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Cauchy-perturbative matching and outer boundary conditions: Computational studies
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We present results from a new technique which allows extraction of gravitational radiation information from
a generic three-dimensional numerical relativity code and provides stable outer boundary conditions. In our
approach we match the solution of a Cauchy evolution of the nonlinear Einstein field equations to a set of
one-dimensional linear equations obtained through perturbation techniques over a curved background. We
discuss the validity of this approach in the case of linear and mildly nonlinear gravitational waves and show
how a numerical module developed for this purpose is able to provide an accurate and numerically convergent
description of the gravitational wave propagation and a stable numerical evolution.@S0556-2821~99!02102-5#

PACS number~s!: 04.70.Bw, 04.25.Dm, 04.25.Nx, 04.30.Db
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I. INTRODUCTION

In the past few years considerable effort has been dev
to the solution of Einstein’s equations in numerical simu
tions of strong-field, highly dynamical sources of gravit
tional radiation. This effort is partly motivated by the deve
opment and construction of gravitational wave detectors s
as the Laser Interferometric Gravitational Wave Observat
~LIGO!, VIRGO, GEO and TAMA. Knowing the theoretica
waveform produced by the most likely astrophysical sour
of gravitational radiation will not only increase the probab
ity of a successful detection but, most importantly, will allo
for the extraction of astrophysically significant informatio
from the observations.

The Binary Black Hole ‘‘Grand Challenge’’Alliance @1#
is a major example of this effort, in which a mult
institutional collaboration in the United States was created
order to study the inspiral and coalescence of a binary b
hole system, one of the most significant source of signals
the interferometric gravity wave detectors. Present thr
dimensional ~3D! numerical relativity simulations face
number of fundamental and in some cases unsolved p
lems, including coordinate choice, the most suitable form
Einstein’s equations, singularity avoiding techniques, gra
tational wave extraction and outer boundary conditio
While a robust solution to the generic problem is s
awaited, some interesting results have already been obta
for instance, in the evolution of a generic 3D black hole@2#,
in the translation of a 3D black hole across a numerical g
@3#, and in the extraction of gravitational wave informatio
and imposition of outer boundary conditions@4#.

Determining the asymptotic form of the gravitation
waves produced in a dynamical evolution of Einstein’s eq
tions is an important goal of many numerical relativity sim
lations. This goal, however, necessarily requires accu
techniques which compute waveforms from numerical re
tivity simulations on 3D spacelike hypersurfaces with fin
0556-2821/99/59~6!/064001~17!/$15.00 59 0640
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extents. In an ideal situation with unlimited numerical r
sources, the computational domain can extend into the
tant wave zone@5#, where the geometric optics approxim
tion is valid and the gravitational waves approach th
asymptotic form. With present-day computational limit
tions, however, the outer boundary of typical numerical re
tivity simulations lies rather close to the highly dynamic
and strong-field region where backscatter of waves off c
vature can be significant. As a result, additional techniq
need to be implemented in order to ‘‘extract’’ such inform
tion from the strong-field region and ‘‘evolve’’ it out to a
large distance.

In two recent papers@4,6#, we have presented a ne
method for extracting gravitational wave data from a 3D n
merical relativity simulation and evolving it out to an arb
trary distant zone. Our method has been developed wi
the Alliance in order to match a generic full 3D Cauch
solution of nonlinear Einstein’s equations on spacelike
persurfaces with a linear solution in a region where
waveforms can be treated as perturbations on a spheric
symmetric curved background. This ‘‘perturbative module
is used not only to extract gravitational wave data from
Cauchy evolution but, at the same time, to impose ou
boundary conditions.~A parallel development is also unde
way in the Alliance to match interior Cauchy solutions
exterior solutions on characteristic hypersurfaces@7#.! In-
deed, while the problem of radiation extraction is importa
for computing observable waveforms from numerical sim
lations, imposition of correct outer boundary conditions
essential for maintaining the integrity of the simulatio
themselves, as incorrect outer boundary conditions are o
a likely source of numerical instabilities. One of the mo
important requirements for any radiation-extraction a
outer-boundary module is that it provide for stable evoluti
of the interior equations and minimize the spurious~numeri-
cal! reflection of radiation at the boundary. This requireme
is particularly important for the ‘‘Grand Challenge’’ invest
©1999 The American Physical Society01-1
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LUCIANO REZZOLLA et al. PHYSICAL REVIEW D 59 064001
FIG. 1. Schematic picture of the Cauchy-perturbative matching procedure for a spacelike slice of spacetime~one dimension has bee
suppressed!. N is the 3D numerical grid in which the full Einstein’s equations are solved andB its 2D outer boundary. The interior~dark
shaded! regionS shows the strong-field highly dynamical region of spacetime fully covered byN. P is the region of spacetime where
perturbative solution can be performed and extends from the 2-sphereE ~of radius r E! to the 2-sphereA ~of radius r A! located in the
asymptotically flat region of spacetime.P is covered entirely by a 1D gridL ~not shown! and partially by the 3D gridN.
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gation in which the computations need to be performed o
gravitational wave emission time scale, which is mu
longer than the orbital one.

In this paper we present the application of our Cauc
perturbative matching method to a standard testbed: the
lution of 3D linear and mildly nonlinear gravitational wave
The plan of this paper is as follows: in Sec. II we briefl
review the main features of the approach and recall the
sential elements of its numerical implementation. We th
concentrate on the two major aspects of this work: in Sec
we present the ‘‘short term’’ properties of the Cauchy-
perturbative matching and show its ability to provide an
curate and numerically convergent approximation to
gravitational waveform that would be observed in the wa
zone surrounding an isolated source. In Sec. V we turn to
‘‘ long term’’ properties of our approach and present a nu
ber of different implementations which lead to astablenu-
merical evolution, long after the bulk of the gravitation
waves has left the computational grid.

II. PERTURBATIVE METHOD

As discussed in@6#, the Cauchy-perturbative matchin
method involves replacing, at least in parts of the 3D num
cal domain, the solution of the full nonlinear Einstein’s equ
tions with the solution of a set of simpler linear equatio
that can be integrated to high accuracy with minimal co
putational cost.

