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Calibration and sensitivity of resonant-mass gravitational wave detectors

A. Morse, W. O. Hamilton, W. W. Johnson, E. Mauceli,* and M. P. McHugh
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001

~Received 31 August 1998; published 22 February 1999!

Every gravitational wave detector needs reliable methods for quantitative tests of its performance. We have
tested the ALLEGRO gravitational wave antenna with a capacitive transducer which can apply a force to the
antenna. A model that incorporates mistuning of the two normal modes of the antenna is needed to properly
understand its operation and to explain previous discrepancies in calibration responses. We write the transfer
functions for driving point response, signal response, and noise response in terms of a parameteru which
includes all of the mistuning. Using the ‘‘reciprocity method,’’ we determineu and the force-voltage constant
of the force generator. Using diagnostic criteria developed from a full multimode description, we are able to
identify the location of an additional parasitic resonance and determine its quantitative effect on the results.
Experimental results are presented.@S0556-2821~99!02606-5#

PACS number~s!: 04.80.Nn, 95.55.Ym
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I. INTRODUCTION

Resonant-mass gravitational wave detectors are curre
in operation at several sites around the world. Resea
groups at the University of Rome and the INFN operate
EXPLORER, NAUTILIS, and AURIGA detectors@1,2#, the
research group at the University of Western Austra
~UWA! operates the NIOBE detector@3#, and our research
group at Louisiana State University~LSU! operates the
ALLEGRO detector@4#. These detectors are designed
look for the ‘‘bursts’’ of gravitational radiation that may b
emitted during the gravitational collapse of a star or the fi
seconds of a binary coalescence@5#. Such events will be
short-lived, infrequent, and of very small amplitude. If a
claim of detection for such events is to be credible, there w
need to be considerable proof that the detectors are wor
properly.

A resonant detector system is a linear, narrowband se
of gravity waves. Like any real sensor, resonant anten
have intrinsic noise sources. There are two distinct part
determination of sensitivity. First, there is a precise deter
nation of how detector output is related to a gravitatio
signal. Second, there is a measurement of the detector’s
tionary noise. The stationary noise determines the sma
signal that can be detected and the nominal uncertainty
measurement.

The first models of resonant mass gravitational wave
tectors calculated sensitivity by treating the system a
single harmonic oscillator driven by noise@6,7#. The exten-
sion of this model to multimode systems demonstrated
detector sensitivity could be improved by increasing
number of modes, first to 2@8,9#, then to 3 or more@10–12#.
These analyses concentrate on describing how fundam
noise sources appear at the output after being modified
the oscillator’s transfer function. Good agreement was
served between the results from the numerical two-m
model and the output observed from two-mode systems@13#.

*Present address: INFN Laboratori Nazionali di Frascati, Via E
rico Fermi 40, I-00044 Frascati~Roma!, Italy.
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The comparison between model and experiment requ
some theoretical estimation of the detector’s physical par
eters.

Boughnet al.showed how the response of the system t
signal can be determined without relying on any theoreti
estimates of the system’s physical parameters@14#. Their
procedure measures the signal ‘‘gain’’ of each mode o
multimode detector. The model of Boughnet al. consists of
two basic elements, a model of the antenna and transd
system used as the sensor of gravity waves and a mod
the force generator used to apply calibration signals.

Boughn et al. assumed that the bare antenna and b
transducer had the same resonant frequency and treate
two mode system as two independent antennas. In thei
sults, they reported that the two modes of the system resp
differently to equal sized calibration signals, but offered
explanation of this fact. The two modes of ALLEGRO als
respond differently to equal sized calibration signals. T
result cannot be explained if the assumption perfect tun
between the modes is kept. The modeling of Boughnet al.
leaves open the question of whether the different obser
responses result from an experimental uncertainty, so
thing unique to the systems where they have been measu
or a property of all multimode systems. By dispensing w
the assumption of a perfectly tuned antenna-transducer
tem, we show that the observed differences are a propert
all multimode systems.

Section III of this paper presents a description of a re
nant bar gravitational wave antenna completely expresse
terms of measurable parameters. This description takes
form of a set of transfer functions describing the anten
system’s response to different signal and noise sources
Sec. IV, we show that our model of the antenna and tra
ducer combined with the procedure developed by Boug
et al. determines the parameters of transfer functions for s
nal, noise, and calibration response without relying on th
retical estimates of the detector’s physical parameters. T
result also makes clear how mechanical mistuning betw
the antenna and transducer appears in the calibration pr
dure.

In Sec. V, we study the transfer function which describ
-
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the propagation of signals through the system. Historica
the relation between incident burst and detected output
been described in terms of the energy deposited in the
tenna modes@14#. With imperfect tuning, this description
can be misleading, because the burst does not deposit e
amounts of energy in both modes. In Sec. VI, we study
transfer function related to the antenna’s dominant sourc
noise, and determine how it is affected by mechanical m
tuning.

In Sec. VII, we compare the predictions of the model
the output of ALLEGRO. In the course of this examinatio
we found that a previously unexplained resonant mode in
detector response threatened substantial uncertainties in
understanding of the detector’s sensitivity. An addition
measurement was undertaken and a more comprehe
model was developed. From these, we have been abl
determine the nature of this resonance and to show that o
all detector response to a signal is quite close to the expe
value. These results demonstrate the importance of care
studying the relationships between modes in order to ve
that the detector works as designed.

II. ALLEGRO DETECTOR

The ALLEGRO detector is a resonant-mass gravitatio
wave detector designed and constructed for the purpos
directly observing gravitational radiation. The ALLEGR
system, shown schematically in Fig. 1, is similar to the ot

FIG. 1. A physical schematic of the ALLEGRO detector, i
cluding the primary inductive transducer and capacitive force g
erator.
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resonant-mass detectors currently in operation. The lar
component of ALLEGRO is a 3.0 m long solid circular cy
inder of mass 2296 kg composed of aluminum alloy 5056
is cooled to 4.2 K to reduce thermal noise and to take adv
tage of the high mechanical quality factors and superc
ducting properties of materials at low temperature.

The effect of the wave field on the antenna can be deri
from the general relativistic equation of geodesic deviat
@15#. In a system where the coordinatesj i measure distance
in the laboratory frame, a gravity wave produces an effect
force on a mass elementdm of an isotropic body given by

d fi
G5dm(

j

1

2
ḧi j ~ t !j j , ~1!

wherehi j (t) is the metric deviation in the transverse trac
less gauge describing the wave field.d fi

G has the linear
variation with position of a ‘‘tidal’’ force. Physically, Eq.~1!
implies that a gravity wave creates a stress on the bar
accelerating different parts of the bar at different rates. T
magnitude of the stress is proportional to the length of
bar.

Resonant bars are based on the principle that an inci
gravity wave excites vibrational motion in the antenna. Fro
the theory of elasticity, the vibration of a mass element of
antenna due to the net force applied by its neighbors can
described in terms of eigenfunctions determined by the sh
of the body@16#. The eigenmode amplitudes,xm(t), solve a
driven harmonic oscillator equation, wherexm(t) is a ‘‘col-
lective coordinate’’ representing coherent motion of the e
tire bar with spatial variation given by its eigenfunction@17#.

We monitor the vibration of the lowest longitudinal me
chanical resonance of the antenna and infer the sizes o
cident excitations by measuring changes in the vibratio
amplitude. If we consider the bar alone~without resonator!,
and only make measurements near the 1st mode freque
the elastic motion of the bar can be described with a h
monic oscillator equation for its first mode. Non-elas
forces, including gravitational forces, are described as ex
nal forces applied to the oscillator. Separating the non-ela
forces into gravitational and non-gravitational component

x1~ t !1v1
2x1~ t !5

1

m1
@FG~ t !1FNG~ t !#, ~2!

whereFG is the net force resulting from integrating the forc
densityd f1

G over the elastic body,FNG is the net force from
non-gravitational sources acting on the antenna, andm1 is
the effective mass of the antenna.m1 is equal to one-half of
the bar’s physical mass, resulting from equating the coll
tive coordinatex1(t) to the displacement of the end face
the antenna@17#.

