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Calibration and sensitivity of resonant-mass gravitational wave detectors
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Every gravitational wave detector needs reliable methods for quantitative tests of its performance. We have
tested the ALLEGRO gravitational wave antenna with a capacitive transducer which can apply a force to the
antenna. A model that incorporates mistuning of the two normal modes of the antenna is needed to properly
understand its operation and to explain previous discrepancies in calibration responses. We write the transfer
functions for driving point response, signal response, and noise response in terms of a pafantetér
includes all of the mistuning. Using the “reciprocity method,” we determfrend the force-voltage constant
of the force generator. Using diagnostic criteria developed from a full multimode description, we are able to
identify the location of an additional parasitic resonance and determine its quantitative effect on the results.
Experimental results are presentf80556-282(99)02606-5

PACS numbd(s): 04.80.Nn, 95.55.Ym

I. INTRODUCTION The comparison between model and experiment required
some theoretical estimation of the detector’s physical param-
Resonant-mass gravitational wave detectors are currentigters.
in operation at several sites around the world. Research Boughnet al. showed how the response of the system to a
groups at the University of Rome and the INFN operate thesignal can be determined without relying on any theoretical
EXPLORER, NAUTILIS, and AURIGA detectorfsl,2], the  estimates of the system’s physical paramef{d4]. Their
research group at the University of Western Australiaprocedure measures the signal “gain” of each mode of a
(UWA) operates the NIOBE detect@8], and our research multimode detector. The model of Bougkhal. consists of
group at Louisiana State Universitit SU) operates the two basic elements, a model of the antenna and transducer
ALLEGRO detector[4]. These detectors are designed tosystem used as the sensor of gravity waves and a model of
look for the “bursts” of gravitational radiation that may be the force generator used to apply calibration signals.
emitted during the gravitational collapse of a star or the final Boughn et al. assumed that the bare antenna and bare
seconds of a binary coalescenldd. Such events will be transducer had the same resonant frequency and treated the
short-lived, infrequent, and of very small amplitude. If any two mode system as two independent antennas. In their re-
claim of detection for such events is to be credible, there willsults, they reported that the two modes of the system respond
need to be considerable proof that the detectors are workingifferently to equal sized calibration signals, but offered no
properly. explanation of this fact. The two modes of ALLEGRO also
A resonant detector system is a linear, narrowband senseespond differently to equal sized calibration signals. This
of gravity waves. Like any real sensor, resonant antennagesult cannot be explained if the assumption perfect tuning
have intrinsic noise sources. There are two distinct parts tbetween the modes is kept. The modeling of Boughal.
determination of sensitivity. First, there is a precise determifeaves open the question of whether the different observed
nation of how detector output is related to a gravitationalresponses result from an experimental uncertainty, some-
signal. Second, there is a measurement of the detector’s sténing unique to the systems where they have been measured,
tionary noise. The stationary noise determines the smallestr a property of all multimode systems. By dispensing with
signal that can be detected and the nominal uncertainty of the assumption of a perfectly tuned antenna-transducer sys-
measurement. tem, we show that the observed differences are a property of
The first models of resonant mass gravitational wave deall multimode systems.
tectors calculated sensitivity by treating the system as a Section Ill of this paper presents a description of a reso-
single harmonic oscillator driven by noi$é,7]. The exten- nant bar gravitational wave antenna completely expressed in
sion of this model to multimode systems demonstrated thaterms of measurable parameters. This description takes the
detector sensitivity could be improved by increasing theform of a set of transfer functions describing the antenna
number of modes, first to [B,9], then to 3 or mor¢10-13.  system’s response to different signal and noise sources. In
These analyses concentrate on describing how fundament8ec. IV, we show that our model of the antenna and trans-
noise sources appear at the output after being modified byucer combined with the procedure developed by Boughn
the oscillator’'s transfer function. Good agreement was obet al. determines the parameters of transfer functions for sig-
served between the results from the numerical two-mode®al, noise, and calibration response without relying on theo-
model and the output observed from two-mode systei retical estimates of the detector’s physical parameters. This
result also makes clear how mechanical mistuning between
the antenna and transducer appears in the calibration proce-
*Present address: INFN Laboratori Nazionali di Frascati, Via En-dure.
rico Fermi 40, 1-00044 FrascatRoma, Italy. In Sec. V, we study the transfer function which describes
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resonant-mass detectors currently in operation. The largest

Current
Amplifier % component of ALLEGRO is a 3.0 m long solid circular cyl-
g;n%:dg:n%l:) inder of mass 2296 kg composed of aluminum alloy 5056. It
vy Force is cooled to 4.2 K to reduce thermal noise and to take advan-
Generator tage of the high mechanical quality factors and supercon-
AC Voltage ducting properties of materials at low temperature.
Source The effect of the wave field on the antenna can be derived

from the general relativistic equation of geodesic deviation

/ [15]. In a system where the coordinatgsneasure distances
. in the laboratory frame, a gravity wave produces an effective
Slebn force on a mass elemedm of an isotropic body given by
2,300 kg
30m 1
fo =907 H ¥
j ; dfiG:dm; Ehij(t)gja (1)
/ whereh;;(t) is the metric deviation in the transverse trace-
LQQJ less gauge describing the wave fieldf® has the linear

variation with position of a “tidal” force. Physically, Eq1)
: implies that a gravity wave creates a stress on the bar by
; @ accelerating different parts of the bar at different rates. The

