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Mapping Hawking into Unruh thermal properties
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By globally embedding curved spaces into higher dimensional flat ones, we show that Hawking thermal
properties map into their Unruh equivalents: The relevant curved space detectors become Rindler ones, whose
temperature and entropy reproduce the originals. Specific illustrations include Schwarzschild, Schwarzschild—
(anti)de Sitter, Reissner-Nordstrg and Baados-Teitelboim-Zanelli spacgsS0556-282199)07004-

PACS numbeps): 04.70.Dy, 04.62+v

[. INTRODUCTION divided by 27) in the D=5 GEMS, by relating the corre-
sponding 4- and 5-accelerations. In this connection we will
It is well understood that, for both Hawking and Unruh also explicitly relate surface gravity to the associated tem-
effects, temperature emerges from information loss assocperatures. Next we shall treat rotating and non-rotafing
ated with real and accelerated-observer horizons, respee=3 BTZ spaced5,6]. Since BTZ is obtained from AdS
tive|y_ Given that any:)_dimensiona| geometry has a higher- through geodesic identification, we will show that we can
dimensional global embedding Minkowski&possibly with ~ use the treatment of Unruh obs_ervers in AdS to calculgte the
more than one timelike coordinatepacetiméGEMS) [1], it ~ BH temperature here as well, in agreement with earlier re-
is natural to ask whether these mappings can unify the twgults: Our final applications will be to Schwarzschild,
effects, by associating the relevant detectors of the curvegchwarzschild—dS, = Schwarzschild-AdS —and  Reissner-
spaces and their horizons witkonstant acceleratiprRin- ~ Nordstran spacetimes, where the same connections are

dler detectors and their horizons. Confirmation of these idea®@de, this time the required GEMS extensions having
was recently given in an analysis of de Sitte®) [2] and D=6. More generally, it will be seen that for any geometry

anti—de Sitte(AdS) [3] geometries and their GEMS. There, admitting a group of constantly acceleratc_—zd observgrs v_vhich
constantly accelerated observers were mapped into similgncounter a horizon as they follow a “bifurcate” timelike
ones in the GEMS. The resulting Unruh temperatures ass¢illing vector field, the temperature measured by each ob-
ciated with these Rindler motions agreed with those in theS€rVer is simply ZrT=ag whenag is their acceleration as
original dS and AdS spacegictually, AdS has no real ho- Mapped into the GEMS. Finally, we will establish equiva-
rizon, but temperature is well defined for sufficiently large lence of entropies using the Unruh definition in terms of the
accelerations and the two methods agree both as to the rangéansverse” Rindler areg7], together with the fact that
whereT exists and to its magnitudeln the present papér, N0rizons map into horizons.

we will show that the GEMS approach indeed provides a

unified derivation of temperature for a wide variety of curved Il. SURFACE GRAVITY-UNRUH EFFECT CONNECTION
spaces, including general rotating “Bales-Teitelboim- IN dS AND AdS

Zanelli (BTZ), Schwarzschild together with its dS and AdS We begin with a brief summary of the GEMS approach to

extensions, and Reissner-Nordstroln each case the usual . . ;
black-hole(BH) detectors are mapped into Rindler observerscmPerature given ifB], for dS/AdS spaces of cosmological

— -2. ida i —
with the correct temperature as determined from tkein- CGoghs/lthté\z:istz& ghgsg zare hyperboloids in t2=>5
stan} accelerations. Conversely, we will also connect surface = 7as(d27)7(dZ%)%,
gravity and Unruh temperatures, for both Rindler observers nas(2)2(28)2= FR2. 1)
in flat space and various accelerated observers in de Sitter
(dS) and anti—de SittetAdS) spaces, thereby establishing Here A,B=0...4, papg=diag(1~1,—1,—1,71); through-
the equivalence principle between constant acceleration anslit, upper/lower signs refer to dS/AdS, respectively. We spe-
“true” gravity effects. We will also consider the associated cifically considerz'=z2=0 andz*=Z=const trajectories,
extensive quantity, the entropy, and again show the mappingpeying ¢)2— (2°)2= + R?FZ?=ag 2. Now the Unruh ef-
correctly matches the area of the GEMS Rindler motion andect states that flat space detectors with constant acceleration
“true” horizons, thereby confirming the equivalence for en- 5 510ng thex direction, whose motions are thus &A—t2
tropy as well. _ =a 2, measure temperaturerd =a. Since our embedding