In order to do this, it is necessary to determine the reg
of spacetime where a perturbative approach can be app
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In general, the 3D numerical grid~indicated asN in Fig. 1!
will comprise an isolated region of spacetime where
gravitational fields are strong and highly dynamical. In th
region, indicated asS in Fig. 1, the full nonlinear Einstein
equations must be solved. Outside ofS, however, in what we
will refer to as the perturbative regionP, a perturbative ap-
proach is not only possible but highly advantageous. A
where in the portion ofP covered byN we can place a
two-dimensional~2D! surface which will serve as the surfac
joining numerically the highly dynamical strong-field regio
S and the perturbative oneP. Here, we have chosen thi
surface to be a 2-sphere of radiusr E , indicated asE in
Fig. 1. It is important to emphasize that the 2-sphereE need
not be in a region of spacetime where the gravitational fie
are weak or the curvature issmall. In contrast to previous
investigations which matched Einstein’s equations onto
Minkowski background@8#, the matching is here made on
Schwarzschild background. As a result, the only requirem
is that the spacetime outside ofS approach a Schwarzschil
one. Even in the case of a binary black hole merger, it will
possible to find a region of spacetime, sufficiently dista
from the binary black holes, where this requirement is m
@9–11#.

In a practical implementation of the Cauchy-perturbat
method, a numerical code provides the solution to the
nonlinear Einstein equations everywhere in the 3D gridN
except at its outer boundary 2-surfaceB. At the extraction
2-sphereE, a different code~i.e. the perturbative module!
‘‘extracts’’ the gravitational wave information and tran
1-2
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CAUCHY-PERTURBATIVE MATCHING AND OUTER . . . PHYSICAL REVIEW D 59 064001
forms it into a set of multipole amplitudes which we ha
here chosen to depend only on the radial and time coo
nates of the background Schwarzschild metric~see@6# and
Sec. II A for details!.1

In this way, two of the three spatial dimensions of t
problem are suppressed and the propagation of gravitati
waves on a curved background is reduced to a o
dimensional~1D! problem. During each time step, informa
tion about the gravitational field read off atE is propagated
by the perturbative module out to the 2-sphereA in the
asymptotic flat region of spacetime. This is done by solv
a set of coupled 1D linear differential equations~one for each
of the multipoles extracted atE! on the 1D gridL ~not shown
in Fig. 1! covering the perturbative regionP and ranging
betweenr E and r A@r E . From a computational point o
view, this represents an enormous advantage: with a
straightforward transformations, the computationally exp
sive 3D evolution of the gravitational waves via the nonl
ear Einstein equations is replaced with a set of 1D lin
equations that can be integrated to high accuracy with m
mal computational cost. Although linear, these equations
count for all of the effects of wave propagation in a curv
spacetime and, in particular, automatically incorporate
effects of backscatter off the curvature~only the wave-wave
effects are omitted!.

As a result of our construction~and as shown in Fig. 1!,
the perturbative regionP is entirely covered by a 1D gridL
and only partially by a 3D grid in the complement toS in N.
The overlap between these two grids is essential. In f
knowledge of the solution ofP allows the perturbative mod
ule to provide boundary conditions at the outer bound
2-surfaceB and, if useful, Dirichlet data on every grid poin
of N outside the strong regionS. As we will further discuss
in Sec. V B, this freedom to specify boundary data on
2-surface of arbitrary shape as well as on a whole 3D reg
of N represents an important advantage of the perturba
module over similar approaches to the problem of grav
tional wave extraction and imposition of boundary con
tions.

A. Basic equations

Our treatment of Schwarzschild perturbation theory
based on the third-order Einstein-Ricci hyperbolic formu
tion of Einstein field equations@12,13#. A principal advan-
tage of this approach is that gauge-invariant wave equat
06400
i-

al
e-

g

w
-

r
i-
c-

e

t,

y

a
n

ve
-

-

s
-

ns

arise simply from a linear reduction of the full equatio
without complex changes of variables. Thus, the matching
the perturbative solutions to the fully nonlinear ones b
comes rather straightforward. Once the perturbative eq
tions are derived, these are completely general and ca
applied to numerical codes solving Einstein’s equations
either an explicitly hyperbolic form or, as in the present ca
in the standard 311 form @14#.

We split the gravitational quantities of interest into bac
ground parts~denoted by a tilde! and perturbed parts. Thes
are the three-metricgi j 5g̃i j 1hi j , the extrinsic curvature
Ki j 5K̃ i j 1k i j , the lapse functionN5Ñ1a and the shift
vector b i5b̃ i1v i , where the tilde denotes backgroun
quantities. Assuming a Schwarzschild background,

g̃i j dxidxj5Ñ22dr21r 2~du21sin2 udf2!, ~1!

Ñ5S 12
2M

r D 1/2

, ~2!

we then haveK̃ i j 505b̃ i , while the perturbed parts hav
arbitrary angular dependence.

Using this background, we linearize the hyperbolic equ
tions and reduce the wave equation forKi j to a linear wave
equation fork i j involving also the background lapse@6#. We
then separate the angular dependence in this equation b
panding k i j in terms of tensor spherical harmonic
(ê1) i j ,...,(f̂ 4) i j @15,16# ~we use the notation of@16#!:

k i j 5a3~ t,r !~ ê1! i j 1rb3~ t,r !~ ê2! i j 1Ñ22a1~ t,r !~ f̂ 2! i j

1rb1~ t,r !~ f̂ 1! i j 1r 2c1~ t,r !~ f̂ 3! i j 1r 2d1~ t,r !~ f̂ 4! i j .

~3!

Note that (ê1) i j ,...,(f̂ 4) i j are functions of~u,f! only and, for
clarity, angular indices (l ,m) for each mode are suppresse
Similarly, the odd-parity multipolesa3 andb3 and the even-
parity multipolesa1 , b1 , c1 , andd1 also have suppresse
indices for each angular mode. There is an implicit sum o
all angular modes in Eq.~3!.

The six multipole amplitudes are not independent. We
the linearized momentum constraints to eliminate the o
parity amplitudeb3 and the even-parity amplitudesb1 and
c1 . As a result, for each (l ,m) mode2 we obtain one odd-
parity equation fora3 :
ent linear
H ] t
22Ñ4] r

22
2

r
Ñ2] r2

2M

r 3 S 12
3M

2r D1Ñ2F l ~ l 11!

r 2
2

6M

r 3 G J ~a3! lm50, ~4!

and two coupled even-parity equations fora1 andh:

1Note that although highly convenient, the suppression of the angular part of the multipoles is not strictly necessary. Indeed, differ
perturbation equations can be derived in which the angular dependence is explicitly contained in the evolution equations.