Secondary Resonator

g‘Musdhroom”) and magnitude of the stress is proportional to the length of the
ransaucer
DC SQUID bar. o o
(Amplifir. Resonant bars are based on the principle that an incident
Pickun Col bt 5o P gravity wave excites vibrational motion in the antenna. From
(Sgrs‘g’ten‘:‘cunent~ 104)  themotionofthe the theory of elasticity, the vibration of a mass element of the
mushroom)

antenna due to the net force applied by its neighbors can be
described in terms of eigenfunctions determined by the shape

FIG. 1. A physical schematic of the ALLEGRO detector, in- of the body[16]. The eigenmode amplitudes,(t), solve a
cluding the primary inductive transducer and capacitive force gengriven harmonic oscillator equation, whexg(t) is a “col-
erator. lective coordinate” representing coherent motion of the en-

tire bar with spatial variation given by its eigenfunctidry].
the propagation of signals through the system. Historically, We monitor the vibration of the lowest longitudinal me-
the relation between incident burst and detected output hashanical resonance of the antenna and infer the sizes of in-
been described in terms of the energy deposited in the artident excitations by measuring changes in the vibrational
tenna modeg14]. With imperfect tuning, this description amplitude. If we consider the bar alofithout resonator
can be misleading, because the burst does not deposit equgld only make measurements near the 1st mode frequency,
amounts of energy in both modes. In Sec. VI, we study thehe elastic motion of the bar can be described with a har-
transfer function related to the antenna’s dominant source ghonic oscillator equation for its first mode. Non-elastic
noise, and determine how it is affected by mechanical misforces, including gravitational forces, are described as exter-
tuning. nal forces applied to the oscillator. Separating the non-elastic

In Sec. VII, we compare the predictions of the model toforces into gravitational and non-gravitational components,
the output of ALLEGRO. In the course of this examination,
we found that a previously unexplained resonant mode in the 5
detector response threatened substantial uncertainties in our X (D) +wpxg (1) = m_l[FG(tHFNG(t)]’ @
understanding of the detector's sensitivity. An additional
measurement was undertaken and a more comprehensivghereF g is the net force resulting from integrating the force
model was developed. From these, we have been able ensitydf® over the elastic bodys g is the net force from
determine the nature of this resonance and to show that OVefipn-gravitational sources acting on the antenna, mpds
all detector response to a signal is quite close to the expectege effective mass of the antenma, is equal to one-half of
value. These results demonstrate the importance of carefullpe par's physical mass, resulting from equating the collec-
studying the relationships between modes in order to verifyjye coordinatex,(t) to the displacement of the end face of
that the detector works as designed. the antenndl7].

A smaller mechanical resonator, also called the trans-
ducer, is attached to one face of the antenna. Together, the
antenna and resonator form a system of two damped,

The ALLEGRO detector is a resonant-mass gravitationatoupled oscillators. The damping is small due to the use of
wave detector designed and constructed for the purpose eitremely low-loss materialgl8]. Since searches for burst
directly observing gravitational radiation. The ALLEGRO sources involve monitoring the system for changes created
system, shown schematically in Fig. 1, is similar to the othelby impulses whose duration is much shorter than the damp-

Il. ALLEGRO DETECTOR
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ing time, it is a good approximation to ignore the damping. A force generator
superconducting coil and superconducting quantum interfer- imap 714 Zio Lo P
ence devicéSQUID) amplifier are used to measure the rela- =izt F Vo
tive motion between the resonator and the end of the bar P Zo1 Zop o=
[19]. This readout system produces a voltage directly propor-
tional to the differential displacement between the antenna f’-’E’f\ m1 f
face and the resonator’s pick-up coil. !

A capacitive transducer, or force generator, is mounted at transducer f2
the other end of the bar. A voltage applied to the force gen- EEEN
erator applies a force on the end of the bar, the size of which

depends on the geometry of the device. The force generato
is a reciprocal device, meaning it can also be used to detect a as
motion. In detection mode, we measure the voltages and cur- }—> }—»

rents that result when mechanical forces are applied to the

capacitor plates. By measuring the motion that has been pro- FIG. 2. The two-mass and two-spring model of a gravitational
duced immediately after the antenna is excited with the forcavave antenna and resonant transducer, including a two-port repre-
generator, the generator constant, defined as the ratio of vogentation of the force generator.

age applied at the electrical terminals to force applied at the

antenna face, is determined. Once the generator constantigertial displacement of the transducer resulting frém
known, test signals of known strength are applied to the anang/orE,. Also, from this point on, since all of the physi-
tenna in order to calibrate the transducer and readout systeally interesting motion of the system is longitudinal, the
equations of motion are written in one dimension.

The coupled oscillator model of an antenna and resonator,
assuming that damping is small enough to be ignored, is
The model presented in this paper extends previous worRictured schematically in Fig. 2. In terms of mass-
by treating the coupled antenna-transducer as a single detgdormalized coordinates, defined By Mu, where

tor component possessing two degrees of freedom. In this

Ill. NORMAL MODE TRANSFER FUNCTIONS

way, we determine a transfer function describing the motion 1 0
of the transduce(the observable motigrin terms of force \/m_
applied to the bafthe physically interesting sourceA sec- M= ! , (3)
ond transfer function describes the motion of the transducer 1
: . . : 0o —
in terms of a force applied directly to the transdu@edomi- Jm,
2

nant noise sourgeA third transfer function, describing the
calibration procedure, describes the motion of the antenn
face in terms of the force applied to the antenna.

