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Nonsingular Bianchi type | cosmological solutions from the 1-loop superstring effective action
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Nonsingular Bianchi type | solutions are found from the effective action with a superstring-motivated
Gauss-Bonnet term. These anisotropic nonsingular solutions evolve from the asymptotic Minkowski region,
subsequently superinflate, and then smoothly continue either to Kasneetymnding in two directions and
shrinking in one directionor to Friedmann-typéexpanding in all directionssolutions. We also find a new
kind of singularity which arises from the fact that the anisotropic expansion rates are a multiple-valued
function of time. The initial singularity in the isotropic limit of this model belongs to this new kind of
singularity. In our analysis the anisotropic solutions are likely to be singular when the superinflation is steep.
As for the cosmic no-hair conjecture, our results suggest that the kinetic-driven superinflation of our model
does not isotropize the space-tini80556-282199)02106-3

PACS numbg(s): 98.80.Hw, 04.20.Dw, 04.58.h, 11.25.Mj

[. INTRODUCTION havior of the solution mainly depends only on the modulus
field. The existence of the nonsingular solution is analyti-
Stimulated by the developments of superstring theorygally shown by Rizos and Tamvakid] for the Friedmann-
various cosmological solutions based on string theory hav&obertson-WalkefFRW) metric, i.e., assuming the homoge-
been proposed. Although the theory has not developefi€ity and isotropy of the universe. We studied whether the
enough to present a unique history of our universe in itg’lature of this nonSingular solution is affected if anisotropy is
earliest stage, one may now imagine that the big bang is nthcluded. The purpose of this paper is to extend the solution
longer just a point of enigma named the initial singularity butof this metric-modulus system to include anisotropy and to
has a rich and complex structure. observe the behavior of its solutions, particularly of nonsin-
Among these string-based universe models, the modular ones.
widely studied would be the so-called pre-big-bang model The following sections of this paper are organized as fol-
[1] (in the literature it is often called string cosmolog¥he lows. In Sec. Il we briefly review the isotropic case studied
remarkable aspect of this model is that it tries to explain thd?y Rizos and Tamvakip4], and then derive the basic equa-
inflationary behavior of the early universe by introducing ations of motion from the effective action for the Bianchi type
polelike acceleration phagsuperinflation which is driven | metric. We also solve these equations analytically in the
by the kinetic term of the dilaton. This superinflationary @symptotic region. In Sec. Ill we solve these equations nu-
branch of the solution has a dual relation named the scal@erically. We study the solutions through several cross sec-
factor duality with the Friedmann branch, which is the usualtions of the parameter space. The existence of nonsingular
decelerating expansion of the universe. The biggest probler@nisotropic solutions is shown, and the nature of the singu-
arising in the pre-big-bang model is the difficulty of connect- larity is .also examlned_. Implications of our results are dis-
ing the superinflationary branch and the Friedmann brancRussed in the last section.
(termed the graceful exit problepand there are no-go theo-
rems proved under some assumpti@Rk
Antoniadis, Rizos, and Tamvak8] proposed a nonsin- Il. MODEL AND EQUATIONS OF MOTION
gular (i.e., free of the graceful exit problentosmological
model by including the 1-loofgenus correction term in the
low-energy string effective action. This 1-loop model is ex-
cellent in that it gives a simple example of the smooth tran-
sition between the superinflationary branch and the Fried- Szf d4x\/—_g[£R— E(DO.)Z_ lf(o‘)RéB . D
mann branch. This original 1-loop model involves dilaton 2 2 16
and modulus fields, and there is a simplified verdiéhby
Rizos and Tamvakis with a modulus field only. This metric-
modulus system gives essentially the same nonsingular soluThs action is also justifiable in more solid grounds. In e
tion as the full metric-dilaton-modulus system, since the be— 4 syperstring compactificatiortgeterotic onT® or type IIA on
K3XT?) the functioné(o) given in Eq.(3) describes the exaét?
couplings including nonperturbative effe¢6d. These vacua exhibit
*E-mail address: kawai@phys.h.kyoto-u.ac.jp an exactS duality, which is identical with the SL(Z) modular
TE-mail address: jiro@phys.h.kyoto-u.ac.jp invariance oro.

