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We present results from a new technique which allows extraction of gravitational radiation information from
a generic three-dimensional numerical relativity code and provides stable outer boundary conditions. In our
approach we match the solution of a Cauchy evolution of the nonlinear Einstein field equations to a set of
one-dimensional linear equations obtained through perturbation techniques over a curved background. We
discuss the validity of this approach in the case of linear and mildly nonlinear gravitational waves and show
how a numerical module developed for this purpose is able to provide an accurate and numerically convergent
description of the gravitational wave propagation and a stable numerical evol8i@666-282(99)02102-5

PACS numbg(s): 04.70.Bw, 04.25.Dm, 04.25.Nx, 04.30.Db

[. INTRODUCTION extents. In an ideal situation with unlimited numerical re-
sources, the computational domain can extend into the dis-
In the past few years considerable effort has been devotednt wave zong5], where the geometric optics approxima-
to the solution of Einstein’s equations in humerical simula-tion is valid and the gravitational waves approach their
tions of strong-field, highly dynamical sources of gravita-asymptotic form. With present-day computational limita-
tional radiation. This effort is partly motivated by the devel- tions, however, the outer boundary of typical numerical rela-
opment and construction of gravitational wave detectors suctivity simulations lies rather close to the highly dynamical
as the Laser Interferometric Gravitational Wave Observatorand strong-field region where backscatter of waves off cur-
(LIGO), VIRGO, GEO and TAMA. Knowing the theoretical vature can be significant. As a result, additional techniques
waveform produced by the most likely astrophysical sourceseed to be implemented in order to “extract” such informa-
of gravitational radiation will not only increase the probabil- tion from the strong-field region and “evolve” it out to a
ity of a successful detection but, most importantly, will allow large distance.
for the extraction of astrophysically significant information In two recent paper$4,6], we have presented a new
from the observations. method for extracting gravitational wave data from a 3D nu-
The Binary Black Hole “Grand ChallengeAlliance [1] merical relativity simulation and evolving it out to an arbi-
is a major example of this effort, in which a multi- trary distant zone. Our method has been developed within
institutional collaboration in the United States was created irthe Alliance in order to match a generic full 3D Cauchy
order to study the inspiral and coalescence of a binary blackolution of nonlinear Einstein’s equations on spacelike hy-
hole system, one of the most significant source of signals fopersurfaces with a linear solution in a region where the
the interferometric gravity wave detectors. Present threewaveforms can be treated as perturbations on a spherically
dimensional (3D) numerical relativity simulations face a symmetric curved background. This “perturbative module”
number of fundamental and in some cases unsolved prolis used not only to extract gravitational wave data from the
lems, including coordinate choice, the most suitable form ofCauchy evolution but, at the same time, to impose outer
Einstein’s equations, singularity avoiding techniques, graviboundary conditions/A parallel development is also under-
tational wave extraction and outer boundary conditionsway in the Alliance to match interior Cauchy solutions to
While a robust solution to the generic problem is still exterior solutions on characteristic hypersurfafép) In-
awaited, some interesting results have already been obtainediged, while the problem of radiation extraction is important
for instance, in the evolution of a generic 3D black hiddé  for computing observable waveforms from numerical simu-
in the translation of a 3D black hole across a numerical gridations, imposition of correct outer boundary conditions is
[3], and in the extraction of gravitational wave information essential for maintaining the integrity of the simulations
and imposition of outer boundary conditiof#. themselves, as incorrect outer boundary conditions are often
Determining the asymptotic form of the gravitational a likely source of numerical instabilities. One of the most
waves produced in a dynamical evolution of Einstein’s equaimportant requirements for any radiation-extraction and
tions is an important goal of many numerical relativity simu- outer-boundary module is that it provide for stable evolution
lations. This goal, however, necessarily requires accuratef the interior equations and minimize the spuri¢gnameri-
techniques which compute waveforms from numerical rela<cal) reflection of radiation at the boundary. This requirement
tivity simulations on 3D spacelike hypersurfaces with finiteis particularly important for the “Grand Challenge” investi-
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FIG. 1. Schematic picture of the Cauchy-perturbative matching procedure for a spacelike slice of spagatimienension has been
suppressed N is the 3D numerical grid in which the full Einstein’s equations are solvedBaitd 2D outer boundary. The interiddark
shadedl region S shows the strong-field highly dynamical region of spacetime fully coveretl.ly is the region of spacetime where a
perturbative solution can be performed and extends from the 2-sjhéoé radiusr¢) to the 2-spheréd (of radiusr,) located in the
asymptotically flat region of spacetim®.is covered entirely by a 1D gritl (not shown and partially by the 3D grid\.

gation in which the computations need to be performed on én general, the 3D numerical grighdicated aN in Fig. 1)
gravitational wave emission time scale, which is muchwill comprise an isolated region of spacetime where the
longer than the orbital one. gravitational fields are strong and highly dynamical. In this
In this paper we present the application of our Cauchyregion, indicated ass in Fig. 1, the full nonlinear Einstein
perturbative matching method to a standard testbed: the evequations must be solved. OutsideShowever, in what we
lution of 3D linear and mlldly nonlinear gravitational waves. will refer to as the perturbative regiqﬁ, a perturbative ap-
The plan of this paper is as follows: in Sec. Il we briefly yroach is not only possible but highly advantageous. Any-
review the main features of the approach and recall the egyhere in the portion ofP covered byN we can place a

sential elementsh of its numerical implimhgntatiolg..We theno-dimensional2D) surface which will serve as the surface
concentrate on the two majo,r aspects of this work: in Sec. I\'j(oining numerically the highly dynamical strong-field region
we present the Short termY properties of the Cauchy-

; . . e : and the perturbative on®. Here, we have chosen this
perturbative matching and show its ability to provide an ac-S b e

. S surface to be a 2-sphere of radius, indicated ask in
curate and numerically convergent approximation to theF. 1Itis | tant t hasize that the 2-spHe d
gravitational waveform that would be observed in the wave '9. 2. 1S important to eémphasize that the 2-Sphereeec
zone surrounding an isolated source. In Sec. V we turn to thBOt be in a region of spacegme where the gravnatlonql fields
“long term’ properties of our approach and present a num-2'€ weakor the curvature ismall In contrast to previous

ber of different implementations which lead testblenu- investigations which matched Einstein’s equations onto a
merical evolution, long after the bulk of the gravitational Minkowski background8], the matching is here made on a

waves has left the computational grid. Schwarzschild background. As a result, the only requirement
is that the spacetime outside Sfapproach a Schwarzschild