A smaller mechanical resonator, also called the tra
ducer, is attached to one face of the antenna. Together
antenna and resonator form a system of two damp
coupled oscillators. The damping is small due to the use
extremely low-loss materials@18#. Since searches for burs
sources involve monitoring the system for changes crea
by impulses whose duration is much shorter than the da

-
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CALIBRATION AND SENSITIVITY OF RESONANT- . . . PHYSICAL REVIEW D 59 062002
ing time, it is a good approximation to ignore the damping
superconducting coil and superconducting quantum inter
ence device~SQUID! amplifier are used to measure the re
tive motion between the resonator and the end of the
@19#. This readout system produces a voltage directly prop
tional to the differential displacement between the ante
face and the resonator’s pick-up coil.

A capacitive transducer, or force generator, is mounte
the other end of the bar. A voltage applied to the force g
erator applies a force on the end of the bar, the size of wh
depends on the geometry of the device. The force gener
is a reciprocal device, meaning it can also be used to de
motion. In detection mode, we measure the voltages and
rents that result when mechanical forces are applied to
capacitor plates. By measuring the motion that has been
duced immediately after the antenna is excited with the fo
generator, the generator constant, defined as the ratio of
age applied at the electrical terminals to force applied at
antenna face, is determined. Once the generator consta
known, test signals of known strength are applied to the
tenna in order to calibrate the transducer and readout sys

III. NORMAL MODE TRANSFER FUNCTIONS

The model presented in this paper extends previous w
by treating the coupled antenna-transducer as a single d
tor component possessing two degrees of freedom. In
way, we determine a transfer function describing the mot
of the transducer~the observable motion! in terms of force
applied to the bar~the physically interesting source!. A sec-
ond transfer function describes the motion of the transdu
in terms of a force applied directly to the transducer~a domi-
nant noise source!. A third transfer function, describing th
calibration procedure, describes the motion of the ante
face in terms of the force applied to the antenna.

The ideal detector is built from an antenna and reson
with identical resonant frequencies. In practice, perfect t
ing between the components is nearly impossible to achi
The normal mode description of detector operation combi
the effects of imperfect tuning into a single parameter co
mon to all of the transfer functions. By combining the no
mal mode solution for the coupled antenna-transducer w
the impedance matrix calibration procedure of Boughnet al.,
we obtain several new results. We explain how mistun
between the antenna and transducer causes the differen
sponses observed during calibration of the force genera
We show how this measurement allows the mistuning
rameter and the effective mass of the transducer to be ex
mentally determined, and we quantify the effects of mistu
ing on signal propagation and detector noise processes.

At this point, the following conventions are adopted a
used throughout this paper.X̃ represents the Fourier tran
form of X(t). The Fourier transform of an external forc
applied to the bar is represented byF̃1 . In this context, ex-
ternal means any force not created by the antenna-transd
interaction.F̃2 represents an external force applied direc
to the transducer.x̃1 represents the inertial displacement
the bar resulting fromF̃1 and/or F̃2 , and x̃2 represents the
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inertial displacement of the transducer resulting fromF̃1

and/orF̃2 . Also, from this point on, since all of the phys
cally interesting motion of the system is longitudinal, th
equations of motion are written in one dimension.

The coupled oscillator model of an antenna and resona
assuming that damping is small enough to be ignored
pictured schematically in Fig. 2. In terms of mas
normalized coordinates, defined byx5Mu , where

M5F 1

Am1

0

0
1

Am2

G , ~3!

the equations of motion of the coupled oscillators are

ü52Ku1MF . ~4!

The displacement of the antenna face is given byu1 . The
displacement of the transducer is given byu2 . The matrixK ,
called the mass-normalized elastic matrix, is equal to

K5F2S v1
21

m2

m1
v2

2D Am2

m1
v2

2

Am2

m1
v2

2 2v2
2 G , ~5!

where v25k2 /m2 is the uncoupled resonant frequency
the resonator.F contains the external forces acting on t
system,

F5FF1

F2
G . ~6!

Since the matrixK is both real and symmetric, we ca
rewrite Eq.~4! in terms of normal coordinates. The transfo
mation from mass-normalized coordinates to normal coo
nates is a rotation; we denote the rotation matrix asA. Math-

FIG. 2. The two-mass and two-spring model of a gravitatio
wave antenna and resonant transducer, including a two-port re
sentation of the force generator.
2-3
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ematically, the matrixA diagonalizes the matrixK so that
KA 5AD, whereD is the diagonal matrix of eigenfrequen
cies,

D5Fv1
2 0

0 v2
2 G . ~7!

Since this system has two degrees of freedom, the rotatioA
is characterized by a single parameteru, the ‘‘mixing-
angle,’’

A5F cosu sinu

2sinu cosuG . ~8!

The relationships between the inertial parameters and
mal mode parameters of a two-mass–two-spring model
obtained from the matrix form of the equationK5ADA21,

F2S v1
21

m2

m1
v2

2D Am2

m1
v2

2

Am2

m1
v2

2 2v2
2 G

5F2v1
2 cos2 u2v2

2 sin2 u ~v1
2 2v2

2 !sinu cosu

~v1
2 2v2

2 !sinu cosu 2v1
2 sin2 u2v2

2 cos2 u
G .

~9!

The value ofm1 has been independently measured, leav
three unknowns in the left side of Eq.~9!. Solutions of Eq.
~9! reveal that the value of the mixing angle depends up
both the frequency difference and mass ratio of the bare
tenna and the bare transducer. Perfect tuning, where
modes behave identically except for a difference in pha
corresponds to the coupling of a finite mass to an infinite
mal mass of an identical resonant frequency. The mix
angle in this case is 45°. If the current version of ALLEGR
was constructed from an antenna and transducer of iden
frequenciesv15v2'900 Hz, the finite mass ratiom1 /m2
'1800 would produce a mixing angle of 44.7°, a very go
approximation to perfect tuning. In reality, the approximate
12 Hz frequency difference between components
ALLEGRO in combination with the finite mass ratio leads
a mixing angle of approximately 30°.

In terms of the mass-normalized coordinates, the nor
coordinates for the coupled oscillator system arey5ATu,
whereAT denotes the transpose of the matrixA. Each com-
ponent ofy satisfies a harmonic oscillator equation@20#. Us-
ing a Fourier transformation, we rewrite the rotated vers
of Eq. ~4! as an algebraic equation,ỹ5DATMF̃ , where the
matrix D is the diagonal matrix of harmonic oscillator re
sponse functions,

D5F 1

v1
2 2v2 0

0
1

v2
2 2v2

G . ~10!
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Transforming back to the inertial coordinates measured
the readout system,x̃5MAỹ , the response of either mass
a set of externally applied forces is

x̃5MA DATMF̃ . ~11!

The utility of Eq.~11! is most obvious when it is rewritten
in matrix form. The five-matrix productMA DATM is equal
to a single 232 matrix. We denote this matrix asG, where

F x̃1

x̃2
G5FG11 G12

G21 G22
GF F̃1

F̃2
G . ~12!

Expressed in terms ofm1 , m2 , v1 , v2 , andu, the matrix
elements are

G115
cos2 u

m1~v1
2 2v2!

1
sin2 u

m1~v2
2 2v2!

, ~13!

G125G215
2sinu cosu

Am1m2~v1
2 2v2!

1
sinu cosu

Am1m2~v2
2 2v2!

,

~14!

G225
sin2 u

m2~v1
2 2v2!

1
cos2 u

m2~v2
2 2v2!

. ~15!

Each matrix element in Eq.~12! is a transfer function de-
scribing the displacement of the antenna or transduce
terms of externally applied forces. Each transfer function i
superposition of the response at the two mode frequenc
The motion of either mass is a superposition of respon
from forces applied at the two driving points.

IV. DRIVING POINT RESPONSE

The driving point response of the detector describes
motion of the face of the antennain response to a force
applied to the antenna. The driving point response is imp
tant because a resonant mass gravitational wave anten
calibrated by applying forces to the antenna face using
force generator. The transfer function which describes
driving point response isG11. The force on the antenna i
equal and opposite toFp , the force caused by the forc
generator, so thatF̃152F̃p ~the sign difference arises from
a standard convention that power flows into the force g
erator@21#!,

x̃15S cos2 u

m1~v1
2 2v2!

