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Operator ordering and consistency of the wave function of the Universe
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We demonstrate in the context of the minisuperspace model consisting of a closed Friedmann-Robertson-
Walker universe coupled to a scalar field that Vilenkin's tunneling wave function can only be consistently
defined for particular choices of operator ordering in the Wheeler-DeWitt equation. The requirement of regu-
larity of the wave function has the particular consequence that the probability amplitude, which has been used
previously in the literature in discussions of issues such as the prediction of inflation, is likewise ill defined for
certain choices of operator ordering with Vilenkin'’s boundary condition. By contrast, the Hartle-Hawking
no-boundary wave function can be consistently defined within these models, independently of operator order-
ing. The significance of this result is discussed within the context of the debate about the predictions of
semiclassical quantum cosmology. In particular, it is argued that inflation cannot be confidently regarded as a
“prediction” of the tunneling wave function, for reasons similar to those previously invoked in the case of the
no-boundary wave function. A synthesis of the no-boundary and tunneling approaches is argued for.
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[. INTRODUCTION According to the standard folklore the above nucleation
robabilities can be determined by a somewhat more careful

Recent developments concerning the possibility of oDe'ﬁnalysis of the appropriate minisuperspace moid 2. It

'dngﬁgé nall?ogf ﬁlrgl;gqu:g;’{% %Iglgiglsﬁ]egi\f/?hivs“lj%d a? ﬂld is this folklore which we wish to challenge here. We will
pet]. explicitly demonstrate that the prefactor in the wave function

fvé?gglzgr; tlrrg\igluts? rak;lsJ? vsrr:icI:?]SiLrj]eo\lljvrh:)Chin?gﬁ ﬁ::g I(;:gil}éannot be ignored when calculating the appropriate probabil-
P y: P ity amplitudes if one is to implement the boundary condi-

be&I:/I”ch?hc:)? ttr?giirfr%l;\rt]%aettlac;rtlglolﬁs?neai.es from differin rob_tions carefully in minisuperspace models. In particular, the
9 9p identification of Eqgs.(1), (2) as representing the relevant

zsmgsat?gg'ttﬁgefr a(:rii(;ili)l ﬁtzcrjnlpnlig ngg:oﬁdgggﬁgnwggcg L?r?i_probabilities from which a comp_a_rison of the consequences
verse from “nothing” is dominated by a Euclidean of the compet_lng boundary condition prpposals is to be made
instanton. Different probability amplitudes are assumed todepefnd.s.crumally on Planck scale physics on account of such

: ambiguities. While the “no-boundary” proposal turns out to

correspond to the different boundary conditions implied by . g - . .
the Hartle-Hawking “no-boundary” proposdls] and the yield a well-defined probability amplitude independently of

“tunneling” proposals of Vilenkin[6,7] and Linde|[2,8], SL_Jch f.;lmb|gumes,. Vilenkin’s boundary condition does not.
. . . . Vilenkin has previously notefi6] that ¥, cannot be nor-
which are themselves distinct. In particular, the nucleation_ . . .
" . . o . malized for one particular operator-orderingthe

probability for instanton-dominated transitions is assumed tQ.~, . e i X
be D’Alembertian ordering”). However, in our view he ap-
pears to have overlooked the full consequences of this issue,
oy which turns out to be quite a generic problem, as we will
P | |2 e7d, Wy, 0 show. In particular, it has often been stafdg?,17 that op-
e, Wi Wy, erator ordering is unimportant to the discussion, especially
Ly X TV
with regard to probability measurgg]. Our findings contra-

where the subscripté\B), (TL) and (TV) refer to the no- (jict such a viewp_oint when it comes to the actual calcula-
boundary wave function and the tunneling wave functions ofions[7,13—17 which attempt to discriminate between con-
Linde and Vilenkin respectively. For the solutions in ques-Sequences of the wave function proposals. . _
tion, which correspond to a model in which gravity is Nevertheless, we do bellevg that some of the viewpoints
coupled to a scalar fieldp, with potential,V(¢), in dimen- ~ €xpressed by each of the parties to the “wave function de-

sionless unitysee Eq(3) below for our conventioris the bate” do have some merits. In the last section of this paper,
Euclidean action of the instanton is we will discuss these relative merits in detail, in light of the