Il. PERTURBATIVE METHOD one. Even in the case of a binary black hole merger, it will be

possible to find a region of spacetime, sufficiently distant

As discussed inf6], the Cauchy-perturbative matching from the binary black holes, where this requirement is met
method involves replacing, at least in parts of the 3D numerif9-11].
cal domain, the solution of the full nonlinear Einstein’s equa- In a practical implementation of the Cauchy-perturbative
tions with the solution of a set of simpler linear equationsmethod, a numerical code provides the solution to the full
that can be integrated to high accuracy with minimal com-nonlinear Einstein equations everywhere in the 3D did
putational cost. except at its outer boundary 2-surfaBe At the extraction

In order to do this, it is necessary to determine the regior-sphereE, a different code(i.e. the perturbative module
of spacetime where a perturbative approach can be appliedextracts” the gravitational wave information and trans-
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forms it into a set of multipole amplitudes which we have arise simply from a linear reduction of the full equations
here chosen to depend only on the radial and time coordiwithout complex changes of variables. Thus, the matching of
nates of the background Schwarzschild metsee[6] and  the perturbative solutions to the fully nonlinear ones be-
Sec. Il A for detail.! comes rather straightforward. Once the perturbative equa-
In this way, two of the three spatial dimensions of thetions are derived, these are completely general and can be
problem are suppressed and the propagation of gravitationapplied to numerical codes solving Einstein’s equations in
waves on a curved background is reduced to a oneeither an explicitly hyperbolic form or, as in the present case,
dimensional(1D) problem. During each time step, informa- in the standard 3 1 form[14].
tion about the gravitational field read off Btis propagated We split the gravitational quantities of interest into back-
by the perturbative module out to the 2-spheéein the  ground partgdenoted by a tildeand perturbed parts. These
asymptotic flat region of spacetime. This is done by solvingare the three-metrig;;=gj;+h;;, the extrinsic curvature
a set of coupled 1D linear differential equatidnse for each Kij:RijJrKij, the lapse functioN=N+« and the shift
of the multipoles extracted &) on the 1D gridL (not shown
in Fig. 1) covering the perturbative regioR and ranging
betweenrg and rpy>rg. From a computational point of

vector Bi=B'+v', where the tilde denotes background
quantities. Assuming a Schwarzschild background,

vieV\_/, this represents an enormous advantage: with a few —gijdxidxj:Nfzdr2+r2(d02+sin2 6d?), (1)
straightforward transformations, the computationally expen-

sive 3D evolution of the gravitational waves via the nonlin- _ 2M\ 12

ear Einstein equations is replaced with a set of 1D linear =<1—T ) 2

equations that can be integrated to high accuracy with mini-
mal computational cost. Although linear, these equations ag,

€ € ive then haveK;;=0=73', while the perturbed parts have
count for all of the effects of wave propagation in a C“rvedarbitrary angular dependence.

spacetime and, in particular, automatically incorporate the Using this background, we linearize the hyperbolic equa-
effects of backscatter off the curvatuienly the wave-wave tions and reduce the wave equation foy to a linear wave

effects are omitted equation fork;; involving also the background lap§&]. We

As a result of our constructiofand as shown in Fig.)1 e separate the angular dependence in this equation by ex-
the perturbative regiof? is entirely covered by a 1D grid panding «;; in terms of tensor spherical harmonics

and only partially by a 3D grid in the complement&an N. . - . )
The overlap between these two grids is essential. In fac{€)ii+--(fa)ij [15,18 (we use the notation dfL6]):

knowledge of the solution dP allows the perturbative mod-

L= 8.) + ). +N"2 £.)..
ule to provide boundary conditions at the outer boundary Ax (L) ()i + 1D (L) (&) TN "2 (Lr)(T);

2-surfaceB and, if useful, Dirichlet data on every grid point rb (6.0 (F ) Fr2e, (t.r)(F2) +r2d . (t.r)(Fa): .
of N outside the strong regiof. As we will further discuss +(tn(f)i LTy +(t Ty

in Sec. V B, this freedom to specify boundary data on a 3
2-surface of arbitrary shape as well as on a whole 3D region; e that &) ,---,(ﬂ)ij are functions of 6,¢) only and, for

of N represents an important advantage of the perturbativgIari angular indicesl(m) for each mode are suppressed
module over similar approaches to the problem of gravita- ty, ang PP '

tional wave extraction and imposition of boundary condi-S'm'Iarly’ the odd-parity multipolea, andb, and the even-
tions. _par_lty multipolesa, , b, , ¢, andd, al_so ha_ve s_u_ppressed
indices for each angular mode. There is an implicit sum over
all angular modes in Eq3).

The six multipole amplitudes are not independent. We use

Our treatment of Schwarzschild perturbation theory isthe linearized momentum constraints to eliminate the odd-
based on the third-order Einstein-Ricci hyperbolic formula-parity amplitudeb,, and the even-parity amplitudds, and
tion of Einstein field equationgl2,13. A principal advan- c. . As a result, for eachl(m) modée we obtain one odd-
tage of this approach is that gauge-invariant wave equationsarity equation fora, :

A. Basic equations

I1+1) 6M
2

—aa 2o
o =N*f = = N?9 — —| 1= | +N

2M ([ 3M|
1% (3)im=0, @

r

and two coupled even-parity equations &r andh:

Note that although highly convenient, the suppression of the angular part of the multipoles is not strictly necessary. Indeed, different linear
perturbation equations can be derived in which the angular dependence is explicitly contained in the evolution equations.

