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Operator ordering and consistency of the wave function of the Universe
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We demonstrate in the context of the minisuperspace model consisting of a closed Friedmann-Robertson-
Walker universe coupled to a scalar field that Vilenkin’s tunneling wave function can only be consistently
defined for particular choices of operator ordering in the Wheeler-DeWitt equation. The requirement of regu-
larity of the wave function has the particular consequence that the probability amplitude, which has been used
previously in the literature in discussions of issues such as the prediction of inflation, is likewise ill defined for
certain choices of operator ordering with Vilenkin’s boundary condition. By contrast, the Hartle-Hawking
no-boundary wave function can be consistently defined within these models, independently of operator order-
ing. The significance of this result is discussed within the context of the debate about the predictions of
semiclassical quantum cosmology. In particular, it is argued that inflation cannot be confidently regarded as a
‘‘prediction’’ of the tunneling wave function, for reasons similar to those previously invoked in the case of the
no-boundary wave function. A synthesis of the no-boundary and tunneling approaches is argued for.
@S0556-2821~99!04306-4#
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e

e
c

b
s
n
n
t

b

io
t

o
s
is

ion
eful

ill
ion
bil-

di-
the
t

ces
ade
uch
to
of
ot.

sue,
ill

ally

la-
n-

ints
de-
er,
e
ne
ieve
be
to

ore
ility

ore,

re
I. INTRODUCTION

Recent developments concerning the possibility of op
inflation in quantum cosmology@1,2# have revived an old
debate about the foundational issues of that subject@2–4#. It
is therefore timely to raise an issue which has been larg
overlooked previously, but which in our opinion has a dire
bearing on these foundational issues.

Much of the current debate originates from differing pro
ability amplitudes calculated in an approximation which a
sumes that the transition amplitude for nucleation of a u
verse from ‘‘nothing’’ is dominated by a Euclidea
instanton. Different probability amplitudes are assumed
correspond to the different boundary conditions implied
the Hartle-Hawking ‘‘no-boundary’’ proposal@5# and the
‘‘tunneling’’ proposals of Vilenkin @6,7# and Linde @2,8#,
which are themselves distinct. In particular, the nucleat
probability for instanton-dominated transitions is assumed
be

P}uCu2}H e22I cl, CNB ,

e12I cl, CTL ,CTV,
~1!

where the subscripts~NB!, ~TL! and ~TV! refer to the no-
boundary wave function and the tunneling wave functions
Linde and Vilenkin respectively. For the solutions in que
tion, which correspond to a model in which gravity
coupled to a scalar field,f, with potential,V(f), in dimen-
sionless units@see Eq~3! below for our conventions#, the
Euclidean action of the instanton is

I cl5
21

3V~f0!
, ~2!

f0 being the value of the scalar field at nucleation.
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According to the standard folklore the above nucleat
probabilities can be determined by a somewhat more car
analysis of the appropriate minisuperspace models@9–12#. It
is this folklore which we wish to challenge here. We w
explicitly demonstrate that the prefactor in the wave funct
cannot be ignored when calculating the appropriate proba
ity amplitudes if one is to implement the boundary con
tions carefully in minisuperspace models. In particular,
identification of Eqs.~1!, ~2! as representing the relevan
probabilities from which a comparison of the consequen
of the competing boundary condition proposals is to be m
depends crucially on Planck scale physics on account of s
ambiguities. While the ‘‘no-boundary’’ proposal turns out
yield a well-defined probability amplitude independently
such ambiguities, Vilenkin’s boundary condition does n
Vilenkin has previously noted@6# that CTV cannot be nor-
malized for one particular operator-ordering~the
‘‘D’Alembertian ordering’’!. However, in our view he ap-
pears to have overlooked the full consequences of this is
which turns out to be quite a generic problem, as we w
show. In particular, it has often been stated@4,7,12# that op-
erator ordering is unimportant to the discussion, especi
with regard to probability measures@7#. Our findings contra-
dict such a viewpoint when it comes to the actual calcu
tions @7,13–17# which attempt to discriminate between co
sequences of the wave function proposals.