2Hereafter we will consider only the radiative modes, i.e. those withl>2.
1-3
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F ] t
22Ñ4] r

22
6

r
Ñ4] r1Ñ2

l ~ l 11!

r 2
2

6

r 2
1

14M

r 3
2

3M2

r 4 G ~a1! lm1F4

r
Ñ2S 12

3M

r D ] r1
2

r 2 S 12
M

r
2

3M2

r 2 D G ~h! lm50, ~5!

F ] t
22Ñ4] r

22
2

r
Ñ2] r1Ñ2

l ~ l 11!

r 2
1

2M

r 3
2

7M2

r 4 G ~h! lm2
2M

r 3 S 32
7M

r D ~a1! lm50. ~6!
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The independent multipole amplitudes (a3) lm , (a1) lm ,
(h) lm and the corresponding wave equations~4!–~6! for each
( l ,m) mode are at the basis of the Cauchy-perturba
matching.@Here (h) lm is defined in terms of the trace ofk,
i.e. k5(h) lmYlm where Ylm(u,f) is the standard scala
spherical harmonic.#

B. Basic implementation

As discussed in Sec. I, with a few straightforward mo
fications, this method can be applied to a generic 3D num
cal relativity code which solves the Cauchy problem
Einstein’s equations in either the standard 311 or hyper-
bolic form. In addition to the standard time integration of t
extrinsic curvatureKi j and of the spatial metricgi j , three
new procedures are performed during each time step.

~A! The gravitational radiation information contained
Ki j and] tKi j is transformed into the independent multipo
amplitudes (a3) lm , (a1) lm , (h) lm and their time derivatives
for all of the relevant (l ,m) modes~see@6# for details!. The
maximum mode at which the angular decomposition is tr
cated depends on the basic features of the problem u
investigation. However, a simple comparison of the relat
amplitudes of the different multipoles is usually sufficient
provide information about the highest mode necessary.

~B! The values of multipole amplitudes, and their tim
derivatives, computed at the extraction 2-sphere on a g
timeslice are imposed as inner boundary conditions on
1D grid L and evolved@using the radial wave equations~4!–
~6! for each (l ,m) mode# forward to the following time
slice.3 This provides the solution, for the new time level,
the whole perturbative regionP. Since the outer boundary o
L is located, by construction, well out in the wave zone
simple radial outgoing wave Sommerfeld condition can
imposed there.

~C! From the values at the new time level of (a3) lm ,
(a1) lm , (h) lm and of their time derivatives, it is possible t
‘‘reconstruct’’ the values ofKi j or gi j and thus to impose
outer boundary conditions on the 3D gridN. The details of
how this is done depend on the formulation of Einstei
equations solved inN. In the computations discussed he
we have used the 3D ‘‘interior code’’ of the Alliance@3#
adopting an 311 formulation of Einstein’s equations. In thi
case, only the outer boundary data forKi j are necessary
since the interior code can calculategi j at the outer boundary

3Initial data on the 1D gridL is set consistently with the initia
data for the 3D gridN.
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by integrating in time the boundary values forKi j .
It is important to emphasize the great flexibility of th

Cauchy-perturbative approach in providing outer bound
value data. Once again, the ultimate goal is that of providi
during each time step, boundary values of the relevant qu
tities at the 2-surfaceB delimiting the 3D gridN. Since we
can compute the new valuesKi j at any point ofN which lies
in the perturbative region, not only can we provide bound
data on a 2-surface of arbitrary shape, but~if necessary! on
the whole portion ofN outside of the extraction 2-sphereE.
This represents a great advantage for which no approxi
tion is required and, as we will discuss in detail in Sec.
represents an essential prescription in order to obtain the
bility of the code on very long time scales.

III. NUMERICAL SETUP

In @6# we presented tests of our code based on the pro
gation of linear waves on a Minkowski background~i.e. with
M50!. In those tests, we simulated the Cauchy evolution
the nonlinear interior code by providing an analytic soluti
on the 3D grid. This was necessary in order to evaluate
accuracy and the convergence properties of the module i
pendently of any error which may develop due to the n
merical evolution. As a result of those investigations,
were able to show the module’s ability to extract gravi
tional wave information, to evolve this information out t
large distances and to impose self-consistent and conver
Dirichlet outer boundary conditions. While extremely usef
those tests could not address a number of important q
tions which are strictly related to the use
numerical data coming from the solution of the fu
Einstein’s equations. In particular:~i! What is the influence
of the location of the extraction 2-sphereE on the accuracy
of the extracted gravitational wave data?~ii ! Do Dirichlet
boundary conditions onB provide a long term stability?~iii !
What are the most convenient boundary conditions to
pose?~iv! Are there numerical techniques that would im
prove the application of the Cauchy-perturbative matchin
In this paper we provide an answer to all of these questi
and discuss the properties of a Cauchy-perturbative matc
in the more ‘‘realistic’’ study of linear and mildly nonlinea
waves.

As in @6#, we have here computed the propagation
l 52, m50 ~unless otherwise stated! even-parity linear
waves, initially modulated by a Gaussian envelope with a
plitudeA51026 and width parameterb51 @17,18#. ~Section
VI will discuss variations on this type of initial data by usin
higher l modes and higher amplitudes.! Being time-
1-4
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FIG. 2. Time series of the multipole amplitude (a1)20 extracted at a 2-sphere of radiusr E51.0, 1.5, 2.0, 2.5, 3.0, 3.5. Different gri
resolutions are indicated with different line types, with a dotted line referring to (129)3 grid points, a short dashed line referring to (65)3 grid
points and a long dashed line referring to (33)3 grid points. The analytic solution is indicated with a solid line. Note that we have scale
amplitude byr 3 to compensate for the radial falloff. We have here used a leapfrog integration scheme.
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symmetric at the initial time, these waves have ingoing a
outgoing parts. At each time level, the extrinsic curvatu
and 3-metric are computed using the interior code of
Alliance solving the full Einstein’s equations with a geode
slicing condition~i.e. N51, b i50! on a 3D vertex-centered
grid, with extents (x,y,z)P@24,4#. The code can provide a
solution using either an explicit leapfrog evolution scheme
a semi-implicit Crank-Nicholson one@19# and we will make
explicit reference to which of the two we have used in t
different results presented. We have also used a numbe
different grid resolutions ranging from (17)3 to (129)3 grid
points and comparable resolutions have been used on
extraction 2-sphere. In the following sections we will discu
in detail the results of our computations and concentrate
two different but interrelated aspects, namely the ‘‘short
term’’ and ‘‘ long term’’ behaviors. In the first, we will con-
sider gravitational wave extraction and imposition of boun
ary conditions on time scales comparable with the cross
time scale of the numerical grid~i.e. t;8!. In the second
section, we consider the opposite regime and investigate
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effects of a Cauchy-perturbative matching on time sca
much larger than the crossing timescale~i.e. t@8! when
most of the radiation has left the numerical grid and t
stability properties of the module are put to a test.