The ideal detector is built from an antenna and resonator
with identical resonant frequencies. In practice, perfect tun-

the equations of motion of the coupled oscillators are

= —Ku +MF. (4

mo
wi-i— — wg
mq

The normal mode description of detector operation combinea. L .
) L ) isplacement of the transducer is givenuyy The matrixK,
the effects of imperfect tuning into a single parameter com-
mal mode solution for the coupled antenna-transducer with
the impedance matrix calibration procedure of Boughal,, — A /@wg
m;
between the antenna and transducer causes the different re- m,
sponses observed during calibration of the force generator. \/ng —wg
1
rameter and the effective mass of the transducer to be experi- _ i
mentally determined, and we quantify the effects of mistun\Where @z=k,/m; is the uncoupled resonant frequency of
At this point, the following conventions are adopted andSYStem,
used throughout this papeX. represents the Fourier trans- [F
1

ing between the components is nearly impossible to achievel.he displacement of the antenna face is givenugy The
mon to all of the transfer functions. By combining the nor- called the mass-normalized elastic matrix, is equal to

we obtain several new results. We explain how mistuning

We show how this measurement allows the mistuning pa-

ing on signal propagation and detector noise processes. the resonatorF contains the external forces acting on the
form of X(t). The Fourier transform of an external force F= F,

. (6)

applied to the bar is represented By. In this context, ex-
ternal means any force not created by the antenna-transducersmce the matrix< is both real and symmetric, we can

interaction.F, represents an external force applied directlyrewrite Eq.(4) in terms of normal coordinates. The transfor-
to the transducefx, represents the inertial displacement of mation from mass-normalized coordinates to normal coordi-
the bar resulting front; and/orF,, andX, represents the nates is a rotation; we denote the rotation matrixdadath-
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ematically, the matrixA diagonalizes the matriK so that Transforming back to the inertial coordinates measured by
KA =AD, whereD is the diagonal matrix of eigenfrequen- the readout systerix=MAY, the response of either mass to

cies, a set of externally applied forces is
5 w2 0 o %=MAAATMF . (12)
= 2 .
0 o The utility of Eq.(11) is most obvious when it is rewritten

in matrix form. The five-matrix produdlA AA™ is equal

Since this system has two degrees of freedom, the rotation to a single 2¢2 matrix. We denote this matrix 43, where

is characterized by a single paramet@r the “mixing-
angle,”

X G Gyl|F
. o= } =t (12)

cosf  sing X2] |Ga Gaof| Fy
—sing cosf|’ Expressed in terms afi, my, @, @, andé, the matrix

. . N elements are
The relationships between the inertial parameters and not-

mal mode parameters of a two-mass—two-spring model are co f sirt 0
obtained from the matrix form of the equatié=ADA 2, Gu=— (o2 —o?) e (@X—a?)’ (13
1 + 1 -
m m
- w§+—2w§) \/ = w2 —sin# cosé sin 6 cosé
my my G1=Gy= 2 PN e 2\’
\/mlmz(w+—w ) mlmz((l)__w )
e 2 — w2 (14
my 2
Sir? 9 cog
— w2 cog f—w?sitfd (w2 —w?)sindcosh P e (15)
— . 2\ W 2\W_—
(w2 —w?)sinfcosd —w? sir? 6— w2 cod ¢

Each matrix element in Eq12) is a transfer function de-
©) scribing the displacement of the antenna or transducer in
ggerms of externally applied forces. Each transfer function is a
uperposition of the response at the two mode frequencies.
The motion of either mass is a superposition of responses
rom forces applied at the two driving points.

The value ofm; has been independently measured, leavin
three unknowns in the left side of EP). Solutions of Eq.
(9) reveal that the value of the mixing angle depends upo
both the frequency difference and mass ratio of the bare a
tenna and the bare transducer. Perfect tuning, where both

modes behave identically except for a difference in phase, IV. DRIVING POINT RESPONSE

corresponds to the coupling of a finite mass to an infinitesi- e driving point response of the detector describes the

mal mass of an identical resonant frequency. The mixingyqiion of theface of the antennan response to a force
angle in this case is 45°. If the current version of ALLI.EGR(_)a plied to the antenna. The driving point response is impor-
was constructed from an antenna and transducer of identicglt pecause a resonant mass gravitational wave antenna is

frequenciesw; = w,~900 Hz, the finite mass oratimllmz calibrated by applying forces to the antenna face using the
~ 1800 would produce a mixing angle of 44.7°, a very goodforce generator. The transfer function which describes the
approximation to perfect tuning. In reality, the apprommatelydriving point response iS,,. The force on the antenna is