1
sin2 u

m1~v2
2 2v2! D ~2F̃p!. ~16!

Calibration in this manner requires accurate determination
the generator constant, which is the ratio between volt
applied to the capacitor and resulting force applied to
antenna. Boughnet al. showed how the energy-coupling co
efficient between force generator and antenna can be d
mined through use of the reciprocity relation connecting
‘‘sending’’ and ‘‘receiving’’ modes of transducer operation
This method has the advantages that it can be performein
situ and that it requires only straightforward electrical me
2-4
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surements. In what follows, we present a detailed acco
showing how inclusion of the normal-mode model of t
antenna improves the utility of the procedure developed
Boughn et al. The improved antenna-transducer model
lows measurement of the mixing angle and of the force
voltage constant of the force generator.

A complete yet compact way to combine the norm
mode picture of the antenna and transducer with the beha
of the force generator is with an impedance matrix repres
tation @21#. In this representation, the force generator is
scribed in terms of the currents and voltages passing thro
an electrical port, and the forces and velocities at a mech
cal port. The antenna-transducer system is a load termina
the mechanical port. The impedance matrix relates volt
Ṽp and currentĨ p to force F̃p and velocity iv x̃p . These
quantities are chosen since, at either end, their product is
power passing through the port. We note that when oper
with a small ac voltage applied in addition to a constant
voltage, the capacitive force generator is a linear device
the Fourier domain,

F F̃p

Ṽp
G5FZ11 Z12

Z21 Z22
GF iv x̃p

Ĩ p
G . ~17!

The Zi j ’s are rational polynomials which can be represen
in terms of poles and zeros. For a broad class of transdu
including the force generator mounted on ALLEGRO,Z12

52Z21* . Since we ignore losses, this impliesZ125Z21.
When a voltage is applied to the force generator, the

sponse of the antenna face is~see the Appendix for the proo
of this!

x̃15S cos2 u

m1~v1
2 2v2!

2
sin2 u

m1~v2
2 2v2! D S 2Z12

Z22
D Ṽp . ~18!

Equation~18! implies that the amount of force applied to th
antenna is given by the product ofṼp andZ12/Z22. The ratio
Z12/Z22 evaluated atv6 , which we denote asZ(v6), is the
voltage to force constant of the force generator atv6 ,

Fp~ t !5Z~v6!Vp~ t !. ~19!

The time domain response of the antenna face,x1(t), is
given by the convolution of the system’s impulse respo
with Vp(t). The impulse response of the force generat
antenna-transducer combination, which we denote asR(t), is
the inverse Fourier transform of the product of the first t
factors on the right side of Eq.~18!,

R~ t !5
1

m1
SZ~v1!cos2 u

v1
sin~v1t !

1
Z~v2!sin2 u

v2
sin~v2t ! D . ~20!

For a sinusoidal voltage of amplitudeV0 and durationT, the
antenna’s response~at times greater thanT) is
06200
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x1~ t !5E
0

T

V0 sin~v1t8!R~ t2t8!dt8. ~21!

Assuming that losses in the force generator are negligi
the amplitude of the antenna face in response to a wave
at v1 is

x1~ t !5
V0TZ~v1!cos2 u

m1v1
cos~v1t !. ~22!

For a driving force atv2 , the response is

x1~ t !5
V0TZ~v2!sin2 u

m1v2
cos~v2t !. ~23!

Equations~22! and ~23! imply that a sinusoidal voltage ap
plied to the force generator at either resonance freque
sends the antenna face into simple harmonic motion.

When the driving voltage is disconnected and the fo
generator is shorted, the oscillations of the antenna face d
a current through the electrical port of the force genera
The driving oscillation is given by Eq.~22! after an excita-
tion of the plus mode and by Eq.~23! after an excitation of
the minus mode. The current passing through the electr
port is given by solving Eq.~17! with Ṽp50. The amplitude
of this current in the time domain is determined by taking t
inverse Fourier transform of the result. When the drivi
term x̃1 is monochromatic,I p6(t) is

I p6~ t !5Z~v6!ẋ1~ t !. ~24!

Substituting Eq.~22! into the above equation, functions fo
I p6(t) for each mode are obtained:

I p1~ t !5
V0TZ 2~v1!cos2 u

m1
sin~v1t !, ~25!

I p2~ t !5
V0TZ 2~v2!sin2 u

m1
sin~v2t !. ~26!

To concisely express the relationships between the m
surements and the model, the directly measured quant
~V0 , T, the amplitude ofI p6) are combined into a single
parameter for each mode labeledg1 andg2 ,

g65S 2
I 06

V0TD . ~27!

By substitutingg1 andg2 into Eqs.~25! and ~26! the rela-
tionships between the mode responses of ALLEGRO and
transfer function parameters are

g15
Z 2~v1!cos2 u

m1
, ~28!

g25
Z 2~v2!sin2 u

m1
. ~29!
2-5
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The differences betweeng1 andg2 observed in both the
Stanford detector and ALLEGRO are thus explained a
function of the mechanical mistuning. SinceZ(v1) and
Z(v2) should be equal, the mode amplitudes are equal o
when u'45°. If the antenna and transducer have differ
uncoupled resonant frequencies, this condition is not tru

V. SIGNAL RESPONSE

In this section, we consider the response of the detecto
a signal. The signal response of the detector describes
motion of thetransducerin response to a force applied to th
antenna. Driving the antenna with a gravity wave is an ex
tation whereFsig(t)5F1(t)@F2(t) over the duration of the
signal. The motion detected by the readout system is a v
age proportional to the differential displacement of the re
nator, x2(t)2x1(t). Sincem1@m2 , this response is domi
nated by the transfer functionG21,

x̃25S 2sinu cosu

Am1m2~v1
2 2v2!

1
sinu cosu

Am1m2~v2
2 2v2!

D F̃sig .

~30!

Comparing Eq.~30! to the Fourier transform of Eq.~2!
shows how much is gained by the addition of a reson
transducer. For a bare bar, the response to a signal in
Fourier domain is

x̃15
1

m1~v1
22v2!

F̃sig . ~31!

Comparing Eq.~31! to Eq. ~30! illustrates the mechanica
gain resulting from use of a resonant transducer. The am
tude of oscillation of each mode of the transducer is a fac
of Am1 /m2 sinu cosu larger than the amplitude of a bar
bar. In either mode, the maximum gain occurs whenu
'45°, so that sinu cosu5.5. As the two modes beat in an
out of phase, the maximum displacement of the transduc
the sum of the maximum displacements of the individ
modes. For ALLEGRO, the maximum gain isAm1 /m2, ap-
proximately a factor of 40.

This equivalence of theu dependent factor in the plus an
minus mode terms implies that an excitation of the bar p
duces approximately equal mode amplitudes, regardles
any mistuning between the bar and the transducer. This
ambiguous prediction of the model is an important diagn
tic. If the motion of resonant bar gravitational wave antenn
is truly that of coupled harmonic oscillators, both mod
must respond to broadband excitations with equal am
tudes. This is a test to see if the system has been constru
properly, as well as a veto criteria for eliminating spurio
events during operation.

For purposes of calibration, a gravity wave is mimick
by applying a short-duration voltage, or calibration pulse,
the force generator. The voltage produces an impulse on
of the detector’s resonant modes. The effect of the impu
on the motion of the transducer is measured using the
modulation scheme shown in Fig. 3. The voltage output
the detector is mixed with a reference signal between
06200
a

ly
t

to
he

i-

lt-
-

t
he

li-
r

is
l

-
of
n-
-
s

s
i-
ted

o
ch
e
e-
f
-

quenciesv1 andv2 , moving the information contained in
the resonant modes into a frequency band centered a
After being passed through an anti-aliasing filter, the volta
is then sampled every 8 ms. The now digitized signal
mixed with a reference signal that moves one of the reson
modes to zero frequency. This dc signal is digitally filtered
optimize the signal to noise ratio@4#. The same procedure i
repeated for the other mode. The digital filter is optimiz
for identifying sudden changes in the sampled output v
age.

