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Nonsingular Bianchi type I cosmological solutions from the 1-loop superstring effective action
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Nonsingular Bianchi type I solutions are found from the effective action with a superstring-motivated
Gauss-Bonnet term. These anisotropic nonsingular solutions evolve from the asymptotic Minkowski region,
subsequently superinflate, and then smoothly continue either to Kasner-type~expanding in two directions and
shrinking in one direction! or to Friedmann-type~expanding in all directions! solutions. We also find a new
kind of singularity which arises from the fact that the anisotropic expansion rates are a multiple-valued
function of time. The initial singularity in the isotropic limit of this model belongs to this new kind of
singularity. In our analysis the anisotropic solutions are likely to be singular when the superinflation is steep.
As for the cosmic no-hair conjecture, our results suggest that the kinetic-driven superinflation of our model
does not isotropize the space-time.@S0556-2821~99!02106-2#

PACS number~s!: 98.80.Hw, 04.20.Dw, 04.50.1h, 11.25.Mj
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I. INTRODUCTION

Stimulated by the developments of superstring theo
various cosmological solutions based on string theory h
been proposed. Although the theory has not develo
enough to present a unique history of our universe in
earliest stage, one may now imagine that the big bang is
longer just a point of enigma named the initial singularity b
has a rich and complex structure.

Among these string-based universe models, the m
widely studied would be the so-called pre-big-bang mo
@1# ~in the literature it is often called string cosmology!. The
remarkable aspect of this model is that it tries to explain
inflationary behavior of the early universe by introducing
polelike acceleration phase~superinflation! which is driven
by the kinetic term of the dilaton. This superinflationa
branch of the solution has a dual relation named the s
factor duality with the Friedmann branch, which is the us
decelerating expansion of the universe. The biggest prob
arising in the pre-big-bang model is the difficulty of conne
ing the superinflationary branch and the Friedmann bra
~termed the graceful exit problem!, and there are no-go theo
rems proved under some assumptions@2#.

Antoniadis, Rizos, and Tamvakis@3# proposed a nonsin
gular ~i.e., free of the graceful exit problem! cosmological
model by including the 1-loop~genus! correction term in the
low-energy string effective action. This 1-loop model is e
cellent in that it gives a simple example of the smooth tr
sition between the superinflationary branch and the Fr
mann branch. This original 1-loop model involves dilat
and modulus fields, and there is a simplified version@4# by
Rizos and Tamvakis with a modulus field only. This metr
modulus system gives essentially the same nonsingular s
tion as the full metric-dilaton-modulus system, since the
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havior of the solution mainly depends only on the modu
field. The existence of the nonsingular solution is analy
cally shown by Rizos and Tamvakis@4# for the Friedmann-
Robertson-Walker~FRW! metric, i.e., assuming the homoge
neity and isotropy of the universe. We studied whether
nature of this nonsingular solution is affected if anisotropy
included. The purpose of this paper is to extend the solu
of this metric-modulus system to include anisotropy and
observe the behavior of its solutions, particularly of nons
gular ones.

The following sections of this paper are organized as f
lows. In Sec. II we briefly review the isotropic case studi
by Rizos and Tamvakis@4#, and then derive the basic equ
tions of motion from the effective action for the Bianchi typ
I metric. We also solve these equations analytically in
asymptotic region. In Sec. III we solve these equations
merically. We study the solutions through several cross s
tions of the parameter space. The existence of nonsing
anisotropic solutions is shown, and the nature of the sin
larity is also examined. Implications of our results are d
cussed in the last section.

II. MODEL AND EQUATIONS OF MOTION

We start with the action1 given by @4#

S5E d4xA2gH 1

2
R2

1

2
~Ds!22

l

16
j~s!RGB

2 J , ~1!

1This action is also justifiable in more solid grounds. In theN
54 superstring compactifications~heterotic onT6 or type IIA on
K33T2) the functionj(s) given in Eq.~3! describes the exactR2

couplings including nonperturbative effects@6#. These vacua exhibit
an exactS duality, which is identical with the SL(2,Z) modular
invariance ons.
©1999 The American Physical Society06-1
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which is essentially the same as the 1-loop-correc
4-dimensional effective action of orbifold-compactified he
erotic string@3#,

S5E d4xA2gH 1

2
R2

1

4
~DF!22

3

4
~Ds!2

1
1

16
@l1eF2l2j~s!#RGB

2 J , ~2!

except that the dilaton fieldF is neglected.R, F ands are
the Ricci scalar curvature, the dilaton, and the modulus fi
respectively. Our convention isgmn5(2,1,1,1),Rm

anb
5Gm

ab,n1•••,Rab5Rm
amb , and 8pG51. The Gauss-

Bonnet curvature is defined asRGB
2 5RmnklRmnkl

24RmnRmn1R2, and j(s) is a function determining the
coupling of s and the geometry, written in terms of th
Dedekindh function as

j~s!52 ln@2esh4~ ies!#

52 ln22s1
pes

3
24(

n51

`

ln~12e22npes
!. ~3!