We will first review how temperature measured by angnace detectors follow precisely such trajectories i.e., have a
accelerated detector in dS and AdS geometries, sa in Ringler-like motion with constant acceleratiag, they mea-
=4, is just its Unruh temperatur@e., Rindler acceleration g e

2nT=as=(xR?FZ) V2=(xR2+a)2 (2
*Email address: deser@binah.cc.brandeis.edu
TEmail address: olevin@binah.cc.brandeis.edu The last equality expresses the temperature in term of the

A brief summary of part of this work was given [d]. D=4 quantities, usingiéz +R™%+a2.
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The relation between the Hawking-Bekenstein horizon 2°=R?—rZsinn(t/R) z'=\R?—r2cosht/R),
surface gravityky and the BH temperatur@riginally found

for Schwarzschild BH[8,9] Z’=rsinfcos¢ z’=rsinfsing z*=rcosd. (8)
1 Ky 3 The metric
27 Jg00 (2 r21-1
ds’=|1— }dtz—[l— } dr2—r2(d#?+ sir? 6d ¢?
wherex? is the time-like Killing vector of a detector in its R? R? ( )
rest frame, holds also for Schwarzschild-AdS and BTZ 9

spacetime$10]. For these latter two, the local temperature L . . e
vanishes at infinity, and no Hawking particles are present fa as an intrinsic horizon at=.R. Itis seen k.)y static dg—
from the BH: created at the horizon, they do not have enougf‘neCtors €. 6,¢ const), or elqunéalentI;(chocismga:O, as 1
energy to escape to infinitwvhere the “effective potential” _2lowed by symmetry z'=2°=0 and z"=r=Z=const
becomes infinite The connection3) between temperature They follqw the time-like Killing vector, aqd have constant
and surface gravity also hold41] for Rindler motions, re- accelerationa=r/(RyR°—r?). Hence, using Eq(5), we
inforcing the connection between the Hawking and Unruhhave
effects as being based on the existence of horizons, whether
“real” or just seen by accelerated observers. In both cases,
inserting the horizon surface gravity in E@) will give the 54 the temperature measured by these detectors agrees with
temperature. To caIcuIat_’E, it is convenient to use the de- o known results of2],

tector rest framé. The simplest example is the flat space

ky=1R (10)

Rindler observer, best described by Rindler coordinétg$ 1 1 1 \/17
T=r————=-—1\/=+a% (11
27 JRZ—r2 2 R?
A= 2exp(20)(d2—d2d) — (dy2+dA).  (4) ARG em
In AdS,

A ¢=const detectoifollowing the timelike Killing vector
é=0,) has a constant acceleratian=L"texp(—{). This
group of accelerated observers sees an event horizon afs?=
{=—o. Since¢ is perpendicular to the horizofand there-
fore null) we can calculate the surface gravity using its defi-
nition [11]

2

r 2
1+ =

r -1
1+ =

dr?—r?(d¢*+sir? gd¢?),
(12

dt?—

there is no intrinsic horizon. So althougk- const detectors
1 have constant acceleratiom=r/(RVR?+r?)<R~!, they
k3= — E(V%V)(V#gy)’ (5)  will not measure any temperature. The intrinsic horizon of
dS causes even inertial detectors to measure temperature,
where the right side is to be evaluated at the horizon. For u\é\/h”e in AdS Ehle absence of a real horizon causes sufficiently
Slowly (a<R™ ") accelerated detectors not to measure one.

There is no contradiction with the Unruh picture: as we will

KG=K*({=—)=1. (6)  see, the GEMS acceleratiad becomes negative for theh.