IV. SHORT TERM BEHAVIOR

As mentioned in@4,6#, in the case of a flat backgroun
spacetime~as in the present case! and for weak waves on
Schwarzschild-like backgrounds, the position of the extr
tion 2-sphere is arbitrary. This gives us the important pos
bility of analyzing the influence of the position of the extra
tion 2-sphere on the accuracy of the gravitation
information read off, and how this then affects the accura
of the boundary conditions which are provided.

In Fig. 2 we show the time series of the multipole amp
tude (a1)20 extracted atE. ~In the case of an initial traceles
l 52,m50 wave packet this is the only analytically non-ze
multipole.! Other multipoles of the same mode@e.g.
(a1)21, (a1)221 , (a1)22, (a1)222# as well as other parity
1-5



n the
t

at
l

LUCIANO REZZOLLA et al. PHYSICAL REVIEW D 59 064001
FIG. 3. Time series of the multipole amplitude (a1)20 evolved out to a large distance from the center of the grid. The diagrams o
left show values of (a1)20r

3 evolved out to a radiusr 54.0 ~indicated at the top left corner of each diagram!, while the diagrams on the righ
show values of (a1)20r

3 evolved out to the asymptotic radiusr 530.0. We also show data coming from multipoles being extracted
different radii~i.e. r E51.0, 2.0, 3.0! and at different grid resolutions. Here, also, the amplitude is scaled byr 3 to compensate for the radia
falloff and a leapfrog integration scheme has been used.
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amplitudes@i.e. (a3) lm , (h) lm# are also extracted, but the
amplitudes are generally several orders of magnit
smaller. The six different diagrams refer to the six differe
positions at which we have placed the extraction 2-sph
~i.e. r E51.0, 1.5, 2.0, 2.5, 3.0, 3.5!. Each diagram also
shows the same quantity computed at three different res
tions @namely with (129)3, (65)3 and (33)3 grid points# and
we scale the amplitude byr 3 to compensate for the leading
order radial falloff of (a1)20.

It is clear from Fig. 2 that there is an increasing relati
error between the analytic solution and the extracted dat
the extraction 2-sphere is placed at larger radii while
resolution is held constant~e.g. compare results atr E51.0
andr E53.5!. Since the results shown in Fig. 2 do not vary
the resolution on the two sphere~i.e. the number of grid
points used to cover the extraction 2-sphere! is increased or
decreased, the origin of this behavior has to be found in
intrinsic numerical error which is introduced by the soluti
of Einstein’s equation by the interior 3D code and whi
becomes larger as the waves propagate outwards. In fa
06400
e
t
re

u-

as
e

e

, a

more careful investigation of the behavior of the multipo
amplitudes other than (a1)20 shows that the initially trace-
less linear waves develop a non-zero trace ofKi j as the evo-
lution proceeds.@The presence of a non-zero trace becom
apparent by looking at the amplitudes of the extrac
(h) lm .# A non-zero trace ofKi j is due to truncation error
and it rapidly converges to zero as the resolution is
creased, but it has a subtle effect on the accuracy of
extracted data. While the multipole amplitudes fall appro
mately as;r 23, the non-zero trace ofKi j remains constan
during the time evolution. As a result, for increasing extra
tion radii, the difference in the amplitudes of, say, (a1)20
and (h)20, becomes smaller and smaller. Forr E*3 the two
multipoles are comparable and this error becomes more
vere as a coarser resolution is used. However, it is also c
that all of these pathologies can be cured by simply incre
ing the resolution and Fig. 2 shows the time series rapi
converging to the analytic solution as the resolution is
creased even in the most extreme case of an extraction ra
r E53.5. In view of this, we can summarize the properties
1-6
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FIG. 4. Time series of the reconstructed values ofKzz. The six different diagrams refer to the six different positions of the extrac
2-sphere, and for each diagram, results obtained with different grid resolutions are indicated with different line types. The time
computed on a grid point at the outer boundary aligned on thex-axis @i.e. at a coordinate location~4, 0, 0!# and a leapfrog evolution schem
has been used.
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the perturbative radiation extractionas follows: for any ex-
traction 2-sphere location, it is always possible to find a re
lution for the interior grid which will provide gravitationa
wave information with the required accuracy.

Similar considerations apply also for the values of t
multipole amplitude (a1)20 which are propagated at larg
distances from the center of the grid. Figure 3 shows a se
time series of (a1)20 ‘‘evolved’’ out at a radiusr 54.0
~indicated at the top left corner of each diagram! correspond-
ing roughly with the outer edge of the 3D gridN and at an
asymptotic radiusr 530.0. Also in this case, we show da
extracted for different positions of the 2-sphere~i.e. r E
51.0, 2.0, 3.0! and at different grid resolutions. Note that th
waveforms evolved atr 54.0 and those atr 530.0 do not
differ significantly because at these radii the waveform
dominated by its asymptotic part.

Having shown the ability of the module to extract conve
gent gravitational wave data from a fully nonlinear 3D n
merical relativity code, we next turn to examine the cor
sponding ability to ‘‘reconstruct’’ the extrinsic curvatureKi j
from the information extracted at the 2-sphere~cf. Fig. 2!
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and evolved out to the asymptotic region~cf. Fig. 3!. For the
computations discussed in this section, we have chose
impose the simplest type of boundary conditions that can
implemented within a Cauchy-perturbative approach. Fr
the solution at the new time level of the evolution equatio
~4!–~6! for each (l ,m) mode we calculate the value of th
extrinsic curvature at all the grid points onB. We then im-
pose these values as the outer boundary conditions and
refer to this implementation as theDirichlet injection to dis-
tinguish it from other types of boundary conditions whic
will be discussed in the next section.

Figure 4 shows a time series of the reconstructed va
of the Kzz component of the extrinsic curvature for differe
positions of the extraction 2-sphere and different grid re
lutions. The time series is computed on a grid point at
outer boundary aligned on thex-axis @i.e. at a coordinate
location ~4,0,0!#. Equivalent time series are shown in Fig.
for the Kyy component of the extrinsic curvature, which
basically in phase opposition withKzz.