We start with the actiohgiven by[4]
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which is essentially the same as the 1-loop-corrected
4-dimensional effective action of orbifold-compactified het-

erotic string[3],
1 1 3
SZJ d4X\/—g1§R—Z(D¢)2—Z(D0’)2

+ ! Ae®—\ RZ 2
1_6[ 1€ 26(0) IRGR( (2

except that the dilaton field is neglectedR, ® ando are

the Ricci scalar curvature, the dilaton, and the modulus field,

respectively. Our convention ig,,=(—,+,+,+),R*,.
=I'*,g,+ - \Ryp=R¥,.5, and 8rG=1. The Gauss-
Bonnet curvature is defined asRéBzR“"“Rﬂm
—4R*'R,,+ R2, and £(o) is a function determining the
coupling of ¢ and the geometry, written in terms of the
Dedekind# function as

&(o)=—In[2e”n*(ie”)]

e’

3

=—In2—o+ 4 In(1—e 2nme"), )
n=1

This ¢(o), an even function ofr, has a global minimum at
o=0 and increases exponentially as—*+%. X\, is the

4-dimensional string coupling and takes a positive valye.
is proportional to the 4-dimensional trace anomaly of khe
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i Singular -

FIG. 1. The H-o phase diagram of isotropic solutions. (
=1,H>O,b'>0). Time flows from left to right sincer>0. The
nonsingular solutions are plotted with a solid line, and singular
solutions with a dotted line. The bold line is a critical solution
marking the border of singular and nonsingular solutions. All solu-
tion flows in theH>0,0<0 quarter-plane continue smoothly to the
H>0,0>0 quarter-plane. In thé1>0,0>0 quarter-plane, how-
ever, only the flows below the critical solution continue to the
<0 region.

considering spatially flat metri@gl)] and the existence of the
constraint(5), the solutions are completely determined by a
couple of first order differential equations for two variables
H ando; that is, if we give values ofl ando at some time

=2 sector and determined by the number of chiral, vectort, the preceding and following evolutions of the solution are

and spin3 supermultiplets. It is important that, can take

automatically determined by these equations.

positive values, since nonsingular solutions arise only when Figure 1 shows théi-o phase diagram of the isotropic

N5>0. In our simplified model1), therefore, we assume
to be positive(in actual numerical calculations we skt
=1) and adopt the form of thé function (3).

A. Isotropic solutions

system solved with initial conditiond >0 ando>0. These
solution flows are distinguished by only one degree of free-
dom (for example, the value oH at some fixedo>0).
There are singular solutions and nonsingular solutions, and it
is shown in[4] that all flows in theH>0,0<0 quarter-plane

First, we review the homogeneous and isotropic cas&€ontinue smoothly toH>0,0>0 quarter-plane, but some

which is discussed if4]. We neglect the spatial curvature
and write the metric in the flat FRW form

ds?=—N(t)2dt?+a(t)2(dx®+dy>+dz?). (4)
Variation of the action(1) with respect to the lapsh, the

scale factol, and the modulus field gives three equations
of motion as

&2=6H2(1—%H§), (5)

+H?

(2H+5H2)(1—%H§ 1—%é>=0, (6)
23

= =0, (7)

. .3\ .
oc+3Ho+ 7(H+H2)H2

whereH is the Hubble parametei/a, the overdot means
derivative with respect to physical tinte and we have set
N(t)=1. As a result of the absence of scalese are only

flows in H>0,0>0 quarter-plane go into singularity and do
not continue to ther<0 region. It is also shown if4] that

the signs oH and ¢ are conserved throughout the evolution

of the system. Since is always positive in Fig. 1, time
flows from left to right. We consider that our Friedmann
universe corresponds to the “future” regioo$0) in Fig.

1, and we regard the “past” regiors(<0) with increasing
Hubble parameter as a superinflation, which is expected to
solve the shortcomings of the big-bang model.

B. Equations of motion
We now extend the above model to anisotropic Bianchi
type | space-time. We write the metric as
ds?=—N(t)2dt?+ e?*Vdx?+ e?fVdy2+ e2"Vd 2, (8)

and define the anisotropic expansion rates as

p=a, q=8, r=v. (9)
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The average expansion rate, which coincides with the 1. A azg
Hubble parameteH in the isotropic limit, is H=—-qg?-r2—qr— 502+ 530 2qr
da?
1 2
=— N Jd N @
Har=3 (PFQ+1). R L __(_€> DG 2(pat D), 23
Jdo
The equations of motion are obtained by variation of the )
action (1) with respect toN,a, 8,7y, ando, viz., 1., No%¢.,
Q=—r?-p? —rp——o +§FO' rp
1., 3 0§
pq+qr+rp——cr —2 py —aopqr=0 (17 N €. N 9E\2 -
~ 5 5,0PAr— 7| 7| PUar(p+a+r), (24)