This j(s), an even function ofs, has a global minimum a
s50 and increases exponentially ass→6`. l1 is the
4-dimensional string coupling and takes a positive value.l2
is proportional to the 4-dimensional trace anomaly of theN
52 sector and determined by the number of chiral, vec
and spin-32 supermultiplets. It is important thatl2 can take
positive values, since nonsingular solutions arise only w
l2.0. In our simplified model~1!, therefore, we assumel
to be positive~in actual numerical calculations we setl
51) and adopt the form of thej function ~3!.

A. Isotropic solutions

First, we review the homogeneous and isotropic c
which is discussed in@4#. We neglect the spatial curvatur
and write the metric in the flat FRW form

ds252N~ t !2dt21a~ t !2~dx21dy21dz2!. ~4!

Variation of the action~1! with respect to the lapseN, the
scale factora, and the modulus fields gives three equation
of motion as

ṡ256H2S 12
l

2
H j̇ D , ~5!

~2Ḣ15H2!S 12
l

2
H j̇ D1H2S 12

l

2
j̈ D50, ~6!

s̈13Hṡ1
3l

2
~Ḣ1H2!H2

]j

]s
50, ~7!

where H is the Hubble parameterȧ/a, the overdot means
derivative with respect to physical timet, and we have se
N(t)51. As a result of the absence of scales@we are only
06350
d

d,

r,

n

e

considering spatially flat metric~4!# and the existence of the
constraint~5!, the solutions are completely determined by
couple of first order differential equations for two variabl
H ands; that is, if we give values ofH ands at some time
t, the preceding and following evolutions of the solution a
automatically determined by these equations.

Figure 1 shows theH-s phase diagram of the isotropi
system solved with initial conditionsH.0 andṡ.0. These
solution flows are distinguished by only one degree of fr
dom ~for example, the value ofH at some fixeds.0).
There are singular solutions and nonsingular solutions, an
is shown in@4# that all flows in theH.0,s,0 quarter-plane
continue smoothly toH.0,s.0 quarter-plane, but som
flows in H.0,s.0 quarter-plane go into singularity and d
not continue to thes,0 region. It is also shown in@4# that
the signs ofH andṡ are conserved throughout the evolutio
of the system. Sinceṡ is always positive in Fig. 1, time
flows from left to right. We consider that our Friedman
universe corresponds to the ‘‘future’’ region (s.0) in Fig.
1, and we regard the ‘‘past’’ region (s,0) with increasing
Hubble parameter as a superinflation, which is expected
solve the shortcomings of the big-bang model.

B. Equations of motion

We now extend the above model to anisotropic Bian
type I space-time. We write the metric as

ds252N~ t !2dt21e2a~ t !dx21e2b~ t !dy21e2g~ t !dz2, ~8!

and define the anisotropic expansion rates as

p5ȧ, q5ḃ, r 5ġ. ~9!

FIG. 1. The H-s phase diagram of isotropic solutions (l

51,H.0,ṡ.0). Time flows from left to right sinceṡ.0. The
nonsingular solutions are plotted with a solid line, and singu
solutions with a dotted line. The bold line is a critical solutio
marking the border of singular and nonsingular solutions. All so
tion flows in theH.0,s,0 quarter-plane continue smoothly to th
H.0,s.0 quarter-plane. In theH.0,s.0 quarter-plane, how-
ever, only the flows below the critical solution continue to thes
,0 region.
6-2
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NONSINGULAR BIANCHI TYPE I COSMOLOGICAL . . . PHYSICAL REVIEW D59 063506
The average expansion rate, which coincides with
Hubble parameterH in the isotropic limit, is

Havr5
1

3
~p1q1r !. ~10!

The equations of motion are obtained by variation of
action ~1! with respect toN,a,b,g, ands, viz.,

pq1qr1rp2
1

2
ṡ22

3

2
l

]j

]s
ṡpqr50, ~11!

