)’ ' =—1,j=0, orm=|j|I. This bound in fact coincides with

the supersymmetry bound: regarded as a solution of the
which agrees with the resu2.11) in functional dependence equations of motion of gauged supergravity with zero gravi-
although not coefficient. tini, extreme black holes witm=|j|l have one exact super-
For general angular velocities we find that the factor ~ symmetry. Both then=0 and then= —1 black holes have
two exact supersymmetries. In higher-dimensional anti—

(L=my;—my()5) (217 de Sitter Kerr black holes the cosmic censorship bound does
) i not coincide with the supersymmetry bound.
only approaches zero in the limi,,(,—1. Thus we ex- The temperature of the black hole is given by
pect that there is a divergent contribution to the partition
function only when either or both &2, and(), tend to 1, as Pmil 1=¢iiym?2  1*?
we will find when we look at the black hole metric. Ty= [ u _ ) (3.5
Setting Q;=0,=0Q, the dominant contribution to the 27 | 1+ 1= (jl/m)?
partition function will come from modes for which the bound ) .
(2.15 is saturated. Then we find that There has been a great deal of interest recently in the BTZ

black hole; the action was first calculated in Rgf4] and
1 (= has also been discussed in REf1]. However, the action
In Z~ — —3f dx {In(1—e X1~ Yy +n(1—e X1~ Y)] was calculated with respect to the zero mass black hole back-
B7Jo ground, while in the present context we are interested in the
action with respect to anti—de Sitter space itself. The reason
_ {3) (2.18 for this is that in higher dimensions there is no analogue of
B3(1-0?)? ' the zero mass black hole as a backgrotind.
To calculate the action of the rotating black hole one first
which has the correct dependence®and(} to agree with  npeeds to analytically continue both-ir andj— —ij. Us-

the bulk result found in Sec. V. ing the Euclidean section one finds the action as a function of
m, |, andj. The physical result is then obtained by analyti-
1. ROTATING BLACK HOLES IN THREE DIMENSIONS cally continuing the angular momentum parameter. Taking
A. The BTZ black hole the background to be anti—de Sitter space we then find that
) ) ) o ) ) the Euclidean actioffor m=0) is given by
The Euclidean Einstein action in three dimensions can be
written as ~ [1+ \/f 1/2

[BmVf—(2+m)], (3.6

N

where f=1—(jl/m)2. This action diverges in general &s

with the three-dimensional Einstein constant set to 1. Thé@pproaches zero, i.e., as we approach the cosmological and
Lorentzian section of the BTZ black hole solution first dis-
cussed in Refl14] is

f

|3=—%f d3x\g[Ry+217], (3.2

1The metric for which one replaces the lapse functior(3y?)
N*Zdyz by 12y? certainly plays a distinguished role in all dimensions, since
' this is the metric that one obtains from branes in the decoupling
(3.2 limit. It is not, however, true that this metric is the natural back-
ground for rotating black holes in dimensions higher than three but
where the squared lap$¢?, the angular shifN?, and the in the high-temperature limit the distinction between the back-
angular metricp? are given by grounds will only affect subleading contributions to the action.

y 2

ds?=—N2dT?+ pA(N®d T+ dd)?+
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supersymmetry bound. One would expect the action to diwhere the latter equality applies far large. In this limit of

verge to positive infinity in this limit; from the gravitational small 3 the action for the BTZ black hole diverges as
instanton point of view, this implies that there is zero prob-

ability for anti—de Sitter spacetime to decay into a supersym- w2
metric BTZ black hole. 3~ ——F, (3.12
It is straightforward to show that the energy, angular 81B5(1-Q)

momentumJ, angular velocity), and entropysare given by .
where Q=1"1Q and is hence dimensionless. We would
1 need to know the CFT partition function at low temperature
M=g(m+1), J=g, (37 to compare with the CFT and bulk results.

—

B. Alternative metric for the BTZ black hole

i
P, . To elucidate the thermodynamic properties of the black
2p°(y+) . I
hole as one takes the cosmological and supersymmetric limit

Note that the zero of energy is defined with respect to thét is useful to rewrite the metric in the alternative form
anti—de Sitter space rather than tne=0 black hole.