12 Hz frequency difference between components ofqgual and opposite t&,, the force caused by the force
ALLEGRO in combination with the finite mass ratio leads to = = . . .
generator, so thd,=—F (the sign difference arises from

a mixing angle of approxmately 30°. : 3 standard convention that power flows into the force gen-
In terms of the mass-normalized coordinates, the norma

coordinates for the coupled oscillator system greATu, erator(21)),
whereAT denotes the transpose of the matixEach com- co2 0 Sir 0 ~

onent ofy satisfies a harmonic oscillator equati@®]. Us- X1= + (—E.). (16
p fy q [ ] 1 ml(wi _ wZ) ml(wZ_ _ 0)2) p

ing a Fourier transformation, we rewrite the rotated version

of Eq. (4) as an algebraic equatiofi= AATMF, where the  Calibration in this manner requires accurate determination of
matrix A is the diagonal matrix of harmonic oscillator re- the generator constant, which is the ratio between voltage
sponse functions, applied to the capacitor and resulting force applied to the
antenna. Boughmet al. showed how the energy-coupling co-
0 efficient between force generator and antenna can be deter-
wi— ® mined through use of the reciprocity relation connecting the
A= 1 . (10 “sending” and “receiving” modes of transducer operation.
— This method has the advantages that it can be perfoimed
w_—o situ and that it requires only straightforward electrical mea-
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surements. In what follows, we present a detailed account T
showing how inclusion of the normal-mode model of the Xl(t):f Vosin(w t")R(t—t")dt". (21)
antenna improves the utility of the procedure developed by 0
Boughn et al. The improved antenna-transducer model al-
lows measurement of the mixing angle and of the force-to
voltage constant of the force generator.

A complete yet compact way to combine the normal-
mode picture of the antenna and transducer with the behavior VoTZ(w,)cog 6
of the force generator is with an impedance matrix represen- X (1) = ——— " " coqw,t). (22
tation[21]. In this representation, the force generator is de- mo
scribed in terms of the currents and voltages passing through - .
an electrical port, and the forces and velocities at a mechanl-0" & driving force aw_, the response is
cal port. The antenna-transducer system is a load terminating VT Z(w_)sir? 6
the mechanical port. The impedance matrix relates voltage X, (t)= 0—‘(;03&,7»[). (23)

V, and currentl , to force F, and velocityiwX,. These my -
guantities are chosen since, at either end, their product is tr‘ag

Assuming that losses in the force generator are negligible,
the amplitude of the antenna face in response to a wave train
atw, is

power passing through the port. We note that when operate quations(22) and(23) imply that a sinusoidal voltage ap-
with a small ac voltage applied in addition to a constant dd

ied to the force generator at either resonance frequency
voltage, the capacitive force generator is a linear device. Ir?ends the antenna face into s_|mp_le harmonic motion.
. . When the driving voltage is disconnected and the force
the Fourier domain, . . :
generator is shorted, the oscillations of the antenna face drive
£ a current through the electrical port of the force generator.
p
[Vp tion of the plus mode and by ER3) after an excitation of
the minus mode. The current passing through the electrical
_The Z;;'s are rational polynomials which can be representedport is given by solving Eq(17) with szo. The amplitude
in terms of poles and zeros. For a broad class of transducersf this current in the time domain is determined by taking the

Zu Zi 17) The driving oscillation is given by Eq22) after an excita-
including the force generator mounted on ALLEGRD, inverse Fourier transform of the result. When the driving

ZZl Z22

lwXp

p

=—Z3,. Since we ignore losses, this impli&s,=Z,; . term’X, is monochromaticl - (t) is

When a voltage is applied to the force generator, the re-
sponse of the antenna face($ee the Appendix for the proof lp= (1) = Z(w+ )Xy (). (24)
of this)

Substituting Eq(22) into the above equation, functions for

N cog sir? ¢ )( —Z1 V.. @8  p= () for each mode are obtained:
X, = — _
! ml(wi_wz) ml(wz—_wz) ZZZ P V0T22(w+)00§ 0
lp (D)= - sin(w 1), (25

Equation(18) implies that the amount of force applied to the

antenna is given by the productdf andZ,,/Z,,. The ratio VoTZ%(w_)sir? 0

Z1,1Z5, evaluated atv-. , which we denote ag(w-), is the lp—(t)= sin(w_t). (26)
voltage to force constant of the force generatowat, my
Fo(t)= Z(w-)V(1). (19) To concisely express the relationships between the mea-

surements and the model, the directly measured quantities
(Vo, T, the amplitude ofi ,..) are combined into a single

The time domain response of the antenna faggt), is é)arameter for each mode labelgd and y. .

given by the convolution of the system’s impulse respons
with V(t). The impulse response of the force generator- |
antenna-transducer combination, which we denof(&} is y —( 0= ) )
the inverse Fourier transform of the product of the first two

factors on the right side of E¢18),

VT @7

By substitutingy, andy_ into Egs.(25) and(26) the rela-

1 [Z(w,)cod 6 tionships between the mode responses of ALLEGRO and the
R(t)= — +—Sin(cu+t) transfer function parameters are
mq w4
Z(w_)sir? 0 _Z%w,)cos ¢ 28
+ ——sin(w 1) (20) Y+ m (28)
2 .
For a sinusoidal voltage of amplitudg, and durationT, the — Z%(w_)sin? 0
4 . y_ . (29
antenna’s respongat times greater tham) is my
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The differences betweep, andy_ observed in both the force wansducer
Stanford detector and ALLEGRO are thus explained as a senerater sonal
function of the mechanical mistuning. Sinc&w,) and ] antenna }°—> saquio
Z(w_) should be equal, the mode amplitudes are equal only _ <*sqp]
when 6~45°. If the antenna and transducer have different foedback
uncoupled resonant frequencies, this condition is not true. — /

n .
V. SIGNAL RESPONSE [ Pass amp. | e den:gzllf:l[;tor

In this section, we consider the response of the detector to X‘ ’
a signal. The signal response of the detector describes the “!*I’g’::f“ ArtiAlasing
motion of thetransducetin response to a force applied to the Fitters
antenna. Driving the antenna with a gravity wave is an exci-
tation whereF;4(t) =F41(t)>F,(t) over the duration of the i’ #V
signal. The motion detected by the readout system is a volt-
age proportional to the differential displacement of the reso- ADIB
nator, X,(t) —x4(t). Sincem;>m,, this response is domi-
nated by the transfer functioB,, '