It is not surprising that the behavior of the time series
Ki j in both Fig. 4 and Fig. 5 mimics the one seen in Fig
1-7
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FIG. 5. As in Fig. 4 but for the componentKyy of the extrinsic curvature.
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and Fig. 3 for the extracted multipole amplitudes. In fact,
we will discuss more in the following section, the extracti
2-sphere and the outer boundary are closely coupled.
accuracy of the boundary conditions imposed is clearly
pendent on the accuracy of the extracted gravitational w
information. A large relative error between the extracted a
analytic data will translate into a proportionally large relati
error between the injected values forKi j and the analytic
values for the same quantities.

It is also important to emphasize that the imposition
poor boundary conditions does, in turn, produce spuri
reflection of radiation at the outer boundary. This reflec
gravitational wave information will contaminate the radi
tion signal read off at the extraction 2-sphere, leading
increasingly larger differences from the purely outgoing a
lytic solution. In a loose sense, the extraction 2-sphere
the outer boundary behave as a coupled system of mi
phones and loudspeakers with the 2-sphere playing the
of the microphones. It is clear that such a coupling can
extremely delicate and might be the cause for exponenti
growing instabilities as we will discuss in the following se
tion, where we also indicate a number of prescriptions t
make this coupling less important.
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In Fig. 6 we show a more global measure of the accur
and of the convergence properties for the boundary data
computing theL2 norm of the error inKi j as measured ove
the whole 3D outer boundaryB. In particular, in Fig. 6 we
plot theL2 norm of the error inKzz at the outer boundary an
for successive grid resolutions.~The norms are scaled loga
rithmically.! Moreover, in order to make the errors comp
rable, we scale the different curves by numerical factors
the form 2 log(hi11 /hi), where hi 11 ,hi are two successive
grid resolutions@(hi 11 /hi)51/2 in these tests#. In order to
make this a much more stringent test, we have chosen
extraction radiusr E53.5. The overlap of the curves is
clear signature of the second-order convergence of the m
ule and of the interior code even when the numerical err
are most severe.

V. LONG TERM BEHAVIOR

Providing an accurate and numerically convergent
proximation to the gravitational waveform in the wave zo
surrounding an isolated source represents a very impor
feature of any radiation-extraction and outer-boundary m
ule. However, even more important is that the module p
1-8
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CAUCHY-PERTURBATIVE MATCHING AND OUTER . . . PHYSICAL REVIEW D 59 064001
vides a stable evolution of the interior equations, minimizi
the numerical reflection of radiation at the boundary. Parti
larly for systems of evolution equations in which radiati
and background dominated metric and extrinsic curvat
variables are not easily defined, matching techniques ma
the only way to achieve a stable evolution. In this section
discuss a number of approaches which were applied to
problem in the context of the Alliance interior evolutio
code.

A. Perturbative Sommerfeld boundary conditions

The results presented in the previous section were
tained by imposing as outer boundary values forKi j , the
ones reconstructed from the values, at the new time leve
the multipole amplitudes. Although straightforward to impl
ment and very accurate, a ‘‘Dirichlet injection’’ of oute
boundary data leads to a rapid error growth when the ev
tion is carried for sufficiently long periods of time. A caref
analysis has revealed that these boundary conditions see
produce a rather large amount reflection as the gravitatio
waves leave the numerical grid. This is basically the resul
the slight mismatch between the wave phases and amplit
imposed at the outer boundary and those in the interior of
3D numerical grid.

It is clear that a finite discretization will always produce
certain amount of reflection. It is thus important to study a
develop new techniques that tend to suppress this reflec
and allow, as much as possible, the outgoing radiation

FIG. 6. Logarithm of theL2 norm of the error inKzz computed
over the whole outer boundaryB for successive grid resolutions an
for the most unfavorable position of the extraction 2-sphere~i.e.
r E53.5!. The differences between norms at different grid reso
tions are normalized by factors 2 log(hi11 /hi), wherehi 11 ,hi are
two successive grid resolutions. The overlap of the curves sh
the second-order convergence of the module. The evolution sch
used is leapfrog.
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escape freely to infinity. Interesting results in this directi
have been obtained implementing a boundary condition
have namedperturbative Sommerfeld@4#. While a simple
Sommerfeld outgoing wave condition applied to a ten
quantity such as the extrinsic curvature or the three-metri
~strictly speaking! incorrect, it is often satisfactory, espe
cially if applied in the distant wave zone~cf. @20,21# for the
case of linear waves!. In view of this, we have related, at th
outer boundaryB, the null derivatives of the extrinsic curva
ture obtained from the interior grid~i.e. Ki j ! with the one
obtained from the perturbative module~k i j , since back-
ground extrinsic curvature is assumed to be zero!:

]

]t
~Ki j 2k i j !1

]

]r
~Ki j 2k i j !1

q

r
~Ki j 2k i j !50, ~7!

whereq is a positive integer.4 In other words, we ‘‘correct’’
the Sommerfeld outgoing wave condition] tKi j 1] rKi j
1(2/r )Ki j 50, with a right-hand side which is usually take
to be zero but which is not~in general! zero. As a result, this
prescription resembles a Sommerfeld condition but is eff
tively much more general since~i! it can be used in regions
where the radiation is not dominated by the asymptotic o
going behavior and~ii ! it takes into account arbitrary angula
dependence, as well as the effects of a Schwarzschild b
hole background. Since the perturbative correction can
very small and is the result of a near cancellation of seve
terms involving space and time derivatives, it is important

4Results do not depend sensitively on the value ofq, which we
have chosen to be 2 in these tests in order to reproduce the lea
order term in the asymptotic radial falloff.

-

s
me

FIG. 7. Time series of theL2 norm of the error inKzz for an
extraction atr E51.0. The interior code has a resolution of (333

grid points and uses a leapfrog integration scheme. The diffe
curves refer to the different types of boundary conditions used.
1-9
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LUCIANO REZZOLLA et al. PHYSICAL REVIEW D 59 064001
implement Eq.~7! so that the same numerical differenti
operator acts on bothKi j andk i j .

Implementation of this method has shown that the per
bative Sommerfeld approach is very accurate and gene
yields longer evolutions than the direct injection of Dirichl
data. Figure 7 shows a direct comparison of three differ
boundary conditions, namely, perturbative Sommerfe
Dirichlet injection and Sommerfeld. In particular, we sho
the time series of theL2 norm of the error inKzz for an
extraction atr E51.0. Because we were interested in resu
over very long times, we were forced to perform compu
tions using a very coarse resolution of (33)3 grid points.