mathematical results we will present here. We shall confine
our discussion to minisuperspace, not because we believe

|CI:_1, (2)  that that is the ultimate arena in which the issue should be
3V(¢o) decided, but because particular results which we wish to
criticize are derived in this setting and because even in more
¢o being the value of the scalar field at nucleation. general discussions it is usually semiclassical probability
measures which are nonetheless actually used. Furthermore,
while the dangers of too readily associatign, with the
*Electronic address: diw@physics.adelaide.edu.au semiclassical probabilit{l) have been commented on before
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[18], it does not seem to have been appreciated that this cagions of the minisuperspace, which correspond to the oscil-

be a problem in even the most well-studied minisuperspac
model and at the level of affecting commonly claimed “pre-
dictions” of quantum cosmology such as the prediction of
inflation.

II. MINISUPERSPACE MODEL

latory [Eq. (7)] and exponentiallfEq. (8)] dominated solu-
tions respectively.

Both the Hartle-Hawkind5] and Vilenkin[7] boundary
conditions on the wave function require regularity bfas
a—0. From Eq/(5) one can see that a potential divergence in
the a2V, ,, term can be avoided by requiring to be
independent ofp asa—0. Sinceld(a,¢)—1 in this limit,

_T_o be more specific, let us consider the _2-dimer)siona[)ne would thus naively expect that the prefadar(¢) of
minisuperspace corresponding to the classical action fofj,q tunneling WKB modes of Eq8) should take the form

gravity coupled to a scalar field,
1
S=—— f d4x\/—gR+2f dxvhK
4k I m oM

V(¢)

3 1
+ FfMd“X\/—_g( 59", bd, - W) 3

wherex?=4wG=4mmp2, 4 K is the trace of the extrinsic

F1 ) ©
3V(¢)
for the respective modes. There are two problems with this,
however. First, for operator orderings other than the
—1, the factora™ (P*1)/2in the prefactor of Eq(8) will alter
any considerations based on the regularity#ofSecond, the
WKB approximation does not hold all the way down do

B+(¢)°<6XD(

curvature, and the metric is assumed to take the closed, iy any case, and a more careful analysis of the solutions

Friedmann-Robertson-Walker form

ds?=o?{— N?dt?+a?(t)dQ 42}, 4
where d)3? is a round metric on the 3-sphere, and
= k?/(67?).
The Hamiltonian constraint obtained from the

of Eq. (5) is required in this limit. Such an analysis has been
given by Hawking and Padd 9] in the case ofV' g with the
“D’Alembertian operator ordering”’p=1 and by Vilenkin
[7] for the case of¥', and ¥ \g with operator ordering
-1

We will now extend the analysis of Refsl,19] to both

(3+1)-decomposition of the field equations may be quanwave functions for arbitrary operator ordering, In follow-

tized to yield the Wheeler-DeWitt equation

2

19 d 1

Eﬁa £—¥W—32U(a,¢) \PZO, (5)
where
Ua,$)=1-a%V(e), (6)

and we have allowed for possible operator-ordering ambigu
ities through the integer powep, in the first term. The
approximation that has been adopted in previous treatmen
[6,7] is to confine the discussion to regions in which the
potentialV(¢#) can be approximated by a cosmological con-
stant, so that the dependence in Ed5) can be effectively
ignored. The resulting equation is then amenable to a sta
dard 1-dimensional WKB analysis. In this “de Sitter minisu-
perspace” approximation the WKB solutions are readily
found to be

As(p)er'™ +i[-Ua,¢)]1%?

\I,(a,(ﬁ): a(p“)/z[L{(a,(f))]MeXp{ 3V(¢) ]
(7)
if a2v>1 and
B.(4) +[Ua, )%
\I’(a,¢)): a(p+1)/2[u(a,¢)]l/4exi{ 3V(¢) ] (8)

if a?V<1.
Different boundary conditions will then lead to a solution,

ing [7,19] we shall assume that th dependence in Ed5)
can be ignored. Such an approximation can be justified if we
assume that we are close to semiclassical solut{@))S(8)
for which ¢ varies slowly. This means that the potential
V(@) should be suitably flat, which physically is one ex-
ample of a model leading to “slow-roll” inflationary cos-
mologies. With such a simplification, tfﬂé_z\lf,d,¢ term in
Eq. (5) is dropped and/(¢) is approximated by a constant.
It is still not possible to solve E(5) exactly for arbitraryp
in terms of known elementary functions with these approxi-
{Eations[ZO]. However, it can be solved in a direct fashion in
two separate regimes.