Nevertheless, we do believe that some of the viewpo
expressed by each of the parties to the ‘‘wave function
bate’’ do have some merits. In the last section of this pap
we will discuss these relative merits in detail, in light of th
mathematical results we will present here. We shall confi
our discussion to minisuperspace, not because we bel
that that is the ultimate arena in which the issue should
decided, but because particular results which we wish
criticize are derived in this setting and because even in m
general discussions it is usually semiclassical probab
measures which are nonetheless actually used. Furtherm
while the dangers of too readily associatingCTV with the
semiclassical probability~1! have been commented on befo
©1999 The American Physical Society13-1
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@18#, it does not seem to have been appreciated that this
be a problem in even the most well-studied minisupersp
model and at the level of affecting commonly claimed ‘‘pr
dictions’’ of quantum cosmology such as the prediction
inflation.

II. MINISUPERSPACE MODEL

To be more specific, let us consider the 2-dimensio
minisuperspace corresponding to the classical action
gravity coupled to a scalar field,

S5
1

4k2 F E
M

d4xA2gR12E
]M

d3xAhKG
1

3

k2 E
M

d4xA2gS 2
1

2
gmn]mf]nf2

V~f!

2s2 D , ~3!

wherek254pG54pmPlanck
22 , K is the trace of the extrinsic

curvature, and the metric is assumed to take the clo
Friedmann-Robertson-Walker form

ds25s2$2N 2dt21a2~ t !dV3
2%, ~4!

where dV3
2 is a round metric on the 3-sphere, ands2

5k2/(6p2).
The Hamiltonian constraint obtained from th

(311)-decomposition of the field equations may be qu
tized to yield the Wheeler-DeWitt equation

F 1

ap

]

]a
ap

]

]a
2

1

a2

]2

]f2 2a2U~a,f!GC50, ~5!

where

U~a,f![12a2V~f!, ~6!

and we have allowed for possible operator-ordering amb
ities through the integer power,p, in the first term. The
approximation that has been adopted in previous treatm
@6,7# is to confine the discussion to regions in which t
potentialV(f) can be approximated by a cosmological co
stant, so that thef dependence in Eq.~5! can be effectively
ignored. The resulting equation is then amenable to a s
dard 1-dimensional WKB analysis. In this ‘‘de Sitter minis
perspace’’ approximation the WKB solutions are read
found to be

C~a,f!.
A6~f!e7 ip/4

a~p11!/2@U~a,f!#1/4expH 6 i @2U~a,f!#3/2

3V~f! J
~7!

if a2V.1 and

C~a,f!.
B6~f!

a~p11!/2@U~a,f!#1/4expH 6@U~a,f!#3/2

3V~f! J ~8!

if a2V,1.
Different boundary conditions will then lead to a solutio

C, corresponding to different linear combinations of the
WKB components in the ‘‘oscillatory’’ and ‘‘tunneling’’ re-
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gions of the minisuperspace, which correspond to the os
latory @Eq. ~7!# and exponentially@Eq. ~8!# dominated solu-
tions respectively.

Both the Hartle-Hawking@5# and Vilenkin @7# boundary
conditions on the wave function require regularity ofC as
a→0. From Eq.~5! one can see that a potential divergence
the a22C,ff term can be avoided by requiringC to be
independent off as a→0. SinceU(a,f)→1 in this limit,
one would thus naively expect that the prefactorB6(f) of
the tunneling WKB modes of Eq.~8! should take the form

B6~f!}expS 71

3V~f! D ~9!

for the respective modes. There are two problems with t
however. First, for operator orderings other than thep<
21, the factora2(p11)/2 in the prefactor of Eq.~8! will alter
any considerations based on the regularity ofC. Second, the
WKB approximation does not hold all the way down toa
→0 in any case, and a more careful analysis of the soluti
of Eq. ~5! is required in this limit. Such an analysis has be
given by Hawking and Page@19# in the case ofCNB with the
‘‘D’Alembertian operator ordering’’p51 and by Vilenkin
@7# for the case ofCTV and CNB with operator orderingp
521.

We will now extend the analysis of Refs.@7,19# to both
wave functions for arbitrary operator ordering,p. In follow-
ing @7,19# we shall assume that thef dependence in Eq.~5!
can be ignored. Such an approximation can be justified if
assume that we are close to semiclassical solutions~7!, ~8!
for which f varies slowly. This means that the potenti
V(f) should be suitably flat, which physically is one e
ample of a model leading to ‘‘slow-roll’’ inflationary cos
mologies. With such a simplification, thea22C,ff term in
Eq. ~5! is dropped andV(f) is approximated by a constan
It is still not possible to solve Eq.~5! exactly for arbitraryp
in terms of known elementary functions with these appro
mations@20#. However, it can be solved in a direct fashion
two separate regimes.