(CA—EB)G+(EF—A2)H+ (AB—FC)Q
= A , (12 and

— 2 2 2
(BC—DA)G+ (BA—FC)H+(FD—B)Q A=2ABC+DEF—-FC?-DA?-EB?. (25)
a A ’ In the isotropic limit, Eqs(11) and(15) become Eqgs5) and
(13 (7), respectively, and Eq$12), (13), and(14) reduce to one
) equation(6). Similar to the isotropic case, once the values of
_ (DE-CHGH(AC-BE)H+(BC-AD)Q o,p,q, andr are given at some time and o is given ac-

A ' cording to the constraintll), the system evolves along the
(149 flow of the solution following Eqs(12)—(15). In our numeri-
cal analysis we integrated Eg&l2)—(15) with the initial

o+(p+q+ r)& condition satisfying the constraiqt1). This constraint equa-
1 s tion (11) is also used to estimate the numerical error.
+ 57\ a—g{bqﬂr par+pqr+pqar(p+q+r)}=0, There are five parameters (o, p,q, andr) and one con-
g

straint (11); so the solution flows are drawn in a
(15) 4-dimensional space, for example;p-g-r space. Since the
aim of this paper is to examine the effect of anisotropy on

where the nonsingular solution, we observe the change of the solu-
tion as we increase the anisotropy of the metric. To facilitate
N 9€. N2[ 9€\? this we introduce two parameters indicating the anisotropy of
A=1-5——0op Z( ) peqr, (16)  the metric, viz.,
N aE. N2 oE\2 B .
B=1—§£Uq+z %) por, 7 X=ovaqrr YT prger (26)

\ d¢ N2 9¢\ 2 In this nota.tion, é(,Y)z(O,Q) corresponds.t.o the isotrqpic
C=1— = —gr+ _( _) para, (18) (FRW) metric, and po_stulatlngi avr 10 be positive, the region
d surrounded by the line¥=2X+1Y=3X—3Y=—X+1
indicates the universe expanding in all directidtigese lines
N[ 0E\2 are drawn in Figs. 3 and)6The regionsy <2X+1,Y>3X
( ) a-r, (19 _1vy>_X+1, etc, are the “Kasner-like” universe ex-
panding in two directions and contracting in one direction.
€\ 2 The regionsy>2X+1,Y>31X—3,Y>—X+1, etc., describe
(—) r2p?, (20) the universe expanding in one direction, contracting in two
do directions. The universe shrinking in all directions cannot be
included if we use Eq926) and assumél ,,>0. Instead of

f7_§ 2p2q2 21) o-p-g-r we useo-H,,-X-Y as four variables describing our
do ' system.

G p?e g 1. 2, Y (725 C. Asymptotic solutions
ST aTRg 27 72 Jo 27 *pa Before going to the numerical analysis, we study the

asymptotic form of the solutions &t + »,|g|—~. We as-

sume|o| to become large whebh— +o. The asymptotic

form of the derivatives of the functioé is

N 9E. NOE\Z
5 5,0Par- Z(%) pegr(p+q+r), (22
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FIG. 2. (8 The average expansion rate in the anisotropic case.  Havr = 0.01, o =—10 TR0 00 e e s 20

The equations are solved from= —10, where the initial anisot-
ropy is fixed asXx=0.1Y=0.2. For large initiaH ,,,, there appear

singularities with which the solution flows terminate suddenly, : S ) .

. - . - . cluded regions are indicated by white, light-shaded, and dark-
keep.m'gHavr.anda f|n|te..(b) The behaw'or OH_a,‘”’ Ha‘”_’ R shaded areas, respectively. In the dark gray region the Hamiltonian
ando in a singular solution appearing {@). Initial conditions are o siraint(11) is not satisfied, and cannot be defined. Cosmo-
the same as i) except the initiaH,,, is set to 0.04. We can see |qgicq| solutions inhabit the white and light gray regions, and those
Hav ando diverge, butH,,,, o, ando stay finite. in each region are separated by singularities sip@er become

infinite whenA =0 [see Eqs(12), (13), and(14)].