ṗ5
~CA2EB!G1~EF2A2!H1~AB2FC!Q

D
, ~12!

q̇5
~BC2DA!G1~BA2FC!H1~FD2B2!Q

D
,

~13!

ṙ 5
~DE2C2!G1~AC2BE!H1~BC2AD!Q

D
,

~14!

s̈1~p1q1r !ṡ

1
1

2
l

]j

]s
$ ṗqr1pq̇r 1pqṙ1pqr~p1q1r !%50,

~15!

where

A512
l

2

]j

]s
ṡp1

l2

4 S ]j

]s D 2

p2qr, ~16!

B512
l

2

]j

]s
ṡq1

l2

4 S ]j

]s D 2

pq2r , ~17!

C512
l

2

]j

]s
ṡr 1

l2

4 S ]j

]s D 2

pqr2, ~18!

D5
l2

4 S ]j

]s D 2

q2r 2, ~19!

E5
l2

4 S ]j

]s D 2

r 2p2, ~20!

F5
l2

4 S ]j

]s D 2

p2q2, ~21!

G52p22q22pq2
1

2
ṡ21

l

2

]2j

]s2
ṡ2pq

2
l

2

]j

]s
ṡpqr2

l

4S ]j

]s D 2

p2q2r ~p1q1r !, ~22!
06350
e
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H52q22r 22qr2
1

2
ṡ21

l

2

]2j

]s2
ṡ2qr

2
l

2

]j

]s
ṡpqr2

l

4S ]j

]s D 2

pq2r 2~p1q1r !, ~23!

Q52r 22p22rp2
1

2
ṡ21

l

2

]2j

]s2
ṡ2rp

2
l

2

]j

]s
ṡpqr2

l

4S ]j

]s D 2

p2qr2~p1q1r !, ~24!

and

D52ABC1DEF2FC22DA22EB2. ~25!

In the isotropic limit, Eqs.~11! and~15! become Eqs.~5! and
~7!, respectively, and Eqs.~12!, ~13!, and~14! reduce to one
equation~6!. Similar to the isotropic case, once the values
s,p,q, and r are given at some timet, and ṡ is given ac-
cording to the constraint~11!, the system evolves along th
flow of the solution following Eqs.~12!–~15!. In our numeri-
cal analysis we integrated Eqs.~12!–~15! with the initial
condition satisfying the constraint~11!. This constraint equa-
tion ~11! is also used to estimate the numerical error.

There are five parameters (s,ṡ,p,q, andr ) and one con-
straint ~11!; so the solution flows are drawn in
4-dimensional space, for example,s-p-q-r space. Since the
aim of this paper is to examine the effect of anisotropy
the nonsingular solution, we observe the change of the s
tion as we increase the anisotropy of the metric. To facilit
this we introduce two parameters indicating the anisotropy
the metric, viz.,

X5
p2r

p1q1r
, Y5

q2r

p1q1r
. ~26!

In this notation, (X,Y)5(0,0) corresponds to the isotropi
~FRW! metric, and postulatingHavr to be positive, the region
surrounded by the linesY52X11,Y5 1

2 X2 1
2 ,Y52X11

indicates the universe expanding in all directions~these lines
are drawn in Figs. 3 and 6!. The regionsY,2X11,Y. 1

2 X
2 1

2 ,Y.2X11, etc., are the ‘‘Kasner-like’’ universe ex
panding in two directions and contracting in one directio
The regionsY.2X11,Y. 1

2 X2 1
2 ,Y.2X11, etc., describe

the universe expanding in one direction, contracting in t
directions. The universe shrinking in all directions cannot
included if we use Eqs.~26! and assumeHavr.0. Instead of
s-p-q-r we uses-Havr-X-Y as four variables describing ou
system.

C. Asymptotic solutions

Before going to the numerical analysis, we study t
asymptotic form of the solutions att→6`,usu→`. We as-
sume usu to become large whent→6`. The asymptotic
form of the derivatives of the functionj is
6-3
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]j

]s
;sgn~s!

p

3
eusu, ~27!

]2j

]s2
;

p

3
eusu. ~28!

If we assume the power-law ansatz for the expansion ra
the asymptotic form of the modulus has to be logarithmic
order to cancel the exponential dependence of Eqs.~27! and
~28!. Thus we choose the following forms for the asympto
solutions:

p;v1utur, ~29!

q;v2utur, ~30!

r;v3utur, ~31!

s;s01v4 lnutu. ~32!