1
S=57p(y+),

. . . Ar a 2 r.2dr2
The asymptotic form of the Euclidean section of the BTZ d?=— —| dt— =d¢| +
metric is 2 = A
dy? 1 1, 2
d52:y2|2d7'2+y2dq)2+$. (3.9 +r—2 adt—g(r +a%)do| , (3.13
y

Regularity of the solution on the boundary of the EuclideanWhere we define

section aty=y, requires that we must identify~ + 8 and A, =(r2+a2)(1+1%r2)— 2Mr2. (3.14
o~ P +ipBQ), whereg is the inverse temperature. The latter '
identification is necessary because the boundary is a fixefihe motivation for writing the metric in this form is that it

point set of the Killing vector then resembles the higher-dimensional anti—de Sitter—Kerr
. solutions. We have chosen the normalization of the time and
k=d,+1Qdg . (3.9  angular coordinates so that the latter has the usual period and

the former has norml at spatial infinity. Rewriting the BTZ
The net result of these identifications is that after one anaplack hole metric in Kerr-Schild and Boyer-Lindquist type
lytically continues back to Lorentzian signature one findscoordinates was discussed recently in R&8] in the context
that the boundary at infinity is conformal to an Einstein uni- of studying the global structure of the black hole. Using the

verse rotating at angular velocify. coordinate transformations
In the limit that() — = | the surface is effectively rotating
at the speed of light: this gives the critical angular velocity T=t, ®d=¢+al?, (3.195

limit. Looking back at the form of the metric for the BTZ

black hole we find that this limit implies that 1
R*==(r’+a?), (3.1

j?
== Lt Jn — =, (310  with E=1-a%I?, followed by a shifting of the radial coor-
dinate, we can bring the metric back into the usual BTZ
form. The horizons are defined by the zero pointsAgf,

which in turn requires that— 0. Hence in three dimensions awith the event horizon being at

the cosmological and supersymmetry limits coincide with
critical angular velocity limit. However, the temperature nec-

essarily vanishes while in the conformal field theory we have r’=—@M-1-a%?+ i\/(1+ a?l?—2M)2—4a??2.
only probed the high-temperature limit. This suggests that 212 212
one should be able to find a more general critical angular (3.17

velocity limit. This is indeed the case: if we rewrite the BTZ ) )
metric in Kerr form we will be able to find nonextreme states EXPressed in terms of the variabled (a) the supersymme-

for which the boundary is rotating at the speed of light. Ty @nd cosmic censorship conditions become
It is useful to rescale the time coordinate so tAas both

1
finite and dimensionless in the critical limit M= §(1+ lal)?, (3.18
B:\/ﬂB” 2m (3.11) where the choice of sign o& determines which Killing
2m’ spinor is conserved in the BPS limit. In the special cike
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=0 both supersymmetries are preserved; this is true fax all For the Einstein universe on the boundary to be rotating at

and not just for the limiting valuéa|l -1 which saturates the critical angular velocity, eithexl=1 or r3 =a/l. Note

Eqg. (3.18. that not only the action but also the entropy is divergent in
As is the case in higher dimensions, thle=0 metric is  the limital=1.

identified three-dimensional anti—de Sitter space. One can Let us explore the limit? =a/I first; it is straightforward

calculate the inverse temperature of the black hole to be to show that this coincides with the supersymmetry limit.
This means that in every supersymmetric black hole the

r2 +a? boundary is effectively rotating at the speed of light, which is
Bi=4m— . (3.19  apparent from the limit of) given in Eq. (3.7). Cosmic
Ar(ry) censorship requires thaf =a/l and hence the rotating Ein-