Hereafter we will consider only the radiative modes, i.e. those t8.
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s ~an B, o l(I+1) 6 14M 3M? 4.  3M 2 M 3M? B
0t_N ﬁr_FN ﬁr+N r2 —r—2+ r3 — r4 (a+)|m+ FN l—T (3’,—+r—2 1—T—r—2 (h)|m—0, (5)
- 2 - ~ 1(1+1) 2M 7M? 2M ™
{35_N453—FN2(9r+N2r—2+ P (Mim=—5| 3= ] (@)im=0. (6)
|
The independent multipole amplitudes,),, (a+)m, Py integrating in time the boundary values ;.
(h),m and the corresponding wave equatiéf)s-(6) for each It is important to emphasize the great flexibility of the

(I,m) mode are at the basis of the Cauchy-perturbativéCauchy-perturbative approach in providing outer boundary
matching.[Here (), is defined in terms of the trace af  value data. Once again, the ultimate goal is that of providing,
i.e. k=(h),,Yim Where Y,,(0,¢) is the standard scalar during each time step, boundary values of the relevant quan-

spherical harmonig. tities at the 2-surfac® delimiting the 3D gridN. Since we
can compute the new valu&s; at any point ofN which lies
B. Basic implementation in the perturbative region, not only can we provide boundary

data on a 2-surface of arbitrary shape, btinecessaryon

As discussed in Sec. |, with a few straightforward modi- he whol . N de of th . h
fications, this method can be applied to a generic 3D numerit'€ Whole portion oN outside of the extraction 2-spheie

cal relativity code which solves the Cauchy problem Of'll'his.repres_ents a great advantage for V\./hiCh no .approxima-
Einstein’s equations in either the standard B or hyper- tion is required and, as we WI!| @scyss in detail |n.Sec. V,
bolic form. In addition to the standard time integration of the €Présents an essential prescription in order to obtain the sta-
extrinsic curvatureK;; and of the spatial metrig;;, three bility of the code on very long time scales.
new procedures are performed during each time step.

(A) The gravitational radiation information contained in IIl. NUMERICAL SETUP
Ki; and dKj; is transformed into the independent multipole

amplitudes &), (@+)im, (N)im and their time derivatives o4 of linear waves on a Minkowski backgroufie. with
for all of the relevant {,m) modes(see[6] for details. The ;) | those tests, we simulated the Cauchy evolution of

maximum mode at which the angular decomposition is truny, o honiinear interior code by providing an analytic solution

cated depends on the basic features of the problem undgf, yhe 3p grid. This was necessary in order to evaluate the

|nve§t|gat|on. Howe_ver, a S|mp!e comparison of thg r.elat'veaccuracy and the convergence properties of the module inde-
amplitudes of the different multipoles is usually sufficient to

S ; ' pendently of any error which may develop due to the nu-
provide information about .the hlghesj[ mode necessary.  marical evolution. As a result of those investigations, we
(B) The values of multipole amplitudes, and their time \yere aple to show the module's ability to extract gravita-
d_enva_tlves, cqmputed at the extraction 2-spher_e_ On a giVeRnnal wave information, to evolve this information out to
timeslice are imposed as inner boundary conditions on thgy e gistances and to impose self-consistent and convergent
1D gridL and evolvedusing the radial wave equatiot®—  pjichet outer boundary conditions. While extremely useful,

(6) fgr each (,m) modg forward to the following time g0 tests could not address a number of important ques-
slice” This provides the solution, for the new time level, of ;ons \which  are strictly related to the use of

the whole perturbative regioB. Since the outer boundary of numerical data coming from the solution of the full

L is located, by construction, well out in the wave zone, 8gjngtein's equations. In particulafi) What is the influence
simple radial outgoing wave Sommerfeld condition can beyt the |ocation of the extraction 2-spheEeon the accuracy

imposed there. , of the extracted gravitational wave datél) Do Dirichlet
(C) From the values at the new time level d.0im,  poundary conditions 0B provide a long term stability@ii )
(@+)im, (n)im and of their time derivatives, it is possible 10 \what are the most convenient boundary conditions to im-
“reconstruct” the values ofK;; or g;; and thus to impose ose2(iv) Are there numerical techniques that would im-
outer boundary conditions on the 3D giid The details of __prove the application of the Cauchy-perturbative matching?
how this is done depend on the formulation of Einstein's| this paper we provide an answer to all of these questions
equations solved ilN. In the computations discussed here, 5nq giscuss the properties of a Cauchy-perturbative matching
we have used the 3D “interior code” of the Alliand&] iy the more “realistic” study of linear and mildly nonlinear
adopting an 3- 1 formulation of Einstein’s equations. In this \,5ves.
case, only the outer boundary data #f; are necessary, As in [6], we have here computed the propagation of
since the interior code can calcul@jg at the outer boundary |=o m=0 (unless otherwise statedeven-parity linear
waves, initially modulated by a Gaussian envelope with am-
plitude A= 10" and width parametds=1[17,18. (Section
3Initial data on the 1D grid_ is set consistently with the initial VI will discuss variations on this type of initial data by using
data for the 3D gric\. higher | modes and higher amplitudgs.Being time-

In [6] we presented tests of our code based on the propa-
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FIG. 2. Time series of the multipole amplitude (), extracted at a 2-sphere of radius=1.0, 1.5, 2.0, 2.5, 3.0, 3.5. Different grid
resolutions are indicated with different line types, with a dotted line referring to 19) points, a short dashed line referring to (55)id
points and a long dashed line referring to (38jid points. The analytic solution is indicated with a solid line. Note that we have scaled the
amplitude byr® to compensate for the radial falloff. We have here used a leapfrog integration scheme.

symmetric at the initial time, these waves have ingoing ancffects of a Cauchy-perturbative matching on time scales
outgoing parts. At each time level, the extrinsic curvaturemuch larger than the crossing timescdle. t>8) when
and 3-metric are computed using the interior code of themost of the radiation has left the numerical grid and the
Alliance solving the full Einstein’s equations with a geodesicstability properties of the module are put to a test.

slicing condition(i.e. N=1, 8'=0) on a 3D vertex-centered

grid, with extents X,y,z) e[ —4,4]. The code can provide a IV. SHORT TERM BEHAVIOR
solution using either an explicit leapfrog evolution scheme or '
a semi-implicit Crank-Nicholson ond 9] and we will make As mentioned in[4,6], in the case of a flat background

explicit reference to which of the two we have used in thespacetime(as in the present casand for weak waves on
different results presented. We have also used a number &chwarzschild-like backgrounds, the position of the extrac-
different grid resolutions ranging from (1¥Jo (129) grid  tion 2-sphere is arbitrary. This gives us the important possi-
points and comparable resolutions have been used on thwglity of analyzing the influence of the position of the extrac-
extraction 2-sphere. In the following sections we will discusstion 2-sphere on the accuracy of the gravitational
in detail the results of our computations and concentrate oimformation read off, and how this then affects the accuracy
two different but interrelated aspects, namely thshdrt  of the boundary conditions which are provided.