First, if a?V<1, which for constant finit& will pertain to
thea— 0 limit, the curvature term dominates the “potential”

16), and with the redefinition

W=z"(P"Vy(z), (10)
wherez=1a?, we find that Eq.(5) reduces to a modified
Bessel equation

&y

dz?

d
2 Stz — (22 12)y=0,

dz (1)
wherev=+ (p—1). The general solution for(z) is thus a
linear combination of modified Bessel functiong, 1y,4(2)
andK ;- 1y4(2).

Second, ifa?v>1, which for constant finit&/ will per-
tain to the largea limit, the a?V(¢) term dominates the
“potential” (6), and with the redefinition

V¥, corresponding to different linear combinations of these

WKB components in the “oscillatory” and “tunneling” re-

P=x" P~ Dy(x), (12)
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wherex=$a®\V, we find that Eq.(5) reduces to a Bessel
equation

2dzw dw
X2 = X +

dx? 7 dx (x*=nHw=0,

(13
wheren=+ ¢(p—1). The general solution faw(x) is thus
a linear combination of ordinary Bessel functions,

Jp-1ye(X) and - 1y/e(X) -

PHYSICAL REVIEW D 59 063513

V(¢)<1; i.e., the potential must be much less than the
Planck scale, which is physically reasonable. One finds that
since, for finite largea [23],

Jma

the leading term in the appropriate limit of E(L6) does
agree with that from Eq(14) if

expza’)[1+0(a"?)], (17

1,2
l(p-1)a(z@%)

The two sets of Bessel function solutions must agree with

the respective WKB solution&), (8) in the limits in which

all relevant approximations mutually hold. Using a combina-
tion of an analysis of these limits and the WKB matching

procedure we can constrain the particular linear combina- ysing the WKB connection formuld®4] we find
tions of solutions which correspond to the boundary condi-

tions of W\, W1 andW, .

IIl. “NO BOUNDARY"” WAVE FUNCTION

Since the Hartle-Hawking boundary conditid®] is

G 1 )
B_ _\/_7_76)( V() ) (18
1 1 T
2C, ex;{ 3_V) COS{S_V(aZV_ 1)32— 7
Wns= (19

\/;a( p+ 1)/2( aZV _ 1) 1/4

stated in terms of the path integral, some further argument®" the WKB solution in the oscillatory region;which is the
are required to translate this into boundary conditions on E¢in€&' superposition of the modeg) with A.=5_. This

(5) in minisuperspace. However, the statement of the re
evant boundary conditions on Ep) is uncontroversial and
we will thus follow Hawking and Pagel9,22 in demanding
the following:

(i) In the tunneling region the relevant WKB mode is the

(—) solution of Eq.(8) only, viz.

B_ —[1-a?Vv]¥?
aP I 1~ a2V]1’4eX 3V , (14

WV \g=

as is appropriate to the standard Wick rotatien—i 7 in the
definition of the Euclidean path integral.

(ii) The wave function must be bounded as:0 for all
finite values of¢ and on the past null boundaries of minisu-
perspace. Thus in a suitable measure we can take

Vya(a=0,p)=1. (15)

First considerp=1. The only modified Bessel function
solution of Eq.(11) which leads to a regular wave function
(10) asa—0 for values ofp=1 is | ,_1)(2), yielding a
wave function

C,

Yng= aP-DR2

| (p—1ya(3a2) (16)

in the a®V<1 limit. The constantC; may be fixed by the
normalization condition(15) and the small value limif23]
of the Bessel function, giving

We can now check that E¢L6) does agree with Eq14)
by taking the limit of both expression for a finite largefor
which a?V<1 nonetheless, which is the limit in which they

p+3

4

|can be checked against linear combinations of the Bessel

function solutions in the limig?vs>1. We find that the so-
lution does indeed match the linear combination of solutions
to Eqgs.(12), (13) given by

c
Yne= =7z Jp-16(X) +I1-ppe(¥)}, (20

a
wherex=1a®\V as before, and(¢)xexd1/3V(#)].