_ —sin# cosé N sin 6 cosé B VAXstation

& Vmimy(0f —0?)  Vmimy(e® - w?) 9

(30) FIG. 3. Block diagram of the demodulation and readout scheme

Comparing Eq.(30) to the Fourier transform of Eq(2) used to acquire ALLEGRO data.

shows how much is gained by the addition of a resonangyenciesw, andw_, moving the information contained in
transducer. For a bare bar, the response to a signal in thge resonant modes into a frequency band centered at dc.
Fourier domain is After being passed through an anti-aliasing filter, the voltage
is then sampled every 8 ms. The now digitized signal is
1 Fo (31) mixed with a reference signal that moves one of the resonant
my(w;—w?) 9 modes to zero frequency. This dc signal is digitally filtered to
optimize the signal to noise rat[/d]. The same procedure is
Comparing Eq.(31) to Eqg. (30) illustrates the mechanical repeated for the other mode. The digital filter is optimized
gain reSUlting from use of a resonant transducer. The amplifor |dent|fy|ng sudden Changes in the Samp|ed Output volt-
tude of oscillation of each mode of the transducer is a factoage_
of ymy/m;sinécosé larger than the amplitude of a bare  This procedure is best understood by noting that a short-
bar. In either mode, the maximum gain occurs wh&n duration impulse causes a sudden change in the amplitude
~45°, so that sifcosf=.5. As the two modes beat in and and phase of the Brownian-driven oscillations of the bar.
out of phase, the maximum displacement of the transducer his is reflected in a sudden change in the amplitude and
the sum of the maximum displacements of the individualphase of the motion of the transducer. The demodulation
modes. For ALLEGRO, the maximum gain {8n;/m,, ap-  scheme divides the real-valued oscillations of the antenna
proximately a factor of 40. into in-phase and quadrature components measured with re-
This equivalence of thé dependent factor in the plus and spect to the reference signal. The amplitudes of the in-phase
minus mode terms implies that an excitation of the bar proand quadrature channels contain all of the magnitude and
duces approximately equal mode amplitudes, regardless @hase information about the original time-domain signal
any mistuning between the bar and the transducer. This uni22]. Between any two samples, the change in amplitude of
ambiguous prediction of the model is an important diagnosthe in-phase component is proportional to the Fourier sine
tic. If the motion of resonant bar gravitational wave antennasransform of the driving force on the oscillator at that instant,
is truly that of coupled harmonic oscillators, both modeswhile the change in amplitude of the quadrature component
must respond to broadband excitations with equal ampliis equal to the Fourier cosine transform of the driving force.
tudes. This is a test to see if the system has been constructéde define the complex sum of the components as the com-
properly, as well as a veto criteria for eliminating spuriousplex amplitude. By looking for sudden changes in the com-
events during operation. plex voltage amplitude of the transducer’s oscillations with
For purposes of calibration, a gravity wave is mimickedthe digital filter, both the magnitude and the phase of the
by applying a short-duration voltage, or calibration pulse, totransducer’s time-domain oscillations are used in detecting a
the force generator. The voltage produces an impulse on easfgnal.
of the detector’s resonant modes. The effect of the impulse At each sampling time, the output of the digital filter is a
on the motion of the transducer is measured using the deliscrete number of bit§referred to as digital uniis The
modulation scheme shown in Fig. 3. The voltage output olexact number of digital units produced when the antenna is
the detector is mixed with a reference signal between freexcited depends on the antenna-transducer transfer function,

3‘(1:
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the analog to digital conversion, and any gains introduced 1 - -
during demodulation and filtering. By applying calibration E=§m1|%[|h(w+)|2wi cos +[h(w_)[2w? sir? 6].
pulses of different voltages, we determine that the number of (35)
digital units produced varies linearly with the voltage applied
to the force generator. We are also able to determine thghis result implies that some caution must be exercised in
constant of proportionality between voltage applied with theinterpreting signal strength conventions which refer to en-
force generator and digital units measured at the readout syergy. Established burst energy conventions treat the two
tem. With the voltage-to-digital unit constant known, we usemodes of the detector as two independent antennas and the
Eq. (19) to normalize the output from the readout system inresponse of either antenna to a signal is assumed to be iden-
terms of force applied to the antenna. tical. Equation(35) shows that this is not the case. Any
Ultimately, we wish to normalize the output of the read- broadband excitation deposits different amounts of energy
out system in terms of the strength of an incident gravityinto each mode of a mistuned detector. The energy deposited
wave. In the frequency domain, the force applied to the aninto an individual mode cannot be assigned unless the mis-
tenna by an interaction with a gravity wave is given by thetuning parameter is known. By using the strain convention
Fourier transform of Eq(l), defined in Eq.(34), derived from considering the force ap-
plied to the detector, the strength of a gravity wave is ex-
_ 1 pressed for either individual detector mode without any ref-
Fo(w)=— Emlllwzﬁ(w), (32)  erence to antenna dependent mistuning.