term’ and “ long terni’ behaviors. In the first, we will con- In Fig. 2 we show the time series of the multipole ampli-
sider gravitational wave extraction and imposition of bound-tude @, ),q extracted ak. (In the case of an initial traceless
ary conditions on time scales comparable with the crossing=2,m=0 wave packet this is the only analytically non-zero
time scale of the numerical grifl.e. t~8). In the second multipole) Other multipoles of the same modge.g.
section, we consider the opposite regime and investigate th@_ )1, (a1)2-1, (@1)2, (a1)2-»] as well as other parity
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FIG. 3. Time series of the multipole amplituda () ,o evolved out to a large distance from the center of the grid. The diagrams on the
left show values of & ), 2 evolved out to a radius=4.0 (indicated at the top left corner of each diagyamhile the diagrams on the right
show values of &), 2 evolved out to the asymptotic radius=30.0. We also show data coming from multipoles being extracted at
different radii(i.e.rg=1.0, 2.0, 3.0 and at different grid resolutions. Here, also, the amplitude is scaled tyycompensate for the radial
falloff and a leapfrog integration scheme has been used.

amplitudegfi.e. (ax)m, (h);m] are also extracted, but their more careful investigation of the behavior of the multipole
amplitudes are generally several orders of magnitudemplitudes other thana(, ), shows that the initially trace-
smaller. The six different diagrams refer to the six differentless linear waves develop a non-zero trac& gfas the evo-
positions at which we have placed the extraction 2-sphertition proceeds|The presence of a non-zero trace becomes
(i.e. rg=1.0, 1.5, 2.0, 2.5, 3.0, 35Each diagram also apparent by looking at the amplitudes of the extracted
shows the same quantity computed at three different resoluh),,,.] A non-zero trace oKj; is due to truncation error
tions [namely with (1295, (65)° and (33§ grid point§ and  and it rapidly converges to zero as the resolution is in-
we scale the amplitude by’ to compensate for the leading- creased, but it has a subtle effect on the accuracy of the
order radial falloff of @ )»g. extracted data. While the multipole amplitudes fall approxi-
It is clear from Fig. 2 that there is an increasing relativemately as~r ~3, the non-zero trace df;; remains constant
error between the analytic solution and the extracted data aturing the time evolution. As a result, for increasing extrac-
the extraction 2-sphere is placed at larger radii while theion radii, the difference in the amplitudes of, sag,, (.o
resolution is held constarfe.g. compare results at=1.0 and (),g, becomes smaller and smaller. Fei=3 the two
andrz=3.5). Since the results shown in Fig. 2 do not vary if multipoles are comparable and this error becomes more se-
the resolution on the two sphekee. the number of grid vere as a coarser resolution is used. However, it is also clear
points used to cover the extraction 2-spheseincreased or that all of these pathologies can be cured by simply increas-
decreased, the origin of this behavior has to be found in théng the resolution and Fig. 2 shows the time series rapidly
intrinsic numerical error which is introduced by the solution converging to the analytic solution as the resolution is in-
of Einstein’s equation by the interior 3D code and whichcreased even in the most extreme case of an extraction radius
becomes larger as the waves propagate outwards. In fact,ra=3.5. In view of this, we can summarize the properties of
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FIG. 4. Time series of the reconstructed value¥Kgf. The six different diagrams refer to the six different positions of the extraction
2-sphere, and for each diagram, results obtained with different grid resolutions are indicated with different line types. The time series is
computed on a grid point at the outer boundary aligned orxtagis[i.e. at a coordinate locatio@, 0, Q] and a leapfrog evolution scheme
has been used.

the perturbative radiation extractioms follows: for any ex- and evolved out to the asymptotic regi@i. Fig. 3. For the
traction 2-sphere location, it is always possible to find a resoeomputations discussed in this section, we have chosen to
lution for the interior grid which will provide gravitational impose the simplest type of boundary conditions that can be
wave information with the required accuracy. implemented within a Cauchy-perturbative approach. From
Similar considerations apply also for the values of thethe solution at the new time level of the evolution equations
multipole amplitude &.),9 which are propagated at large (4)—(6) for each (,m) mode we calculate the value of the
distances from the center of the grid. Figure 3 shows a set adxtrinsic curvature at all the grid points @& We then im-
time series of §,), “evolved” out at a radiusr=4.0 pose these values as the outer boundary conditions and will
(indicated at the top left corner of each diagjasarrespond- refer to this implementation as ttirichlet injectionto dis-
ing roughly with the outer edge of the 3D grdland at an  tinguish it from other types of boundary conditions which
asymptotic radiug =30.0. Also in this case, we show data will be discussed in the next section.
extracted for different positions of the 2-sphefiee. rg Figure 4 shows a time series of the reconstructed values
=1.0, 2.0, 3.0and at different grid resolutions. Note that the of the K,, component of the extrinsic curvature for different
waveforms evolved at=4.0 and those at=30.0 do not positions of the extraction 2-sphere and different grid reso-
differ significantly because at these radii the waveform idutions. The time series is computed on a grid point at the
dominated by its asymptotic part. outer boundary aligned on theaxis [i.e. at a coordinate
Having shown the ability of the module to extract conver-location (4,0,0]. Equivalent time series are shown in Fig. 5
gent gravitational wave data from a fully nonlinear 3D nu-for the K, component of the extrinsic curvature, which is
merical relativity code, we next turn to examine the corre-basically in phase opposition witk,,.
sponding ability to “reconstruct” the extrinsic curvatukg; It is not surprising that the behavior of the time series for
from the information extracted at the 2-sphécé. Fig. 2 Kj; in both Fig. 4 and Fig. 5 mimics the one seen in Fig. 2
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FIG. 5. As in Fig. 4 but for the componeHt,, of the extrinsic curvature.