. . stein universe never rotates faster than the speed of light. Put
Ir! the calculation of '_[he action, only the volume ‘emﬁ CON-another way, any BTZ black hole can be in equilibrium with
tributes; the appropriate background is the=0 solution o/ radiation in infinite space, no matter what its mass is.
with the imaginary time coordinate scaled so that the geom- The metric of a supersymmetric BTZ black hole is
etry matches on a hypersurface of large radius

jl dy?
M ds’=—1%y?dT?+ J—(dT—I‘1d<I>)2+y2d¢2+ —y.
T—|1———|T. (3.20 2 |2y2
I?R (3.29
Then the action is given by Now starting from the black hole metr{8.13 and using the
coordinate transformations
2 2
m(ri+a
3=——H( - )[r2+|2+a2|2—|v|]. (3.21 T=t, d=g¢+al’,
‘:Ar(r+)
. . . " 2 1 2
In this coordinate system the thermodynamic quantities can ye==(re—all), (3.26
be written as -
the general supersymmetric metric can also be expressed as
M Ma
M'=— J=— 2
45’ =2’ d
25 A= —12y2d T2+ y2 dD2+ -
|2y2
Q= =a — (r2 +a? (3.22 al(1+al)?
(r2+a?)’ 28r, - * +————(dT-171dd)?. (3.27

—_—

We now have to decide how to take the limit of critical
angular velocity in this coordinate system. The key point is
that this coordinate system is not adapted to the rotating
Einstein universe on the boundary. The angular velocity of m=jl = 2al _
the black hole in this coordinate system vanishes in the limit (1—al)?
al—1 and is always smaller in magnitude thlan

In both this and following sections, we shall adhere to theSo a supersymmetric black hole has a mass which diverges
notation that primed thermodynamic quantities are expresseas we take the limial— 1. This is apparent if we define the
with respect to the Kerr coordinate system while unprimedhermodynamic quantities with respect to the coordinates
thermodynamic quantities are expressed with respect to thel,®). The energy and inverse temperature are unchanged
Einstein universe coordinate system. We also assume frofiM=M" and 8;=B) while
here onwards tha is positive.

The angular velocity of the rotating Einstein universe is Ma

given by J= —25(1+|2ri . (3.29

Correspondence between the two metrics requires that

(3.28

So the mass and angular momentumaafy black hole di-
verge as we take the limiél—1. It is useful to consider
?very nonextremeblack holes which are at high tempera-
ture; this requires that,1>1 and so if we define a dimen-
sionless inverse temperature

the coordinates T,®). Now suppose that)l=I(1—¢)
wheree is small. This requires that

(3.2 B=Ip~ lzr_” (3.30
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we find that the other thermodynamic quantities behave for

8
al—1 as Ml=—, (4.4
33
7T2 ’7T2 . . . . .
l3=— ——, S=—, which we will see implies that physical black holes must be
|EB IEB at least as large as the cosmological scale. The angular ve-
locity Q' is
™t (3.3) 5
= =, = , . Fa
21E B2 4125 Q'=——, (4.9
(ri+a)

where the latter two quantities are defined with respect to the | _ i
dimensionless temperature. These thermodynamic quantitidéhile the area of the horizon is
are consistent both with the thermodynamic relations, and

2 2
with the result for the partition function of the corresponding A:47Tr+:a , (4.6)
conformal field theory. =

and the inverse temperature is
IV. ROTATING BLACK HOLES IN FOUR DIMENSIONS

_ _ _ _ _ _ 4Am(r +a?) 4m(r? +a?)
Rotating black holes in four dimensions with asymptotic =~ B;= - = ") > YRR
AdS behavior were first constructed by Carfés] many Fe(ro) o re3lri+(1+a%%) —a’/ri]
years ago. There has been interest in such solutions recently 4.7

as solitons oN=2 gauged supergravity in four dimensions
[16] and in the context of topological black holgk7]. The
metric is

We should mention here the issue of the normalization of the
Killing vectors and the rescaling of the associated coordi-
nates. One choice of normalization of the Killing vectors
s 5 ) ensures that the associated conserved quantities generate the
+ p—dr2+ p—d02 SO(3,2) algebra: this was the natural choice in the context of
p A, Ay Ref.[16]. Here we have chosen the metric so that the coor-
dinate ¢ has the usual periodicity while the norm of the
Sir? 6A , (r’+a? 12 imaginary time Killing vector at infinity idr. Note that we
+ —2[adt_Td‘4 ' 4D are referring to the issue of the normalization of the Kerr
coordinates rather than to the relative shifts between Kerr
and Einstein universe coordinates.