- VI. TRANSDUCER FORCE NOISE RESPONSE
where h(w) is the Fourier transform of the dimensionless . . . .
strain of the gravity wave signal, and is the effective Experiments on early generations of inductive transduc-
length of the antenna. For the purpose of calibration, it iserS as well as on the ALLEGRO system, confirm that there
convenient to define a standard reference sif@RIA can- ~ are two separate sources of dissipation in the transducer that
didate event is assigned the amplitude that is produced by @ntribute to noise. According to the fluctuation-dissipation
single cycle of a sine wave at the frequency where it is defheorem, thermal noise generated in the transducer is related
tected. The Fourier components of the reference signal aref 10sses inversely proportional to its mechanical quality fac-
tor. A second source of dissipation results from electrical
losses that occur in the transducier spite of the fact that the
Rlw.)= ”hG' (33) system is superconductingrhe specific mechanism behind
IR O the electrical losses is not well understood. These two
sources of noise, the result of forces acting directly on the
wherehg is the amplitude of the reference signal. Combin-transducer, are called transducer force noise. At the detec-

ing Egs.(19), (32) and(33), the digital output of the detector tor's resonant frequencies, the transducer force noise is much
can be normalized in terms of dimensionless strain. Givergreater than the noise originating in the dc SQUID amplifier.
that we measur®,, digital units in response to a single- The SQUID white noise, added in series to the output of the
cycle calibration pulse o¥/., volts (zero-to-peak we as- transducer, is the dominant noise source off-resonance.
sign a burst amplitude of The transducer force noise response describes the motion
of the transducer in response to forces applied directly to the
transducer. The forces acting on the transducer are modeled
he— ZZ(;I)i)VcaI ( Dobs) (34  asaseries of stochastic impulseg(t) = Fy(t). The spectral
wimgly Deal)’ density of F,(t), denoted byS,,(w), is white. Stochastic
forces within the antenna are neglected because it has been
experimentally determined that the transducer is much more
lossy than the antenna. Stochastic forces from the transducer
on the antenna can be neglected because the inertial motion

signal is roughly equal, the energy deposited into each mod f the antenna is smaller dge to its larger mass. The trans-
is not. This is physically explained by considering the trang-ducer force noise response is described by the transfer func-
fer of energy between coupled oscillators. A complete transton G22- _ . .

fer of energy between two coupled oscillators occurs only in_ Snce the decay time of either mode is on the order of tens
a perfectly tuned system. If the oscillators are not perfecthy’" hundreds of secands, the effects of damping cannot be

tuned, only a portion of the energy is transferred. Since th&'€glected when considering noise. The effects of damping
signal readout depends primarily on the motion of the2® considered by including an imaginary damping term in

smaller mass transducer, the observable quantities contaifie denominator 06,
only a fraction of the total energy deposited in the system. Sir? 0

to an output ofD,¢ digital units observed at the readout
system.
Although the force applied to each mode by a broadban

co< 6 -

In normal coordinates, the energy present in a two-mass— x,— i .
two-spring system i€=y"y/2+y'Dy/2. In terms of a de- 2 10 5 2 1@ 5
tector’'s physical parameters, the energy deposited in the sys- Ma| @+ T, @ M| @= ¢
tem by a gravity wave of finite duration is (39
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The size of the damping term is inversely proportional to the ' ! ' ' '

measured decay tlme Of the mOde. The decay timeS can bE 40;!. ............... ................ S T m;i;nrﬁ:e .
experimentally determined by observing the mode ampli- | T B S S

tudes for several minutes after they are excited with a large ol ‘ ; ;
impulse. For ALLEGRO, the plus mode has a decay time of g\ .. ... S
7,~80s, and the minus mode has a decay timerof i ‘ ‘ ‘
~50s. The spectral density of the noise driven oscillations

n
@
T

1

<
of the transducer is given by £ |
B 20 de oo e _
Saorn
s Syy() [ | |
822((1) = m% ) wz 15_\\ ................ RS IPINE TS s 4

(wz_w+)2+ =z
T+
. cog 6 Sin(®)

m;

R R S e S S N

(wz— w2_)2+ 5 0 50 100 150 200 250 300
T

time (s}

constructing the autocorrelation function of the transduce hme a:]t?;] tk}e antenna t:as been excited with a 25-s wave train
output. The autocorrelation function ab(t) is defined as rough fhe force generator.

the expectation value of the produci(t)x,(t—t"). By the

WieneE—Khintchin theorem, trﬁ)e allj(t%(t)(cz)rrzélatior: fur}1/ction jgsure of how close our system is to being limited by the
equal to the inverse Fourier transform of the power spectrunindamental noise sources predicted by the fluctuation-
of a stochastic process. If a passband filter is applied to th@iSsipation theorem.

output of the transducer so that only data near the plus mode

is kept,(Xp(t)x(t—t')) is equal to the inverse Fourier trans- v/ EXPERIMENTAL RESULTS AND DISCUSSION
form of the the first term of the right-hand side of E§7).