and Fig. 3 for the extracted multipole amplitudes. In fact, as In Fig. 6 we show a more global measure of the accuracy
we will discuss more in the following section, the extractionand of the convergence properties for the boundary data by
2-sphere and the outer boundary are closely coupled. Theomputing the, norm of the error irK;; as measured over
accuracy of the boundary conditions imposed is clearly dethe whole 3D outer boundar. In particular, in Fig. 6 we
pendent on the accuracy of the extracted gravitational wavplot theL, norm of the error irk ,, at the outer boundary and
information. A large relative error between the extracted andor successive grid resolutiongThe norms are scaled loga-
analytic data will translate into a proportionally large relative rithmically.) Moreover, in order to make the errors compa-
error between the injected values fi§;; and the analytic rable, we scale the different curves by numerical factors of
values for the same quantities. the form 2 logh;,1/h), whereh;,,,h; are two successive

It is also important to emphasize that the imposition ofgrid resolutiong(h;, ;/h;)=1/2 in these testsIn order to
poor boundary conditions does, in turn, produce spuriousnake this a much more stringent test, we have chosen an
reflection of radiation at the outer boundary. This reflectedextraction radiusrg=3.5. The overlap of the curves is a
gravitational wave information will contaminate the radia- clear signature of the second-order convergence of the mod-
tion signal read off at the extraction 2-sphere, leading taule and of the interior code even when the numerical errors
increasingly larger differences from the purely outgoing anaare most severe.
lytic solution. In a loose sense, the extraction 2-sphere and
the outer boundary behave as a coupled system of micro- V. LONG TERM BEHAVIOR
phones and loudspeakers with the 2-sphere playing the role
of the microphones. It is clear that such a coupling can be Providing an accurate and numerically convergent ap-
extremely delicate and might be the cause for exponentiallproximation to the gravitational waveform in the wave zone
growing instabilities as we will discuss in the following sec- surrounding an isolated source represents a very important
tion, where we also indicate a number of prescriptions thafeature of any radiation-extraction and outer-boundary mod-
make this coupling less important. ule. However, even more important is that the module pro-
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FIG. 7. Time series of thé, norm of the error inK,, for an
FIG. 6. Logarithm of the., norm of the error irkK,, computed  extraction atrg=1.0. The interior code has a resolution of (33)
over the whole outer boundaB/for successive grid resolutions and grid points and uses a leapfrog integration scheme. The different
for the most unfavorable position of the extraction 2-sphigee curves refer to the different types of boundary conditions used.
re=3.5. The differences between norms at different grid resolu-
tions are normalized by factors 2 ldg(,/hy), whereh;,;,h; are  escape freely to infinity. Interesting results in this direction
two successive grid resolutions. The overlap of the curves showpave been obtained implementing a boundary condition we
the se_cond-order convergence of the module. The evolution schenizve namedperturbative Sommerfelf4]. While a simple
used is leapfrog. Sommerfeld outgoing wave condition applied to a tensor
quantity such as the extrinsic curvature or the three-metric is
vides a stable evolution of the interior equations, minimizing(strictly speakiny incorrect, it is often satisfactory, espe-
the numerical reflection of radiation at the boundary. Particucially if applied in the distant wave zor(ef. [20,21] for the
larly for systems of evolution equations in which radiation case of linear waveésin view of this, we have related, at the
and background dominated metric and extrinsic curvaturguter boundanB, the null derivatives of the extrinsic curva-
variables are not easily defined, matching techniques may h@re obtained from the interior grid.e. K;;) with the one
the Only Wa.y to aChieVe a Stable eVOlUtion. In th|S SeCtion W%btained from the perturbative modu[&-ij , Since back-

discuss a number of approaches which were applied to thiground extrinsic curvature is assumed to be kero
problem in the context of the Alliance interior evolution

code. d d o}
ot (Kij = &ip) + - (Kij = ki) + 2 (K= &) =0, (7)
A. Perturbative Sommerfeld boundary conditions

The results presented in the previous section were obYNereq is a positive integet.In other words, we “correct”
tained by imposing as outer boundary values Kof, the the Sommerfeld outgoing wave conditiotK; + d;K;;
ones reconstructed from the values, at the new time level, of (2//)Ki;=0, with a right-hand side which is usually taken
the multipole amplitudes. Although straightforward to imple- {0 be zero but which is ndtn general zero. As a result, this
ment and very accurate, a “Dirichlet injection” of outer Prescription resembles a Sommerfeld condition but is effec-
boundary data leads to a rapid error growth when the evolutively much more general sindg) it can be used in regions
tion is carried for sufficiently long periods of time. A careful Where the radiation is not dominated by the asymptotic out-

analysis has revealed that these boundary conditions seem48ing behavior andi) it takes into account arbitrary angular
produce a rather large amount reflection as the gravitationléPendence, as well as the effects of a Schwarzschild black

waves leave the numerical grid. This is basically the result of’0l€ background. Since the perturbative correction can be
the slight mismatch between the wave phases and amplitud¥§"y Small and is the result of a near cancellation of several
imposed at the outer boundary and those in the interior of thErms involving space and time derivatives, it is important to
3D numerical grid.

It is clear that a finite discretization will always produce a
certain amount of reflection. It is thus important to study and “Results do not depend sensitively on the valugofvhich we
develop new techniques that tend to suppress this reflectiafave chosen to be 2 in these tests in order to reproduce the leading
and allow, as much as possible, the outgoing radiation t@rder term in the asymptotic radial falloff.
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seems to behave basically like a Sommerfeld condition as the

FIG. 8. As in Fig. 7 but for longer time scales and the use of the€Volution progresses further to intermediate times.
logarithms of the norms. The different curves refer respectively to HOwever, the intrinsically different character of the per-
Dirichlet injection boundary conditionéDi), perturbative Sommer-  turbative Sommerfeld condition becomes apparent on much
feld boundary conditiongS) and Sommerfeld boundary condition 10nger time scales or with higher resolutions. Figure 8 is the
(S). Curves with a higher resolution of (49)rid points are also Same as Fig. 7 but on a longer time scale. Also, additional
plotted for the perturbative Sommerfeld and the SommerfeldUrves computed with a resolution of (49prid points

boundary conditions. All curves have been obtained withaleapfroggre shown for a comparison between the perturbative
integration scheme. ommerfeld and Sommerfeld conditions. While the two

types of boundary conditions do not seem to differ signifi-

implement Eq.(7) so that the same numerical differential cantly and both show the emergence of exponentially grow-
operator acts on botl;; and «;; . ing errors, the use of perturbative boundary conditions delays