FIG. 2. ~a! The average expansion rate in the anisotropic ca
The equations are solved froms5210, where the initial anisot-
ropy is fixed asX50.1,Y50.2. For large initialHavr , there appear
singularities with which the solution flows terminate sudden

keepingHavr ands finite. ~b! The behavior ofHavr , Ḣavr , s, ṡ,

and s̈ in a singular solution appearing in~a!. Initial conditions are
the same as in~a! except the initialHavr is set to 0.04. We can se

Ḣavr and s̈ diverge, butHavr , s, andṡ stay finite.
06350
s,

Putting all these into Eqs.~11!–~15!, we obtain two possible
asymptotic solutions:

A:r521,v11v21v35sgn~ t !,

v1
21v2

21v3
21v4

251, ~33!

B:r522,uv4u55,

v1v2v352sgn~ t !
5exp@2s0sgn~v4!#

lp
. ~34!

The solutionA is obtained by balancing terms that do n
include the 1-loop effect, i.e., the Gauss-Bonnet term, a
thus describes the asymptotic behavior where the Ga
Bonnet effect is negligible. In the absence of the modu
field, A is nothing but the Bianchi type I vacuum~Kasner!
solution. The solutionB is obtained by balancing the kineti
term of the modulus and the Gauss-Bonnet term, and

e.

,

FIG. 3. Constraint andD on thes5210 section of theX-Y
plane.Havr is 0.001, 0.005, 0.01 from above.D.0,D,0, and ex-
cluded regions are indicated by white, light-shaded, and da
shaded areas, respectively. In the dark gray region the Hamilto
constraint~11! is not satisfied, andD cannot be defined. Cosmo
logical solutions inhabit the white and light gray regions, and tho
in each region are separated by singularities sincep,q,r become
infinite whenD50 @see Eqs.~12!, ~13!, and~14!#.
6-4
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FIG. 4. Solutions through thes5210 cross section.Havr is 0.001, 0.005, 0.01 from the left. NS means nonsingular. NSa leads
Friedmann-type solution~expanding in all directions! and NSb leads to a Kasner-type solution~expanding in two directions and shrinkin
in one direction! in the future asymptotic region. S1 means it leads to a singularity whereD→0. S1a is the solution whose behavior near su

a singularity ispṗ.0,qq̇.0,r ṙ .0, while S1b behaves aspṗ,0,qq̇,0,r ṙ ,0, near the singularity. S2 leads to a singularity whereD→
2`.
n
x

in

-

solution corresponds to the phase where the Gauss-Bo
term is important. Other possibilities of solutions are e
cluded as long as we imposel.0, which is, in the isotropic
limit, a necessary condition for the existence of the nons
gular solutions.

Following the isotropic case@3–5#, we chooseṡ.0 and
assume the solutionA in the future asymptotic region andB
06350
net
-

-

in the past asymptotic region. Then, in the regiont→`, the
conditions~33! can be seen in thev1-v2-v3 space as the
cross section of the sphere of radiusA12v4

2 centered at the
origin with the v11v21v351 plane. Depending on the
asymptotic value ofv4 , the asymptotic solutions oft→`
are categorized into two cases.

A1:0<v4,A1
2 . The asymptotic solution is either ex
FIG. 5. Behavior of solutions appearing in Fig. 4.t50 is the time whens5210. These are solutions through the points (X,Y)
5(0.1,0.2),(0.2,0.4),(0.4,0.6), and (0.8,0.9), respectively, in theHavr50.01,s5210 plane.
6-5
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SHINSUKE KAWAI AND JIRO SODA PHYSICAL REVIEW D59 063506
panding in all directions~Friedmann type! or expanding in
two directions, shrinking in one direction~Kasner type!.

A2:A1
2 <v4<A 2

3 . The asymptotic solution is Friedman
type only.

In terms ofX andY introduced in Eq.~26!, the asymptotic
solution is represented by a point on an arc of the elli
X21Y22XY512 3

2 v4
2 . ThusA2 falls into the region inside

the ovalX21Y22XY5 1
4 , andA1 is in the region between

two ellipses X21Y22XY5 1
4 and X21Y22XY51. No

asymptotic solutions exist in the region outside the ellip
X21Y22XY51, where the constraint equation~11! is not
satisfied. Therefore, at least in the far enough future regio
is sufficient to examine solutions near the isotropic one. T
difference in our model from the Kasner~Bianchi type I
vacuum! solution is the existence of the fields, which al-
lows the existence of a Friedmann-type solution in the fut
asymptotic region.

