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Mapping Hawking into Unruh thermal properties
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By globally embedding curved spaces into higher dimensional flat ones, we show that Hawking thermal
properties map into their Unruh equivalents: The relevant curved space detectors become Rindler ones, whose
temperature and entropy reproduce the originals. Specific illustrations include Schwarzschild, Schwarzschild–
~anti-!de Sitter, Reissner-Nordstro¨m, and Ban˜ados-Teitelboim-Zanelli spaces.@S0556-2821~99!07004-6#

PACS number~s!: 04.70.Dy, 04.62.1v
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I. INTRODUCTION

It is well understood that, for both Hawking and Unru
effects, temperature emerges from information loss ass
ated with real and accelerated-observer horizons, res
tively. Given that anyD-dimensional geometry has a highe
dimensional global embedding Minkowskian~possibly with
more than one timelike coordinate! spacetime~GEMS! @1#, it
is natural to ask whether these mappings can unify the
effects, by associating the relevant detectors of the cur
spaces and their horizons with~constant acceleration! Rin-
dler detectors and their horizons. Confirmation of these id
was recently given in an analysis of de Sitter~dS! @2# and
anti–de Sitter~AdS! @3# geometries and their GEMS. Ther
constantly accelerated observers were mapped into sim
ones in the GEMS. The resulting Unruh temperatures a
ciated with these Rindler motions agreed with those in
original dS and AdS spaces.~Actually, AdS has no real ho
rizon, but temperature is well defined for sufficiently lar
accelerations and the two methods agree both as to the r
whereT exists and to its magnitude.! In the present paper,1

we will show that the GEMS approach indeed provides
unified derivation of temperature for a wide variety of curv
spaces, including general rotating Ban˜ados-Teitelboim-
Zanelli ~BTZ!, Schwarzschild together with its dS and Ad
extensions, and Reissner-Nordstro¨m. In each case the usua
black-hole~BH! detectors are mapped into Rindler observ
with the correct temperature as determined from their~con-
stant! accelerations. Conversely, we will also connect surf
gravity and Unruh temperatures, for both Rindler observ
in flat space and various accelerated observers in de S
~dS! and anti–de Sitter~AdS! spaces, thereby establishin
the equivalence principle between constant acceleration
‘‘true’’ gravity effects. We will also consider the associate
extensive quantity, the entropy, and again show the map
correctly matches the area of the GEMS Rindler motion a
‘‘true’’ horizons, thereby confirming the equivalence for e
tropy as well.

We will first review how temperature measured by
accelerated detector in dS and AdS geometries, say iD
54, is just its Unruh temperature~i.e., Rindler acceleration

*Email address: deser@binah.cc.brandeis.edu
†Email address: olevin@binah.cc.brandeis.edu
1A brief summary of part of this work was given in@4#.
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divided by 2p! in the D55 GEMS, by relating the corre
sponding 4- and 5-accelerations. In this connection we w
also explicitly relate surface gravity to the associated te
peratures. Next we shall treat rotating and non-rotatingD
53 BTZ spaces@5,6#. Since BTZ is obtained from AdS
through geodesic identification, we will show that we c
use the treatment of Unruh observers in AdS to calculate
BH temperature here as well, in agreement with earlier
sults. Our final applications will be to Schwarzschil
Schwarzschild–dS, Schwarzschild–AdS and Reissn
Nordström spacetimes, where the same connections
made, this time the required GEMS extensions hav
D>6. More generally, it will be seen that for any geomet
admitting a group of constantly accelerated observers wh
encounter a horizon as they follow a ‘‘bifurcate’’ timelik
Killing vector field, the temperature measured by each
server is simply 2pT5aG when aG is their acceleration as
mapped into the GEMS. Finally, we will establish equiv
lence of entropies using the Unruh definition in terms of t
‘‘transverse’’ Rindler area@7#, together with the fact tha
horizons map into horizons.

II. SURFACE GRAVITY-UNRUH EFFECT CONNECTION
IN dS AND AdS

We begin with a brief summary of the GEMS approach
temperature given in@3#, for dS/AdS spaces of cosmologica
constantL[63R22; these are hyperboloids in theD55
GEMS ds25hAB(dzA)2(dzB)2,

hAB~zA!2~zB!257R2. ~1!