The spectral density at a mode frequency is measured b(Y FIG. 4. Current measured through the force generator versus

Evaluating this expression &t=0 [23], In this section, we briefly review the procedure and then
present the different ALLEGRO outputs relating to the nor-
) Sn(@) 7y sir’ @ mal mode transfer functions. The presentation of the data
(x4(1)+= ngwi (38) makes apparent the fact that the ALLEGRO system pos-
sesses a third resonant mode. In addition to its two designed
Similarly, for data from the minus mode, modes at 895.414 Hz and 919.659 Hz, ALLEGRO has a
third mode with a resonant frequency of 887.742 Hz. First,
(1) :Snn(w—)T— cos' 6 (39) we attempt to explain the results with a purely two-mode
- 2msw? ' model, but show that this explanation is incomplete. By ex-

tending the model, it is possible to identify the physical lo-

By definition, the autocorrelation function evaluatedtat cation of the extra mode and make quantitative predictions of
=0 is the mean-squared value of the transducer’s displacédts effect.
ment. Although both modes are driven by the same stochas- The driving point response for each mode, including the
tic force, we expect to observe different mean-squared disextra mode, was measured by the procedure described in
placements of the modes in the absence of any larg8ec. IV. In three separate measurements, 25-s wave trains of
impulses. Since the signal response of both modes is equa( volts zero-to-peak were appligth addition to 150 dc
this implies that one mode is more sensitive than the other inolts) to the plus mode, minus mode, and extra mode. Im-
a mistuned system. mediately after, the current driven through the force genera-

It should be noted that the magnitude of the mean squareir was measured with a lock-in amplifier. Figure 4 shows a
displacement of the transducer can be calculated using th@ot of the amplitude of the current versus time for each
equipartition theorem if both modes are allowed to freelymeasurement. The ratio of current measured at the plus mode
decay. However, in actual operation, detectors using inducto the minus mode was approximately 2 to 1. The extra mode
tive transducers are run with constant feedback from thehows the largest response, nearly an order of magnitude
SQUID applied to the antenna face via the force generator ttarger than the response of the minus mode.
avoid instabilities. The feedback causes the decay time in The signal response of ALLEGRO was measured by ap-
each mode to be different, and the conditions for the equiplying one cycle of a sine wave of 2.0 V peak-to-peak to the
partition theorem do not hold. antenna with the force generator. Figure 5 shows spectra of

Equations(38) and (39) add to our diagnostic tools. The 20-s intervals of ALLEGRO’s output before and after the
ratio of the two autocorrelation functions provides a secondmpulse was applied to the bar. Figure 6 shows several
measure of the mixing angle, providing a test of the consiseycles of ALLEGRO’s demodulated output acquired imme-
tency of the model. Knowing the mixing angle, the magni-diately after the impulse was applied. The data have been
tudes of the autocorrelation functions provide another meashifted in frequency to produce a graph of the real-time re-
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FIG. 7. (@, (b), and (c) are the fitted components of

ALLEGRO's response to an impulse extracted from the data. These

FIG. 5. The spectral density of ALLEGRO'’s outpia before a
“calibration pulse” or artificial gravity wave is applied antb)
after a calibration pulse is applied. These plots clearly show the

presence of a third mode near 887.7 Hz.

sponse of the detector. Three sine waves, shown in Fig.

three sine waves were subtracted from Fig. 6, producing the residu-
als shown in ploi(d).

First, we note that the digital filtering does work as de-

;igned. Using the force generator, single cycle calibration

are required to reconstruct this signal. The frequencies, a:g'(l;lfessé ﬁ';hwveorgagesligg 20’ ri')?i}nz\?gl 31%\3/ :nsrtfzfg;eggg
plitudes, and decay constants of the fitted waves were ex-" " L PP ppro. ely 18 P .
tracted from the data using a lock-in amplifier. The only freean;zhl%r_qg'sf) 'erfsj_alle tc;ﬂ?g'ﬁ”f; 12”@”?2%;5 S_I_f’]t:;gls of
parameter is the initial starting time. Subtracting these threg' e ' : : P

sine waves from the actual data shows that these three fr
guency components account for most of ALLEGRO's re-

sponse to a burst.

It is important to note that Eq30) predicts that the plus
and minus mode amplitudes should be equal immediatel
after the bar is hit with a large impulse. ALLEGRO does not

alf of Fig. 8 shows the samples of the in-phase channel of
demodulated transducer voltage. The bottom half of Fig. 8

shows the corresponding filtered output of the minus mode.

The filtered output is a maximum at the samples correspond-
ing the times when pulses were applied, and the heights of
he peaks are proportional to the applied voltage. Figure 8

show this behavior. After the impulse has been applied théiemonstrates that the filter responds to a sudden change in

amplitude of the minus mode is consistently larger than th
amplitude of the plus mode. Repeated measurements mal
immediately after exciting the antenna show that the plus

de.

ode amplitude, not simply to the size of the voltage ampli-

Figure 9 is a plot of the in-phase versus quadrature mode

. amplitudes for the plus mode for the calibration pulses ap-
mode has only (0.820.03) percent of the amplitude of the plied in Fig. 8. Initially, the antenna was at rest, and the

minus mode. This result will be explained later.

2 T T T T

transducer displacement (m x 10'13)
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FIG. 6. The real-time response of ALLEGRO to an applied

fit.

time (sec)

impulse. The solid line is actual data. The circles are the result of a FIG. 8. Comparison of the digitized raw voltage output and

digitally filtered output from ALLEGRO.
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the plus and minus modes. These plots were generated using
_ 1 day’s worth of datdday 011 of 1998 decimated to a rate
B of one sample per second. There were no large burst events
on this day. The absolute values on thaxis of both graphs

are accurate to approximately 10% due to uncertainties in the
parameters needed to find the digital units to transducer am-
plitude coefficient. The peak of each of these graphs is equal
to the mean-squared displacement of the transducer in the
absence of any large impulses applied to the bar.