In the past asymptotic region, the condition~34! indicates
v1v2v3.0, i.e. one of the following.

FIG. 6. Constraint andD on the s52.5 section of theX-Y
plane.Havr is 0.1, 0.2, 0.3 from above.D.0,D,0, and excluded
regions are indicated by white, light-shaded, and dark-shaded a
respectively.
06350
e

e

it
e

e

B1:v1 ,v2 ,v3.0.
B2: One ofv i( i 51,2,3) is positive; two are negative.
This means that in the past asymptotic region the unive

is either expanding in all directions or expanding in one
rection contracting in two directions.

III. NUMERICAL RESULTS

Once the anisotropy is included, the behavior of the so
tion deviates substantially from the isotropic case. Figure
shows the average expansion rateHavr5(p1q1r )/3 versus
the moduluss in the anisotropic~Bianchi type I! case,
solved with initial anisotropyX50.1,Y50.2 at s5210.
Unlike the isotropic case~Fig. 1!, some solution flows in the
s,0 region do not continue smoothly to thes.0 region,
but terminate suddenly with finite values ofs andHavr. At
these unusual singularities the time derivatives ofp,q, andr
become infinite, althoughp,q, and r themselves stay finite
~see Fig. 2b!. This is because the value ofD, Eq. ~25!, ap-
proaches zero, while the numerators of Eqs.~12!, ~13!, and
~14! stay finite. Thus, the functionD plays an important role
in the anisotropic case, and the regularity of the solutio
depends largely on its behavior.

In the equations in our model there are four independ
variabless-Havr-X-Y. Since our interest is mainly in the
vicinity of the isotropic solution, we examine the solution
which pass near the origin of theX-Y plane, first at thes
5210 section with several different values ofHavr and next
at thes52.5 section.

A. Solutions through the s5210 cross section

It is helpful to consider the general behavior ofD and the
region prohibited by the constraint equation before solv
the equations numerically. RewritingD, Eq. ~25!, and the
constraint equation~11! in terms ofs,Havr,X, andY, we can
specifyD.0,D,0, and prohibited regions on theX-Y plane
for fixed s and Havr, which is shown in Fig. 3. The dark
shaded region is the prohibited region, the light-shaded
gion is whereD,0, and the white region is whereD.0.
Since D50 is not physically allowed@ ṗ,q̇ and ṙ diverge
from Eqs. ~12!, ~13!, and ~14!#, the solutions in the white
region cannot go smoothly to the light-shaded region. A
indicated in Fig. 3 are the linesX1Y51, etc., discussed in
Sec. II B. We can see that the universe expanding in
directions always lies in theD.0 region. For largerHavr the
prohibited region becomes thinner, and the white and li
gray regions will be separated by the linesX1Y51, etc.

Starting from the initial conditionss5210 and Havr
50.001,0.005,0.01, we solved the equations futureward
indicated the behavior of the solutions in theX-Y plane~Fig.
4!. Because of the symmetry of the axes, we restrict
region toX.0,Y.0, and since we are not interested in t
prohibited region, we only examined the vicinity of the or
gin.

The black region in Fig. 4 is prohibited by the Hami
tonian constraint, and the regions marked NS means non
gular solutions. The difference between NSa and NSb is
their form in the future asymptotic region, where NSa h

as,
6-6
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FIG. 7. Solutions through thes52.5 cross section.Havr is 0.01, 0.05, 0.1 from the left. NS means nonsingular, which leads to
expanding universe in the past asymptotic region. S1 means it leads to a singularity whereD→0. S1c is the solution whose behavior ne
such a singularity isp.0,q.0,r ,0, while S1d behaves asp.0,q.0,r .0, near the singularity.
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Friedmann-type~expanding in all directions! and NSb has
Kasner-type~expanding in two directions and contracting
one direction! asymptotic solutions. Examples of NSa a
NSb solutions are shown in the first and the second pane
Fig. 5. The solutions in the region marked S1 in Fig. 4 le
to singularities whereD→0 ~we term this singularity type I!
and these singular solutions are the same as those appe
in Fig. 2. We divided the S1 solutions into two classes, S
and S1b. S1a approaches the singularity aspṗ.0,qq̇.0,r ṙ
.0, while S1b aspṗ,0,qq̇,0,r ṙ ,0. This singularity,
since it arises becauseD crosses zero, can be overpassed
we introduce a new ‘‘time’’ variable

dt5dt/D. ~35!