First, if a2V!1, which for constant finiteV will pertain to
thea→0 limit, the curvature term dominates the ‘‘potential
~6!, and with the redefinition

C[z2~p21!/4y~z!, ~10!

where z[ 1
2 a2, we find that Eq.~5! reduces to a modified

Bessel equation

z2
d2y

dz2 1z
dy

dz
2~z21n2!y50, ~11!

wheren56 1
4 (p21). The general solution fory(z) is thus a

linear combination of modified Bessel functions,I (p21)/4(z)
andK (p21)/4(z).

Second, ifa2V@1, which for constant finiteV will per-
tain to the largea limit, the a2V(f) term dominates the
‘‘potential’’ ~6!, and with the redefinition

C[x2~p21!/6w~x!, ~12!
3-2
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wherex[ 1
3 a3AV, we find that Eq.~5! reduces to a Besse

equation

x2
d2w

dx2 1x
dw

dx
1~x22n2!w50, ~13!

wheren56 1
6 (p21). The general solution forw(x) is thus

a linear combination of ordinary Bessel function
J(p21)/6(x) andY(p21)/6(x).

The two sets of Bessel function solutions must agree w
the respective WKB solutions~7!, ~8! in the limits in which
all relevant approximations mutually hold. Using a combin
tion of an analysis of these limits and the WKB matchi
procedure we can constrain the particular linear comb
tions of solutions which correspond to the boundary con
tions of CNB , CTL andCTV .

III. ‘‘NO BOUNDARY’’ WAVE FUNCTION

Since the Hartle-Hawking boundary condition@5# is
stated in terms of the path integral, some further argume
are required to translate this into boundary conditions on
~5! in minisuperspace. However, the statement of the
evant boundary conditions on Eq.~5! is uncontroversial and
we will thus follow Hawking and Page@19,22# in demanding
the following:

~i! In the tunneling region the relevant WKB mode is t
~2! solution of Eq.~8! only, viz.

CNB.
B2

a~p11!/2@12a2V#1/4expS 2@12a2V#3/2

3V D , ~14!

as is appropriate to the standard Wick rotationt→2 i t in the
definition of the Euclidean path integral.

~ii ! The wave function must be bounded asa→0 for all
finite values off and on the past null boundaries of minis
perspace. Thus in a suitable measure we can take

CNB~a50,f!51. ~15!

First considerp>1. The only modified Bessel functio
solution of Eq.~11! which leads to a regular wave functio
~10! as a→0 for values ofp>1 is I (p21)/4(z), yielding a
wave function

CNB5
C1

a~p21!/2 I ~p21!/4~
1
2 a2! ~16!

in the a2V!1 limit. The constantC1 may be fixed by the
normalization condition~15! and the small value limit@23#
of the Bessel function, giving

C152~p21!/2Y GS p13

4 D .

We can now check that Eq.~16! does agree with Eq.~14!
by taking the limit of both expression for a finite largea for
which a2V!1 nonetheless, which is the limit in which the
should match. In practice, this requires very small values
06351
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V(f)!1; i.e., the potential must be much less than t
Planck scale, which is physically reasonable. One finds
since, for finite largea @23#,

I ~p21!/4~
1
2 a2!5

1

Apa
exp~ 1

2 a2!@11O~a22!#, ~17!

the leading term in the appropriate limit of Eq.~16! does
agree with that from Eq.~14! if

B25
C1

Ap
expS 1

3V~f! D . ~18!

Using the WKB connection formulas@24# we find

CNB5

2C1 expS 1

3VD cosF 1

3V
~a2V21!3/22

p

4 G
Apa~p11!/2~a2V21!1/4

~19!

for the WKB solution in the oscillatory region, which is th
linear superposition of the modes~7! with A65B2 . This
can be checked against linear combinations of the Be
function solutions in the limita2V@1. We find that the so-
lution does indeed match the linear combination of solutio
to Eqs.~12!, ~13! given by

CNB5
C

a~w21!/2 $J~p21!/6~x!1J~12p!/6~x!%, ~20!

wherex[ 1
3 a3AV as before, andC(f)}exp@1/3V(f)#.