Here A,B50 . . . 4, hAB5diag(1,21,21,21,71); through-
out, upper/lower signs refer to dS/AdS, respectively. We s
cifically considerz15z250 and z45Z5const trajectories,
obeying (z1)22(z0)256R27Z2[a5

22. Now the Unruh ef-
fect states that flat space detectors with constant acceler
a along thex direction, whose motions are thus onx22t2

5a22, measure temperature 2pT5a. Since our embedding
space detectors follow precisely such trajectories i.e., ha
Rindler-like motion with constant accelerationa5 , they mea-
sure

2pT5a55~6R27Z2!21/2[~6R221a2!1/2. ~2!

The last equality expresses the temperature in term of
D54 quantities, usinga5

256R221a2.
©1999 The American Physical Society04-1
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The relation between the Hawking-Bekenstein horiz
surface gravitykH and the BH temperature~originally found
for Schwarzschild BH! @8,9#

T5
1

2p

kH

Ag00

, ~3!

wherex0 is the time-like Killing vector of a detector in its
rest frame, holds also for Schwarzschild–AdS and B
spacetimes@10#. For these latter two, the local temperatu
vanishes at infinity, and no Hawking particles are present
from the BH: created at the horizon, they do not have eno
energy to escape to infinity~where the ‘‘effective potential’’
becomes infinite!. The connection~3! between temperatur
and surface gravity also holds@11# for Rindler motions, re-
inforcing the connection between the Hawking and Unr
effects as being based on the existence of horizons, whe
‘‘real’’ or just seen by accelerated observers. In both cas
inserting the horizon surface gravity in Eq.~3! will give the
temperature. To calculateT, it is convenient to use the de
tector rest frame.2 The simplest example is the flat spa
Rindler observer, best described by Rindler coordinates~t,z!

ds25L2 exp~2z!~dt22dz2!2~dy21dz2!. ~4!

A z5const detector~following the timelike Killing vector
j5]t) has a constant accelerationa5L21 exp(2z). This
group of accelerated observers sees an event horizo
z52`. Sincej is perpendicular to the horizon~and there-
fore null! we can calculate the surface gravity using its de
nition @11#

kH
2 52

1

2
~¹mjn!~¹mjn!, ~5!

where the right side is to be evaluated at the horizon. Fo

kH
2 5k2~z52`!51. ~6!

InsertingkH in Eq. ~3! gives the desired result

2pT5L21 exp~2z!5a. ~7!

Let us show that use of surface gravity to calculate te
perature also works for dS and AdS. Consider first dS w
its real horizon, expressed in the static coordinates (t,r ,u,f)
related to thezA according to3

2The vacuum states in these timelike Killing coordinate syste
are Schwarzschild-like. Therefore, determining the temperature
the ~lowest order! transition rate obtained from the Wightman fun
tion for these vacua gives zero temperature, while the same ca
lation for Hawking-Hartle and Kruskal-like vacua gives the te
perature~3!.

3Although this coordinate transformation covers only part of
space, it is easy to extend it continuously to the whole dS, resu
in a global embedding.
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z05AR22r 2 sinh~ t/R! z15AR22r 2 cosh~ t/R!,

z25r sinu cosf z35r sinu sinf z45r cosu. ~8!

The metric

ds25F12
r 2

R2Gdt22F12
r 2

R2G21

dr22r 2~du21sin2 udf2!

~9!

has an intrinsic horizon atr 5R. It is seen by ‘‘static’’ de-
tectors (r ,u,f const), or equivalently~choosingu50, as is
allowed by symmetry! z15z250 and z45r 5Z5const.
They follow the time-like Killing vector] t and have constan
accelerationa5r /(RAR22r 2). Hence, using Eq.~5!, we
have

kH51/R ~10!

and the temperature measured by these detectors agrees
the known results of@2#,

T5
1

2p

1

AR22r 2
5

1

2p
A 1

R2 1a2. ~11!