FIG. 3. Constraint and\ on the o= —10 section of theX-Y
plane.H,, is 0.001, 0.005, 0.01 from abovA>0,A<0, and ex-

1213 T
9o sgn(o) §elol, (27 Pputting all these into Eq$11)—(15), we obtain two possible
asymptotic solutions:
2
8_§~Ze|tf|_ (28) Ap=—1w1+ wr+ wz=5sgMnt),
da? 3
w12+ w22+ w32+ (,()42:1, (33)
If we assume the power-law ansatz for the expansion rates,
the asymptotic form of the modulus has to be logarithmic in B:p=—2]w4 =5,
order to cancel the exponential dependence of E2j3.and
(28). Thus we choose the following forms for the asymptotic Sex — ooSgn ws)]
solutions: wiww3=—Ssgnt) - (34
~ P
p=wat]”, @9 The solution.A is obtained by balancing terms that do not
p include the 1-loop effect, i.e., the Gauss-Bonnet term, and
g~ wolt[", (30) thus describes the asymptotic behavior where the Gauss-
Bonnet effect is negligible. In the absence of the modulus
r~wslt|?, (3D field, A is nothing but the Bianchi type | vacuufiKasney
solution. The solutiorB is obtained by balancing the kinetic
o~0optwaln|t]. (320 term of the modulus and the Gauss-Bonnet term, and this
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Hayr =0.001, 0 =-10 Hayr =0.005, 0= -10 Havr =0.01, o =-10

0.6 0.6 NSb

NSa

0.2

2x 0 0.4 0.6 0.8 1.0 1.2X

FIG. 4. Solutions through the= —10 cross sectiorH ,,, is 0.001, 0.005, 0.01 from the left. NS means nonsingular. NSa leads to a
Friedmann-type solutiofexpanding in all directionsand NSb leads to a Kasner-type soluti@xpanding in two directions and shrinking
in one directionin the future asymptotic region. S1 means it leads to a singularity wher®. Sla is the solution whose behavior near such
a singularity ispp>0,qg>0,rr >0, while S1b behaves gsp<0,qq<0,r <0, near the singularity. S2 leads to a singularity whare

— o0,

solution corresponds to the phase where the Gauss-Bonnietthe past asymptotic region. Then, in the regienx, the

term is important. Other possibilities of solutions are ex-conditions(33) can be seen in the-w,-w; space as the
cluded as long as we impoge>0, which is, in the isotropic  cross section of the sphere of radiq,AS;— w42 centered at the
limit, a necessary condition for the existence of the nonsinerigin with the w;+ w,+ w3=1 plane. Depending on the

gular solutions. asymptotic value ofw,, the asymptotic solutions df—oo
Following the isotropic cas3—5], we chooser>0 and  are categorized into two cases.
assume the solutiod in the future asymptotic region aril AL 0= w,< \/E The asymptotic solution is either ex-
NSa NSb
0018 T T T T T T — 0.02 T T T — T —
§ e
0.016 | /l '
0.014 | E 0018 | ’
0.012 | ’! \‘
8 | 8 0.01
= 0.01 | o
B 5
2 0.008 §_
\% (] 0.008
0.008
0.004 °
0.002
L] -0.008 L L L L L L L
-400 -300 -400 -300 -200 -100 ? 100 200 300 400
S2
01 0.2 T T
A - —
015 | \ r
oo8 |
0.08 |-
§ 0.04 [ § ]
Y oost
002 |- 01k
....... 0.15 |
[}
-120 -1 :)0 -8‘0 -elo »4‘0 s 20 02 »4‘0 -2‘0 ll) 2‘0 AID 8‘0 8‘0 1 1;0

t t

FIG. 5. Behavior of solutions appearing in Fig. 4=0 is the time wheno=—10. These are solutions through the poinkY)
=(0.1,0.3,(0.2,0.4,(0.4,0.6), and (0.8,0.9), respectively, in tHg,=0.01g=—10 plane.
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* R Bl:wl,wz,w3>0.

B2: One ofw,;(i=1,2,3) is positive; two are negative.

This means that in the past asymptotic region the universe
is either expanding in all directions or expanding in one di-
rection contracting in two directions.

Ill. NUMERICAL RESULTS

Once the anisotropy is included, the behavior of the solu-
tion deviates substantially from the isotropic case. Figure 2a
shows the average expansion rhtg,= (p+q+r)/3 versus
v the moduluso in the anisotropic(Bianchi type ) case,

- solved with initial anisotropyX=0.1Y=0.2 at o=—10.
Unlike the isotropic caséFig. 1), some solution flows in the
o<0 region do not continue smoothly to tlee>0 region,
but terminate suddenly with finite values efandH,,,. At

4 these unusual singularities the time derivativep @f, andr
become infinite, althouglp,q, andr themselves stay finite
(see Fig. 2h This is because the value &f, Eq. (25), ap-
proaches zero, while the numerators of Ed®), (13), and
(14) stay finite. Thus, the functioA plays an important role

T 15 50 in the anisotropic case, and the regularity of the solutions

depends largely on its behavior.