In the case thatp,1, any arbitrary linear combination o
the independent modified Bessel function solutio
I (12p)/4(z) and K (12p)/4(z) yields a convergent wave func
tion asa→0. Therefore, the Hartle-Hawking condition doe
not restrict the wave function except by appealing to
semiclassical behavior~14!. Since similarly to Eq.~17!
K2n(z)[Kn(z) is given in the limit of finite largea by @23#

K ~p21!/4~
1
2 a2!5

Ap

a
exp~2 1

2 a2!@11O~a22!#, ~21!

we see that the semiclassical condition only makes the
striction that the coefficient ofI (12p)/4(z) must be non-zero
so as to dominate overK (12p)/4(z) in the appropriate limit. If
we take the particular choice

y~z!5I ~12p!/4~z!1
2

p
sinS ~12p!

p

4 DK ~12p!/4 ~22!

for p¹$23,27,211, . . .%, then the wave function is onc
again given by Eq.~16! as a→0 and the previous analysi
applies exactly. ForpP$23,27,211, . . .% the linear com-
bination ~22! must be replaced by one for which the coef
cient of K (12p)/4 is nonzero, since otherwise we would ha
C→0 asa→0, in violation of Eq.~15!. However, provided
a linear combination consistent with the semiclassical beh
ior ~14! is chosen, then the above analysis is not change
any substantial way.~The exact solutions will be discusse
elsewhere@21#.!
3-3
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We have thus shown thatCNB can be consistently define
for arbitraryp in accordance with the approximations usua
assumed for specific operator orderings.

IV. ‘‘TUNNELING’’ WAVE FUNCTIONS

Vilenkin’s tunneling wave function is defined in revers
by placing ‘‘boundary’’ conditions in the oscillatory regio
of the minisuperspace. In accordance with@7# we require the
following:

~i! In the oscillatory region the relevant WKB mode is th
~2! solution of Eq.~7! only, viz.

CTV.
A2eip/4

a~p11!/2@a2V21#1/4expS 2 i @a2V21#3/2

3V D , ~23!

so that (i /CTV)]CTV /]a.0 there, as required.
~ii ! The wave function must be everywhere bounded:

uCTVu,`. ~24!

Beginning with the WKB mode~23! in the oscillatory
region we can use the WKB matching procedure@24# to
obtain the appropriate linear combination of the modes~7! in
the tunneling region,a2V,1, viz. @25#

CTV5 1
2 C21 iC1 , ~25!

where

C6[
A2

a~p11!/2~12a2V!1/4expF61

3V
~12a2V!3/2G . ~26!

We can separately match the real and imaginary part
Eq. ~25! with appropriate linear combinations of modifie
Bessel function solutions to Eq.~10!, ~11! in the limit that
a2V!1 with finite largea using their asymptotic limits~17!
and ~21! similarly to the case ofCNB . In this manner, we
find that the appropriate solution in thea2V!1 region which
corresponds to Vilenkin’s boundary condition is

CTV5
A2

a~p21!/2 H Ap

4
e21/~3V!@ I n~z!1I 2n~z!#

1
i

Ap
e1/~3V!Kn~z!J , ~27!

wherez[ 1
2 a2 andn5(p21)/4.

The problem with the definition ofCTV is now manifest,
since, asa→0 @23#,

K0~ 1
2 a2!;2 ln~ 1

2 a2! ~28!

and

K ~p21!/4~
1
2 a2!; 1

2 GS up21u
4 D S 2

aD up21u/2

~29!

for pÞ1, and so the producta2(p21)/2K (p21)/4(
1
2 a2) di-

verges forp>1. In fact, it is quite clear that if we are to hav
06351
of

a regular wave function for operator orderings withp>1,
then the only solution to Eq.~11! which will yield a regular
wave function in the limita→0 is Eq.~16!. That is to say, if
regularity of the wave function is important, then any co
sistent boundary condition for the wave function must co
cide with that of Hartle and Hawking@5# in the context of
this minisuperspace model forp>1. Any boundary condi-
tion which includes a contribution from the~1! mode of Eq.

~8! in the WKB limit will match onto theK (p21)/4(
1
2 a2)

solution of Eq.~11! in thea2V!1 limit, and this diverges as
a→0. For p<0 the divergence is regulated by the prefac
in Eq. ~10!, but for p>1 the problem is unavoidable. Ou
conclusion thus applies toCTL as well as toCTV .