This procedure is best understood by noting that a sh
duration impulse causes a sudden change in the ampli
and phase of the Brownian-driven oscillations of the b
This is reflected in a sudden change in the amplitude
phase of the motion of the transducer. The demodula
scheme divides the real-valued oscillations of the ante
into in-phase and quadrature components measured with
spect to the reference signal. The amplitudes of the in-ph
and quadrature channels contain all of the magnitude
phase information about the original time-domain sign
@22#. Between any two samples, the change in amplitude
the in-phase component is proportional to the Fourier s
transform of the driving force on the oscillator at that insta
while the change in amplitude of the quadrature compon
is equal to the Fourier cosine transform of the driving forc
We define the complex sum of the components as the c
plex amplitude. By looking for sudden changes in the co
plex voltage amplitude of the transducer’s oscillations w
the digital filter, both the magnitude and the phase of
transducer’s time-domain oscillations are used in detectin
signal.

At each sampling time, the output of the digital filter is
discrete number of bits~referred to as digital units!. The
exact number of digital units produced when the antenn
excited depends on the antenna-transducer transfer func

FIG. 3. Block diagram of the demodulation and readout sche
used to acquire ALLEGRO data.
2-6
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CALIBRATION AND SENSITIVITY OF RESONANT- . . . PHYSICAL REVIEW D 59 062002
the analog to digital conversion, and any gains introdu
during demodulation and filtering. By applying calibratio
pulses of different voltages, we determine that the numbe
digital units produced varies linearly with the voltage appli
to the force generator. We are also able to determine
constant of proportionality between voltage applied with
force generator and digital units measured at the readout
tem. With the voltage-to-digital unit constant known, we u
Eq. ~19! to normalize the output from the readout system
terms of force applied to the antenna.

Ultimately, we wish to normalize the output of the rea
out system in terms of the strength of an incident grav
wave. In the frequency domain, the force applied to the
tenna by an interaction with a gravity wave is given by t
Fourier transform of Eq.~1!,

F̃G~v!52
1

2
m1l 1v2h̃~v!, ~32!

where h̃(v) is the Fourier transform of the dimensionle
strain of the gravity wave signal, andl 1 is the effective
length of the antenna. For the purpose of calibration, i
convenient to define a standard reference signal@9#. A can-
didate event is assigned the amplitude that is produced
single cycle of a sine wave at the frequency where it is
tected. The Fourier components of the reference signal a

h̃~v6!5
phG

v6
, ~33!

wherehG is the amplitude of the reference signal. Comb
ing Eqs.~19!, ~32! and~33!, the digital output of the detecto
can be normalized in terms of dimensionless strain. Gi
that we measureDcal digital units in response to a single
cycle calibration pulse ofVcal volts ~zero-to-peak!, we as-
sign a burst amplitude of

hG5A2Z~v6!Vcal

v6
2 m1l 1

S Dobs

Dcal
D , ~34!

to an output ofDobs digital units observed at the reado
system.

Although the force applied to each mode by a broadb
signal is roughly equal, the energy deposited into each m
is not. This is physically explained by considering the tra
fer of energy between coupled oscillators. A complete tra
fer of energy between two coupled oscillators occurs only
a perfectly tuned system. If the oscillators are not perfec
tuned, only a portion of the energy is transferred. Since
signal readout depends primarily on the motion of t
smaller mass transducer, the observable quantities con
only a fraction of the total energy deposited in the system

In normal coordinates, the energy present in a two-ma
two-spring system isE5 ẏTẏ/21yTDy/2. In terms of a de-
tector’s physical parameters, the energy deposited in the
tem by a gravity wave of finite duration is
06200
d

of

e
e
s-

y
-

s

a
-

e

-

n

d
de
-
s-
n
y
e

ain

–

s-

E5
1

8
m1l 1

2@ uh̃~v1!u2v1
4 cos2 u1uh̃~v2!u2v2

4 sin2 u#.

~35!

This result implies that some caution must be exercised
interpreting signal strength conventions which refer to e
ergy. Established burst energy conventions treat the
modes of the detector as two independent antennas and
response of either antenna to a signal is assumed to be
tical. Equation~35! shows that this is not the case. An
broadband excitation deposits different amounts of ene
into each mode of a mistuned detector. The energy depos
into an individual mode cannot be assigned unless the m
tuning parameter is known. By using the strain convent
defined in Eq.~34!, derived from considering the force ap
plied to the detector, the strength of a gravity wave is e
pressed for either individual detector mode without any r
erence to antenna dependent mistuning.

VI. TRANSDUCER FORCE NOISE RESPONSE

Experiments on early generations of inductive transd
ers, as well as on the ALLEGRO system, confirm that th
are two separate sources of dissipation in the transducer
contribute to noise. According to the fluctuation-dissipati
theorem, thermal noise generated in the transducer is rel
to losses inversely proportional to its mechanical quality f
tor. A second source of dissipation results from electri
losses that occur in the transducer~in spite of the fact that the
system is superconducting!. The specific mechanism behin
the electrical losses is not well understood. These t
sources of noise, the result of forces acting directly on
transducer, are called transducer force noise. At the de
tor’s resonant frequencies, the transducer force noise is m
greater than the noise originating in the dc SQUID amplifi
The SQUID white noise, added in series to the output of
transducer, is the dominant noise source off-resonance.

The transducer force noise response describes the mo
of the transducer in response to forces applied directly to
transducer. The forces acting on the transducer are mod
as a series of stochastic impulsesF2(t)5Fn(t). The spectral
density of Fn(t), denoted bySnn(v), is white. Stochastic
forces within the antenna are neglected because it has
experimentally determined that the transducer is much m
lossy than the antenna. Stochastic forces from the transd
on the antenna can be neglected because the inertial m
of the antenna is smaller due to its larger mass. The tra
ducer force noise response is described by the transfer f
tion G22.

Since the decay time of either mode is on the order of t
or hundreds of seconds, the effects of damping canno
neglected when considering noise. The effects of damp
are considered by including an imaginary damping term
the denominator ofG22,

x̃25S sin2 u

m2S v1
2 1

iv

t1
2v2D 1

cos2 u

m2S v2
2 1

iv

t2
2v2D D F̃n .

~36!
2-7
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MORSE, HAMILTON, JOHNSON, MAUCELI, AND McHUGH PHYSICAL REVIEW D59 062002
The size of the damping term is inversely proportional to
measured decay time of the mode. The decay times ca
experimentally determined by observing the mode am
tudes for several minutes after they are excited with a la
impulse. For ALLEGRO, the plus mode has a decay time
t1'80 s, and the minus mode has a decay time oft2

'50 s. The spectral density of the noise driven oscillatio
of the transducer is given by

S22~v!5
sin4 u

m2
2

Snn~v!

~v22v1
2 !21

v2

t1
2

1
cos4 u

m2
2

Snn~v!

~v22v2
2 !21

v2

t2
2

. ~37!

The spectral density at a mode frequency is measure
constructing the autocorrelation function of the transdu
output. The autocorrelation function ofx2(t) is defined as
the expectation value of the productx2(t)x2(t2t8). By the
Wiener-Khintchin theorem, the autocorrelation function
equal to the inverse Fourier transform of the power spect
of a stochastic process. If a passband filter is applied to
output of the transducer so that only data near the plus m
is kept,^x2(t)x2(t2t8)& is equal to the inverse Fourier tran
form of the the first term of the right-hand side of Eq.~37!.
Evaluating this expression att850 @23#,

^x2~ t !&15
Snn~v1!t1 sin4 u

2m2
2v1

2 . ~38!

Similarly, for data from the minus mode,

^x2~ t !&25
Snn~v2!t2 cos4 u

2m2
2v2

2 . ~39!

By definition, the autocorrelation function evaluated att8
50 is the mean-squared value of the transducer’s displ
ment. Although both modes are driven by the same stoc
tic force, we expect to observe different mean-squared
placements of the modes in the absence of any la
impulses. Since the signal response of both modes is eq
this implies that one mode is more sensitive than the othe
a mistuned system.