In the equations in our model there are four independent
variables o-H,,-X-Y. Since our interest is mainly in the
vicinity of the isotropic solution, we examine the solutions
which pass near the origin of thé-Y plane, first at ther
= — 10 section with several different valuestdf,, and next
at theo=2.5 section.

Havr = 01, oc=2.5 eran e ve st el

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0

Ha,vr = 02, o=25

1.0 A. Solutions through the o= —10 cross section

4.5 It is helpful to consider the general behaviorfdfand the
T B v T region prohibited by the constraint equation before solving
the equations numerically. Rewritingy, Eq. (25), and the
FIG. 6. Constraint and\ on the 0=2.5 section of theX-Y constraint equatiofil1) in terms ofa,H ., X, andY, we can
pIane.Haw is 0.1, 0.2, 0.3 from abovel >0,A <0, and excluded SpecifyA>0’A<0, and proh|b|ted regions on theyY p|ane
regions_are indicated by white, light-shaded, and dark-shaded areagy fixed o and H,,, Which is shown in Fig. 3. The dark-
respectively. shaded region is the prohibited region, the light-shaded re-

panding in all directiongFriedmann typgor expanding in gion is whereA <0, and the white region Is whet&=>0.
L9 e oo Since A=0 is not physically allowed p,q andr diverge
two directions, shrinking in one directidiKasner typég from Egs.(12), (13), and (14)], the solutions in the white
A2:\3<w,=1/3. The asymptotic solution is Friedmann region cannot go smoothly to the light-shaded region. Also
type only. indicated in Fig. 3 are the line$+Y=1, etc., discussed in
In terms ofX andY introduced in Eq(26), the asymptotic  Sec. II B. We can see that the universe expanding in all
solution is represented by a point on an arc of the ellipsgiirections always lies in thaA >0 region. For largeH ,,, the
X?+Y2-XY=1-}w}. ThusA2 falls into the region inside prohibited region becomes thinner, and the white and light
the ovalX?+Y?—XY=1%, and.Al is in the region between gray regions will be separated by the linés Y=1, etc.
two ellipses X?+Y?—XY=3 and X?+Y2—XY=1. No Starting from the initial conditionsyr=—10 and H,,,
asymptotic solutions exist in the region outside the ellipse=0.001,0.005,0.01, we solved the equations futureward and
X2+Y2-XY=1, where the constraint equatighl) is not  indicated the behavior of the solutions in teY plane(Fig.
satisfied. Therefore, at least in the far enough future region, ). Because of the symmetry of the axes, we restrict the
is sufficient to examine solutions near the isotropic one. Theegion toX>0,Y>0, and since we are not interested in the
difference in our model from the KasngBianchi type |  prohibited region, we only examined the vicinity of the ori-
vacuum solution is the existence of the field, which al-  gin.
lows the existence of a Friedmann-type solution in the future The black region in Fig. 4 is prohibited by the Hamil-

Havr =03, 0=2.5

asymptotic region. _ . N o tonian constraint, and the regions marked NS means nonsin-
In the past asymptotic region, the conditi84) indicates  gular solutions. The difference between NSa and NSb is in
w1wow3>0, i.e. one of the following. their form in the future asymptotic region, where NSa has
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Havr = 0.01, o=2.5 Havr = 0.05, o=2.5 Havr = 0.1, o=2.5
Y Y

NS

2 X 0 0.2 0.4 0.6 0.8 1.0 1.2 X

FIG. 7. Solutions through the=2.5 cross sectionH,,, is 0.01, 0.05, 0.1 from the left. NS means nonsingular, which leads to an
expanding universe in the past asymptotic region. S1 means it leads to a singularityAwh€reS1c is the solution whose behavior near
such a singularity ip>0,q>0, <0, while S1d behaves gs>0,>0,r >0, near the singularity.