A a
ds?=— —;[dt— = sir? d ¢

p

where . . .
If we Wick rotate both the time coordinate and the angu-
p?=r2+a2cod 6, lar momentum parameter
t=—i7 and a=ia, (4.8

A,=(r’+a?)(1+1%r?)—2Mr,
then we obtain a real Euclidean metric where the radial co-

A,=1-1%a%cos? 6, ordinate is greater than the largest root/gf. The surface
r=r, is a bolt of the corotating Killing vectoré=4,
E=1-1%a2 (4.2  +iQd,. However, an identification of imaginary time coor-

dinates must also include a rotation through() in ¢; that
The parameteM is related to the mass to the angular is, we identify the points
momentum, ant®= — A/3 whereA is the(negativé cosmo-
logical constant. The solution is valid fa®<I2, but be- (7,r,0,0)~(7+B,r,0,6+15Q). 4.9
comes singular in the limia?=12 which is the focus of our
attention here. The event horizon is locatedr atr ., the
largest root of the polynomiak,. One can define a critical

We now want to calculate the Euclidean action, defined as

1
mass parametevl, such tha{17] l,=— EJ d4x\fg[ Ry+ 612], (4.10
M. = 1 [V(1+a22)2+ 122212+ 2(1+a2?)] where we have set the gravitational constant to 1. The choice
¢ 3.6 of background is made by noting that te=0 Kerr-AdS

S - o1 metric is actually the AdS metric in nonstandard coordinates
X[V(1+a%1%)?+12a%1°~ (1+a%1%)]"% (4.3  [18]. If we make the implicit coordinate transformations

Cosmic censorship requires thist=M,. with the limiting T=t, ®=¢—al?,
case representing an extreme black hole. In the limit of criti-
cal angular velocity, the bound becomes y cos® =r cosé,
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1 as expected. Note that none of the extreme black holes are

yzza[szﬁ a?sir? 0], (4.11 supersymmetric: in four dimensions there needs to be a non-

. vanishing electric charge for such black holes, regarded as

this takes the AdS metric solutions of a gauged supergravity theory, to be supersym-
metric.

It is well known that small Schwarzschild anti—de Sitter
> 2 black holes are thermodynamically unstable in the sense that
1+1%y their heat capacity is negative, just as for Schwarzschild
+y2(dO2+sir? O dd?), (4.12  black holes in flat space. We find such an instability in di-
mensionsd=4 for black holes whose radius is less than a
to theM =0 Kerr-AdS form. To calculate the action we need critical radius which is dimension dependent but is approxi-
to match the induced Euclidean metrics on a hypersurface ahately 1I. One can show that small rotating black holes are
constant radiuR by scaling the background time coordinate also unstable in this sense but only for rotation parameters of
as order 0.17! or less(again the precise limit is dimension
dependent larger angular velocities stabilize the black

ds?=—(1+1%y?)dT?+ 2

dy

M holes. In three dimensions no anti—de Sitter black holes have
T_’( 1- 12r3| 7 (4.13 negative specific heat.
To take the limit of critical angular velocity, we need to
and then we find that use the coordinate system adapted to the rotating Einstein
universe. As in three dimensions the angular velocity of the
| m(r’ +a%>?(1%r% - 1) Einstein universe is given by
4= f— !
BT+Ar(rs) Q=0'+al? 4.18

m(r’ +a?)>?(1%r% - 1) 414
T T 2.2 > 4 2,202 .29 ™ and is defined with respect to the coordinatésd{). Defin-
(1=1"af)[31%r +(1+1%a%)rs —a’] ing Q=1(1—¢) as before we find that

Features of this result are as follows. The action is positive

for r><1/1% and negative for larger_; just as for (ri—all)