) ) ) ] Indeed the “GEMS temperature” was obtained only for
Insertingky in Eq. (3) gives the desired result (z%)2=const>R? (a>R"!) trajectories ther&3]. Using the
formula for time-like trajectories witha<R™! [not
2nT=L"texp—{)=a. (7)  (z%)?>R? trajectories, but for example th# = const, or the

r =const case we discussed abpweuld lead to imaginary
Let us show that use of surface gravity to calculate tem-T: the detector will not measure any temperature because it
perature also works for dS and AdS. Consider first dS withsees no event horizon, hence no loss of information. To cal-
its real horizon, expressed in the static coordinatgs 4, ¢) culate the temperature using E§) whena>R™1, it is con-
related to the® according t8

4If we take the imaginary point,= *iR to define the AdS “ho-
2The vacuum states in these timelike Killing coordinate systemgizon” and calculate the surface gravity at that point, E2). will
are Schwarzschild-like. Therefore, determining the temperature bgive, as expected, an imaginary temperaturerT2 =i(R?
the (lowest ordey transition rate obtained from the Wightman func- +r?)~2=/—=R=2+aZ, but (by the last equalitythe correct tem-
tion for these vacua gives zero temperature, while the same calcperature formula for Ad$3].
lation for Hawking-Hartle and Kruskal-like vacua gives the tem- Slt is also possible to get the AdS result from that of
perature(3). Schwarzschild—Ad$10], not by taking the limitm— 0 but only by
3Although this coordinate transformation covers only part of thesetting m=0 initially. This is exactly like the impossibility of
space, it is easy to extend it continuously to the whole dS, resultingeaching flat space by taking time— 0 limit of the Hawking tem-
in a global embedding. perature formula for Schwarzschild space.
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venient to use a new coordinate systéhe one in[3]is not It arises from AdS upon making the geodesic identification
suitable here since its® is not the time-like Killing vector ¢=¢+27. The coordinate transformations to the+2)
followed by the observejsinstead we introduce an “accel- AdS GEMSds’=(dZ%)?—(dz})?— (dZ?)?+ (dZ%)? are, for
erated” coordinate system obtained by the GEMS coordi+=r, (the extension to <r, is given in[6]),

nates defined from thB =4 covering of AdS,

2, 2 2 o_R rP—ri W‘(Ht r¢)
—Rtp R =R\ 77 sinh t——=4a|,
d32: R2 dnz__R2+p2dp2 I’+—r_ R R
202 2 22 ; .
p*(dy?+sint? yd¢?), (13 ‘=R Py —r+ cos}‘(ﬁgt—ﬁd)),
as follows: A
2_
%= J-R%+p?sinh(5/R), z'=\—R%+pZcosh 5/R), 2o r T G -
z 22 sin Rqs R2t)
+ —
7?=psinhycosh, z3=psinhysing, z*=p coshy.
(14 - r2—r? r(r+¢ r_t) a9
2= cosh — p— =5t |,
Here —w<y, <o, —m<6O<, while this coordinate ri—r2 R R

patch only covers the regign>R, it can be extended to the
entire space. Since we are interested #h=z2=0, Where the constantsr(,r_) are related to the mass and

Z*= const trajectoriesy is set to zero, ang to a constank; angular momentum. This AdS GEMS can serve as the BTZ
their accelerations ar@?=2Zz2R-2(z2—R?)"1>R~2. For embedding space for our purpose. In spite of the fact that
AdS, the horizon appears in this “accelerated” frame ex-there is no longer a one to one mapping between it and the
actly as it did upon transforming from Minkowski to Rindler BTZ space due to the identification, following a detector
coordinates in flat space. These trajectories follow the timethotion with certain initial condition such ag(t=0)=0 still

like Killing vector field 4, which is null at the event horizon 9ives & unique trajectory in the embedding space which is
p=R, so Eq.(5) gives the basic requirement of our approach based on the observ-

er's kinematical behavior in the GEMS: If the detector tra-
ky=R L. (15)  jectory maps(without ambiguity into an Unruh one in the
GEMS, then we can use it for temperature calculation.
The corresponding temperature, from E8), is Consider first non-rotating BTZr(=0) and focus on
B S o o “static” detectors (¢,r =const). These detectors have con-
2aT=(-R°+Z%) " =(-R“+a%)™, (16)  stant 3-acceleratioa=rR~*(r2—r2) =2 and are described
by a (fixed) point in the ¢,z% plane (for example$=0
ives z2=0 z3=const), and constant accelerated motion in
(2°,2%) with a,=r ,R™}(r?-r2)~%2 S0 in the GEMS we
have a constant Rindler-like accelerated motion and the tem-
perature measured by the detector is

which is exactly the result obtained using the kinematical
behavior of these trajectories in the GEMS, as well as b
calculating the transition rate in the “nonaccelerated” coor-
dinate system.