It should be noted that the magnitude of the mean squa
displacement of the transducer can be calculated using
equipartition theorem if both modes are allowed to fre
decay. However, in actual operation, detectors using ind
tive transducers are run with constant feedback from
SQUID applied to the antenna face via the force generato
avoid instabilities. The feedback causes the decay time
each mode to be different, and the conditions for the eq
partition theorem do not hold.

Equations~38! and ~39! add to our diagnostic tools. Th
ratio of the two autocorrelation functions provides a seco
measure of the mixing angle, providing a test of the con
tency of the model. Knowing the mixing angle, the mag
tudes of the autocorrelation functions provide another m
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sure of how close our system is to being limited by t
fundamental noise sources predicted by the fluctuati
dissipation theorem.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we briefly review the procedure and th
present the different ALLEGRO outputs relating to the no
mal mode transfer functions. The presentation of the d
makes apparent the fact that the ALLEGRO system p
sesses a third resonant mode. In addition to its two desig
modes at 895.414 Hz and 919.659 Hz, ALLEGRO has
third mode with a resonant frequency of 887.742 Hz. Fir
we attempt to explain the results with a purely two-mo
model, but show that this explanation is incomplete. By e
tending the model, it is possible to identify the physical l
cation of the extra mode and make quantitative prediction
its effect.

The driving point response for each mode, including t
extra mode, was measured by the procedure describe
Sec. IV. In three separate measurements, 25-s wave train
20 volts zero-to-peak were applied~in addition to 150 dc
volts! to the plus mode, minus mode, and extra mode. I
mediately after, the current driven through the force gene
tor was measured with a lock-in amplifier. Figure 4 show
plot of the amplitude of the current versus time for ea
measurement. The ratio of current measured at the plus m
to the minus mode was approximately 2 to 1. The extra m
shows the largest response, nearly an order of magni
larger than the response of the minus mode.

The signal response of ALLEGRO was measured by
plying one cycle of a sine wave of 2.0 V peak-to-peak to t
antenna with the force generator. Figure 5 shows spectr
20-s intervals of ALLEGRO’s output before and after th
impulse was applied to the bar. Figure 6 shows seve
cycles of ALLEGRO’s demodulated output acquired imm
diately after the impulse was applied. The data have b
shifted in frequency to produce a graph of the real-time

FIG. 4. Current measured through the force generator ve
time after the antenna has been excited with a 25-s wave t
through the force generator.
2-8
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CALIBRATION AND SENSITIVITY OF RESONANT- . . . PHYSICAL REVIEW D 59 062002
sponse of the detector. Three sine waves, shown in Fig
are required to reconstruct this signal. The frequencies,
plitudes, and decay constants of the fitted waves were
tracted from the data using a lock-in amplifier. The only fr
parameter is the initial starting time. Subtracting these th
sine waves from the actual data shows that these three
quency components account for most of ALLEGRO’s
sponse to a burst.

It is important to note that Eq.~30! predicts that the plus
and minus mode amplitudes should be equal immedia
after the bar is hit with a large impulse. ALLEGRO does n
show this behavior. After the impulse has been applied,
amplitude of the minus mode is consistently larger than
amplitude of the plus mode. Repeated measurements m
immediately after exciting the antenna show that the p
mode has only (0.8260.03) percent of the amplitude of th
minus mode. This result will be explained later.

FIG. 5. The spectral density of ALLEGRO’s output~a! before a
‘‘calibration pulse’’ or artificial gravity wave is applied and~b!
after a calibration pulse is applied. These plots clearly show
presence of a third mode near 887.7 Hz.

FIG. 6. The real-time response of ALLEGRO to an appli
impulse. The solid line is actual data. The circles are the result
fit.
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First, we note that the digital filtering does work as d
signed. Using the force generator, single cycle calibrat
pulses with voltages of 1.0, 2.0, and 3.0 V and frequen
907.53 Hz were applied approximately 10 s apart from o
another~this is equal to applying dimensionless strains
3.3310216, 6.5310216, and 9.8310216 to the bar!. The top
half of Fig. 8 shows the samples of the in-phase channe
demodulated transducer voltage. The bottom half of Fig
shows the corresponding filtered output of the minus mo
The filtered output is a maximum at the samples correspo
ing the times when pulses were applied, and the height
the peaks are proportional to the applied voltage. Figur
demonstrates that the filter responds to a sudden chang
mode amplitude, not simply to the size of the voltage amp
tude.

Figure 9 is a plot of the in-phase versus quadrature m
amplitudes for the plus mode for the calibration pulses
plied in Fig. 8. Initially, the antenna was at rest, and t

e

a

FIG. 7. ~a!, ~b!, and ~c! are the fitted components o
ALLEGRO’s response to an impulse extracted from the data. Th
three sine waves were subtracted from Fig. 6, producing the res
als shown in plot~d!.

FIG. 8. Comparison of the digitized raw voltage output a
digitally filtered output from ALLEGRO.
2-9
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MORSE, HAMILTON, JOHNSON, MAUCELI, AND McHUGH PHYSICAL REVIEW D59 062002
amplitudes of both channels were nearly zero. When
1.0-V pulse was applied, both amplitudes jumped. The a
plitudes then very slowly began to decay towards zero u
the 2.0-V pulse was applied. Even though the change
time-domain amplitude after the 2.0-V pulse was mu
smaller than the change in time-domain amplitude in
sponse to the 1.0-V pulse~see Fig. 8!, the digital filter still
identified the second pulse as the larger of the two. Thi
because the filter responds to both the magnitude and p
of oscillation, contained completely in the amplitudes of t
in-phase and quadrature channels. The change in com
amplitude goes linearly with force applied to the oscillat
which goes linearly with the voltage applied to the for
generator. The height of the filtered output peaks is prop
tional to the magnitude of the jump in phase space.

Figure 10 shows measured autocorrelation functions

FIG. 9. A plot of the in-phase component versus the quadra
component of the minus mode for the data shown in Fig. 8. T
height of the peak produced by the digital filter is proportional
the change in the mode amplitude.

FIG. 10. Autocorrelation functions of ALLEGRO’s noise o
day 011 of 1998, a day when no large bursts occurred.
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the plus and minus modes. These plots were generated u
1 day’s worth of data~day 011 of 1998!, decimated to a rate
of one sample per second. There were no large burst ev
on this day. The absolute values on they axis of both graphs
are accurate to approximately 10% due to uncertainties in
parameters needed to find the digital units to transducer
plitude coefficient. The peak of each of these graphs is eq
to the mean-squared displacement of the transducer in
absence of any large impulses applied to the bar.

A. Two mode model

In a true two mode system, the measurement of
driving-point response of the two modes uniquely determi
the values of the generator constant and the mixing an
Solving Eqs.~28! and ~29! assuming thatZ(v1)5Z(v2),
the voltage-to-force constant and the mixing angle are

tanu5Ag2

g1
, ~40!

Z~v6!5Am1~g11g2!. ~41!

With known values forv1 , v2 , andu, values for the un-
coupled parametersv1 , v2 , andm2 can be determined from
Eq. ~9!. The left side of Eq.~9! is the model of the system’s
elastic behavior. The right side is a matrix of experimenta
determined numbers. Since the value ofm1 has been inde-
pendently measured, there are three equations for three
knowns. Using measured ALLEGRO values forg1 andg2

~shown in Table I!, Eq. ~40! yields a mixing angleu
536.0°. Using this value foru, Eq. ~9! yields an uncoupled
antenna frequency ofv152p3911.65 rad s21, an un-
coupled transducer frequency ofv252p3903.86 rad s21,
and a transducer effective mass ofm250.75 kg.

With known values forZ(v6), u, andm2 , the value of
the sensor constant can be determined. The sensor const
the constant of proportionality between the inertial displa
ment of the transducer measured in meters and the di
units of voltage recorded by the data acquisition syste
From the relationx̃25G21F̃1 , we know the amplitude of
oscillation of the transducer for a given force applied to t
antenna. From Eq.~19! we know the force applied to the ba
for a given voltage. By combining these two relations, t
oscillation of the transducer in response toN cycles ofV0
volts applied to the force generator is expressed in meter

x2~ t !5
pV0NZ~v6!sinu cosu

Am1m2v6
2

cos~v6t !. ~42!