In AdS,

ds25F11
r 2

R2Gdt22F11
r 2

R2G21

dr22r 2~du21sin2 udf2!,

~12!

there is no intrinsic horizon. So althoughr 5const detectors
have constant accelerationa5r /(RAR21r 2),R21, they
will not measure any temperature. The intrinsic horizon
dS causes even inertial detectors to measure tempera
while in AdS the absence of a real horizon causes sufficie
slowly (a,R21) accelerated detectors not to measure o
There is no contradiction with the Unruh picture: as we w
see, the GEMS accelerationa5

2 becomes negative for them.4,5

Indeed the ‘‘GEMS temperature’’ was obtained only f
(z4)25const2.R2 (a.R21) trajectories there@3#. Using the
formula for time-like trajectories with a,R21 @not
(z4)2.R2 trajectories, but for example thez15const, or the
r 5const case we discussed above# would lead to imaginary
T: the detector will not measure any temperature becaus
sees no event horizon, hence no loss of information. To
culate the temperature using Eq.~3! whena.R21, it is con-

s
y

u-

g

4If we take the imaginary pointr H56 iR to define the AdS ‘‘ho-
rizon’’ and calculate the surface gravity at that point, Eq.~3! will
give, as expected, an imaginary temperature 2pT56 i (R2

1r 2)21/25A2R221a2, but ~by the last equality! the correct tem-
perature formula for AdS@3#.

5It is also possible to get the AdS result from that
Schwarzschild–AdS@10#, not by taking the limitm→0 but only by
setting m50 initially. This is exactly like the impossibility of
reaching flat space by taking them→0 limit of the Hawking tem-
perature formula for Schwarzschild space.
4-2
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MAPPING HAWKING INTO UNRUH THERMAL PROPERTIES PHYSICAL REVIEW D59 064004
venient to use a new coordinate system~the one in@3# is not
suitable here since itsx0 is not the time-like Killing vector
followed by the observers!. Instead we introduce an ‘‘acce
erated’’ coordinate system obtained by the GEMS coo
nates defined from theD54 covering of AdS,

ds25
2R21r2

R2 dh22
R2

2R21r2 dr2

2r2~dc21sinh2 cdu2!, ~13!

as follows:

z05A2R21r2 sinh~h/R!, z15A2R21r2 cosh~h/R!,

z25r sinhc cosu, z35r sinhc sinu, z45r coshc.
~14!

Here 2`,h, c,`, 2p,u,p; while this coordinate
patch only covers the regionr.R, it can be extended to th
entire space. Since we are interested inz15z250,
z45const trajectories,c is set to zero, andr to a constantZ;
their accelerations area25Z2R22(Z22R2)21.R22. For
AdS, the horizon appears in this ‘‘accelerated’’ frame e
actly as it did upon transforming from Minkowski to Rindle
coordinates in flat space. These trajectories follow the tim
like Killing vector field ]h which is null at the event horizon
r5R, so Eq.~5! gives

kH5R21. ~15!

The corresponding temperature, from Eq.~3!, is

2pT5~2R21Z2!21/25~2R221a2!1/2, ~16!

which is exactly the result obtained using the kinemati
behavior of these trajectories in the GEMS, as well as
calculating the transition rate in the ‘‘nonaccelerated’’ co
dinate system.

III. BTZ SPACES

In the previous section, we demonstrated the feasibility
using surface gravity ~or equivalently the Hawking-
Bekenstein temperature! to calculate the temperature me
sured in dS and AdS, in agreement with that obtained
purely kinematical Unruh considerations. This immediat
raises the converse question: calculate Hawking tempera
entirely from GEMS kinematics when ‘‘real,’’ mass-relate
horizons are present. The simplest candidate for this wo
seem to be the BTZ black hole solution, due to its relation
AdS; we now use our method to calculate BTZ temperatu
at least for some observers, and compare with previous
culations using surface gravity@5,12#.

The general rotating BTZ black hole is described by
3-metric

ds25N2dt22N22dr22r 2~df1Nfdt!2,

N2[~r 22r 1
2 !~r 22r 2

2 !/~r 2R2!, Nf[2r 1r 2 /~r 2R!.
~17!
06400
i-

-

-

l
y
-

f

y
y
re

ld
o
e,
al-

e

It arises from AdS upon making the geodesic identificat
f5f12p. The coordinate transformations to the (212)
AdS GEMSds25(dz0)22(dz1)22(dz2)21(dz3)2 are, for
r>r 1 ~the extension tor ,r 1 is given in @6#!,

zo5RA r 22r 1
2

r 1
2 2r 2

2 sinhS r 1

R2 t2
r 2

R
f D ,

z15RA r 22r 1
2

r 1
2 2r 2

2 coshS r 1

R2 t2
r 2

R
f D ,

z25RA r 22r 2
2

r 1
2 2r 2

2 sinhS r 1

R
f2

r 2

R2 t D ,

z35RA r 22r 2
2

r 1
2 2r 2

2 coshS r 1

R
f2

r 2

R2 t D , ~18!