There are a number of interesting features that eme
from Fig. 7. The most evident one is the strikingly differe
behavior between a direct injection of reconstructed data
the use of a Sommerfeld-like boundary condition. In the c
of a Dirichlet injection, in fact, not all of the radiation is ab
to leave the numerical grid, but some of it remains trapp
and is repeatedly read off. In this case the coupling betw
the extraction 2-sphere and the outer boundary is very str
and amplifies the numerical error which grows exponentia
in time, with a beat frequency roughly set by the dimensio
of the numerical grid. The perturbative Sommerfeld and
Sommerfeld conditions, on the other hand, are much m
effective in letting the radiation escape off the mesh, a
whatever the amount of reflection, this is progressiv
damped as the evolution proceeds. In this respect, a pe
bative Sommerfeld condition is more efficient in suppress
the reflected incoming radiation~e.g. for 7&t&17! and

FIG. 8. As in Fig. 7 but for longer time scales and the use of
logarithms of the norms. The different curves refer respectively
Dirichlet injection boundary conditions~Di!, perturbative Sommer-
feld boundary conditions~pS! and Sommerfeld boundary conditio
~S!. Curves with a higher resolution of (49)3 grid points are also
plotted for the perturbative Sommerfeld and the Sommerf
boundary conditions. All curves have been obtained with a leap
integration scheme.
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seems to behave basically like a Sommerfeld condition as
evolution progresses further to intermediate times.

However, the intrinsically different character of the pe
turbative Sommerfeld condition becomes apparent on m
longer time scales or with higher resolutions. Figure 8 is
same as Fig. 7 but on a longer time scale. Also, additio
curves computed with a resolution of (49)3 grid points
are shown for a comparison between the perturba
Sommerfeld and Sommerfeld conditions. While the tw
types of boundary conditions do not seem to differ sign
cantly and both show the emergence of exponentially gro
ing errors, the use of perturbative boundary conditions del
the onset of the error growth and allows for a much long
evolution. Moreover, by increasing the interior resolution w
can further prolong the running time. This is in stark contr
to the behavior of the Sommerfeld condition, for which
increased interior resolution results in a shorter running ti
@4#. As shown in Fig. 8, by using (49)3 interior grid points,
we were able to evolve the code up tot;400 and about 4
times longer than for the case of Dirichlet injection. This is
comparatively very long time scale, which is more than
times longer than the physically relevant one, i.e. the cro
ing time scale.

At present, it is not clear what the origin is of the exp
nential error growth observed in Fig. 7 and which appe
also with evolutions using a harmonic slicing of spacetim
Such instabilities might be directly related to a nonline
coupling between waves reflected off the outer bound
and numerical instabilities triggered by the 311 form
of Einstein’s equations. It is indeed remarkable that
exponential growth is present in other formulations
Einstein’s equations, such as the one proposed by Shi
and Nakamura or the Einstein-Ricci hyperbolic formulatio
in which linear waves have been stably evolved in harmo
cally sliced spacetimes@22,23#.

B. Perturbative boundary conditions with ‘‘blending’’

The perturbative Sommerfeld boundary conditions rep
sent a very promising implementation of the Cauch

e
o

d
g

FIG. 9. Schematic of the numerical implementation of a ‘‘pe
turbative blending’’ matching. As in Fig. 1,N represents the 3D
numerical grid in which the full Einstein’s equations are solved a
B its 2D outer boundary.r E is the radius of the extraction 2-sphe
E and r 1 ,r 2 are two radii chosen so thatr 2.r 1.r E . The dark
shaded region~i.e. r ,r 1! shows the portion ofN filled by the nu-
merical nonlinear solution provided by the interior code. The m
dium shaded region~i.e. r 2,r ,r 1! shows the portion ofN in which
the solution of the interior code is ‘‘blended’’ with the one comin
from the linearized Einstein’s equations. Finally, in the light shad
region, only the perturbative solution is used.
1-10
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FIG. 10. Time series of the errors for thegzz and thegxx components of the three-metric with the use of a perturbative blending m
The norms shown here are taken along thez-axis and not on a 2D surface as for the previous diagrams. In these runs we have used
coarse resolution of (33)3 grid points and an extraction radiusr E51. The blending region is covered with 10 grid points, but similar res
have been obtained also with smaller numbers of grid points. The integration scheme used is Crank-Nicholson.
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perturbative matching and provide both high accuracy
very small reflection at the outer boundary. Despite th
appealing features, they do not provide for very long te
stability of the interior code and, as shown in Fig 8, th
eventually suffer from an exponential growth. Of course,
the computations reported here, the boundary conditions
vided by the Cauchy-perturbative matching are totally
equate on the time scale necessary for the gravitatio
waves to leave the numerical grid. Indeed, the instabili
induced by the outer boundary become relevant only lo
after the crossing time scale, when the grid basically conta
numerical noise. However, providing accurate boundary c
ditions on a dynamical time scale is usually not sufficie
and the achievement of unconditionally stable codes is
only of academic interest. In order to successfully model
problem of binary black hole coalescence, the numer
code will have to be able to stably solve Einstein’s equati
on a time scale~the gravitational wave emission one! which
is much longer than the dynamical one. It is therefore i
perative to devise a technique which provides unconditi
ally stable boundary conditions. A first successful step in t
direction has been made with the implementation of
‘‘perturbative-blending’’ technique we will discuss in th
section.

As discussed in the previous section, the perturba
Sommerfeld boundary conditions are much more effective
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providing accuracy and reducing reflection at the ou
boundary than is the simple Dirichlet injection. One of t
major differences between the two types of boundary con
tions is in their numerical implementation. This involve
only the outermost boundary grid points~i.e. those onB of
Fig. 9! in the case of a Dirichlet injection but also the close
interior neighboring grid points in the case of a perturbat
Sommerfeld condition@necessary for taking a finite differ
ence form of the spatial derivatives in Eq.~7!#. The pertur-
bative blending can then be considered as the extensio
the perturbative Sommerfeld condition to a larger set of g
points. The basic idea is simple and based on an attemp
modify the propagation characteristics in the vicinity of t
outer boundary with the goal of acting distinctively on th
outgoing and ingoing parts of the gravitational waves. A d
tailed description of the basic properties of ‘‘sponge filters’’
in conjunction with absorbing boundary conditions in on
dimensional wave propagation can be found in@24# and re-
sults of its application are also discussed in@25#. The inter-
pretation of the blending as an implementation of the spo
filter method will be given in the Appendix.