Friedmann-typelexpanding in all directionsand NSb has small H,,, is the one discussed in relation to the future
Kasner-type(expanding in two directions and contracting in asymptotic form of the solution, which is expressedX&s
one direction asymptotic solutions. Examples of NSa and + Y?—XY=1. As H,,, takes large values th&=0 contour
NSb solutions are shown in the first and the second panels edkes complicated forms, and the region connected to the
Fig. 5. The solutions in the region marked S1 in Fig. 4 leadsotropic solution becomes small.

to singularities wheré — 0 (we term this singularity type) | Figure 7 shows the solutions passing through X

and these singular solutions are the same as those appeariplgne of theo=2.5 cross section, and the time evolution of
in Fig. 2. We divided the S1 solutions into two classes, S1@ach type is shown in Fig. 81, is chosen to be 0.01, 0.05,

and S1b. Sla approaches the singularitpps-0,qq>0,r  and I?.ll Ainavr inclreases r:he nonsringular _regicl)n belco_mes
~0, while Sib asp'p<0,qq<0,rf<0. This singularity, smaller, and foH ,,, larger than 0.1 the nonsingular solution

i o .completely disappears from theY plane. All the singulari-
since it arises becaust crosses zero, can be overpassed ifjjoq appearing in Fig. 7 are type |, and these singular solu-

we introduce a new “time” variable tions can be extended further by usingefined by Eq(35).
dr=dt/A 35) Just like the S1la and S1b solutions in the previous subsec-
T ' tion, S1c and S1d, extended beyond the type | singularity,

Using this, two solutions S1la and S1b can be joined via the:[urn back futurewards and then go into the type Il singular-

. . e : . : ity. The only difference between these and Sla,b is the di-
singularity, Wh'Ch.'S shown in the third panel Qf the Fi9. 5 rection of time, and the former can be regarded as the “pair
(Sla,h. The solution S1b, solved backwards in time, goeSyreation” of cosmological solutions, while the latter is the
into another singularity which has different property from “pair annihilation.”
the one between Sla and S1b. At this singularity, which we' one of the nontrivial results of our analysis, and what

call type II, A goes to—0, and at least one of the expansion makes this model very different from ordinary universe mod-
rates @ in the case of Fig. 5, S1a,iverges. We can say els, is that the “initial singularity” in the isotropic limit is
that this solution'S1a and S1b joined togethe@omes regu- categorized into the type | singularitgee the third panel of
larly from t=—oo, turns back at type | singularity, and then Fig. 7 and compare S1d and isotropic solutions in Fig. 8
goes backwards in time into a type Il singularity. Or we canThis means that the singular solutions in the model proposed
also see this as two solutions, one coming from— and by Antoniadis, Rizos, and Tamvaki8] or Rizos and Tam-
the other from the type Il singularity, “pair-annihilate” at vakis[4] will, if small anisotropy is included, terminate sud-
one type | singularity. S2 is yet another solution, whichdenly at finite past with finite Hubble parameter or, if ex-
comes from one type Il singularity and disappears into antended usingr, turn back towards the future.

other type Il singularity. A4 ,,, becomes larger, the bound- All nonsingular solutions in Figs. 7 and 8 continue to the
ary between Sla and S1A €0 line in Fig. 3 gets pushed asymptotic soIL_ltlons expa_mdlng in all dlre(_:tlons in the past
to approach the lin&X+Y=1, and accordingly the nonsin- asymptotic region. That is, the asymptotic folfil (dis-
gular regions NSa and NSb become smaller. This is consi€ussed in Sec. Il Ccan be reached fronr=2.5 but 52

tent with Fig. 2, which shows the existence of the upper Iimitﬁ?rrr]:og'z TEi:eeigsttplseOIl;tci)(ljurlcisonhsa\;wr%ug]r? tﬁgsguiz):n\:\?r:ic;teic
of H,,, for the regular solution through the<0 region (A>0) region in the third panel of Fig. 3 behave B8 in

thet— —oo region. These solutions, however, go into singu-

larities betweenr=—10 ando=2.5, and do not appear in
As is expected from the isotropic case discussed in thé&ig. 7 or 8.

previous section, the solutions through &0 cross sec-

tion are quite different from those through thec0 section. C. Nature of the singularity

In Fig. 6 we show the prohibited regiofdark shaded A In our numerical analysis there appear two types of sin-

>0 region (white), and A<O region (light shaded in the  gularities, which we called type | and type II. We discuss the

X-Y plane, witho fixed to 2.5. The elliptic allowed region of nature of these singularities briefly.

B. Solutions through the =2.5 cross section

063506-7
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FIG. 8. Behavior of solutions appearing in Fig.t%O0 is the time whenr=2.5. The initial values are chosen on the=2.5 plane as
(Haw,X,Y)=(0.01,0.6,0.8,(0.1,0.6,0.$,(0.1,0.1,0.2), and (0.1,0.0,0.0) for NS, Sic, S1d, and isotropic examples of the solution, respec-
tively.