where the constants (r 1 ,r 2) are related to the mass an
angular momentum. This AdS GEMS can serve as the B
embedding space for our purpose. In spite of the fact t
there is no longer a one to one mapping between it and
BTZ space due to thef identification, following a detector
motion with certain initial condition such asf(t50)50 still
gives a unique trajectory in the embedding space which
the basic requirement of our approach based on the obs
er’s kinematical behavior in the GEMS: If the detector tr
jectory maps~without ambiguity! into an Unruh one in the
GEMS, then we can use it for temperature calculation.

Consider first non-rotating BTZ (r 250) and focus on
‘‘static’’ detectors (f,r 5const). These detectors have co
stant 3-accelerationa5rR21(r 22r 1

2 )21/2, and are described
by a ~fixed! point in the (z2,z3) plane ~for examplef50
gives z250 z35const), and constant accelerated motion
(z0,z1) with a45r 1R21(r 22r 1

2 )21/2. So in the GEMS we
have a constant Rindler-like accelerated motion and the t
perature measured by the detector is

2pT5a45r 1R21~r 22r 1
2 !21/25~2R221a2!1/2,

~19!

which is that obtained using Eq.~3!, and agrees with the
temperature given by the response function of particle de
tors @13#. In the asymptotic limitr→`, BTZ tends to AdS,
the accelerationa→R21, which is of course the acceleratio
of a ‘‘static’’ detector at infinity in AdS; both detectors mea
sure zero temperature6 ~no Hawking particle at infinity!.
The rotating case is more complicated. The Hawki
temperature 2pT5(Rr)(r 22r 1

2 )21/2(r 22r 2
2 )21/2kH ,

kH5(r 1
2 2r 2

2 )(r 1R2)21, was calculated@12,10# for trajec-
tories that follow the time-like Killing vector

6BTZ formally becomes AdS in our coordinates by setti
r 250 andr 156 iR; Eq. ~17! and theD53 version of Eq.~12!
are the same. This shows again that AdS has a hidden imagi
horizon which causes the threshold in the temperature~acceleration
smaller thanR21 measures no temperature!.
4-3
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S. DESER AND ORIT LEVIN PHYSICAL REVIEW D59 064004
j5] t2Nf]f , i.e., observers that obeyf52Nft,
r 5const ~and hence are ‘‘static’’ at infinity!. Although
they have a constantD53 acceleration,

a5~r 42r 2
2 r 1

2 !/@r 2RA~r 22r 2
2 !~r 22r 1

2 !#,

these trajectories do not describe pure Rindler motion in
GEMS, combining accelerated motion in the (z0,z1) plane
with a space-like motion in (z3,z2). Therefore, we canno
use their kinematical behavior in these GEMS to calcul
the temperature they measure. Exactly the same prob
would arise for any AdS detector withcÞconst in Eq.~14!.
This particular case resembles AdS motion withc5a(r )t,
u50. Our method can be used only for a group of detect
that maps into a group of pure Unruh observers in
GEMS. Hence, it is only possible to use it for those obse
ers for whom the map of the detector trajectory into t
‘‘transverse’’ embedding space~for BTZ the z2,z3 plane! is
time-independent, i.e., the detector motion at any time
described by a fixed point in that plane. There is one gro
of time-like observers obeying

f5
r 2

r 1R
t, r 5const, ~20!

which does allow us to use the above GEMS and henc
compare the two calculation ofT. These detectors have
constant accelerationa5(r 22r 2

2 )1/2(r 22r 1
2 )21/2R21 in

BTZ and a Rindler-like motion in the GEMS with acceler
tion a45R21(r 1

2 2r 2
2 )1/2(r 22r 1

2 )21/2 and, therefore, mea
sure

2pT5a45
1

R
Ar 1

2 2r 2
2

r 22r 1
2 5A2R221a2. ~21!