Ill. BTZ SPACES 27TT=a4=r+R_1(r2—ri)_1/2=(— R—2+a2)1/2'

In the previous section, we demonstrated the feasibility of (19
using surface gravity (or equivalently the Hawking-
Bekenstein temperaturdéo calculate the temperature mea-
sured in dS and AdS, in agreement with that obtained b
purely kinematical Unruh considerations. This immediately
raises the converse question: calculate Hawking temperatu”%
entirely from GEMS kinematics when “real,” mass-related, 0 F Hawki il infini
horizons are present. The simplest candidate for this woul l;re zero temperat _e(no awking I_partu(:je '?:1 |n||_|n|tyk_
seem to be the BTZ black hole solution, due to its relation to' "¢ rotating casemls_ rlgore Z(ionz]p,'(igtez'_ 2 r—.:UZkaw "9
AdS; we now use our method to calculate BTZ temperaturet,emperz""tunza K 71_( Dre=rs) 74re=r2) " ky,
at least for some observers, and compare with previous cakn=(r5—r=)(r;R%) ™", was calculated12,1q for trajec-

which is that obtained using E@3), and agrees with the
emperature given by the response function of particle detec-
ors[13]. In the asymptotic limir —oo, BTZ tends to AdS,

e acceleratioa— R, which is of course the acceleration

a “static” detector at infinity in AdS; both detectors mea-

culations using surface gravif,12]. tories that follow the time-lke Kiling vector
The general rotating BTZ black hole is described by the
3-metric
6 . . .
BTZ formally becomes AdS in our coordinates by setting
— N2d12— N—24r2_ y2 2
ds’=N2dt*—N~?dr’—r?(d¢+N’dt)?, r_=0 andr,==*iR; Eq. (17) and theD=23 version of Eq.(12)
5 ) are the same. This shows again that AdS has a hidden imaginary
NZ=(r2—r2)(r2=r2)/(r?R?, N?=-r,r_/(r’R). horizon which causes the threshold in the temperaiareeleration

17 smaller thanR™! measures no temperatiire
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£=0,—N%,, ie. observers that obeys=—N’, 1 22
r=const (and hence are “static’ at infinity Although 2mT=2 2z (24)

they have a constam =3 acceleration,
exactly the result obtained by using the GEMS. Finally, we
a=(r'=r2rf)/[r’Ry(r*=r2)(r*~r%)], note that a common alternative definition of BH temperature
is to scaleT by \gos To=gooT = kp/27; as distinct from
these trajectories do not describe pure Rindler motion in théhe local temperaturd’, it is T, that enters into the BH
GEMS, combining accelerated motion in th#’ ') plane thermodynamics relations. Since there is one obsefther
with a space-like motion inzf,z%). Therefore, we cannot =r. one that belongs to both of the different observer
use their kinematical behavior in these GEMS to calculaté@roups[¢=—N?t and ¢=r _t/(r,R)], and sinceT is a
the temperature they measure. Exactly the same proble§fobal feature of all the members in the group, it is obvious
would arise for any AdS detector with= const in Eq.(14).  that both groups should give the same temperattinis of
This particular case resembles AdS motion with a(r)t, course could be seen |mmed|atgly from their surfacg gravity
6=0. Our method can be used only for a group of detectorgquwalenc): On the other hand, it should be no surprise that

that maps into a group of pure Unruh observers in th detectors in the two different observer groups measure dif-

GEMS. Hence, it is only possible to use it for those observ?ferem temperatures even though their absolute accelerations

ers for whom the map of the detector trajectory into ther® the sarr;(athe Rindler relation &T=a, does_not apply to
“transverse” embedding spadéor BTZ the z2,z% plane is the ¢=—N?t group) because the temperatufes observer-
time-independent, i.e., the detector motion at any time isdependentm ge”efa'- Since BTZ is asymptotically AdS, both
described by a fixed point in that plane. There is one grourgje;]tectors F‘Qﬂ'{ again measure zero temperaturer -at,

of time-like observers obeying wherea— '