For operator orderings withp,1, Eq.~27! is well defined
asa→0 and thus a normalization condition can be set in t
limit to fix A2(f). Vilenkin choseCTV→1 in the p521
case@7#. However, a choiceuCTVu→1 might be more appro-
priate here to preserve the real and imaginary parts of
~27!. In either case, ifV!1, then

A2~f!}expS 21

3V~f! D ~30!

as previously anticipated in Eq.~9!. Only in this manner can
the f dependence in the prefactor of the oscillatory WK
wave function~23! be constrained. The oscillatory WKB so
lution ~23! can be matched in the largea limit to solutions of
Eqs. ~12!, ~13! expressed in the combination of a Hank
function, similarly to Eq.~20! for CNB .

V. PROBABILITY AMPLITUDES

We now wish to point out that the issue of the regular
of the wave function is crucial in discussions using probab
ity measures in minisuperspace. While the question of
definition of a suitable probability measure in quantum c
mology is a tricky one@9–12# it can be argued@27# that in
the semiclassical limit the ordinary ‘‘Klein-Gordon’’ type
conserved probability current

J52 1
2 i ~C̄“C2C“C̄! ~31!

leads to a well-defined probability measure for trajector
peaked around particular WKB modes, even thoughJ is not
positive definite in general. The resulting probability dens

dP5J AdSA ~32!

can be integrated over a hypersurface in minisuperspac
answer questions of conditional probability such as, giv
that a classical universe nucleates, what is the probab
that it inflates sufficiently (;60– 65e-folds)? Ideally, the
hypersurfaceS here should be chosen in the oscillatory r
gion, close to the boundary of the tunneling region, but
potentials satisfying the ‘‘de Sitter minisuperspace appro
mation’’ it is assumed@7,9–14# that this surface can be ap
proximated by ana5const hypersurface.~See Fig. 1.! In this
limit the probability for sufficient inflation is then assumed
be @7,9–14#
3-4
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P~f0.fsuffuf1,f0,f2!5

E
fsuff

f2
df0 expS 62

3V~f0! D
E

f1

f2
df0 expS 62

3V~f0! D
,

~33!

wheref0 is the value off at nucleation,fsuff is the mini-
mum value for sufficient inflation,f1 is the minimum value
for a universe to nucleate andf2 a Planck scale cutoff, sug
gested by the approximations used. In Fig. 1,f1 and f2
correspond roughly to the points of intersection of a suita
a5const hypersurface with the tunneling~white! and Planck
cutoff ~dark! regions respectively.

According to the assumed wisdom the~1! sign in Eq.
~33! corresponds toCNB and the~2! to CTV , and the result-
ing probability is more likely to giveP.1 for CTV in the
presence of a Planck scale cutoff@7#. This is considered to be
a problem for the ‘‘no boundary’’ proposal. However, E
~33! arises from evaluatingCNB and CTV when peaked
around the~2! WKB mode of Eq.~7! on ana5const hy-
persurface, so that

dP}uCu2df}A2~f!2df; ~34!

i.e., in the oscillatory region the phase is unimportant wh
calculatinguCu2, and it is the prefactor which counts. Ou
analysis shows, however, that forCTV the quantityA2 can-
not be normalized for operator orderingsp>1. The problem
is thus not merely a mathematical subtlety, but spells ser
problems for the tunneling proposal in terms of its predict
power.

Of course, it is possible to ‘‘save’’ Vilenkin’s proposal i
its present form@7,26# if there is some justification as to wh
operator orderings withp,1 correspond to a natural quan
tization. Unfortunately, we know of no such justification.
fact, the only operator ordering which has ever been claim
to be ‘‘natural’’ to date is the ‘‘D’Alembertian ordering’’p
51 @19,28#. Louko @28# has made a detailed analysis of th
point in minisuperspace models, showing that t

FIG. 1. Conformal diagram forV50.04f2. The oscillatory re-
gion, given roughly bya2V.1, is lightly shaded. Linesa5const
are superimposed. For very large values off these lie almost en-
tirely in the oscillatory region. The region off values excluded by
a Planck scale cutoff is darkly shaded.
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‘‘D’Alembertian ordering’’ is preferred if a scale-invarian
measure is chosen when calculating the prefactor by
function regularization.