On the other hand, insertingf5(r 2 /r 1l )t into Eq. ~17!
gives

ds25
~r 22r 1

2 !~r 1
2 2r 2

2 !

r 1
2 R2 dt22

r 2R2

~r 22r 1
2 !~r 22r 2

2 !
dr2,

~22!

which show us that they follow the time-like Killing vecto
field j5] t for this metric @or j5] t1r 2(r 1R)21]f , if we
use Eq.~17!# and see an event horizon at the metric’s o
‘‘real’’ event horizon r 5r 1 . The surface gravity is

kH5~r 1
2 2r 2

2 !/~r 1R2!, ~23!

which is the same as that calculated for the other group
using the other Killing vector. This equivalence exists sin
both have the same horizonr 5r 1 and the Killing vectors
they follow are the same there. Any scaling problems
avoided since we used a common coordinate system. W
surface gravity can be obtained from either of the metr
~22! or ~17!, the appropriateg00 must taken from Eq.~22!
because only there isx0 the time-like Killing vector followed
by the observer. This gives
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2pT5
1

R
Ar 1

2 2r 2
2

r 22r 1
2 , ~24!

exactly the result obtained by using the GEMS. Finally,
note that a common alternative definition of BH temperat
is to scaleT by Ag00: T05Ag00T5kH/2p; as distinct from
the local temperatureT, it is T0 that enters into the BH
thermodynamics relations. Since there is one observer~the
r 5r 1 one! that belongs to both of the different observ
groups @f52Nft and f5r 2t/(r 1R)#, and sinceT0 is a
global feature of all the members in the group, it is obvio
that both groups should give the same temperature~this of
course could be seen immediately from their surface gra
equivalence!. On the other hand, it should be no surprise th
detectors in the two different observer groups measure
ferent temperatures even though their absolute accelera
are the same~the Rindler relation 2pT5a4 does not apply to
thef52Nft group! because the temperatureT is observer-
dependent in general. Since BTZ is asymptotically AdS, b
detectors will again measure zero temperature atr→`,
wherea→R21.

IV. SCHWARZSCHILD AND RELATED GEOMETRIES

We now come to spaces with ‘‘more manifest’’ real h
rizons. Once a GEMS has been found~they always exist@1#!
for the desired physical space, it is a mechanical proced
using the familiar embedding Gauss-Codazzi-Ricci equati
to relate constant accelerationaG in GEMS to the embedded
space physics; this is also possible when~as for Schwarzs-
child! the GEMS is more than one dimension higher. T
acceleration of detectors that follow a time-like Killing ve
tor j in the physical space is@2# a5¹jj/uju2 whereuju is the
norm of j. It is related toaG in the GEMS according to

aG
2 5a21a2uju24, ~25!

wherea is the second fundamental form@1#. Thus the tem-
perature should simply be 2pT5aG5@a21a2uju24#1/2.
One should not, however, assume from this formula t
there is always a temperature, since in facta2 need not al-
ways be positive~it is a2uju2452R22 in AdS!. After all, it
is only whenaG

2 is non-negative that the Unruh descriptio
itself is meaningful in a flat space.

We apply these ideas first to the three types of Schwa
child ~vacuum! spaces, beginning with the usual case witho
cosmological constant; it can be globally embedded in
D56,

ds25~dz0!22~dz1!22~dz2!22~dz3!22~dz4!22~dz5!2,

~26!

using the coordinate transformation@14#

z054mA122m/r sinh~ t/4m!,

z154mA122m/r cosh~ t/4m!,

z25E drA~2mr214m2r 18m3!/r 3, ~27!

z35r sinu sinf z45r sinu cosf z55r cosf.
4-4
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This transformation can be extended to cover ther ,2m in-
terior thanks to the analyticity ofz2(r ) in r .0. Indeed, the
extension is just the maximal Kruskal one@15#. The original
Hawking detectors~moving according to constantr , u, f!,
are here Unruh detectors; their six-space motions are the
familiar hyperbolic trajectories

~z1!22~z0!2516m2~122m/r !5a6
22 . ~28!

Hence, we immediately infer the local Hawking and B
temperatures

T5a6/2p5~8pmA122m/r !21, T05Ag00T5~8pm!21.
~29!

It should be cautioned that use of incomplete embedd
spaces, that cover onlyr .2m ~as, for example, in@16#!, will
lead to observers there for whom there is no event horiz
no loss of information, and no temperature.