Figure 9 gives a schematic representation of the way
perturbative blending has been implemented. The key fea
of this specific approach comes from exploiting the modul
ability to provide a perturbative solution to Einstein’s equ
tion not only on the outer boundaryB but, in principle, in the
1-11
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FIG. 11. Time series of the errors in theKzz component of the extrinsic curvature and of the violation of the Hamiltonian constraint w
a perturbative blending match is used. The resolution is that of (33)3 grid points and the extraction radius ifr E51 and the blending region
is covered with 10 grid points. The integration scheme used is Crank-Nicholson.
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whole region of the 3D numerical gridN outside of the ex-
traction 2-sphereE. However, rather than doing this, w
have isolated a spherical shell of radiir 1 and r 2 ~wherer 2
.r 1.r E! and blended therein the nonlinear solution com
from the interior code with the linear one coming from t
Cauchy-perturbative module~this is shown as the medium
shaded region in Fig. 9!. In particular, at the end of each tim
step~as well as during each iteration of the Crank-Nichols
evolution scheme we have used in these tests!, we do the
following: at all of the grid points atr ,r 1 ~dark shaded
region in Fig. 9! the nonlinear solution is left unmodified; fo
all of the grid points betweenr 1 and r 2 we ‘‘blend’’ the
nonlinear solution with the perturbative one reconstructed
that grid point; for all of the grid points atr .r 2 we replace
the computed values ofKi j with perturbative data. The
‘‘blending’’ consists of smoothly weighting the nonlinea
and linear solutions so that the first one is imposed at
2-sphere of radiusr 1 and the second one is imposed atr 2
~see the Appendix for details!.5 Stability does not depend o
the form of the weighting power function as long as the lat
satisfies the boundary conditions of being zero at the in
blending shell and one at the outer blending shell. Howe

5The idea of blending boundary conditions was first propo
within the Alliance by Go´mez and the Pittsburgh group who o
tained stable evolution of linear waves after blending the numer
solution with theanalytic one @26#.
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a more careful matching of the first and second derivative
the two blending shells does provide a smaller amount
reflection off the outer boundary during the initial stages
the evolution~i.e. for t&20!.

Figures 10 and 11 illustrate the radical changes in the l
time behavior introduced by the use of a perturbative ble
ing match.

In particular, in Fig. 10 we show the time series of t
errors for thegzz and thegxx components of the three-metric
while in Fig. 11 we show the time series of the errors in t
Kzz component of the extrinsic curvature and of the violati
of the Hamiltonian constraint. The plots refer to compu
tions performed using a coarse resolution of (33)3 grid
points and an extraction radiusr E51.

The long evolution times reached and the quiescent
havior of the evolved variables reduced to their round
error values clearly show that the use of a perturbative ble
ing match does provide the desired long term stability. T
is evident from the gradual decay of the norms and the
tionary behavior of the violation of the Hamiltonian con
straint which does not show any sign of instability on a tim
scale more than 125 times the crossing time scale@27#. We
have also verified that the perturbative-blending bound
conditions provideaccurate short term extraction of the
waveform, comparable to the results in Figs. 2–5.

It is also clear that the use of a perturbative blend
introduces two new ‘‘free’’ parameters~i.e. the radiir 1 and
r 2! and a satisfactory implementation will therefore depe

d

al
1-12
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FIG. 12. The left diagram shows the time series of the multipole amplitude (a1)40 extracted at a 2-sphere of radiusr E51.0 for different
grid resolutions~cf. Fig. 2!. The right diagram shows the time series of the reconstructed values ofKzz as measured at the grid point~4, 0,
0! ~cf. Fig. 4!.
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on some ‘‘tuning’’ and experimentation. In particular, for th
runs shown above we have chosenr E51, r 152 andr 254,
which is the radius of the sphere inscribed inN and tangent
to it. This gives about 10 grid points along the axes wh
the blending between the nonlinear and linear solution
made. Very similar results have been obtained also with
and 7 grid points, but a blending over 6 or fewer grid poin
would make exponentially growing instabilities reappe
Provided that the intrinsic length of the blending is region
kept constant, stability has been obtained also with sim
tions using a larger or a coarser resolution than the
shown for in Figs. 10 and 11.

A detailed understanding of the properties of the pert
bative blending matching is still under development and
particularly hard to achieve given the three-dimensionality
the full problem. However, there are some basic features
seem to be well established and that we have illustrate
the Appendix. There, using a simplified 1D model describ
the evolution of linear waves on a flat background, we sh
that imposing boundary conditions using a mixture of a n
merical solution of Einstein’s equations with another o
~either analytic or obtained from a perturbative matching! is
equivalent to imposing a variable phase velocity in the zo
where the blending is made. If appropriate boundary con
tions are applied to this variable phase velocity, the blend
can tilt the ingoing characteristic toward the advected o
and prevent ingoing modes propagating from the ou
boundary. Moreover, the blending progressively damp
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the propagation of outgoing modes which are totally a
sorbed at the outer boundary. In this way, it is possible
decouple the outer boundary from the interior evoluti
without having to place it at very large distances~see the
Appendix for details!.

The use of perturbative blending boundary conditions
provided the unconditional long-term stability we were r
quiring to our radiation-extraction and outer-boundary mo
ule. Given the versatility of the perturbative matching, th
approach could represent a very powerful tool also in ot
numerical relativity applications. Further work is necessa
in this direction and experimentation with more compl
physical configurations. It is interesting to note that Go´mez’s
original prescription of blending numerical and analytic da
has found a partially successful application also in the
Cauchy evolution of a single black hole where it leads to
first stable evolution@28# of this type.

VI. VARIATIONS ON THE THEME: HIGH MODE
AND MILDLY NONLINEAR WAVES

In this concluding section we provide further evidence
the robustness and versatility of the Cauchy-perturba
matching in extracting gravitational wave information a
providing outer boundary conditions. For this purpose
present results obtained from computations having differ
initial data than those discussed so far and concentrate
short term evolutions.
1-13
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FIG. 13. Time series of the multipole amplitude (a1)20 extracted at a 2-sphere of radiusr E51.0 for different values of the initial wave
amplitude~i.e. A51026– 1023!. Different grid resolutions are indicated with different line types~cf. Fig. 2!. The integration scheme used
Crank-Nicholson.
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In particular, in Fig. 12 we show the extracted signal~left
diagram! and the injected boundary conditions forKzz ~left
diagram! when an initial l 54, m52 even-parity wave is
used as initial data.~We have here maintained the same a
plitude A51026 and width parameterb51; note also that
we have used the Crank-Nicholson evolution scheme.! Fig-
ure 12 should be compared with Figs. 2 and 4 where sim
data are reported in the case of an initiall 52, m50 packet.
It seems evident that also in the case of this higher m
initial data the Cauchy-perturbative module is able to p
vide convergent wave extraction and boundary conditio
~For this test and the following ones in this section, w
have used the computationally less expensive perturba
Sommerfeld boundary conditions.!