Schwarzschild anti—de Sitter this indicates that there is a 62(1_a|)rzTaz)' (4.19
phase transition as one increases the mass. The action is -

clearly divergent for extreme black holes as one would ex- ) - ) )
pect. There is also a divergence whgn-0: for small ra- Rotation at the critical angular velocity hence requires that

_ 2 _ . . . .
dius black holes the action diverges to positive infinity, while €itheral=1 orr% =a/l, as in three dimensions. Generically

for large radius black holes the action diverges to negativéhe thermodynamics of the four-dimensional black hole are
infinity. In the special case =a/l the action is finite and Similar to those of the BTZ black hole, and in fact to those of

positive in the limital—1. higher-dimensional black holes also. Thre (a) plane for a
Defining the mass and the angular momentum of thesingle parameter black hole in a general dimension is illus-
black hole as trated in Fig. 1.

There is, however, a novelty compared to the three-
L1 b ;1 ) dimensional case. The cosmological bound permits solutions
M :gf Vad7,dS™,  J :EJ VadJ, dS™, with ri<a/|; for example, in the limiting casal=1, the
(4.15 extreme solution has®> =a%/3. To preserve the Lorentzian
signature of the metric we require thalt<1, and so)’ >|
where 7 and J are the generators of time translation andin the limitr2 <a/l. That is, only for sufficiently large black
rotation, respectively, and one integrates the difference benoles can one have the rotating black hole in equilibrium
tween the generators in the spacetime and the backgroungith thermal radiation in infinite space. This is reflected in

over a celestial sphere at infinity, then we find that the fact that the action changes sigmr at=1/. In the limit
of zero curvature—by takingto zero—we find, as expected,
M _aM (4.1 that there are no rotating black holes for which there is a
= = ' Killing vector which is timelike right out to infinity.

One can rewrite the thermodynamic quantities of the
Allowing for the differences in normalization of the genera- black hole with respect to the coordinate systémdf). The
tors, these values agree with those given in RE]. Using  temperature is unchange@#£ 3;) while the energy and an-
the usual thermodynamic relations we can check that thgular momentum are given by
entropy is
aM

24 .2
re+a =M’ = -
+ , 4.17) M=M", ] Z(1r17?) (4.20

S=7

I
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V. ROTATING BLACK HOLES IN FIVE DIMENSIONS

o Increasing A. Single parameter anti-de Sitter—Kerr black holes

temperature

We now consider rotating black holes within a five-
dimensional anti—de Sitter background. In five dimensions
the rotation group is SO(4) SU(2), X SU(2)g. Black holes
may be characterized by two independent projections of the
angular momentum vector which may be denoted as the an-
gular momental, andJg. This is the most natural param-
etrization when one considers the conformal field theory de-
scribing such states but the usual construction of Kerr
metrics in higher dimensions will use instead two parameters
J4 andJ, which we choose such that

mn |-

JL,R:(‘](/)i‘Jz//)l (51)

/

/

0

where we express the metric on the three sphere in the form

al ds?=d6?+sir?  d¢p?+ cos 6 dy°. (5.2

FIG. 1. Plot of black hole radius, againstal. Forr <1/, the

L Iy ; : : The two classes of special cases may be represented by the
action is positive, whilst the action blows up along the lade=1. P y P y

The lower line denotes the radius of the extreme black holes a limits

function ofa. In the hatched region?<r2 <a/l the Einstein uni- Jo=0=J.=J (5.3
verse on the boundary rotates faster than the speed of light. The R ¢

action is finite and positive aﬁ=a/| but infinite and positive for ‘JL:JR:Jz//:O- (5.4)

extreme black holes. In three dimensions the supersymmetric limit

coincides withr =a/l, while in five and higher dimensions the The former case will be considered in the next subsection.
cosmological bound is at;=0. As for the stationary asymptotically flat solutions constructed
] ] _ o . by Myers and Perry19], the single parameter Kerr—anti—de
We are particularly interested in the limit of the action assitter solution ind dimensions follows straightforwardly
al—1 at high temperature. Defining a dimensionless quanfrom the four-dimensional solution. It is convenient to write

tity it in the form
" 4 2 2 2
=| B~ A a
A=1B=35 .23 dszz——zr(dt—:sinzedgb 2 gres £ gg2
p = A, Ay

where the latter relation applies in the high-temperature A i 0 (r2+a?)