The above calculation is easily generalized
Schwarzschild–AdS spaces~where 122m/r is replaced by
122m/r 1r 2/R2) using aD57 GEMS with an additional
timelike dimensionz6,

z05kH
21A122m/r 1r 2/R2 sinh~kHt !,

z15kH
21A122m/r 1r 2/R2 cosh~kHt !,

z25E R31RrH
2

R213r H
2 A r 2r H1rr H

2 1r H
3

r 3~r 21rr H1r H
2 1R2!

dr, ~30!

z65EA~R4110R2r H
2 19r H

4 !~r 21rr H1r H
2 !

r 21rr H1r H
2 1R2

dr

R213r H
2 ,

and (z3,z4,z5) as in Eq.~27!; kH5(R213r H
2 )/2r HR2 is the

surface gravity at the rootr H of (122m/r 1r 2/R2)50. Us-
ing this GEMS,7 we obtain

2pT5kH~122m/r 1r 2/R2!21/2,

equal to that calculated in@10#. ~It may seem that we hav
the freedom to choose an arbitrary constant rather thankH in
z0 andz1 and thereby get a different temperature. But for a
other choice,z2 and z6 cannot be chosen so that both the
integrands are finite at the horizon. Hence, such embed
spaces are not global, cover only the area outside the hor
and cannot be extended; they are therefore excluded.!

For Schwarzschild–dS, which differs formally from
Schwarzschild–AdS byR2→2R2, there are two real hori-
zons (r 1 ,r 2) in general, both of which could be seen b
physical detectors~such as constantr , with r 2,r ,r 1).

7It is easy to see that whenR→` ~the Schwarzschild limit!,
r H→2m, kH→(2r H)21 andz2 becomes identical to the Schwarz
child one while z6 vanishes, so that we indeed get back t
Schwarzschild GEMS. Whenm50 ~the AdS limit!, we have
r H

2 5kH
2252R2 and bothz2 andz6 vanish, leaving the AdS GEMS

of Eq. ~12!.
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This requires the use of a GEMS that captures both horizo
Although we have not tried to define this bigger GEMS, w
do reproduce the known results@17# for the temperature of
each separate horizon, by using Eq.~30!, with R2→2R2 and
the respectivekH(r 1), kH(r 2). @Our method becomes
meaningless for the extremal (r 15r 2) case since the whole
Rindler wedge vanishes there.#

We turn now to an example with matter, the Reissn
Nordström solution with

ds25S 12
2m

r
1

e2

r 2Ddt22S 12
2m

r
1

e2

r 2D 21

dr2

2r 2~du21sin2 udf2!. ~31!

Although there are two horizons (r 65m6Am22e2) in the
nonextremal case (m.e), it is still simple to calculate the
temperature via the embedding space. As explained earli
reliable GEMS has to cover~or be extendable to cover! both
sides of the horizon, or else there is no loss of informat
for a detector in that space. But physical (r .r 1) r 5const
Reissner-Nordstro¨m detectors are aware only of the exi
tence of one horizon r 1 , unlike the physical
Schwarzschild–dSr 5const detectors (r 1.r .r 2) that see
two horizons. Therefore, it is enough to use as the emb
ding space, again with an added timelikez6 dimension,

z05kH
21A122m/r 1e2/r 2 sinh~kHt !,

z15kH
21A122m/r 1e2/r 2 cosh~kHt !,

z25E S r 2~r 11r 2!1r 1
2 ~r 1r 1!

r 2~r 2r 2!
D 1/2

dr,

~32!

z65E S 4r 1
5 r 2

r 4~r 12r 2!2D 1/2

dr

with (z3,z4,z5) as in Eq. ~27!, and kH5k(r 1)
5(r 12r 2)/2r 1

2 . @In the neutral,e50, limit, z6 vanishes
and this GEMS becomes the (D56) Schwarzschild one.#
Even though it does not reach down tor<r 2 , this embed-
ding suffices, because it coversr 1 , for the purpose of cal-
culating the Reissner-Nordstro¨m temperature in the nonex
tremal case.8 It is clear from Eq. ~32! that the relevant
D57 acceleration

a75@~z1!22~z0!2#21/2

5~r 12r 2!/~2r 1
2 A122m/r 1e2/r 2!

8To be sure, our mapping approach has limitations: since the R
dler horizon of the GEMS is Killing bifurcate, one can only ma
from spaces whose horizons also are; this excludes the strictly
tremal (m5e); Reissner-Nordstro¨m space, which is also excep
tional from theD54 point of view @18#.
4-5
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gives the correct Hawking temperatureT5(r 1

2r 2)/(4pr 1
2 A122m/r 1e2/r 2).