IV. SCHWARZSCHILD AND RELATED GEOMETRIES
b= t, r=const, (20

We now come to spaces with “more manifest” real ho-
rizons. Once a GEMS has been fouttitey always exisf1])
which does allow us to use the above GEMS and hence ttor the desired physical space, it is a mechanical procedure,
compare the two calculation of. These detectors have a using the familiar embedding Gauss-Codazzi-Ricci equations
constant acceleratiora= (r2— r2,)1’2(r2—r2+)‘1’2R‘1 in  torelate constant acceleratiag in GEMS to the embedded
BTZ and a Rindler-like motion in the GEMS with accelera- SPace physics; this is also possible whes for Schwarzs-
tion a,=R~(r2 —r2)¥%(r2—y2)~12 and, therefore, mea- child) the GEMS is more than one dimension higher. The
sure acceleration of detectors that follow a time-like Killing vec-
tor £in the physical space [2] a=V :£/|£|? where|] is the

1 [f2-r2 norm of & It is related toag in the GEMS according to
2nT=a,==\/ 5—>=V—R ?+a% 21
TTMTR N 252 @) ai=a’+a?| ¢4, (25)
On the other hand, inserting=(r _/r Dt into Eq. (17) wherea is the second fundamental forit]. Thus the tem-
gives perature should simply be Zr=ag=[a’+ a?|£| 4]¥2
One should not, however, assume from this formula that
(r2—r2)(r2 —r2) r2R2 there is always a temperature, since in faétneed not al-
ds’= — dt?— ———F——F———dr?, ways be positiveit is a?|¢| %= —R~2in AdS). After all, it
riR (re=ri)(re=r2)

is only Whenaé is non-negative that the Unruh description
itself is meaningful in a flat space.

We apply these ideas first to the three types of Schwarzs-
child (vacuum) spaces, beginning with the usual case without
cosmological constant; it can be globally embedded in flat
D=6,

ds2=(d2%)2— (dz})2— (d2)2— (d )2~ (d Z)%— (d D)2,
(26)

(22

which show us that they follow the time-like Killing vector
field €=, for this metric[or §=(9t+r,(r+R)‘1a¢,, if we
use Eq.(17)] and see an event horizon at the metric’s own
“real” event horizonr=r . The surface gravity is

ky=(r2—r2)/(r ,R?), (23

which is the same as that calculated for the other group bising the coordinate transformatipiv]

using the other Killing vector. This equivalence exists since o_ o o
both have the same horizan=r . and the Killing vectors Z'=4my1=2m/r sinh(t/4m),

they follow are the same there. Any scaling problems are Z'=4my1—2mir coskt/4m)
avoided since we used a common coordinate system. While '

surface gravity can be obtained from either of the metrics

(22) or (17), the appropriatayy, must taken from Eq(22) ZZ:J’ dry(2mr?+4m?r +8md3)/r?, 27
because only there i€ the time-like Killing vector followed

by the observer. This gives Z®=rsingsing z*=rsinfcos¢y z°=r cose.
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This transformation can be extended to coverrtke?m in-
terior thanks to the analyticity af?(r) in r>0. Indeed, the

This requires the use of a GEMS that captures both horizons.
Although we have not tried to define this bigger GEMS, we
extension is just the maximal Kruskal of5]. The original ~ do reproduce the known result7] for the temperature of
Hawking detector§moving according to constamt 6, ¢),  each separate horizon, by using E2p), with R>— — R? and
are here Unruh detectors; their six-space motions are the nothie respectiveky(r.), ky(r_). [Our method becomes
familiar hyperbolic trajectories meaningless for the extremal (=r _) case since the whole
Rindler wedge vanishes thefe.

We turn now to an example with matter, the Reissner-

. . . , Nordstran solution with
Hence, we immediately infer the local Hawking and BH

temperatures

T=ag/2m=(8m7my1—2m/r) 1,

(242 (2%)?=16m?(1-2mir)=az 2. (28

2

2m e -1
dsz:(l_T+r7

2
e
dr?

dt*— 1—2—+—2
r r

To=V9ooT = (87rm) L.