Next, we can consider the behavior of the module wh
the initial amplitude of the wave packet is increased.
course, the analytic form for the initial data used in the
tests is derived in the linearized regime and a wave pa
with an exceedingly large amplitude will no longer satis
the Hamiltonian and momentum constraints. However,
can progressively increase the initial amplitude and excl
amplitudes above which the violation of the constraints
comes too severe~e.g. more than 50%!. This allows us to
perform an interesting check of the efficiency of the mod
in the linear and mildly nonlinear regime.

Results of these tests are presented in Fig. 13 for
extraction of gravitational waves and in Fig. 14 for the im
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position of outer boundary conditions~for these tests we
have gone back to the less computationally expensivel 52,
m50 initial wave packet!. Figure 13, in particular, shows
the time series of the multipole amplitude (a1)20 extracted at
a 2-sphere of radiusr E51.0 for amplitudes ranging from
A51026 to A51023. It is interesting to note how all dia
grams are almost perfectly identical but for the differe
scale used. Similar considerations apply also for the bou
ary conditions imposed at the outer boundary and shown
the zzcomponent of the extrinsic curvature in Fig. 14.

VII. CONCLUSION

We have investigated the properties of the Cauchy per
bative method for matching gravitational data compu
from a 3D Cauchy solution of Einstein field equation
Studying the evolution of linear and mildly nonlinear wav
we have shown the ability of the perturbative module
extract convergent gravitational wave information at diffe
ent locations within the 3D numerical grid solving the no
linear form of Einstein’s equation. We have shown th
given an extraction 2-sphere radius, a resolution can
found which provides extraction and reinjection with the r
quired accuracy.

We have also discussed in detail a number of differ
approaches to the problem of imposing outer boundary c
ditions. Relying on the important advantage of being able
1-14
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FIG. 14. Time series of the reconstructed values ofKzz as measured at the grid point~4, 0, 0!. The four different diagrams refer to th
four different amplitudes used for the initial wave amplitude~i.e. A51026– 1023; cf. Fig. 4, Fig. 13!. The integration scheme used
Crank-Nicholson.
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provide information on the whole portion of the 3D nume
cal grid outside the extraction 2-sphere, we have investiga
Dirichlet boundary conditions, perturbative Sommerfe
boundary conditions and ‘‘perturbative blended’’ bounda
conditions. Each of these approaches has been shown to
vide convergent boundary conditions, but only the latter p
vides stable evolutions. It has been recognized for some
that it is advantageous to make variable choices for num
cal relativity which separate those variables with dominan
wavelike character from those dominated by static or stat
ary field moments@29,30,8,31,22#. In the tests presente
here, the perturbative module provided a brute-force imp
tion of this separation and, with suitable numerical imp
mentation, enabled long-term stability.

These first successes of the Cauchy perturbative matc
method, motivate further work in this direction, both in th
application of our numerical module to fully nonlinea
spacetimes and in the extension of the mathematical app
tus to more general background spacetimes.
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APPENDIX: TOY MODEL FOR BLENDING
BOUNDARY CONDITIONS

The very simplest model for investigating and interpreti
the effects of perturbative blending boundary conditions
provided by linearized gravity waves in one dimension. T
dynamical equations can be written symbolically as

ġ[] tg;2K , ~A1!

K̇;2g9[2]x
2g, ~A2!

whereg and K are the fully nonlinear three-metric and e
trinsic curvature tensors respectively, whose numerical s
tion is provided by the interior code. The blending conditi
on the extrinsic curvature within the blending region c
then be expressed as

KB[a~x!K1@12a~x!#K pert ~A3!
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where a(x) is the ‘‘blending function,’’ continuous in the
rangexP@x1 ,x2# and defined so thata(x1)51 ~i.e. at the
inner edge of the blending layer! and a(x2)50 ~i.e. at the
outer edge of the blending layer!. K pert could be the pertur-
bative solution of Einstein’s equations in the blending
gion. ~Note that the following arguments will not depend o
K pert being a perturbative solution. In fact, in Go´mez’s first
application of the blending boundary conditions,K pert was
the value given by an analytic solution@26#.!

Applying the boundary condition~A3! then yields

ġB;2KB;2a~x!K2@12a~x!#K pert , ~A4!

and therefore

g̈B;a~x!g92@12a~x!#K̇ pert . ~A5!

In the simplest case in which the perturbative value for
extrinsic curvature is zero, the result of the blending is the
wave equation~in this case, in fact,g95gB9 ! with a variable
phase propagation speed,vp

2(x)5a(x), which is unity at the
inner radius of the blending region and ‘‘smoothly’’~in a
discretized sense! goes to zero at the outer edge of the blen
ing region:

g̈B;a~x!g9. ~A6!

A less trivial and more interesting case is the one in wh
an outgoing Sommerfeld condition is imposed within t
blending region. In this case,

g8;2ġ;K pert , ~A7!
l-
nd

v

.

,

s
,

06400
-
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h

and the ‘‘blended’’ equivalents of Eqs.~A1! and ~A5! are

ġB52a~x!K2@12a~x!#g8, ~A8!

g̈B;2a~x!K̇2@12a~x!#ġ8;a~x!g92@12a~x!#ġ8.
~A9!

Consider now an outgoing packet so thatg}const
3ei(vt2kx) and similarly forgB . The dispersion relation fol-
lowing from Eq.~A9! will be then

v22~12a!kv1ak250, ~A10!

whose solutions are

vp~x!5
v~x!

k~x!
5

12a~x!6@11a~x!#

2
5„1,2a~x!….

~A11!

As a result, the wave packet will have unit outgoing a
ingoing phase velocities at the inner edge of the blend
region, decreasingly smaller ingoing phase velocities in
blending region and only outgoing phase velocity at the ou
edge of the blending region and outside of it.

Finally, it can be seen that the blending approach, es
cially the blending to the Sommerfeld condition, just d
scribed, has a close relation to the techniques describe
Ref. @24#. However, for the strongly nonlinear black ho
simulations, the more manageable approach of blending w
analytic solutions, as in the first example above, has be
successful in some cases@28#. This method is computation
ally much simpler than explicitly modifying the equations
er.
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