At type | singularities the expansion rateg,q,r) stay P=Psing™ pl(t_tsing)l/z+ . (37
finite whereas the time derivatives of them diverge. These
situations happen whemp,q,r~|t—tgjng” with 0<p<1. 0= Gsing*+ Aa(t—tging V2" - - -, (39)

This is actually the case, and can be verified by analyzing
solutions near the singularity. Although the type | singularity
(A=0) is a physical one, the equations of motions can be
integrated regularly by using the new “time” parameter : yA-1
Eq. (35), through the type | singularity. At the singularity 1hus, 0<1/2,1/2m,1/2n<1, andp=(p1/2l)(t —tsing)

p,g,r “turn around” (see the solutions S1 in Figs. 5ang 8 +---, etc., will diverge. The behavior ef is similar to that
meaning thatp,q, andr are multiple-valued function of. ~ of p, g, andr. In our numerical calculation§S1 of Figs. 5
Sincedt=Adr=0 at the singularity, the solutions are tan- and 8, I,m,n take the values=m=n=1, which is the most
gential tot=tg;,4. Also, in order that the solutions change generic case.

rzrsing"_rl(t_tsing)l/zn"' T (39)

the chronological direction, the leading powenm,r in the In the vicinity of other types of singularities, analytic ex-

expansion oft near the singularity must be even. Thus wepressions of the solutions are obtained by assuming power-

can express usingp,q,r as law behavior of the scale factors and the regularity of the
modulus field, just as in the isotropic cd$3. Because of the

t—tsing anisotropy, there are 3 cases of singular solutions other than
the type I

:tp,ZI(p_ psing)2|+tp12|+l(p— psing)2|+l+ .

Cl:ip~py/t,q~0g,l ~Tg,0~ 00,0~ 01,0~ 05,
:tq’zm(q_QSin9)2m+tQ,2m1(q_qsing)ZHm—l— .

3 9
:tr,Zn(r_rsing)2n+tr,2n+1(r_rsing)2|+n+' T (36) p1=1,q0+r0—E)\%“Oalqor():o, (40)
with |,m,n being positive integers. By solving these with . )
respect top, , andr, we have C2:p~p1/t,q~qi/t,r~rg,0~09,0~01,0~ 0>,

063506-8



NONSINGULAR BIANCHI TYPE | COSMOLOGICAL ... PHYSICAL REVIEW D59 063506

d while the A<O branch leads to a type Il singularity at the
P1=01=11-3A %|%01fo=0. (4))  finite past. The second singular solution is very similar to the
first one, except it crosses the=0 line in the past. This
solution, examples of which are S1c and S1d of Figs. 7 and
8, can be regarded as a pair creation of two branches. The
1 g¢ singular solution in the isotropic modgs,4] is a special case
p1=q;=r;=1,1- =\ —|, 0,=0, (42) of this second singular solution. The third singular solution
2 da’7° lies always in theA <0 region and never crosses the=0
line, i.e., includes no type | singularity. This solution is born
in the type Il singularity, and disappears into the type Il
singularity (see S2 of Fig. 4 and)5

CS:prl/tanQJ_/tyr"’r]_/t,(T’VU'O,(.T"va'lt,a-fvo-l,

where we have chosen the origintadt the singularityCl is
the case where only one of the three expansion ratgs )

is singular,C2 two, andC3 all three. The solutiod1 agrees
well with our numerical results(S2 of Fig. 5. Since
pP1.0:.r1=1 (if not zerg, the divergent behavior is deter-
mined by the sign of; i.e., if a solution goes into a singu-  |n this paper we presented anisotropic nonsingular cosmo-
larity futureward ¢— —0), thenp— —, etc., and if past- |ogical solutions derived from the 1-loop effective action of
ward (t— +0),p— +, etc. Putting Eqs40)—(42) into Eq.  the heterotic string. We found nonsingular solutions which
(25), we haveA — —o for C1 andC2 butA—+0 for C3.  evolve from the infinite past asymptotic region, superinflate,
Therefore, according to our definition of the singularitiesand then continue either to Friedmann-type or Kasner-type
(A—0 for type | andA — — <o for type II), C1 andC2 willbe  solutions. The singular solutions of moderate anisotropy are
categorized into type Il and3 will be categorized into type classified into three types, and involved in these solutions are
. In the isotropic caseg=q=r), we can show thaA>0is  two types of singularities: one correspondsite-0 and the
always satisfied, and3 can be seen as a type | singularity other toA = —o0. The initial singularity in the isotropic limit
“pushed towards the infinity.” is a special case of the#=0 singularity.