In the case thap<1, any arbitrary linear combination of
the independent modified Bessel function solutions
I(1-pya(2) andK1_p)4(2) yields a convergent wave func-
tion asa— 0. Therefore, the Hartle-Hawking condition does
not restrict the wave function except by appealing to the
semiclassical behaviof14). Since similarly to Eq.(17)
K_,(2=K,(2) is given in the limit of finite largea by [23]

Kp-1a(38%) = gexq —3a%)[1+0(a )], (21

we see that the semiclassical condition only makes the re-
striction that the coefficient off; ,)4(z) must be non-zero

so as to dominate ové{; ,)4(2) in the appropriate limit. If

we take the particular choice

2
Y(2)=1l(1-pya(2) + ;sin( (1-p) ;) Kai-pua (22

for pe{—3,—7,—11,...}, then the wave function is once
again given by Eq(16) asa—0 and the previous analysis
applies exactly. Fope{—3,-7,—11,.. .} the linear com-
bination (22) must be replaced by one for which the coeffi-
cient of K(; _ )4 is nonzero, since otherwise we would have
¥ —0 asa—0, in violation of Eq.(15). However, provided

a linear combination consistent with the semiclassical behav-
ior (14) is chosen, then the above analysis is not changed in
any substantial way(The exact solutions will be discussed

should match. In practice, this requires very small values otlsewherd21].)
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We have thus shown thadt,z can be consistently defined a regular wave function for operator orderings wiike 1,
for arbitraryp in accordance with the approximations usually then the only solution to Eq11) which will yield a regular

assumed for specific operator orderings.

IV. “TUNNELING” WAVE FUNCTIONS

wave function in the limia—0 is Eq.(16). That is to say, if
regularity of the wave function is important, then any con-
sistent boundary condition for the wave function must coin-
cide with that of Hartle and Hawkinfb] in the context of

Vilenkin’s tunneling wave function is defined in reverse this minisuperspace model f@=1. Any boundary condi-
by placing “boundary” conditions in the oscillatory region tjon which includes a contribution from the-) mode of Eq.

of the minisuperspace. In accordance Withwe require the
following:

(i) In the oscillatory region the relevant WKB mode is the

(—) solution of Eq.(7) only, viz.

A_eiﬂ'/4 F{_i[aZ\/_l]3/2

Wy = AP D2 g2y — 1]1/4‘5’X 3V

) , (23

so that (/¥ +1y)d¥ 1y /da>0 there, as required.
(ii) The wave function must be everywhere bounded:

(W ry| <ee. (24)

Beginning with the WKB modg23) in the oscillatory
region we can use the WKB matching proced{izd] to
obtain the appropriate linear combination of the mo@esn
the tunneling regiona?V<1, viz. [25]

V=3V _+i¥,, (25
where
_ Ao +1 2\ 3/2
\Piza(p“)’z(l—an)l""ex W(l—a V)*4l. (26)

(8) in the WKB limit will match onto theK(p_l)M(%az)
solution of Eq.(11) in thea?V<1 limit, and this diverges as
a—0. Forp=0 the divergence is regulated by the prefactor
in Eq. (10), but for p=1 the problem is unavoidable. Our
conclusion thus applies t& 1 as well as to¥ 1y .

For operator orderings with<1, Eq.(27) is well defined
asa—0 and thus a normalization condition can be set in this
limit to fix A_(¢). Vilenkin chose¥,—1 in thep=-1
cas€[7]. However, a choicé¥ /| — 1 might be more appro-
priate here to preserve the real and imaginary parts of Eq.
(27). In either case, iV<1, then

-1
e

as previously anticipated in EQ). Only in this manner can
the ¢ dependence in the prefactor of the oscillatory WKB
wave function(23) be constrained. The oscillatory WKB so-
lution (23) can be matched in the largelimit to solutions of
Egs. (12), (13) expressed in the combination of a Hankel
function, similarly to Eq.(20) for ¥g.