The transducer’s digitally recorded amplitude of oscillati
in response to a calibration pulse is normalized using
~42!.

The experimental results are not consistent with the t
mode model. As stated before, the amplitude of the p
mode is only 0.82 that of the minus mode after an excitati
The model predicts that the amplitudes of excitation sho
differ only by the ratio of the mode frequencies, which diff
only by approximately one percent. The large difference

re
e
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CALIBRATION AND SENSITIVITY OF RESONANT- . . . PHYSICAL REVIEW D 59 062002
mode responses leads to different sensor constants fo
plus and minus modes. This is physically unreasonable.
nally, the ratio of autocorrelation functions predicted by t
ratio of Eq.~39! to Eq.~38! is 2.4 while the measured ratio i
6.5. The presence of the extra mode cannot be neglecte

B. Three mode model

There are two possible physical locations for the ex
mode. It can either be an extra resonance in the ante
transducer system of Eq.~12!, or an extra resonance in th
force generator of Eq.~17!. Because the antenna-transduc
force generator system is mechanically isolated~and sealed
in a cryogenic dewar!, it is not feasible to apply forces di
rectly to different parts of the hardware in order to determ
the location of the resonance. In spite of this difficulty, the
is ample evidence showing that the extra mode is due
parasitic resonance in the force generator.

The key to isolating its location is the fact that the amp
tude of the extra mode’s driving point response is sign
cantly larger than the amplitude of the driving point r
sponses of the plus and minus modes while its sig
response~the height of its peak in Fig. 5! is relatively small.
No third mass and spring added to the antenna-transd
using reasonable effective masses and spring constan
describe the detector produces this behavior. Furthermore
additional resonance added to the model of the anten
transducer near the minus mode frequency lowers the am
tude of the minus mode relative to the amplitude of the p
mode; the observed fact is that the amplitude of the mi
mode is always larger than the amplitude of the plus mod
response to an excitation. The large driving point respo
from the extra mode results from the fact that the curren
Eq. ~24! is being measured with an instrument which is re
nant at the frequency of the extra mode. Finally, during
original assembly of ALLEGRO, a resonance was obser
at approximately 865 Hz~at room temperature! after the
force generator was mounted on the bar. Since resonan
quencies change as a function of temperature, it is not
likely that this resonance moved upward towards the
signed modes of the detector.

A resonance in the force generator implies that the va
of Z~v! is not constant near the extra mode’s resonant
quency; the behavior of the force generator must be
scribed by a voltage-to-forcefunction rather than a voltage
to-force constant. Qualitatively, the resonance in the forc
generator does not change how we describe the mecha
relationships between the plus and minus modes; it o
changes the ratio of force generated to voltage applied w
applying calibration signals. This is quantitatively demo
strated in the Appendix.

Although each mode now has its own voltage-to-for
constant, the reciprocity relation still holds. The voltage-
force function of the force generator is identical to
velocity-to-current function. The driving point responses
the modes are characterized by

g15
Z 2~v1!

m1
~cos2 u1e1!, ~43!
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g25
Z 2~v2!

m1
~sin2 u2e1!. ~44!

wheree1 is a small correction term arising from the forc
generator’s effect on the resonant behavior of the ante
~explained in detail in the Appendix!. Since Z(v1)
ÞZ(v2), the voltage-to-force constant is not proportional
the square root of the sum ofg1 and g2 . There are now
three unknowns involved in these two measurements,
additional information is required to complete the calibr
tion.

The required information is the amplitude ratio of th
modes read out at the transducer in response calibra
pulse. The mode excitation observed at the transducer is
rectly proportional to the force applied, but because of
force generator resonance, each mode receives a diffe
force in response to the same voltage pulse.P1 andP2 , the
amplitudes of the modes after an excitation, are proportio
to

P1}
2Z~v1!sinu cosu

Am1m2v1

~11e2!, ~45!

P2}
Z~v2!sinu cosu

Am1m2v2

~11e2!. ~46!

The ratio of Eqs.~45! and ~46!, using the measured value
for P1 andP2 , along with Eqs.~43! and~44!, provide three
equations for the three unknownsZ(v1), Z(v2), andu.

The modified expressions for voltage-to-force consta
and mixing angle due to the resonant force generator ar

Z~v1!5Am1Fg11S v1P1

v2P2
D 2

g2G , ~47!

Z~v2!5
v2P2

v1P1
Z~v1!, ~48!

tanu5
v1P1

v2P2
Ag2

g1
. ~49!

Using the corrected value for the mixing angle, the u
coupled ALLEGRO parameters can be determined from
~9!. The results are shown in Table I. They are in good agr
ment with previous measurements made on the system@19#.

With the generator constant determined, we normalize
output of the digital filter in terms of dimensionless stra
created by the reference waveform defined in Sec. V. T
sensitivity of either mode is defined by its noise amplitud
the average of a large number of filtered output sample
the absence of any abnormally large bursts. As the res
from the two modes provide two independent estimates
the size of the signal, statistically combining them improv
the accuracy of our estimate. The expected distributions f
two-mode detector and how to combine the results from
2-11
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TABLE I. Measured ALLEGRO parameters.

Antenna mass m151148 kg
Plus mode frequency v152p3(919.659 Hz)
Minus mode frequency v252p3(895.414 Hz)
Extra mode frequency vX52p3(887.742 Hz)

g15(2.2260.09)310214 mho/s
g25(1.1760.05)310214 mho/s

Plus/minus signal response ratio P1 /P250.8260.03
Minus/extra signal response ratio P2 /PX54.460.2
Plus mode generator constant Z(v1)5(5.960.1)31026 N/V
Minus mode generator constant Z(v2)5(7.060.2)31026 N/V
Two-mode mixing angle u5(30.562.5)o

Uncoupled antenna frequency v15(913.8360.76) Hz
Uncoupled transducer frequency v25(902.5860.79) Hz
Transducer effective mass m25(0.6460.05) kg
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different modes are discussed in detail elsewhere@4#. As of
1998, the average strain noise amplitude of ALLEGRO
1310218.

Using the modified expressions for mixing angle a
voltage-to-force constant, Eq.~42! can be used to determin
the sensor constant. In its current operating state, one di
unit of ALLEGRO output is equal to 1.1310217m of trans-
ducer displacement. This same constant is calculated for
modes. Given the mechanical gain due to the transducer,
is equivalent to measuring a strain creating a displacemen
2.6310219m with a bare bar.

The ratio of the mean-squared displacements is appr
mately 6.5, consistent with a mixing angle of 29.4°, with
the experimental uncertainty of the driving point measu
ment of u. Assuming that the noise force is given by th
fluctuation-dissipation theorem, this driving force has a sp
tral density ofSnn(v)54kbTm2v6 /Q2 , where Q2 is the
mechanical quality factor of the transducer, equal to appro
mately 1.53106, and T is the physical temperature of th
bar, 4.2 K. Given the set of antenna parameters determ
from the three-mode model, Eqs.~38! and~39! predict values
of 1.2310231m2 in the plus mode and 6.0310231m2 in the
minus mode. The measured values are within the experim
tal uncertainty determined by uncertainties in the mixi
angle and the quality factor of the transducer.

VIII. STRAIN-NOISE SPECTRUM

Finally, we present the current sensitivity of th
ALLEGRO detector. A useful way to characterize the sen
tivity of a gravity wave detector is to determine its equiv
lent input strain noise. A plot of the equivalent input stra
noise displays the noise of the detector in terms of the qu
tity that the detector is designed to measure, the strain
passing gravitational wave. The equivalent input strain no
is the gravity wave spectrum that would produce the
served output spectrum in a noiseless detector.

The most straightforward way to calculate the strain no
spectrum is to divide the output noise spectrum by the sig
transfer function. Experimentally, the signal transfer funct
can be determined by measuring the output spectrum of
06200
s

tal

th
is
of

i-

-

c-

i-

ed

n-

i-

n-
a
e
-

e
al

he

detector while applying white voltage noise to the force ge
erator. Because of the resonance in the force generator
white voltage noise produces different forces at different f
quencies. By combining Eq.~32! with the force generator’s
transfer function@Eq. ~A28!, derived in the Appendix#, we
determine the spectrum of input strain created by the w
noise. The output spectrum~in digital units/AHz) divided by
the input strain spectrum~in strain/AHz) yields the detector’s
signal transfer function in digital units/strain.