(29 —r3(d6?+sir? 6d¢?).

(31

It should be cautioned that use of incomplete embedding

spaces, that cover onty>2m (as, for example, ifil6]), will  Although there are two horizons (=mz=Jm?—¢?) in the

lead to observers there for whom there is no event horizomonextremal caseng>e), it is still simple to calculate the

no loss of information, and no temperature. temperature via the embedding space. As explained earlier, a
The above calculation is easily generalized toreliable GEMS has to covéor be extendable to coveboth

Schwarzschild—AdS spacéwhere 1—2m/r is replaced by sides of the horizon, or else there is no loss of information

1—2m/r+r?/R?) using aD=7 GEMS with an additional for a detector in that space. But physicair ) r =const
timelike dimensiorg®, Reissner-Nordstra detectors are aware only of the exis-

tence of one horizonr,, unlike the physical
2°=k, 11— 2mir +r?/R? sinh(kyt),

Schwarzschild—d$ = const detectorsr(. >r>r_) that see
two horizons. Therefore, it is enough to use as the embed-
2=k, V1—2m/r +r?/R? coshikyt),

ding space, again with an added timeli#&edimension,

22=f R3+Rrﬁ\/ r2ry+rrg+ry o 0 2=k, V1—2mir +e?/r? sinh(kyt),
R?+3r3 Vri(r2+rry+ri+R%)
=k, V1-2mir+e?/r? costikyt),
ZGZJ\/(R4+1OR2rﬁ+9rﬁ)(r2+rrH+rﬁ) dr b
r+rry+ri+R2 R?+3r3’

and %,2%,2% as in Eq.(27); ky=(R?+3r2)/2r R? is the
surface gravity at the roaty of (1—2m/r+r2/R?)=0. Us-
ing this GEMS’ we obtain

27T=ky(1—2m/r+r?/R?) 12

equal to that calculated ifL0]. (It may seem that we have With

the freedom to choose an arbitrary constant rather ikhain

zzzj (rz(r++r_)+ri(r+r+)

re(r—r_)
(32

zﬁ—f —4rir, 1lzdr
e —ro)?

(z8,24,2°) as in Eq. (27, and ky=Kk(r.)
=(r+—r,)/2r2+. [In the neutral,e=0, limit, z° vanishes

z° andz! and thereby get a different temperature. But for anyand this GEMS becomes th®E6) Schwarzschild ong.

other choicez? and z® cannot be chosen so that both their Even though it does not reach downrtser _, this embed-

integrands are finite at the horizon. Hence, such embeddingding suffices, because it covers , for the purpose of cal-
spaces are not global, cover only the area outside the horizawulating the Reissner-Nordstrotemperature in the nonex-
and cannot be extended; they are therefore exclided. tremal casé. It is clear from Eq.(32) that the relevant

For Schwarzschild—dS, which differs formally from D=7 acceleration

Schwarzschild—AdS bR?— —R?, there are two real hori-

zons . ,r_) in general, both of which could be seen by
physical detectorgsuch as constant, with r_<r<r,).

a,=[(2H7~ ()7 V2

=(r,—r_)/(2r%J1-2mir +e?r?)

It is easy to see that wheR—o (the Schwarzschild limjt
ry—2m, ky—(2ry) " andz? becomes identical to the Schwarzs- ®To be sure, our mapping approach has limitations: since the Rin-
child one while z8 vanishes, so that we indeed get back thedler horizon of the GEMS is Killing bifurcate, one can only map
Schwarzschild GEMS. Whem=0 (the AdS limi), we have from spaces whose horizons also are; this excludes the strictly ex-
rﬁ=k52= —R? and bothz? andz® vanish, leaving the AdS GEMS tremal (m=e); Reissner-Nordsfm space, which is also excep-
of Eq. (12). tional from theD =4 point of view[18].
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gives the correct Hawking temperatureT=(r, [and limits Rsinhf,#/R—r_t/R®) and Rsinhf.#/R

—r_)/(4mr? J1-2m/r +e%/r?). +r_t/R?) in the rotating caseand it yields the desired area
integral 2wr . . It is clear that the limits differ from the AdS
V. ENTROPY ones precisely in having the “angle’s” bounds be finite here.