All of these singularities, both types | and I, are physical Violation of the energy conditions, which is necessary to
singularities. This can be shown by puttipgr,r andp,q,r  avoid the singularity, is achieved by the existence of a
into the curvature scalaR=2(p+p2+q-+q2+r+r2+pq Gau;s—Bonnet term coupled to a_modulus field. This can be
+qr+rp). conflrmed by using the asymptotic forr(133) and (34) for _
nonsingular solutions. We define the effective energy density
and effective pressure as

IV. CONCLUSION

D. Summary of numerical results

We extended the nonsingular universe model proposed by e =—G%=pqg+qr+rp, (43)
Rizos and Tamvakig4] to include anisotropy, and examined
solutions in the vicinity of the isotropic solution in both

<0 ando>0 regions. We found both nonsingular solutions p1:=G'1=—(q+r+g>+r+qr),

and singular solutions. Nonsingular solutions inhabit the re- (44)
gion where the anisotropy is small, and they evolve from the

past asymptotic region, superinflate, and then lead either to Py =G2=—(r+p+r2+p2+rp),
Friedmann-type or to Kasner-type solutions in the future. (45)

Singularities appearing in our analysis are classified into two
types, namely, type | and type II. The type | singularity cor-

L . 8 (s 21 2
responds to the crossing &f=0, andp,q, andr diverge, P3: =G (pTa+p™+a’+pq).
while p,q,r, ando,o stay finite. At the type Il singularity,

on the other hand4_& tends to -, andp, d af?d rowill Assuming the asymptotic solutia# in the regiont— and
diverge. The evolution of the singular solutions is character-

ized by the behavior of\. At the origin of theX-Y plane  hato is always positive(in our numerical analysie: keeps
(isotropic solution A is always positive regardless of the Its sign except the singular sol_utlon)Sﬂﬂe effective energy
values ofo or H,,,, and as anisotropy increases there appea€"Sity alndzpr(iszsyre behave in the future asymptotic region
A<O0 regions or regions prohibited by the constraint equa®S f'pi~5w4|t2| 5'2: 1,2,3). Thus, the weak energy condi-
tion (11), which is shown in Figs. 3 and 6. There are threelion €+p;i~wi[t|"*>0 and the strong energy conditian
types of singular solutions appearing in our analyiswo ~ +=Pi~2wj|t|"2>0 are satisfied. In the past asymptotic re-
branches connected by a type | singularity are counted as org#on, on the other hand, the asymptotic solution becothes
solution. The first type of singular solution is marked by the in which the Gauss-Bonnet term is dominant. Then
crossing of theA=0 line, which we termed the type | sin- ~(w1w,+ w03+ wzw,)|t|™* and p;~—2(w,+ w3)|t| 3
gularity, in the future. This includes Sla and S1b in Figs. 4— (03+ w3+ w,w3)|t| 4, etc. If the weak energy condition
and 5, and if we continue the solution beyoAd=0 by is satisfied, e+p;>0 for i=1,2,3, and so 8+Zp;~
changing the variable, this singular solution can be seen as-a4(w;+ w,+ w3)|t| 3 must be positive. If the strong en-
pair annihilation of theA>0 and A<O0 branches of solu- ergy condition is satisfied, e+2p;~—4(w;+ w,
tions. TheA>0 branch continues from the infinite past, + w3)|t|~3 must be positive. Neither of them is possible as

(46)
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long as H,,~ (w;+ w,+ ws)|t| "2/3>0. Therefore, weak and isotropic background shows the existence of exponential
and strong energy conditions are violated in the pas@rowth in graviton-mode perturbation during the superinfla-
asymptotic region. tionary stage. Together with this we can conclude that the
One of the biggest advantages of our model is that i€osmic no-hair hypothes[$] does not hold in this superin-
includes a rather long period ¢upey inflationary stage ina flationary model. We are interested in whether this result is
natural form. However, our result, which admits the evolu-common to all kinetic-driven superinflation.
tion of an almost-isotropic superinflating solution into a
Kasner-type anisotropic solutiofsee the panel “NSb” of
Fig. 5, for examplg suggests that the superinflation in our
model does not isotropize the space-time. Our recent study This work of J.S. is supported by Grant-in-Aid for Scien-
[7] of the cosmological perturbation for the homogeneoudific Research No. 10740118.
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