(30

V. PROBABILITY AMPLITUDES

We can separately match the real and imaginary parts of

Eqg. (25 with appropriate linear combinations of modified

Bessel function solutions to Eq10), (11) in the limit that
a’V<1 with finite largea using their asymptotic limit$17)

and (21) similarly to the case off'\g. In this manner, we
find that the appropriate solution in taéV<1 region which
corresponds to Vilenkin’s boundary condition is

A T
WTV=W[ Qew[l (D) +1-(2)]

+ J—_el’“WKV(z)} , (27)

m

wherez=3%a? andv=(p—1)/4.
The problem with the definition o¥' 1, is now manifest,
since, asa—0 [23],

Ko(3a%)~—In(3a?) (28)

and

2\ Ip—1]/2

a

lp—1
K(p—l)/A(%az)N%F(T

(29

for p#1, and so the produca™ P~V ,_,),(38?%) di-

We now wish to point out that the issue of the regularity
of the wave function is crucial in discussions using probabil-
ity measures in minisuperspace. While the question of the
definition of a suitable probability measure in quantum cos-
mology is a tricky ong9-12] it can be argued27] that in
the semiclassical limit the ordinary “Klein-Gordon” type
conserved probability current

J=—31(VVV—-¥VV) (31
leads to a well-defined probability measure for trajectories
peaked around particular WKB modes, even thoyggh not
positive definite in general. The resulting probability density

dP=J*d3 5 (32)
can be integrated over a hypersurface in minisuperspace to
answer questions of conditional probability such as, given
that a classical universe nucleates, what is the probability
that it inflates sufficiently < 60—65e-folds)? Ideally, the
hypersurface here should be chosen in the oscillatory re-
gion, close to the boundary of the tunneling region, but for
potentials satisfying the “de Sitter minisuperspace approxi-
mation” it is assumed7,9-14 that this surface can be ap-
proximated by ama = const hypersurfacéSee Fig. 1.In this
limit the probability for sufficient inflation is then assumed to

verges folp=1. In fact, it is quite clear that if we are to have be[7,9-14
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%
— —a=16
_.._q=4

___a=1
- --a=0.25

FIG. 1. Conformal diagram fo¥=0.0442. The oscillatory re-
gion, given roughly bya?v>1, is lightly shaded. Lines=const
are superimposed. For very large valuesgothese lie almost en-
tirely in the oscillatory region. The region @f values excluded by
a Planck scale cutoff is darkly shaded.

J‘d)zd exp( +2 )
s B0 &P 3y

2 ;{ +2 )’
A0 XA 3V ()

(33

where ¢, is the value of¢ at nucleation,¢g s is the mini-
mum value for sufficient inflationg, is the minimum value
for a universe to nucleate anf}, a Planck scale cutoff, sug-
gested by the approximations used. In Fig.¢l, and ¢,

PHYSICAL REVIEW D 59 063513

“D’Alembertian ordering” is preferred if a scale-invariant
measure is chosen when calculating the prefactor by zeta
function regularization.

An alternative approach has been pursued by Barvinsky
[29], who argues that the operator ordering question should
be determined by demanding unitarity of the wave function.
While the issue of unitarity is clearly open to question in a
guantum cosmological settin@7], it does provide strong
physical grounds on which operator-ordering questions could
be debated. Barvinskj29] has pursued this question in su-
perspace at the 1l-loop quantum level. In this context, the
“D’Alembertian ordering” is again picked out, this time by
the criterion of ensuring Hermiticity of relevant operators
and closure of an appropriate algebra for the 1-loop quantum
constraints.

It is not our intention to focus on the merits of any par-
ticular operator ordering, as any debate must obviously in-
volve questions about Planck scale physics about which we
have, as yet, no direct understanding. However, we believe
that the very fact that a consistent definition of the semiclas-
sical probability is operator-ordering dependent, unless par-
ticular boundary conditions are chosen, does raise some im-
portant questions which have been overlooked in the
previous literature.

VI. WAVE FUNCTION DISCORD OR CONCORD?

We will now discuss the implications of the result of the
previous sections in terms of the debate about the relative

correspond roughly to the points of intersection of a suitabld"€rits of proposals for the boundary conditions of the wave

a=const hypersurface with the tunnelifghite) and Planck
cutoff (dark regions respectively.

According to the assumed wisdom tli¢) sign in Eq.
(33) corresponds t& g and the(—) to ¥'1,, and the result-
ing probability is more likely to giveP=1 for ¥4y in the
presence of a Planck scale cutpff. This is considered to be

a problem for the “no boundary” proposal. However, Eg.