An alternative approach has been pursued by Barvin
@29#, who argues that the operator ordering question sho
be determined by demanding unitarity of the wave functio
While the issue of unitarity is clearly open to question in
quantum cosmological setting@27#, it does provide strong
physical grounds on which operator-ordering questions co
be debated. Barvinsky@29# has pursued this question in su
perspace at the 1-loop quantum level. In this context,
‘‘D’Alembertian ordering’’ is again picked out, this time by
the criterion of ensuring Hermiticity of relevant operato
and closure of an appropriate algebra for the 1-loop quan
constraints.

It is not our intention to focus on the merits of any pa
ticular operator ordering, as any debate must obviously
volve questions about Planck scale physics about which
have, as yet, no direct understanding. However, we beli
that the very fact that a consistent definition of the semicl
sical probability is operator-ordering dependent, unless p
ticular boundary conditions are chosen, does raise some
portant questions which have been overlooked in
previous literature.

VI. WAVE FUNCTION DISCORD OR CONCORD?

We will now discuss the implications of the result of th
previous sections in terms of the debate about the rela
merits of proposals for the boundary conditions of the wa
function of the Universe.

First, as mentioned above, Linde’s wave function,CTL ,
also suffers from problems similar to Vilenkin’s for operat
orderings withp>1. However, we consider criticism abou
the stability of matter fields in quantum field theory unde
Wick rotation with the ‘‘wrong’’ sign,t→1 i t, as restated
most recently by Hawking and Turok@3#, as being a much
more serious indictment of Linde’s proposal. We will n
therefore discussCTL further.

There are two levels of criticism which have been p
forward by parties to the debate aboutCNB versusCTV . One
common criticism of Vilenkin’s proposal is that since i
intuition is so closely tied to the WKB approximation i
particular minisuperspace models, it is difficult to suitab
generalize it to superspace. This is due to the difficulty
rigorously defining the notions of ‘‘outgoing waves’’ and th
‘‘boundary of superspace’’ which form the basis of the tu
neling proposal@6,7,26#. Vilenkin has given arguments to
suggest how the tunneling proposal might be put on a firm
footing, through consideration of the implications of topo
ogy change and other issues@26#. However, the discussion
remains speculative. On the other hand, the no-bound
proposal is not completely well defined in a superspace
ting either. For example, metrics which are neither of pur
Euclidean nor purely Lorentzian signature must be includ
in the path integral to make it converge. Such metrics c
make significant contributions even in relatively simp
minisuperspace models, and there is no obvious unique
in which to define the integration contour through su
3-5
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saddle points@30#. One must attempt to find a sense in whi
the Hartle-Hawking proposal can be reformulated in terms
geometries which are ‘‘approximately’’ Euclidean@31#. Us-
ing a momentum representation in which the wave funct
depends on the second fundamental form, as proposed
cently by Bousso and Hawking@32#, may be a way forward
but much work remains to be done.

It is not our intention to debate the superspace formu
tion here, as the main purpose of this paper is to commen
the other level of the wave function debate, which involv
the predictions of quantum cosmology. It has become co
mon in recent papers to simply state that the no-bound
proposal does not ‘‘predict’’ sufficient inflation, wherea
Vilenkin’s tunneling proposal does so more easily. Howev
this has not always been the assumed perception, and
useful to review how this popular perception arose.

In Hawking and Page’s original analysis@19# no Planck
scale cutoff was taken in evaluating in the nucleation pr
ability: they setf25` in Eq. ~33!, so that the integrals ar
dominated by the values off above the Planck scale, an
P.1 even forCNB . This argument was then criticized b
Vilenkin @7#, who argued that because Planck-scale phy
goes beyond the semiclassical approximation, then a Pla
scale cutoff must be introduced. Of course, one might s
argue, as Page does@33#, that such a choice is simply anad
hoc guess about unknown physics, and the Hawking-P
answer could be the correct one. However, the use o
Planck scale cutoff forCNB does seem to be justified b
calculations which suggest that the wave function is dam
for values of f above the Planck scale by 1-loop effec
@15,29#. The introduction of a Planck scale cutoff has t
consequence thatCNB does not predict sufficient inflation, a
least in terms of the simple models which have been stud
to date@7,13,14#.