Using thist, two solutions S1a and S1b can be joined via
singularity, which is shown in the third panel of the Fig.
~S1a,b!. The solution S1b, solved backwards in time, go
into another singularity which has different property fro
the one between S1a and S1b. At this singularity, which
call type II,D goes to2`, and at least one of the expansio
rates (q in the case of Fig. 5, S1a,b! diverges. We can say
that this solution~S1a and S1b joined together! comes regu-
larly from t52`, turns back at type I singularity, and the
goes backwards in time into a type II singularity. Or we c
also see this as two solutions, one coming fromt52` and
the other from the type II singularity, ‘‘pair-annihilate’’ a
one type I singularity. S2 is yet another solution, whi
comes from one type II singularity and disappears into
other type II singularity. AsHavr becomes larger, the bound
ary between S1a and S1b (D50 line in Fig. 3! gets pushed
to approach the lineX1Y51, and accordingly the nonsin
gular regions NSa and NSb become smaller. This is con
tent with Fig. 2, which shows the existence of the upper lim
of Havr for the regular solution through thes,0 region.

B. Solutions through the s52.5 cross section

As is expected from the isotropic case discussed in
previous section, the solutions through thes.0 cross sec-
tion are quite different from those through thes,0 section.
In Fig. 6 we show the prohibited region~dark shaded!, D
.0 region ~white!, and D,0 region ~light shaded! in the
X-Y plane, withs fixed to 2.5. The elliptic allowed region o
06350
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small Havr is the one discussed in relation to the futu
asymptotic form of the solution, which is expressed asX2

1Y22XY51. As Havr takes large values theD50 contour
takes complicated forms, and the region connected to
isotropic solution becomes small.

Figure 7 shows the solutions passing through theX-Y
plane of thes52.5 cross section, and the time evolution
each type is shown in Fig. 8.Havr is chosen to be 0.01, 0.05
and 0.1. AsHavr increases the nonsingular region becom
smaller, and forHavr larger than 0.1 the nonsingular solutio
completely disappears from theX-Y plane. All the singulari-
ties appearing in Fig. 7 are type I, and these singular s
tions can be extended further by usingt defined by Eq.~35!.
Just like the S1a and S1b solutions in the previous sub
tion, S1c and S1d, extended beyond the type I singular
turn back futurewards and then go into the type II singul
ity. The only difference between these and S1a,b is the
rection of time, and the former can be regarded as the ‘‘p
creation’’ of cosmological solutions, while the latter is th
‘‘pair annihilation.’’

One of the nontrivial results of our analysis, and wh
makes this model very different from ordinary universe mo
els, is that the ‘‘initial singularity’’ in the isotropic limit is
categorized into the type I singularity~see the third panel o
Fig. 7 and compare S1d and isotropic solutions in Fig.!.
This means that the singular solutions in the model propo
by Antoniadis, Rizos, and Tamvakis@3# or Rizos and Tam-
vakis @4# will, if small anisotropy is included, terminate sud
denly at finite past with finite Hubble parameter or, if e
tended usingt, turn back towards the future.

All nonsingular solutions in Figs. 7 and 8 continue to t
asymptotic solutions expanding in all directions in the p
asymptotic region. That is, the asymptotic formB1 ~dis-
cussed in Sec. II C! can be reached froms52.5 but B2
cannot. There exist solutions having the past asympt
form B2. For example, solutions through the outer wh
(D.0) region in the third panel of Fig. 3 behave asB2 in
the t→2` region. These solutions, however, go into sing
larities betweens5210 ands52.5, and do not appear in
Fig. 7 or 8.