V. ENTROPY

We turn now to the ‘‘extensive’’ companion of temper
ture, the entropy. For those of our curved spaces with int
sic horizons, and at our semiclassical level, entropy is
one quarter of the horizon area. Entropy can also be defi
for a Rindler wedge@7#, using arguments similar to thos
used originally@19# for Schwarzschild and dS. Here the re
evant area is that of the null surfacex22t250. This ‘‘trans-
verse’’ area is in general infinite for otherwise unrestrict
Rindler motion, being just the Cartesian*dydz for D54,
say. For our purposes, however, we must evaluate this
subject to the embedding constraints, and we shall see
resulting integral becomes finite and agrees with that of
original horizon.@This is not a tautology: we are not initiall
writing the original horizon area in embedding coordinat
although the result is indeed that real and embedding hor
areas agree. Nor is it a surprise: we have insured that~when
present! horizons map to horizons.#

Let us begin with the dS case, where the Rindler horiz
condition is (z1)22(z0)250 which wasZ5R, and of course
(z2)21(z3)21(z4)25R2. Thus, the integration ove
dz2dz3dz4 is restricted to the surface of the sphere of rad
R, precisely that of the true horizon. The AdS case diffe
~as expected from lack of an intrinsic horizon! and the cor-
responding restrictions are (z1)22(z0)250 which again im-
plies Z5R, but now (z2)21(z3)22(z4)252R2, and the
area of this hyperboloidal surface diverges, having no furt
restrictions. For comparison with the BTZ case below,
cause of the infinity can be traced to the fact that the lim
on thez4 integral are6R sinhc, with 2`,c,`.

We now see how the BTZ solution leads to a finite Unr
area due to the periodic identification off mod 2p. The
(z1)22(z0)250 Rindler horizon condition impliesr 5r 1 ,
while (z3)22(z2)25R2(r 22r 2

2 )/(r 1
2 2r 2

2 )5R2 still looks
hyperbolic. However, the relevant bounds onz3 due to the
periodicity areR sinh(r1p/R2) and2R sinh(r1p/R2) for the
nonrotating case, so that one has the integral

E
2R sinh~r 1p/R!

R sinh~r 1p/R! E
0

AR21~z2!2

d~A~z3!22~z2!22R!dz3dz2

5E
2R sinh~r 1p/R!

R sinh~r 1p/R! R

AR21~z2!2
dz2
B

06400
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@and limits R sinh(r1p/R2r2t/R2) and R sinh(r1p/R
1r2t/R2) in the rotating case# and it yields the desired are
integral 2pr 1 . It is clear that the limits differ from the AdS
ones precisely in having the ‘‘angle’s’’ bounds be finite he

The Schwarzschild case, where there are two additio
dimensions in the transverse area,*dz2...dz5, is correspond-
ingly subject to three constraints: (z1)22(z0)250 leads to
r 52m, ~horizon to horizon mapping! z25 f (r ) and (z3)2

1(z4)21(z5)25r 2. Thus thez2 integral,*dz2d„z22 f (r )…,
is unity, while the remaining integrals of course reprodu
the area of ther 52m sphere in D53. The Reissner-
Nordström and the Schwarzschild–AdS calculations are
sentially the same,9 except that in these cases there are th
~rather than two! additional dimensions, and four constraint
(z1)22(z0)250 leads tor 5r 1 , z25 f 1(r ), z65 f 2(r ) and
(z3)21(z4)21(z5)25r 2. Thus the z2,z6 integrals,
*dz2dz6d„z22 f 1(r )…d„z62 f 2(r )…, are unity, and the
z3,z4,z5 integrals gives the desired area, that of ther 5r 1

sphere. Having two separate horizons, the Schwarzschild
system is more delicate to handle, but just as for temperat
we can calculate entropy for each horizon separately, to
tain the correspondingD54 results@17#.

VI. SUMMARY

We have formulated a uniform mechanism for reduci
curved space BH horizon temperatures and entropies to t
of the kinematical Unruh effect due to Rindler motion
their GEMS. The latter must, of course, first be found a
cover enough of the underlying space to include the hori
in question. This method has been applied to a variety
‘‘true’’ BH spacetimes, both vacuum ones such as BT
Schwarzschild, and its dS and AdS extensions, as wel
Reissner-Nordstro¨m spacetime. It would be interesting t
consider other possible applications of GEMS, for exam
to superradiance in rotating geometries.
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