What we wish to stress here, however, is that if o
wishes to consistently exclude predictions based arbitra
on Planck scale physics from the discussion, it is not sim
good enough to exclude values off above the Planck cutof
from thea5const integration slice through minisuperspa
one must also exclude any choices forced by Planck s
physics in the limita→0. While it may of course be possibl
to use conditional probabilities in a way that avoids the ne
to normalize the wave function@19#, the fact remains that the
particular chain of argument that leads to the particular pr
ability measures~1!, ~2! for the minisuperspace model w
have studied does rely on the requirement of normalizing
wave function asa→0. Thus arbitrary choices about Planc
scale physics via preferred operator orderings enter Vi
kin’s proposal as soon as we require that it make predictio
This point was unfortunately missed at the time that Vilen
first discussed the predictions of the probability of inflati
@7# because his analysis at that stage was restricted to tp
521 model, despite his earlier remark about thep51 case
@6#. In Ref. @7# Vilenkin stated that since the Hawking-Pag
derivation of sufficient inflation fromCNB relied on contri-
butions from Planck scale energies, the semiclassical
proximation on which the derivation of the no-bounda
semiclassical probability density was based ‘‘could not
trusted in this regime,’’ and therefore@7# ‘‘My conclusion is
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that at this stage inflation cannot be claimed as one of
predictions of the Hartle-Hawking approach.’’ Howeve
since a consistent derivation of the semiclassical tunne
probability density also requires arbitrary choices at
Planck scale, by similar logic we would have to conclu
that at this stage inflation cannot be claimed as one of
predictions of Vilenkin’s approach either. Since the ease
prediction of sufficient inflation is widely regarded as th
principal advantage ofCTV over CNB , we regard this as a
rather serious problem for Vilenkin’s proposal.

The strongest claims for the prediction of sufficient infl
tion from the tunneling wave function have been made fr
consideration of 1-loop effects@16#, similar to those leading
to the Planck scale cutoff mentioned above@15,29#. The
claim is that, in the context of a model with the inflato
non-minimally coupled to gravity, 1-loop effects lead n
only to a suppression of values off beyond the Planck scale
but also enhance the bare probability in such a way as
provide a narrow peak in the probability distribution, there
leading to sufficient inflation for the tunneling wave functio
even though the corresponding tree-level probability d
not @16#. We believe that our findings place such claims
doubt for two reasons. First, such calculations@15,16,29#
have been restricted to quantum corrections inf about clas-
sical backgrounds withC}e7I cl and do not address the que
tion of O~\! corrections toa in the limit a→0, which were
the basis of our investigation here. Second, 1-loop calc
tions require a choice of operator ordering: the actual cho
of Refs.@15,16,29# is the ‘‘D’Alembertian’’ ordering, chosen
for the requirement of 1-loop unitarity@29# as discussed
above, but this choice is at odds with a consistent definit
of the tunneling wave function, as we have seen.

The other arena of predictions made from quantum c
mology, which has been the focus of some debate@17,18#, is
the question of primordial black hole production and the s
bility of de Sitter space. Our findings here certainly supp
the argument of Garriga and Vilenkin@18# that CTV cannot
in general be associated with the probability density~1!, and
thus criticisms ofCTV based on such a loose association@17#
are aiming wide of the target. However, we believe a
better defense of the tunneling wave function would be
find some physical model to which one could confidently s
thatCTV did apply, with definitive predictions. As discusse
above, in our opinion the prediction of inflation does n
enjoy such a status, and we do not know of a physical p
cess which does. While our hopes for a finding a suita
minisuperspace model for discussing the primordial bla
hole issue are more optimistic than the view expressed
Garriga and Vilenkin, there are many other issues to be c
sidered, such as whether different horizon volumes
nucleated independently, as these authors have discu
@18#. However, since the relevant discussion of Ref.@18#
again appealed to the probabilities~1!, ~2!, but this time in
relation to inflation~which the authors of@18# considered to
be justified but which we do not!, we believe that many
issues need to be very carefully reconsidered before the
bate of Refs.@17,18# could be said to have been put on a fir
footing.