C. Nature of the singularity

In our numerical analysis there appear two types of s
gularities, which we called type I and type II. We discuss t
nature of these singularities briefly.
6-7
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FIG. 8. Behavior of solutions appearing in Fig. 7.t50 is the time whens52.5. The initial values are chosen on thes52.5 plane as
(Havr ,X,Y)5(0.01,0.6,0.8),(0.1,0.6,0.8),(0.1,0.1,0.2), and (0.1,0.0,0.0) for NS, S1c, S1d, and isotropic examples of the solution, r
tively.
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At type I singularities the expansion rates (p,q,r ) stay
finite whereas the time derivatives of them diverge. Th
situations happen whenp,q,r;ut2tsingur with 0,r,1.
This is actually the case, and can be verified by analyz
solutions near the singularity. Although the type I singular
(D50) is a physical one, the equations of motions can
integrated regularly by using the new ‘‘time’’ parametert,
Eq. ~35!, through the type I singularity. At the singularit
p,q,r ‘‘turn around’’ ~see the solutions S1 in Figs. 5 and 8!,
meaning thatp,q, and r are multiple-valued function oft.
Sincedt5Ddt50 at the singularity, the solutions are ta
gential to t5tsing . Also, in order that the solutions chang
the chronological direction, the leading power ofp,q,r in the
expansion oft near the singularity must be even. Thus w
can expresst usingp,q,r as

t2tsing

5tp,2l~p2psing!
2l1tp,2l 11~p2psing!

2l 111•••

5tq,2m~q2qsing!
2m1tq,2m11~q2qsing!

2l1m1•••

5t r ,2n~r 2r sing!
2n1t r ,2n11~r 2r sing!

2l 1n1•••, ~36!

with l ,m,n being positive integers. By solving these wi
respect top, q, andr, we have
06350
e

g

e

p5psing1p1~ t2tsing!
1/2l1•••, ~37!

q5qsing1q1~ t2tsing!
1/2m1•••, ~38!

r 5r sing1r 1~ t2tsing!
1/2n1•••. ~39!

Thus, 0,1/2l ,1/2m,1/2n,1, andṗ5(p1/2l )(t2tsing)
1/2l 21

1•••, etc., will diverge. The behavior ofṡ is similar to that
of p, q, andr. In our numerical calculations~S1 of Figs. 5
and 8!, l ,m,n take the valuesl 5m5n51, which is the most
generic case.

In the vicinity of other types of singularities, analytic ex
pressions of the solutions are obtained by assuming pow
law behavior of the scale factors and the regularity of
modulus field, just as in the isotropic case@3#. Because of the
anisotropy, there are 3 cases of singular solutions other
the type I:

C1:p;p1 /t,q;q0 ,r;r 0 ,s;s0 ,ṡ;s1 ,s̈;s2 ,

p151,q01r 02
3

2
l

]j

]s
us0

s1q0r 050, ~40!

C2:p;p1 /t,q;q1 /t,r;r 0 ,s;s0 ,ṡ;s1 ,s̈;s2 ,
6-8
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p15q151,12
3

2
l

]j

]s
us0

s1r 050, ~41!

C3:p;p1 /t,q;q1 /t,r;r 1 /t,s;s0 ,ṡ;s1t,s̈;s1 ,

p15q15r 151,12
1

2
l

]j

]s
us0

s150, ~42!

where we have chosen the origin oft at the singularity.C1 is
the case where only one of the three expansion rates (p,q,r )
is singular,C2 two, andC3 all three. The solutionC1 agrees
well with our numerical results~S2 of Fig. 5!. Since
p1 ,q1 ,r 151 ~if not zero!, the divergent behavior is dete
mined by the sign oft; i.e., if a solution goes into a singu
larity futureward (t→20), thenp→2`, etc., and if past-
ward (t→10),p→1`, etc. Putting Eqs.~40!–~42! into Eq.
~25!, we haveD→2` for C1 andC2 but D→10 for C3.
Therefore, according to our definition of the singulariti
(D→0 for type I andD→2` for type II!, C1 andC2 will be
categorized into type II andC3 will be categorized into type
I. In the isotropic case (p5q5r ), we can show thatD.0 is
always satisfied, andC3 can be seen as a type I singular
‘‘pushed towards the infinity.’’

All of these singularities, both types I and II, are physic
singularities. This can be shown by puttingp,q,r and ṗ,q̇, ṙ
into the curvature scalarR52(ṗ1p21q̇1q21 ṙ 1r 21pq
1qr1rp).