L. . . Si reta

limit, the action diverges as + 20 - {a dt— = de
873 P

|4=—m. (4.22 (55)

2
+r2cog #dQ;_,,

) - ) wheredﬂg,4 is the unit round metric on thed(-4) sphere
The other thermodynamic quantities behave to leading ordeg,q

as
A,=(r2+a?(1+1%r?)—2Mmr5-¢
(1-Q)=(1-al), M 167°
— = —a , =, —1_72|2
27126%(1—al) A,=1-a%l?cog 0,
= _1_4,2|2
| F— 5= o™ 4.23 S
3188(1-al)’ 9128%(1—al)’ ' p?=r?+a?cog . (5.6

The entropy diverges at the critical value, as do the energyhe angular velocity on the horizon in all dimensions is
and the angular momentum. Note that the divergence of the

angular momentum is subleading gh As we stated in the 0= =a
Introduction, there is no sense in which one can take the (ri+a2)'
energy to be finite in the critical limit. If we taka1 to be

fixed, thenM must approach zero in the limit. However ac- The thermodynamics of single parameter solutions are ge-
cording to Eq.(4.4) there is no horizon unless the mass pa-nerically similar in all dimensions. In five dimensions we can
rameterM is of the cosmological scale. solve explicitly for the horizon position finding that

(5.7
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1 which is related to the horizon volume in the expected way.
ri=—[V(1-a%%)%+8MI’~(1-a%?)]. (5.8 It is interesting to note that both the temperature and the
2l entropy vanish for black holes with horizonsrat=0, even
though the mass and angular momentum can be nonzero.

Since a necessar{though nonsufficient condition for a
black hole to be supersymmetric is that the temperature van-

The condition for a horizon to exist is that must be real,
which requires that ®1=a?. The volume of the horizon is

2 ishes, only states for which the bount12=a? is saturated
V= ?r+(ri +a?), (5.9 could be supersymmetric.
= Just as the four-dimensional rotating black holes are solu-
and the inverse temperature is tions of N=2 gau_ged supergravity in fo_ur dimension_s, so we
can regard the five-dimensional solutions as solutions of a
(ri+a2) 2w(ri+a2) five—dimen_sional_ gauged supergravity theory. However, as in
Bi=4m— = " 55+ (510  the four-dimensional case, the black holes do not preserve
Ar(ry)  re(2ri+1+a%l%) any supersymmetry for nonzero mass unless they are
charged.

It is useful to note that th&1=0 Kerr—anti—de Sitter solu-
tion reduces to the anti—de Sitter background, with point
identified in the angular directions, for ail this follows
from the same coordinate transformation as for the four- ~
dimensional solution. The same coordinate transformation OV n=Dpe=
also brings theM #0 solution into a manifestly asymptoti-

cally anti—de Sitter form. . A . I
. . , ... whereW is the gravitinoD is the supercovariant derivative,
In calculating the action the appropriate background is the, . > L : : . .
is the covariant derivative, angt is a five-dimensional

M =0 solution, with the imaginary time coordinate rescaled amma matrix. The intearability condition then becomes
so that the induced metric on a hypersurface of large reilius 9 ' 9 y

matches that of thé #0 solution. This requires that we

One can see this as follows. Supersymmetry requires the
Sxistence of a supercovariantly constant spiaaatisfying

1
Vm-l—zil'ym €=0, (5.1

[f)m ) f)n]E: Oﬁ(Rmnabyab"' 2l 27mn)€: 0, 5.19

scale
M wherea,b are tangent space indices. It is straightforward to
el — | 7 (5.1 Vverify that all components of the bracketed expression vanish
R4I2 for the background while for the rotating black hole the in-