(33 arises from evaluatingV\z and ¥, when peaked
around the(—) WKB mode of Eq.(7) on ana=_const hy-
persurface, so that

dP|W[2dpr A_(¢)°de; (39)

function of the Universe.

First, as mentioned above, Linde's wave functidhy, ,
also suffers from problems similar to Vilenkin's for operator
orderings withp=1. However, we consider criticism about
the stability of matter fields in quantum field theory under a
Wick rotation with the “wrong” sign,t— +ir, as restated
most recently by Hawking and Turdi8], as being a much
more serious indictment of Linde’s proposal. We will not
therefore discus¥ 1 further.

There are two levels of criticism which have been put
forward by parties to the debate abdyz versus¥ ;. One
common criticism of Vilenkin’s proposal is that since its
intuition is so closely tied to the WKB approximation in
particular minisuperspace models, it is difficult to suitably

i.e., in the oscillatory region the phase is unimportant whergyeneralize it to superspace. This is due to the difficulty of
calculating|W|?, and it is the prefactor which counts. Our rigorously defining the notions of “outgoing waves” and the
analysis shows, however, that fdrr, the quantityA_ can-  “boundary of superspace” which form the basis of the tun-
not be normalized for operator orderings:1. The problem neling proposal6,7,26. Vilenkin has given arguments to
is thus not merely a mathematical subtlety, but spells seriousuggest how the tunneling proposal might be put on a firmer
problems for the tunneling proposal in terms of its predictivefooting, through consideration of the implications of topol-
power. ogy change and other issug&6]. However, the discussion
Of course, it is possible to “save” Vilenkin's proposal in remains speculative. On the other hand, the no-boundary
its present forn7,26] if there is some justification as to why proposal is not completely well defined in a superspace set-
operator orderings witlp<<1 correspond to a natural quan- ting either. For example, metrics which are neither of purely
tization. Unfortunately, we know of no such justification. In Euclidean nor purely Lorentzian signature must be included
fact, the only operator ordering which has ever been claime¢h the path integral to make it converge. Such metrics can
to be “natural” to date is the “D’Alembertian orderingp make significant contributions even in relatively simple
=11[19,28. Louko[28] has made a detailed analysis of this minisuperspace models, and there is no obvious unique way
point in minisuperspace models, showing that thein which to define the integration contour through such
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saddle point$30]. One must attempt to find a sense in whichthat at this stage inflation cannot be claimed as one of the
the Hartle-Hawking proposal can be reformulated in terms opredictions of the Hartle-Hawking approach.” However,
geometries which are “approximately” EuclidedB1]. Us-  since a consistent derivation of the semiclassical tunneling
ing a momentum representation in which the wave functiorprobability density also requires arbitrary choices at the
depends on the second fundamental form, as proposed rBlanck scale, by similar logic we would have to conclude
cently by Bousso and Hawking2], may be a way forward, that at this stage inflation cannot be claimed as one of the
but much work remains to be done. predictions of Vilenkin’s approach either. Since the ease of
It is not our intention to debate the superspace formulaprediction of sufficient inflation is widely regarded as the
tion here, as the main purpose of this paper is to comment oprincipal advantage o1, over ¥ g, we regard this as a
the other level of the wave function debate, which involvesrather serious problem for Vilenkin's proposal.
the predictions of quantum cosmology. It has become com- The strongest claims for the prediction of sufficient infla-
mon in recent papers to simply state that the no-boundaryion from the tunneling wave function have been made from
proposal does not “predict” sufficient inflation, whereas consideration of 1-loop effec{d6], similar to those leading
Vilenkin’s tunneling proposal does so more easily. Howeverto the Planck scale cutoff mentioned abo\s,29. The
this has not always been the assumed perception, and it éaim is that, in the context of a model with the inflaton
useful to review how this popular perception arose. non-minimally coupled to gravity, 1-loop effects lead not
In Hawking and Page’s original analydi$9] no Planck only to a suppression of values ¢foeyond the Planck scale,
scale cutoff was taken in evaluating in the nucleation probhut also enhance the bare probability in such a way as to