D. Summary of numerical results

We extended the nonsingular universe model propose
Rizos and Tamvakis@4# to include anisotropy, and examine
solutions in the vicinity of the isotropic solution in boths
,0 ands.0 regions. We found both nonsingular solutio
and singular solutions. Nonsingular solutions inhabit the
gion where the anisotropy is small, and they evolve from
past asymptotic region, superinflate, and then lead eithe
Friedmann-type or to Kasner-type solutions in the futu
Singularities appearing in our analysis are classified into
types, namely, type I and type II. The type I singularity co
responds to the crossing ofD50, and ṗ,q̇, and ṙ diverge,
while p,q,r , ands,ṡ stay finite. At the type II singularity,
on the other hand,D tends to2`, and p, q and r will
diverge. The evolution of the singular solutions is charac
ized by the behavior ofD. At the origin of theX-Y plane
~isotropic solution! D is always positive regardless of th
values ofs or Havr, and as anisotropy increases there app
D,0 regions or regions prohibited by the constraint eq
tion ~11!, which is shown in Figs. 3 and 6. There are thr
types of singular solutions appearing in our analysis~if two
branches connected by a type I singularity are counted as
solution!. The first type of singular solution is marked by th
crossing of theD50 line, which we termed the type I sin
gularity, in the future. This includes S1a and S1b in Figs
and 5, and if we continue the solution beyondD50 by
changing the variable, this singular solution can be seen
pair annihilation of theD.0 and D,0 branches of solu-
tions. The D.0 branch continues from the infinite pas
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while the D,0 branch leads to a type II singularity at th
finite past. The second singular solution is very similar to
first one, except it crosses theD50 line in the past. This
solution, examples of which are S1c and S1d of Figs. 7
8, can be regarded as a pair creation of two branches.
singular solution in the isotropic model@3,4# is a special case
of this second singular solution. The third singular soluti
lies always in theD,0 region and never crosses theD50
line, i.e., includes no type I singularity. This solution is bo
in the type II singularity, and disappears into the type
singularity ~see S2 of Fig. 4 and 5!.

IV. CONCLUSION

In this paper we presented anisotropic nonsingular cos
logical solutions derived from the 1-loop effective action
the heterotic string. We found nonsingular solutions wh
evolve from the infinite past asymptotic region, superinfla
and then continue either to Friedmann-type or Kasner-t
solutions. The singular solutions of moderate anisotropy
classified into three types, and involved in these solutions
two types of singularities: one corresponds toD50 and the
other toD52`. The initial singularity in the isotropic limit
is a special case of theD50 singularity.

Violation of the energy conditions, which is necessary
avoid the singularity, is achieved by the existence of
Gauss-Bonnet term coupled to a modulus field. This can
confirmed by using the asymptotic forms~33! and ~34! for
nonsingular solutions. We define the effective energy den
and effective pressure as

e:52G0
05pq1qr1rp, ~43!

p1 :5G1
152~ q̇1 ṙ 1q21r 21qr !,

~44!

p2 :5G2
252~ ṙ 1 ṗ1r 21p21rp !,

~45!

p3 :5G3
352~ ṗ1q̇1p21q21pq!.

~46!

Assuming the asymptotic solutionA in the regiont→` and
that ṡ is always positive~in our numerical analysisṡ keeps
its sign except the singular solution S2!, the effective energy
density and pressure behave in the future asymptotic re
ase,pi;

1
2 v4

2utu22( i 51,2,3). Thus, the weak energy cond
tion e1pi;v4

2utu22.0 and the strong energy conditione
1(pi;2v4

2utu22.0 are satisfied. In the past asymptotic r
gion, on the other hand, the asymptotic solution becomeB
in which the Gauss-Bonnet term is dominant. Thene
;(v1v21v2v31v3v1)utu24 and p1;22(v21v3)utu23

2(v2
21v3

21v2v3)utu24, etc. If the weak energy condition
is satisfied, e1pi.0 for i 51,2,3, and so 3e1(pi;
24(v11v21v3)utu23 must be positive. If the strong en
ergy condition is satisfied, e1(pi;24(v11v2
1v3)utu23 must be positive. Neither of them is possible
6-9
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long as Havr;(v11v21v3)utu22/3.0. Therefore, weak
and strong energy conditions are violated in the p
asymptotic region.

One of the biggest advantages of our model is tha
includes a rather long period of~super! inflationary stage in a
natural form. However, our result, which admits the evo
tion of an almost-isotropic superinflating solution into
Kasner-type anisotropic solution~see the panel ‘‘NSb’’ of
Fig. 5, for example!, suggests that the superinflation in o
model does not isotropize the space-time. Our recent s
@7# of the cosmological perturbation for the homogeneo
o,
s.
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and isotropic background shows the existence of expone
growth in graviton-mode perturbation during the superinfl
tionary stage. Together with this we can conclude that
cosmic no-hair hypothesis@8# does not hold in this superin
flationary model. We are interested in whether this resul
common to all kinetic-driven superinflation.
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