) S tegrability conditions reduce to
The volume term in the action is given by
M
= v2€=0. (5.18
- | g5 2 =
I 16m d>x(Ry+12%) (5.12
. o Hence only in the zero mass black hole—anti—de Sitter
(with the graV|tat|ona_I constant equ_al to gramd the surface space itseif—is any supersymmetry preserved. We expect
term does not contribute. Evaluating the volume term Wenat supersymmetry can be preserved if we include charges,

find that the action is given by but leave this as an issue to be explored elsewl@reGen-

72 (r2 +a?)?(1—12r2 eral static charged solutions bif=2 gauged supergravity in
= + > iy (5.13 five dimensions have been discussed recently in F&f];
45 v (217 +1+a%?) one can construct the natural generalizations to general sta-

. ) ) ) tionary black holes starting from the neutral five-dimensional
This action has the same generic features as in the low&fationary solutions given here. One can also construct solu-
dimensional cases, namély the sign changes at the critical {jons for which the horizon is hyperbolical rather than spheri-

. 2 - N . ju A A 8
radiusr% =1/2, (i) the action diverges a& —0 except for cal; such solutions are analogous to those discussed in Ref.
black holes of the critical radiunsi=a/|. [17].

It is straightforward to show that the mass and angular Taking the limit of critical angular velocity requires that
momentum of the rotating black hole with respect to thewe move to the coordinated (®) which are adapted to the

anti—de Sitter background are given by rotating Einstein universe. Then lettif@=1(1—€) with €
defined as in Eq4.19 we find that in the critical limit either
M= ﬂ , :w (5.14) r?2 =all oral=1. Since cosmic censorship requires that
4= ¢ 252" ' =0 with equality in the extreme limit, we can again have

solutions for which() > which in turn implies that the black
Then the usual thermodynamic relations give the entropy oholes cannot be in equilibrium with radiation right out to

the black hole as infinity. As in four dimensions the action changes sign at the
(12 42 critical valuer? =all.
r+(ryra The thermodynamic quantities relative to the coordinate
= + — = 2_ 1 7 .
SEAMA )= ls=m 28 (519 system T,®) are 3=g8,, M=M", and
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~Ma M =0 metric is anti—de Sitter space, with points identified in
Jq,:m. (5.19 the angular directions. Using the coordinate transformations
BE(1+I1°r%
E.y2sirt © = (r2+a?)sir? 6,
In the limit al— 1 at high temperature such that
Z,y?cos 0= (r?>+b?)cos 6,

— an
B:|ﬁ% E' (520) (I>=¢>+alzt,
we can express the thermodynamic quantities as ¥ =y+bl%t, (5.29
> 3 the metric can be brought into a form which is manifestly
ls~— Ty =5 M=~ 8|3—:E4' asymptotic to anti—de Sitter spacetime. The parametarsd

b are constrained such that,b?<|~2 and the metric is only
singular if either or both parameters saturate this limit.

3 5
Jo~ — Se (5.21) Defining the action as in Eq5.12 we find that
2145 B2 213E 83 Pr
[ 77— 2 2 2 2\ __ -2
where the energy and angular momentum are defined with ls= 45a5b[(r++a )(ri+b9)=MI77], (5.29

respect to the dimensionless temperature. Note that the an-

gular momentum is again subleadingndependence rela- Where the inverse temperature is given by
tive to the mass and the action. The divergence at critical

2 2
angular velocity is in agreement with that of the conformal _4m(ri+ad)(ri+b?) 5.26
: = , , )
field theory. r2A'(ry)
B. General five-dimensional AdS-Kerr solution andr . is the location of the horizon defined by
The metric for the two parameter five-dimensional rotat- (r2 +a2)(r2 +b?)(1+r212)=2Mr2 . (5.27)

ing black hole is given by
For reala, b, andl there are two real roots to this equation;