Next, we measure the noise spectra under normal dete
operating conditions~in digital units/AHz) and divide the
result by the experimentally determined signal respo
transfer function. This yields the equivalent input strain no
spectrum in units of strain/AHz. Near the resonant mode
the strain noise spectrum is limited by transducer force no
Away from the resonances, it is limited by the SQUID whi
noise. The strain noise spectrum dips to a local minimum
each of the mode frequencies, indicating that, as expec
the detector is most sensitive at those frequencies. The
rent sensitivity of ALLEGRO as of 1998 is shown in Fig. 1

The dip in the strain noise spectrum at frequencies be

FIG. 11. The equivalent input strain-noise spectrum of
ALLEGRO detector as of 1998.
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the extra mode frequency is an artifact of the unwanted fo
generator resonance and the SQUID white noise. It is n
useful frequency for gravity wave detection. The artifact
understood by noting that Eq.~A28! produces less force a
certain frequencies immediately below the extra mode
quency. Although the force applied by the force generato
less than for other frequencies in this region, the outpu
dominated by the white noise of the SQUID which is inse
sitive to the magnitude of force applied by the force gene
tor. Our calculated response thus produces a big artifi
peak here. In the absence of SQUID white noise, the
sponse here would also be small, and no dip would be
served.

IX. CONCLUSION

In this paper, we describe the three normal mode tran
functions needed to describe a resonant mass gravitat
wave antenna. We gain several new insights from this p
ture. The mistuning between the antenna and transduce
be experimentally determined. The uncoupled frequencie
the antenna and transducer and the effective mass of
transducer can be inferred from measurements of the mis
ing. The detector transfer functions which include this m
tuning explain whyg1 does not equalg2 in either the Stan-
ford or LSU antennas.

We develop a new set of detector diagnostics based
these transfer functions. The measurement of the mix
angle via the driving point response should be consis
with the measurement of the mixing angle via the autoco
lation functions. The amplitude of excitation of the tw
modes after a short burst should be nearly equal in resp
to a broadband impulse. Deviations from the ideal behav
can be used to quantify the effects of parasitic resonan
near the detection modes. The experimental results dem
strate that the behavior of ALLEGRO is truly that of tw
coupled, noise-driven oscillators.

This model offers new insight into the conventions us
to describe the output of a resonant antenna in terms o
incident excitation. In response to a burst, the total ene
deposited into the antenna is not equally divided between
two modes. The partitioning of the energy depends upon
degree of detector mistuning. Conventions derived from
amount of force applied to the antenna describe the relat
ship between an incident excitation and the output of
readout system without any references to antenna depen
mistuning.

Finally, an analogue of this model is a starting point f
understanding how to interpret results from the multimo
transducers under development. This model, extende
three modes, will be an important tool in both developing
calibration procedure for and understanding the no
sources of three-mode antennas.
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APPENDIX: THE COMPLETE
ANTENNA-TRANSDUCER-FORCE GENERATOR

SOLUTION

Equations~12! and~17! completely describe the dynamic
of the coupled antenna-transducer-force generator sys
The coupled antenna-transducer is treated as a load
nected to the mechanical port of the force generator. To
point, we have ignored effects produced by the coupling
the force generator to the antenna-transducer system. P
cally, the coupling of the force generator to the system~even
in the absence of a resonance! changes the mode frequencie
and amplitudes measured at the readout system. This ap
dix discusses the deviations from the ideal created by a fo
generator with non-infinitesimal mass. This calculation
used to determine the magnitude of the perturbation cau
by the additional resonance in the force generator.

1. Antenna force-generator interaction

When a calibration signal is applied, the following cond
tions are true:~1! Ṽp is constant, fixed by a voltage sourc
~2! The only external force acting on the bar comes from
force generator,F̃152F̃p . The sign difference arises from
the convention thatF̃p and iv x̃p are defined so that powe
flows into the mechanical port of a transducer@21#. ~3! The
mechanical port of the force generator is rigidly attached
the antenna face,x̃15 x̃p . ~4! There is no external force act
ing directly on the transducer,F̃250. ~It is assumed that the
effects of Brownian noise at the bar-transducer interface
be neglected!. Given these 4 conditions, it is possible
solve Eqs.~12! and~17! together in order to obtainx̃1 andx̃2

in terms ofṼp . The result is

F x̃1

x̃2
G5 1

11 iv
iZi
Z22

G11

FG11 G12

G21 G221 iv
iZi
Z22

iGiG
3F2

Z12

Z22
Ṽp

0
G . ~A1!

iZi is the determinant of the force generator electromech
cal impedance matrix.

When the bar is operated as a detector, these condit
are different. In this mode of operation,~1! the ac voltage
across the force generator is set to zero,Ṽp50; ~2! the force
applied to the antenna is the sum of any external force on
bar ~such as an incident gravity wave! plus any response
from the short-circuited force generator,F̃152F̃p1F̃ext1 ;
~3! there may be some externalF̃25F̃ext2 present. Condition
~4!, x̃15 x̃p , remains the same. In this case, in terms of
external forces,

F x̃1

x̃2
G5 1

11 iv
iZi
Z22

G11

FG11 G12

G21 G221 iv
iZi
Z22

iGiG F F̃ext1

F̃ext2
G .

~A2!
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From these equations it is clear that the effect of applyin
voltageVp to the force generator described by Eq.~A1! is
exactly the same as applying a force of magnitudeF̃ext1

52(Z12/Z22)Ṽp directly to the bar.
Ideally, the force generator has no resonances near

detection modes of the coupled antenna-transducer. In
case, bothiZi /Z22 and Z12/Z22 are approximately constan
within the detection bandwidth and the denominator te
depending oniZi /Z22 primarily contributes a small fre
quency shift. We recover the relations

x̃1'G11F̃1 . ~A3!

x̃2'G21F̃1 . ~A4!

In the case of resonances, however, we shall have to m
carefully consider the effect of these denominators.

2. General electrostatic transducer

The heart of the capacitive force generator~illustrated in
Fig. 12! is a parallel plate capacitor whose plates are free
move. The equations relating the voltages and currents in
of the transducer to its internal mechanical dynamics are
rived from the equation for force on the plates of a para
plate capacitor,F5CE2Dx/2, and the derivative of the defi
nition of capacitance,I 5CV̇1ĊV, whereF is the force on a
single capacitor plate,C is the capacitance of the plates,E is
the electric field between the plates,Dx is the separation
between the plates, andV and I are the voltage and curren

FIG. 12. Schematic of the simplest possible configuration fo
capacitive force generator, a parallel plate capacitor whose p
are free to move under the force of the electric field between th
06200
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across the plates, respectively. The transducer is operate
applying a small ac voltage in addition to a large dc volta
Under this condition the relationships betweenF̃e , the time-
varying electrical force on the capacitor plates due to
electric field, Ṽac , the time-varying voltage across the c
pacitor plates,Ĩ ac , the time-varying and current across th
capacitor plates, andx̃3 and x̃4 , the inertial coordinates o
the two capacitor plates~the conventions thatm1 represents
the antenna andm2 represents the inductive transducer a
retained through this appendix!, are linear:

F̃e5C0E0Ṽac2C0E0
2~ x̃42 x̃3!, ~A5!

Ṽac5
Ĩ ac

ivC0
1E0~ x̃42 x̃3!. ~A6!

C0 andE0 are the size of the capacitance and strength of
electric field when only the dc field is present.

Physically, a capacitive force generator is a set of coup
harmonic oscillators~illustrated in Fig. 13! with two masses
connected by an electric field instead of springs. Its mech
cal dynamics are described with a Green’s function mat
The electrostatic forces enter the problem as a pair of eq
and opposite external forces acting on massesm3 and m4 .
There is also an external force on the mechanical port,F̃0 ,
resulting from the force generator’s interaction with the a
tenna. For a system composed ofN masses,

a
es
.