ability: they set¢, =0 in Eq. (33), so that the integrals are provide a narrow peak in the probability distribution, thereby
dominated by the values ap above the Planck scale, and leading to sufficient inflation for the tunneling wave function
P=1 even for¥,g. This argument was then criticized by even though the corresponding tree-level probability does
Vilenkin [7], who argued that because Planck-scale physicaot [16]. We believe that our findings place such claims in
goes beyond the semiclassical approximation, then a Plancldoubt for two reasons. First, such calculatidi$,16,29
scale cutoff must be introduced. Of course, one might stilhave been restricted to quantum correctiongiabout clas-
argue, as Page dog33], that such a choice is simply @ sical backgrounds with’ «e* ' and do not address the ques-
hoc guess about unknown physics, and the Hawking-Pagéion of O(4) corrections taa in the limit a— 0, which were
answer could be the correct one. However, the use of ée basis of our investigation here. Second, 1-loop calcula-
Planck scale cutoff forV\z does seem to be justified by tions require a choice of operator ordering: the actual choice
calculations which suggest that the wave function is dampedf Refs.[15,16,29 is the “D’Alembertian” ordering, chosen
for values of ¢ above the Planck scale by 1-loop effectsfor the requirement of 1-loop unitaritf29] as discussed
[15,29. The introduction of a Planck scale cutoff has theabove, but this choice is at odds with a consistent definition
consequence that g does not predict sufficient inflation, at of the tunneling wave function, as we have seen.
least in terms of the simple models which have been studied The other arena of predictions made from quantum cos-
to date[7,13,14. mology, which has been the focus of some debafl§, is
What we wish to stress here, however, is that if onethe question of primordial black hole production and the sta-
wishes to consistently exclude predictions based arbitrarilpility of de Sitter space. Our findings here certainly support
on Planck scale physics from the discussion, it is not simpljthe argument of Garriga and Vilenkji8] that ¥, cannot
good enough to exclude values ¢fabove the Planck cutoff in general be associated with the probability denéiy and
from thea=const integration slice through minisuperspace;thus criticisms of¥’ 1, based on such a loose associafib|
one must also exclude any choices forced by Planck scalgre aiming wide of the target. However, we believe a far
physics in the limita— 0. While it may of course be possible better defense of the tunneling wave function would be to
to use conditional probabilities in a way that avoids the needind some physical model to which one could confidently say
to normalize the wave functidri9], the fact remains that the thatW¥, did apply, with definitive predictions. As discussed
particular chain of argument that leads to the particular probabove, in our opinion the prediction of inflation does not
ability measureg1), (2) for the minisuperspace model we enjoy such a status, and we do not know of a physical pro-
have studied does rely on the requirement of normalizing theess which does. While our hopes for a finding a suitable
wave function as—0. Thus arbitrary choices about Planck minisuperspace model for discussing the primordial black
scale physics via preferred operator orderings enter Vilenhole issue are more optimistic than the view expressed by
kin’s proposal as soon as we require that it make predictionsGarriga and Vilenkin, there are many other issues to be con-
This point was unfortunately missed at the time that Vilenkinsidered, such as whether different horizon volumes are
first discussed the predictions of the probability of inflationnucleated independently, as these authors have discussed
[7] because his analysis at that stage was restricted tp the[18]. However, since the relevant discussion of RfS]
= —1 model, despite his earlier remark about el case again appealed to the probabiliti€d), (2), but this time in
[6]. In Ref.[7] Vilenkin stated that since the Hawking-Page relation to inflation(which the authors of18] considered to
derivation of sufficient inflation fromP'yg relied on contri-  be justified but which we do nptwe believe that many
butions from Planck scale energies, the semiclassical apissues need to be very carefully reconsidered before the de-
proximation on which the derivation of the no-boundary bate of Refs[17,18 could be said to have been put on a firm
semiclassical probability density was based “could not befooting.
trusted in this regime,” and therefof&] “My conclusion is Some general comments about the use of probability mea-