The Schwarzschild case, where there are two additional

We turn now to the “extensive” companion of tempera- 4imensjons in the transverse argdz2...d2>, is correspond-

ture, the entropy. For those of our curved spaces with intrinmg|y subject to three constraintszi)2—(z%)2=0 leads to
sic horizons, and at our semiclassical level, entropy is jus

f=2m, (horizon to horizon mappingz2=f(r) and @3)2
one quarter of the horizon area. Entropy can also be defineg(z4)z+((25)2:r2_ Thus thez? ir?tgggl fdz(zg(zz— f((r)))

for a Rindler wedgd 7], using arguments similar to those
used originally{ 19] for Schwarzschild and dS. Here the rel-
evant area is that of the null surfagé—t?>=0. This “trans-

is unity, while the remaining integrals of course reproduce
the area of ther=2m sphere inD=3. The Reissner-

; L 2 . " Nordstran and the Schwarzschild—AdS calculations are es-
verse” area is in general infinite for otherwise unrestrlc'[edsemia"y the sam&gexcept that in these cases there are three

Rindler motion, being just the Cartesigilydzfor D=4, (\5ther than twpadditional dimensions, and four constraints:
say. For our purposes, however, we must evaluate this aregi 2_(2%)2=0 leads tor=r, , 22=f(r), Z8="f,(r) and

subject to the embedding constraints, and we shall see, t 324 (4)2+(%)2=r2  Thus
resulting integral becomes finite and agrees with that of th d2d 25 8(22— f (r))5(z.6—f (r)), are unity, and the
original horizon[This is not a tautology: we are not initially ! 20 '

e the oriainal hori . bedd dirat 2%,7*,2° integrals gives the desired area, that of ther .
writing thé original horizon area in émbedding coordina .es’sphere. Having two separate horizons, the Schwarzschild—dS

sttem is more delicate to handle, but just as for temperature,
we can calculate entropy for each horizon separately, to ob-
r;[ain the correspondin® =4 results[17].

the z2,z2° integrals,

areas agree. Nor is it a surprise: we have insured(thia¢n
present horizons map to horizonk.

Let us begin with the dS case, where the Rindler horizo
condition is ¢*)?— (z%)?=0 which wasZ=R, and of course
(z29)?+(2%)?+(2)?=R%.  Thus, the integration over
dz?dZ2dZ* is restricted to the surface of the sphere of radius
R, precisely that of the true horizon. The AdS case differs, \We have formulated a uniform mechanism for reducing
(as expected from lack of an intrinsic horizoand the cor-  curved space BH horizon temperatures and entropies to those
responding restrictions arg')?—(z%)?=0 which again im-  of the kinematical Unruh effect due to Rindler motion in
plies Z=R, but now @%)?+(z%?~(z*)*>=—R? and the their GEMS. The latter must, of course, first be found and
area of this hyperboloidal surface diverges, having no furthegover enough of the underlying space to include the horizon
restrictions. For comparison with the BTZ case below, thein question. This method has been applied to a variety of
cause of the infinity can be traced to the fact that the limits‘true” BH spacetimes, both vacuum ones such as BTZ,
on thez* integral are+ Rsinhy, with — o< y<co. Schwarzschild, and its dS and AdS extensions, as well as

We now see how the BTZ solution leads to a finite UnruhReissner-Nordstra spacetime. It would be interesting to
area due to the periodic identification ¢f mod 27. The  consider other possible applications of GEMS, for example
(zY)?—(z°)?=0 Rindler horizon condition implies=r.,  to superradiance in rotating geometries.
while (z%)%2—(z%)?=R?(r?—r?)/(r2 —r?)=R? sitill looks
hyperbolic. However, the relevant bounds phdue to the
periodicity areR sinh{ . #/R?) and — R sinh(, #/R?) for the ACKNOWLEDGMENT
nonrotating case, so that one has the integral

VI. SUMMARY
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—Rsinh(r . 7/R) J O

R sinh(r . 7/R) . . . .
:J o Ldf SWe may still use the Reissner-Nordstrgpartial GEMS for the
~Rsint(r, w/R) VR?+ (27)7 area calculation, since it covers the originatr . horizon.
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