_ AL asir ¢ _bco§6 ? when a=b these coincide to give an extreme black hole
ds’= 5| dt —d¢ —dy
p Fa =13 when
Aysir? 6 r2+a? 2 1
0 {adt—( = )dqs) r2= —(\1+8a22-1),
p? Sa 412
A,cog o (r’+b?) p? 1
+ 2 \b dt— = dl,a —dr2 2MC|2=E(\/1+8a2 2_1+4a%?
2 r?|2 b(r?+a?)sir? 6 X (3\1+8a%%+5+4a%?). (5.2
+-de+ %(ab gr- 2 LEET O g ( 628
o re —a The entropy of the general two parameter black hole is given
a(r’+b%cog 6 |2 by
—-—=—dy|, (5.22 X
~b _ ™ 2 0 o2v(r2 1 R2
S=—F%—=(r{+a’)(ri+b9), (5.29
where 2r 28

1 while the mass and angular momenta are
=—(r?+a%)(r?+b?(1+r?%-2M,
r

, 37M , mMa , m™Mb
T1E.E, Yz Yoz 530
A,=(1—a%%cog 6—b??sir? 9), =a =b
p?=(r2+ a2 cod 6+ b sir? ), with the angular velocities on the horizon being
E.=(1-a%?), E,=(1-b2?). 5.2 g @ om0
a=(1-2a%1%), Ep=( ) (5.23 Q) Ra Q,=Ep e (5.30)

It should be straightforward to construct the metric for gen-
eral rotating black holes in anti—de Sitter backgrounds ofSince the black hole is singular only when either or both of
higher dimension. As for the single parameter solution, theg, and £, tend to zero, we should look in particular at the
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latter case for which the two rotation paramete@ndb are  vanish or whenr? =a/l or whenr2 =b/l. The action is
equal in magnitud.e. Then we can write the metric in thesingular when either or both &€, and =, are zero and
transformed coordinates as when the black hole is extreme. The action is positive for

) r . <1/; there is a phase transition as the mass of the black
ds2= — (1+y212)d T+ y2(dO2+ i © dd? b inorenaes . T

oM If r2=al/l the action will be positive and finite wheg,
+cog 0 d¥?)+ ZHZ(dT_aSirF@ do vanishes and positive and infinite whéfy, vanishes. For

y = Ir2 <max a,b] there will be directions in the Einstein uni-
—aco2OdV)? verse which are rotating faster than the speed of light. In the

limiting casea=b the action diverges for ali, asZE tends
y*dy? to zero.
+— > — Py, (5.32 In the high-temperature limit, the action for the equal pa-
[y*(1+y%9)—(2M/E)y“+(2Ma‘/E”)] rameter rotating black hole diverges as

where Z=1—a?l2. The position of the horizon of the ex-
treme solution in these coordinates is

71_5

1 ls=———=, (5.39
y?=gz 4822~ 1+ 1+8a%7]. (5.33 8I°E%8°

In the critical limit, al—1, the size of the black hole be- .
comes infinite in this coordinate system. with B~/(r .1)<1. The other thermodynamic quantities
One can check to see whether the integrability conditiorfollow easily from this expression, and are in agreement with
(5.17) is satisfied by the black hole metrit.32. Preserva- those derived from the conformal field theory in Sec. II.
tion of supersymmetry requires that We should mention what we expect to happen in higher
dimensions. A generic rotating black hole éndimensions
will be classified by[(d—1)/2] rotation parameters;,
M where[x] denotes the integer part &f Thus we expect both
E”af:ov (534 the action and the metric to be singular if any of the
- vanish. Provided that the black hole horizon is at> 1/ the
action should diverge to negative infinity in the critical limit,

and hence only in the zero mass black hole is any supersyn€having as
metry preserved. We have not checked the integrability con-

dition in the general two parameter rotating black hole but do 1
not expect supersymmetry to be preserved. In three dimen- lg~— ; (5.39
sions the integrability condition is trivially satisfied since the B4 2] &

i

BTZ black hole is locally anti—de Sitter and supersymmetry

preservation relates to global effects. In higher dimensions it

does not seem possible to satisfy the integrability conditionsvheree;=1—(}; and the product is taken over alkuch that

without including gauge fields. a;l— 1. The B dependence follows from conformal invari-
The Einstein universe rotates at the speed of light in aaince, whilst one should be able to derive thalependence

least some directions either when one or botfEgfand=,, by looking at the behavior of the spherical harmonics.
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