Implementation of this method has shown that the perturthe onset of the error growth and allows for a much longer
bative Sommerfeld approach is very accurate and generaligvolution. Moreover, by increasing the interior resolution we
yields longer evolutions than the direct injection of Dirichlet can further prolong the running time. This is in stark contrast
data. Figure 7 shows a direct comparison of three differento the behavior of the Sommerfeld condition, for which an
boundary conditions, namely, perturbative Sommerfeldincreased interior rgsolutlon re_sults in a sh.orter.runn_lng time
Dirichlet injection and Sommerfeld. In particular, we show [4]- As shown in Fig. 8, by using (43)interior grid points,
the time series of thé., norm of the error inK,, for an ~ We were able to evolve the code uptte 400 and about 4
over very long times, we were forced to perform computa-comparatively very long time scale, which is more than 50
tions using a very coarse resolution of (33jid points. times longer than the physically relevant one, i.e. the cross-

There are a number of interesting features that emergd time scale. o
from Fig. 7. The most evident one is the strikingly different At present, it is not clear what the origin is of the expo-
behavior between a direct injection of reconstructed data an@ential error growth observed in Fig. 7 and which appears
the use of a Sommerfeld-like boundary condition. In the cas@lso W_lth erJ]l.JtIOHS'uSIng a h_armonlc slicing of spacetime.
of a Dirichlet injection, in fact, not all of the radiation is able Such instabilities might be directly related to a nonlinear
to leave the numerical grid, but some of it remains trappedoupling between waves reflected off the outer boundary
and is repeatedly read off. In this case the coupling betwee@ind numerical instabilities triggered by the+3 form
the extraction 2-sphere and the outer boundary is very strongf Einstein’s equations. It is indeed remarkable that no
and amplifies the numerical error which grows exponentiallyexponential growth is present in other formulations of
in time, with a beat frequency roughly set by the dimensiondEinstein’s equations, such as the one proposed by Shibata
of the numerical grid. The perturbative Sommerfeld and thend Nakamura or the Einstein-Ricci hyperbolic formulation,
Sommerfeld conditions, on the other hand, are much mor# Which linear waves have been stably evolved in harmoni-
effective in letting the radiation escape off the mesh, andfally sliced spacetimel22,23.
whatever the amount of reflection, this is progressively
damped as the evolution proceeds. In this respect, a pertur-
bative Sommerfeld condition is more efficient in suppressing The perturbative Sommerfeld boundary conditions repre-
the reflected incoming radiatiofe.g. for 7<t<17) and sent a very promising implementation of the Cauchy-

B. Perturbative boundary conditions with “blending”
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FIG. 10. Time series of the errors for tige, and theg,, components of the three-metric with the use of a perturbative blending match.
The norms shown here are taken along zkexis and not on a 2D surface as for the previous diagrams. In these runs we have used a very
coarse resolution of (38)grid points and an extraction radius= 1. The blending region is covered with 10 grid points, but similar results
have been obtained also with smaller numbers of grid points. The integration scheme used is Crank-Nicholson.

perturbative matching and provide both high accuracy angroviding accuracy and reducing reflection at the outer
very small reflection at the outer boundary. Despite thesdoundary than is the simple Dirichlet injection. One of the
appealing features, they do not provide for very long termmajor differences between the two types of boundary condi-
stability of the interior code and, as shown in Fig 8, theytions is in their numerical implementation. This involves
eventually suffer from an exponential growth. Of course, inonly the outermost boundary grid pointise. those orB of
the computations reported here, the boundary conditions prd-ig. 9) in the case of a Dirichlet injection but also the closest
vided by the Cauchy-perturbative matching are totally ad-interior neighboring grid points in the case of a perturbative
equate on the time scale necessary for the gravitation®ommerfeld conditiorinecessary for taking a finite differ-
waves to leave the numerical grid. Indeed, the instabilitie®ence form of the spatial derivatives in E@)]. The pertur-
induced by the outer boundary become relevant only londpative blending can then be considered as the extension of
after the crossing time scale, when the grid basically containthe perturbative Sommerfeld condition to a larger set of grid
numerical noise. However, providing accurate boundary conpoints. The basic idea is simple and based on an attempt to
ditions on a dynamical time scale is usually not sufficientmodify the propagation characteristics in the vicinity of the
and the achievement of unconditionally stable codes is nabuter boundary with the goal of acting distinctively on the
only of academic interest. In order to successfully model theutgoing and ingoing parts of the gravitational waves. A de-
problem of binary black hole coalescence, the numericatailed description of the basic properties aponge filters
code will have to be able to stably solve Einstein’s equationsn conjunction with absorbing boundary conditions in one-
on a time scaléthe gravitational wave emission grnwhich  dimensional wave propagation can be found24] and re-
is much longer than the dynamical one. It is therefore im-sults of its application are also discussed 25]. The inter-
perative to devise a technique which provides unconditionpretation of the blending as an implementation of the sponge
ally stable boundary conditions. A first successful step in thidilter method will be given in the Appendix.
direction has been made with the implementation of the Figure 9 gives a schematic representation of the way the
“perturbative-blending” technique we will discuss in this perturbative blending has been implemented. The key feature
section. of this specific approach comes from exploiting the module’s
As discussed in the previous section, the perturbativability to provide a perturbative solution to Einstein’'s equa-
Sommerfeld boundary conditions are much more effective irtion not only on the outer boundaBybut, in principle, in the

064001-11



LUCIANO REZZOLLA et al. PHYSICAL REVIEW D 59 064001

-5 T T T T T T T T T T T T

F 4 4x10-5
-6 log(lK,, — (K, )l - | [[Hamilt. Constr.||

] 3x10-5 |- —

2x1075% - —

10-%

— 12 | 1 l 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1
0 200 400 600 800 1000 0 200 400 600 800 1000
t t

FIG. 11. Time series of the errors in tKg, component of the extrinsic curvature and of the violation of the Hamiltonian constraint when
a perturbative blending match is used. The resolution is that of (@& points and the extraction radiusrif=1 and the blending region
is covered with 10 grid points. The integration scheme used is Crank-Nicholson.