063513-6



OPERATOR ORDERING AND CONSISTENCY OF TH. . . PHYSICAL REVIEW D 59 063513

sures in quantum gravity are in order. It is common simply toaccount of the fact that the underlying mathematical intuition
use the bare probability densiti€b), often in a saddle-point in the no-boundary proposal is one of geometrical smooth-
approximation corresponding to an instanton, in which botiess. The “robustness” d¥ g as compared withW r, and
the prefactor and the integration of the probability densityy, in the simple minisuperspace we have considered could
over a hypersurfacéor region) of (mini)superspace are ne- thus well be more than an accident.
glected. It is certainly possible to ignore the effects of inte- \while the results here seem to favor the no-boundary
gration over a hypersurface if there is a cutoff at a finitewave function, or at least to provide some justification for
scale, such as the Planck scale, so that the integral is domie use of Eqs(1), (2) as the relevant nucleation probability
nated by field values which dominate the probability density for ¥, 5 in semiclassical calculations, there are still a number
What is perhaps less well appreciated is that in consideringf important outstanding issues to be resolved in the Hartle-
“tunneling from nothing,” whether vial'yg, Wy, or other-  Hawking approach, both on the technical and interpretational
wise, one is placing a boundary condition @t-0 and sjdes. Some of these problems have been mentioned above.
Planck scale physics cannot be ignored in this regime. In thanother major problem is the breakdown of the WKB ap-
discussion of the simple model here we have seen evidenggoximation, which has been observed to occur in the model
of this in the important role played by the prefactor. In morewith V(¢)=m?#? since the solutions to the Wheeler-
sophisticated treatments there might be other problems.  Dewiitt equation(5) with p=1 exhibit deterministic chaos
We consider that the use of instantons as approximationg].
to the calculation of the amplitude for processes such as pair |n terms of the question about the semiclassical probabil-
production of black holes on classical spacetime backity densities, the most glaring problem which has been
grounds is well justified sinckoth the initial and final states g|ossed over in the preceding discussion is the fact that the
of the system are classical. However, the nucleation of theemiclassical probability currer8l) is in fact identically
Universe is a different problem in a fundamental sense. T@ero for W5, and to arrive at Eq(33) a decoherence
this extent we sympathize with the sentiment expressed byhechanism to thé—) WKB mode of Eq.(7) has usually
Linde who likened the semiclassical approach to quantunpeen invoked. If such a mechanism can be found, then of
cosmology to the problem of the harmonic oscillator, with course the appropriate mode describing the Universe is out-
the commen{2] that the “wave function simply describes going in Vilenkin's sense. The absence of any well-defined
the prObab|I|ty of deviations of the harmonic oscillator from mechanism to describe this decoherence is one of the great_
its equilibrium. It certainly does not describe quantum cre-est outstanding problems for cosmological predictions in the
ation of a harmonic oscillator.” Hartle-Hawking approach. Since decoherence to a mode that
While our findings concerning the prefactor and operatokery much resemble¥ 1, seems to be what is ultimately
ordering could be taken as support for Linde’s statement ijesired of the no-boundary approach, one might hope that a
the absence of a preferred quantization, we will refrain fromsynthesis of the Hartle-Hawking and Vilenkin approaches
suggesting, as a hard-nosed skeptic might, that the conclynight be possible and indeed advantageous. The recent paper
sion to be drawn is that semiclassical quantum cosmologyf Bousso and HawkinfB2] could provide a promising start
does not predict anything. Rather we believe that all partie this direction, because it suggests a means of distinguish-
must face up to the fact that bOUndary conditions at the berng between the ingoing and Outgoing modes of the wave
ginning of the Universe do entail Planck scale physics byfunction, thereby suggesting a natural choice of a contour of
default. In the case of Vilenkin's proposal this fact is Some'integration through Comp|ex saddle points in superspace
what disguised because the “boundary” condition is set inwithout having to appeal arbitrarily to decoherence. While
the later Lorentzian regime—however, as we have arguedye believe the issue of probabilities in Bousso and Hawk-
Planck scale phySiCS enters at the moment we wish to malﬁﬂg’s approach may require more care than they have exer-
a prediction. If semiclassical quantum cosmology is to haveised, their approach could provide a bridge betwidgg

any pretensions to make predictions about the nucleation gfnqdw.,,, and maybe even eventual concordance.
the actual Universe, then boundary conditions for the wave

function of the Universe must be robust when confronted by
the Planck scale. While it remains technically possible that
the no-boundary proposal could suffer from other problems
at higher orders in perturbation theory or in other minisuper- D.L.W. would like to thank J. Louko for his comments
space models, we believe that of the current boundary coraend careful reading of the revised manuscript, and the Aus-
dition proposals the prospects fifyg remain the best, on tralian Research Council for financial support.
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