FIG. 13. Schematic of a general electromechanical force gen
tor, which is a system of coupled harmonic oscillators with two
the masses connected by an electric field instead of springs.
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F x̃0

x̃3

x̃4

. . .
x̃N

G5F G00 G03 G04 . . . G0N

G30 G33 G34 . . . G3N

G40 G43 G44 . . . G4N

GN0 GN3 GN4 . . . GNN

GF F̃0

F̃e

2F̃e

. . .
0

G .

~A7!

Equations~A5!, ~A6!, and ~A7! completely describe the
motion of the force generator resulting from both elect
static and mechanical forces. In order to form the impeda
matrix for this system, the variables describing motion ins
of the force generator (F̃e , x̃3 , andx̃4) must be eliminated.
The force and velocity of the capacitor plates are concis
described in terms of the voltage and current at the electr
port by rewriting Eqs.~A5! and~A6! in their transfer matrix
representation,

F F̃e

ivq̃G5F 0
E0

iv

iv

E0

21

C0E0

G F Ṽp

Ĩ p
G , ~A8!

q5x42x3 . ~A9!

Equation~A8! assumes that the voltage and current at
port are connected to the capacitor plates by an ideal s
circuit, Vp5Vac , I p5I ac . Equation~A7! can also be recas
in a transfer matrix form relating the force and velocity
the mechanical port to the force and velocity of the capac
plates,

F F̃p

iv x̃p
G5

1

G2
F G1

21

iv

iv~G 2
22G00G1! G00

G F F̃e

ivq̃G , ~A10!

G15G431G342G442G33, ~A11!

G25G302G40. ~A12!

This assumes thatm0 has been defined as the mechani
port of the force generator, so thatx̃p5 x̃0 and F̃p52F̃0 .
The right side of Eq.~A8! is used to eliminateF̃e andq̃ from
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Eq. ~A10!. Rearranging the result into an impedance mat
form, the general electrostatic impedance matrix is

F F̃p

Ṽp
G5F 21

ivG00

E0G2

ivG00

E0G2

ivG00

1

ivC0
2

E0
2

iv

~G 2
22G1G00!

G00

G F iv x̃p

Ĩ p
G .

~A13!

Note that the necessary symmetry property between the
diagonal elements is present.

3. Calculating the effect of a resonant force generator

Using Eq.~A13!, we can determine the frequency depe
dence of iZi /Z22 and Z~v! without relying on detailed
knowledge of the force generator geometry. From linear n
work theory, it is known that the inverse of the driving poi
response functionG00 is also a driving point response func
tion. This implies that 1/G00 can be written as a partial frac
tion expansion. Since there is only a single additional re
nance in ALLEGRO, all but one of the terms of th
expansion can be combined into a single, frequen
independent constant. The remaining term is written a
constant coefficient over a resonant denominator.

The first quantity needed isiZi /Z22. SinceC0 is small,
Z22 is nearly constant,Z22'1/ivC0 . Under this assumption

iZi
Z22

5
1

iv S b01
b1

~v22vX8
2! D , ~A14!

wherevX8 is the frequency of the extra resonance in the fo
generator. The form of the generator constant in the reso
case is also a partial fraction expansion with a sin
frequency-dependent term of interest,

Z12

Z22
5b21

b3

~v22vX8
2!

. ~A15!

All of the b’s are real-valued constants. There is no obvio
relationship between the differentb’s in this representation
The denominator frequency is the same in both expressi

Substituting Eqs.~A14! and~A15! into Eq.~A1!, the driv-
ing point response of the system becomes
encies

. Though
and are
G11

D S 2Z12

Z22
D5

@b2~v22vX8
2!1b3#@cos2 u~v28

22v2!1sin2 u~v18
22v2!#

m1~v28
22v2!~v18

22v2!~v22vX8
2!1@b0~v22vX8

2!1b1#@cos2 u~v28
22v2!1sin2 u~v18

22v2!#
,

~A16!

where D511 iviZiG11/Z22 to make the notation more compact. The primed frequenciesv18 and v28 are the result of
coupling the bare bar to the transducer. They are not observable once the system is assembled. The unprimed frequv1

andv2 are the result of coupling the antenna, transducer, and force generator together,

v68 5v61d6 . ~A17!

d6 is the frequency shift of the normal modes of the detector created when the force generator is added to the system
this additional frequency shift is physically uninteresting, the unprimed frequencies are known with great accuracy
2-15
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most useful for comparison between model and experiment. Experimentally it is known that these frequency shifts a
There is an analogous frequency shift ofvX8 to a valuevX when the force generator is coupled to the bar.

Consider first the measurement ofg6 . In this case, substituting Eq.~A17! into Eq. ~A16!, yields a driving point transfer
function of

G11

D S 2Z12

Z22
D5

@b2~v22vX
222dXvX!1b3#@cos2 u~v2

2 12d2v22v2!1sin2 u~v1
2 12d1v12v2!#

m1~v22vX
2 !~v2

2 2v2!~v1
2 2v2!

. ~A18!

Mathematically, including the correction term in the denominator changes the positions of the poles of the transfer fu
without changing the position of the zeros. The time-domain amplitude ofx1(t) takes the form of Eqs.~25! and ~26! plus a
correction term due to the additional residue atvX . The value ofg6 is thus proportional to the product of the frequen
dependentZ21/Z22 and the amplitude ofx1(t):

g15
~cos2 u1e1!

m1
S b2~12e31!1

b3

~v1
2 2vX

2 ! D
2

~11e31!, ~A19!

g25
~sin2 u2e1!

m1
S b2~12e32!1

b3

~v2
2 2vX

2 ! D
2

~11e32!, ~A20!

e15
d1v1 sin2 u1d2v2 cos2 u

v1
2 2v2

2 , ~A21!

e365
2dXvX

v6
2 2vX

2 . ~A22!

We can also evaluate the gamma value for the extra mode,

gX5
@cos2 u~v2

2 2vX
2 !1sin2 u~v1

2 2vX
2 !1e1~v1

2 2v2
2 !#~b322b2dXvX!2

2m1dXvX~v1
2 2vX

2 !~v2
2 2vX

2 !
. ~A23!

Using a set of masses and spring constants that approximately describe the force generator mounted on ALLEGR
frequency shifts are estimated to be less than 1 Hz. This implies a maximum correction ofe1'.02. By comparing the
measured ratios ofgX /g6 to values predicted by Eqs.~A19!–~A23!, we determine thatdX,0.1 Hz, ande36,0.01.

In the case of the mode amplitudes measured after an excitation of the bar, the frequency shifts change the force-g
voltage–transducer-motion transfer function to

G21

D S 2Z12

Z22
D5

sinu cosu@b2~v22vX
222dXvX!1b3#@v1

2 2v2
2 12~d1v12d2v2!#

Am1m2~v22vX
2 !~v2

2 2v2!~v1
2 2v2!

. ~A24!

Assuming frequency shifts of approximately 1 Hz,e2 will be on the order of 531024. The measured post-excitation mod
amplitudes are directly proportional to the residues of Eq.~A24! evaluated atv1 andv2 ,

P1}
2sinu cosu

Am1m2v1
S b2~12e31!1

b3

~v1
2 2vX

2 ! D ~11e2!, ~A25!

P2}
sinu cosu

Am1m2v2
S b2~12e32!1

b3

~v2
2 2vX

2 ! D ~11e2!, ~A26!

e25
2~d1v12d2v2!

v1
2 2v2

2 . ~A27!

The important result of this formalism is that the mixing angle is still the only parameter needed to character
mistuning between the antenna and transducer, but the voltage-to-force relationship is no longer described by a
Neglecting the small corrections~less than 1%! caused by the (11e36) terms in Eqs.~A19! and~A20!, we absorb all of the
perturbation created by the extra mode into the voltage-to-force constant. In the notation of the previous sections,Z~v! is now
a function of frequency,
062002-16
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Z~v6!5b2~12e36!1
b3

~v6
2 2vX

2 !
. ~A28!

Using Eq.~A28!, Eqs.~A19! and ~A20! become Eqs.~43! and ~44!, and Eqs.~A25! and ~A26! become Eqs.~45! and ~46!.
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