whole region of the 3D numerical gril outside of the ex- a more careful matching of the first and second derivatives at
traction 2-sphereE. However, rather than doing this, we the two blending shells does provide a smaller amount of
have isolated a spherical shell of radii andr, (wherer,  reflection off the outer boundary during the initial stages of

>r,>rg) and blended therein the nonlinear solution comingthe evolution(i.e. for t<20).

from the interior code with the linear one coming from the  Figures 10 and 11 illustrate the radical changes in the long

Cauchy-perturbative modulgthis is shown as the medium time behavior introduced by the use of a perturbative blend-
shaded region in Fig.)9In particular, at the end of each time ing match.

step(as well as during each iteration of the Crank-Nicholson |n particular, in Fig. 10 we show the time series of the
evolution scheme we have used in these jeste do the  errors for they,, and theg,, components of the three-metric,
following: at all of the grid points at <r; (dark shaded \yhile in Fig. 11 we show the time series of the errors in the
region in Fig. 9 the nonlinear solution is left unmodified; for K, component of the extrinsic curvature and of the violation
all of the grid points between; andr, we “blend” the  of the Hamiltonian constraint. The plots refer to computa-
nonlinear solution with the perturbative one reconstructed afjgng performed using a coarse resolution of &8jid
that grid point; for all of the grid points at>r, we replace points and an extraction radiug= 1.
the computed values oK;; with perturbative data. The ~ The long evolution times reached and the quiescent be-
“blending” consists of smoothly weighting the nonlinear havior of the evolved variables reduced to their roundoff
and linear solutions so that the first one is imposed at therror values clearly show that the use of a perturbative blend-
2-sphere of radius, and the second one is imposedrat  ing match does provide the desired long term stability. This
(see the Appendix for detall$ Stability does not depend on s evident from the gradual decay of the norms and the sta-
the form of the weighting power function as long as the lattettionary behavior of the violation of the Hamiltonian con-
satisfies the boundary conditions of being zero at the innegtraint which does not show any sign of instability on a time
blending shell and one at the outer blending shell. Howeverscale more than 125 times the crossing time sf2i@ We
have also verified that the perturbative-blending boundary
conditions provideaccurate short term extraction of the
5The idea of blending boundary conditions was first proposedvaveform, comparable to the results in Figs. 2—5.
within the Alliance by Genez and the Pittsburgh group who ob- It is also clear that the use of a perturbative blending
tained stable evolution of linear waves after blending the numericaintroduces two new “free” parametefge. the radiir, and
solution with theanalytic one[26]. r,) and a satisfactory implementation will therefore depend
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FIG. 12. The left diagram shows the time series of the multipole amplitadé,f extracted at a 2-sphere of radiuys= 1.0 for different
grid resolutiondcf. Fig. 2. The right diagram shows the time series of the reconstructed valu€s, @ measured at the grid poi@, 0,
0) (cf. Fig. 4.

on some “tuning” and experimentation. In particular, for the the propagation of outgoing modes which are totally ab-
runs shown above we have chosgr=1,r,=2 andr,=4, sorbed at the outer boundary. In this way, it is possible to
which is the radius of the sphere inscribedNrand tangent decouple the outer boundary from the interior evolution
to it. This gives about 10 grid points along the axes whereyithout having to place it at very large distanoeee the
the blending between the nonlinear and linear solutions igppendix for details
made. Very similar results have been obtained also with 9, 8 The use of perturbative blending boundary conditions has
and 7 grid points, but a blending over 6 or fewer grid pointsprovided the unconditional long-term stability we were re-
would make exponentially growing instabilities reappear.quiring to our radiation-extraction and outer-boundary mod-
Provided that the intrinsic length of the blending is region isyle. Given the versatility of the perturbative matching, this
kept constant, stability has been obtained also with simulagpproach could represent a very powerful tool also in other
tions using a larger or a coarser resolution than the ongumerical relativity applications. Further work is necessary
shown for in Figs. 10 and 11. in this direction and experimentation with more complex
A detailed understanding of the properties of the perturphysical configurations. It is interesting to note than@a’s
bative blending matching is still under development and ispriginal prescription of blending numerical and analytic data
particularly hard to achieve given the three-dimensionality othas found a partially successful application also in the 3D

the full problem. However, there are some basic features thatauchy evolution of a single black hole where it leads to the
seem to be well established and that we have illustrated ifrst stable evolutio28] of this type.

the Appendix. There, using a simplified 1D model describing
the evolution of linear waves on a flat background, we show  \,; \ARIATIONS ON THE THEME: HIGH MODE

that_imposing_ boundary cqnditions u;ing a mixture of a nu- AND MILDLY NONLINEAR WAVES
merical solution of Einstein’s equations with another one
(either analytic or obtained from a perturbative matchiisg In this concluding section we provide further evidence of

equivalent to imposing a variable phase velocity in the zondghe robustness and versatility of the Cauchy-perturbative
where the blending is made. If appropriate boundary condimatching in extracting gravitational wave information and
tions are applied to this variable phase velocity, the blendingroviding outer boundary conditions. For this purpose we
can tilt the ingoing characteristic toward the advected ongresent results obtained from computations having different
and prevent ingoing modes propagating from the outeinitial data than those discussed so far and concentrate on
boundary. Moreover, the blending progressively dampenshort term evolutions.
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FIG. 13. Time series of the multipole amplitude,() ,o extracted at a 2-sphere of radius= 1.0 for different values of the initial wave
amplitude(i.e. A=10 ®-10"3). Different grid resolutions are indicated with different line tygget Fig. 2). The integration scheme used is
Crank-Nicholson.