Some general comments about the use of probability m
3-6
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OPERATOR ORDERING AND CONSISTENCY OF THE . . . PHYSICAL REVIEW D 59 063513
sures in quantum gravity are in order. It is common simply
use the bare probability densities~1!, often in a saddle-poin
approximation corresponding to an instanton, in which b
the prefactor and the integration of the probability dens
over a hypersurface~or region! of ~mini!superspace are ne
glected. It is certainly possible to ignore the effects of in
gration over a hypersurface if there is a cutoff at a fin
scale, such as the Planck scale, so that the integral is d
nated by field values which dominate the probability dens
What is perhaps less well appreciated is that in conside
‘‘tunneling from nothing,’’ whether viaCNB , CTV or other-
wise, one is placing a boundary condition ata→0 and
Planck scale physics cannot be ignored in this regime. In
discussion of the simple model here we have seen evide
of this in the important role played by the prefactor. In mo
sophisticated treatments there might be other problems.

We consider that the use of instantons as approximat
to the calculation of the amplitude for processes such as
production of black holes on classical spacetime ba
grounds is well justified sinceboth the initial and final states
of the system are classical. However, the nucleation of
Universe is a different problem in a fundamental sense.
this extent we sympathize with the sentiment expressed
Linde who likened the semiclassical approach to quan
cosmology to the problem of the harmonic oscillator, w
the comment@2# that the ‘‘wave function simply describe
the probability of deviations of the harmonic oscillator fro
its equilibrium. It certainly does not describe quantum c
ation of a harmonic oscillator.’’

While our findings concerning the prefactor and opera
ordering could be taken as support for Linde’s statemen
the absence of a preferred quantization, we will refrain fr
suggesting, as a hard-nosed skeptic might, that the con
sion to be drawn is that semiclassical quantum cosmol
does not predict anything. Rather we believe that all par
must face up to the fact that boundary conditions at the
ginning of the Universe do entail Planck scale physics
default. In the case of Vilenkin’s proposal this fact is som
what disguised because the ‘‘boundary’’ condition is set
the later Lorentzian regime—however, as we have argu
Planck scale physics enters at the moment we wish to m
a prediction. If semiclassical quantum cosmology is to ha
any pretensions to make predictions about the nucleatio
the actual Universe, then boundary conditions for the w
function of the Universe must be robust when confronted
the Planck scale. While it remains technically possible t
the no-boundary proposal could suffer from other proble
at higher orders in perturbation theory or in other minisup
space models, we believe that of the current boundary c
dition proposals the prospects forCNB remain the best, on
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account of the fact that the underlying mathematical intuit
in the no-boundary proposal is one of geometrical smoo
ness. The ‘‘robustness’’ ofCNB as compared withCTV and
CTL in the simple minisuperspace we have considered co
thus well be more than an accident.

While the results here seem to favor the no-bound
wave function, or at least to provide some justification f
the use of Eqs.~1!, ~2! as the relevant nucleation probabilit
for CNB in semiclassical calculations, there are still a numb
of important outstanding issues to be resolved in the Har
Hawking approach, both on the technical and interpretatio
sides. Some of these problems have been mentioned ab
Another major problem is the breakdown of the WKB a
proximation, which has been observed to occur in the mo
with V(f)5m2f2 since the solutions to the Wheele
DeWitt equation~5! with p51 exhibit deterministic chaos
@34#.

In terms of the question about the semiclassical proba
ity densities, the most glaring problem which has be
glossed over in the preceding discussion is the fact that
semiclassical probability current~31! is in fact identically
zero for CNB , and to arrive at Eq.~33! a decoherence
mechanism to the~2! WKB mode of Eq.~7! has usually
been invoked. If such a mechanism can be found, then
course the appropriate mode describing the Universe is
going in Vilenkin’s sense. The absence of any well-defin
mechanism to describe this decoherence is one of the g
est outstanding problems for cosmological predictions in
Hartle-Hawking approach. Since decoherence to a mode
very much resemblesCTV seems to be what is ultimatel
desired of the no-boundary approach, one might hope th
synthesis of the Hartle-Hawking and Vilenkin approach
might be possible and indeed advantageous. The recent p
of Bousso and Hawking@32# could provide a promising star
in this direction, because it suggests a means of distingu
ing between the ingoing and outgoing modes of the wa
function, thereby suggesting a natural choice of a contou
integration through complex saddle points in supersp
without having to appeal arbitrarily to decoherence. Wh
we believe the issue of probabilities in Bousso and Haw
ing’s approach may require more care than they have e
cised, their approach could provide a bridge betweenCNB
andCTV , and maybe even eventual concordance.
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