In particular, in Fig. 12 we show the extracted sigflaft ~ position of outer boundary conditiondor these tests we
diagram and the injected boundary conditions ¢, (left ~ have gone back to the less computationally expenisive,
diagram) when an initiall=4, m=2 even-parity wave is m=0 initial wave packet Figure 13, in particular, shows
used as initial dataWe have here maintained the same am-the time series of the multipole amplituda.() ,, extracted at
plitude A=10® and width parameteb=1; note also that a 2-sphere of radiusg=1.0 for amplitudes ranging from
we have used the Crank-Nicholson evolution scherfilg-  A=10 ° to A=103. It is interesting to note how all dia-
ure 12 should be compared with Figs. 2 and 4 where similagrams are almost perfectly identical but for the different
data are reported in the case of an initial2, m=0 packet. scale used. Similar considerations apply also for the bound-
It seems evident that also in the case of this higher modary conditions imposed at the outer boundary and shown for
initial data the Cauchy-perturbative module is able to prothe zzcomponent of the extrinsic curvature in Fig. 14.
vide convergent wave extraction and boundary conditions.
(For this test and the following ones in this section, we
have used the computationally less expensive perturbative
Sommerfeld boundary conditions. We have investigated the properties of the Cauchy pertur-

Next, we can consider the behavior of the module wherbative method for matching gravitational data computed
the initial amplitude of the wave packet is increased. Offrom a 3D Cauchy solution of Einstein field equations.
course, the analytic form for the initial data used in theseStudying the evolution of linear and mildly nonlinear waves
tests is derived in the linearized regime and a wave packete have shown the ability of the perturbative module to
with an exceedingly large amplitude will no longer satisfy extract convergent gravitational wave information at differ-
the Hamiltonian and momentum constraints. However, weent locations within the 3D numerical grid solving the non-
can progressively increase the initial amplitude and excludénear form of Einstein’s equation. We have shown that,
amplitudes above which the violation of the constraints begiven an extraction 2-sphere radius, a resolution can be
comes too severée.g. more than 50% This allows us to  found which provides extraction and reinjection with the re-
perform an interesting check of the efficiency of the modulequired accuracy.
in the linear and mildly nonlinear regime. We have also discussed in detail a number of different

Results of these tests are presented in Fig. 13 for thapproaches to the problem of imposing outer boundary con-
extraction of gravitational waves and in Fig. 14 for the im- ditions. Relying on the important advantage of being able to

VIl. CONCLUSION
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FIG. 14. Time series of the reconstructed value& of as measured at the grid poi@, 0, 0. The four different diagrams refer to the
four different amplitudes used for the initial wave amplitude. A=10"5-10"3; cf. Fig. 4, Fig. 13. The integration scheme used is
Crank-Nicholson.

provide information on the whole portion of the 3D numeri- Binary Black Hole Grand Challenge Grant Nos. NSF PHY
cal grid outside the extraction 2-sphere, we have investigate®3-18152, NSF PHY 93-10083, ASC 93-181%2RPA
Dirichlet boundary conditions, perturbative Sommerfeldsupplementedand by NSF Grant AST 96-18524 to the Uni-
boundary conditions and “perturbative blended” boundaryversity of lllinois at Urbana-Champaign. Computations were
conditions. Each of these approaches has been shown to preerformed at NPAC(Syracuse Universijyand at NCSA
vide convergent boundary conditions, but only the latter pro{University of lllinois at Urbana-Champaign

vides stable evolutions. It has been recognized for sometime
that it is advantageous to make variable choices for numeri-
cal relativity which separate those variables with dominantly
wavelike character from those dominated by static or station-
ary field moments[29,30,8,31,2R In the tests presented  The very simplest model for investigating and interpreting
here, the perturbative module provided a brute-force imposithe effects of perturbative blending boundary conditions is
tion of this separation and, with suitable numerical imple-provided by linearized gravity waves in one dimension. The

APPENDIX: TOY MODEL FOR BLENDING
BOUNDARY CONDITIONS

mentation, enabled long-term stability. dynamical equations can be written symbolically as
These first successes of the Cauchy perturbative matching
method, motivate further work in this direction, both in the g=d,9~—K, (A1)

application of our numerical module to fully nonlinear
spacetimes and in the extension of the mathematical appara- . , ’
tus to more general background spacetimes. K~—-g'=-d59, (A2)

whereg andK are the fully nonlinear three-metric and ex-
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where a(x) is the “blending function,” continuous in the and the “blended” equivalents of Eq§Al) and (A5) are
rangex e[ xy,x,] and defined so thai(x;)=1 (i.e. at the )

inner edge of the blending layeand a(x,)=0 (i.e. at the gs=—a(x)K-[1-a(x)]g’, (A8)
outer edge of the blending layeK ., could be the pertur- .

bative solution of Einstein’s equations in the blending re- &g~ —a(x)K—[1—a(x)]§’ ~a(x)g"-[1—-a(x)]g".

gion. (Note that the following arguments will not depend on (A9)
K pert being a perturbative solution. In fact, in" @ez’s first id . K h
application of the blending boundary condition,e,; was .C?['ks' er now an outgoing packet so thgtconst
the value given by an analytic soluti¢ae].) x @~ and similarly forgg. The dispersion relation fol-
Applying the boundary conditionA3) then yields lowing from Eq.(A9) will be then
Os~ —Kg~—a00K—[1-a(x)Kperr,  (Ad) 0*~(1-ake+ak®=0, (A10)

and therefore whose solutions are

) , ) o(X) l-a(XxX)x[1+a(x)]

gs~a(x)g'—[1—a(x) K pert- (A5) vp(X)= K(x) = 5 =(1,—a(x)).
In the simplest case in which the perturbative value for the (A1)

extrinsic curvature is zero, the result of the blending is then a

AP : X , As a result, the wave packet will have unit outgoing and
wave equatior(in this case, in factg’=gg) with a variable P e

_ 3/ WY _ ingoing phase velocities at the inner edge of the blending
phase propagation speexg(x)=a(_x), which is unity at the  region, decreasingly smaller ingoing phase velocities in the
inner radius of the blending region and “smoothlyin a  plending region and only outgoing phase velocity at the outer
discretized sen3egoes to zero at the outer edge of the blend-edge of the blending region and outside of it.
Ing region: Finally, it can be seen that the blending approach, espe-
6~ a(x)q" (A6) cially the blending to the Sommerfeld condition, just de-
Ys g scribed, has a close relation to the techniques described in
A less trivial and more interesting case is the one in whichRef. [24]. However, for the strongly nonlinear black hole
an outgoing Sommerfeld condition is imposed within theSimulations, the more manageable approach of blending with

blending region. In this case, analytic solutions as in the first example above, has been
successful in some casgz8]. This method is computation-
9'~—0~Kpert (A7) ally much simpler than explicitly modifying the equations.
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