Quadrature Mode Amplitude

o A. Two mode model

In a true two mode system, the measurement of the
driving-point response of the two modes uniquely determines
the values of the generator constant and the mixing angle.
Solving Egs.(28) and (29) assuming thaZ(w )= Z(w_),

; p s the voltage-to-force constant and the mixing angle are

x10™*

-1 0
In—phase Mode Amplitude

FIG. 9. A plot of the in-phase component versus the quadrature tang= /7_’, (40)
component of the minus mode for the data shown in Fig. 8. The Y+
height of the peak produced by the digital filter is proportional to

the change in the mode amplitude. Z(we)=ymy(yi+y-). (41)

amplitudes of both channels were nearly zero. When théNIth known values for., , _, and#, values fo_r the un-
coupled parameteks;, w,, andm, can be determined from

1.0-V pulse was applied, both amplitudes jumped. The am:

plitudes then very slowly began to decay towards zero untin' (9)' The Igft side Of. Eq(9_) is_the modgl of the system’s
the 2.0-V pulse was applied. Even though the change i lastic behavior. The right side is a matrix of experimentally

time-domain amplitude after the 2.0-V pulse was muchd®termined numbers. Since the valuenof has been inde-
smaller than the change in time-domain amplitude in reJendently measured, there are three equations for three un-
sponse to the 1.0-V pulgsee Fig. 8 the digital filter still knowns. Using measured ALLEGRO values far and y_

identified the second pulse as the larger of the two. This iéshowr: in _Table. ). Eq. (40 yields a mixing angled
because the filter responds to both the magnitude and phas?e%'0 - Using this value fob, Eq. (9) yields §r11 uncoupled
of oscillation, contained completely in the amplitudes of the@Nt€NNa frequency ofw;=27x911.65rads’, an un-
in-phase and quadrature channels. The change in compl&Qupled transducer frequency af;=2mx903.86rads",
amplitude goes linearly with force applied to the oscillator,2nd @ transducer effective massmj=0.75kg.
which goes linearly with the voltage applied to the force With known values forZ(w.), 6, andm,, the value of
generator. The height of the filtered output peaks is proporthe sensor constant can be Qetermlned. The_sen_sor c;onstant is
tional to the magnitude of the jump in phase space. the constant of proportionality betw_een the inertial d|spla_1c_e-
Figure 10 shows measured autocorrelation functions fof'€nt of the transducer measured in meters and the digital
units of voltage recorded by the data acquisition system.
10 Plus Mode (10% Minus Mode From the relatioriX,=G,,F,, we know the amplitude of
’ e ’ oscillation of the transducer for a given force applied to the
78 : . antenna. From Eq19) we know the force applied to the bar
for a given voltage. By combining these two relations, the
oscillation of the transducer in responseNocycles ofV,
volts applied to the force generator is expressed in meters as

1.15F

_ mVoNZ(w.)sind cose
Vmim,w?

The transducer’s digitally recorded amplitude of oscillation
in response to a calibration pulse is normalized using Eg.
(42).
The experimental results are not consistent with the two
mode model. As stated before, the amplitude of the plus
%500 o 0 B o 500 mode is only 0.82 that of the minus mode after an excitation.
t (sec) t (sec) . . . .
The model predicts that the amplitudes of excitation should
FIG. 10. Autocorrelation functions of ALLEGRO’s noise on differ only by the ratio of the mode frequencies, which differ
day 011 of 1998, a day when no large bursts occurred. only by approximately one percent. The large difference in

Xo(t cofw-t). (42

<a2(t)a2(t—l)> (m?)
]

0951
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mode responses leads to different sensor constants for the ZAw_)

plus and minus modes. This is physically unreasonable. Fi- y-= T(smz 0—€1). (44)
nally, the ratio of autocorrelation functions predicted by the :
ratio of Eq.(39) to Eq.(38) is 2.4 while the measured ratio is

6.5. The presence of the extra mode cannot be neglected. where e, is a small correction term arising from the force

generator's effect on the resonant behavior of the antenna
(explained in detail in the Appendix Since Z(w.)
B. Three mode model # Z(w_), the voltage-to-force constant is not proportional to

the square root of the sum of, and y_. There are now

There are two possible physical locations for the extra[hree unknowns involved in these two measurements, and

mode. It can either be an extra resonance in the ".’mtenn%ditional information is required to complete the calibra-
transducer system of E@12), or an extra resonance in the tion

Ig:gg gigirg;grr (:c ;gfnniéBrﬁgiEZ?\ig?l aggg:;jga:;;gger- The required information is the amplitude ratio of the
in a c? o0enic de)\//va it is ot feasible){o ao0lv forces di- modes read out at the transducer in response calibration
yog / pply epulse. The mode excitation observed at the transducer is di-

rectly to different parts of the hardware in order to determin rectly proportional to the force applied, but because of the

the location of the resonance. In spite of this difficulty, thereforce generator resonance, each mode receives a different

is ample evidence showing that the extra mode is due to Rrce in response to the same voltage puse.andP_ , the

parasitic resonance in the force generator. . o :
The key to isolating its location is the fact that the amloli_amplltudes of the modes after an excitation, are proportional

tude of the extra mode’s driving point response is signifi-

cantly larger than the amplitude of the driving point re- )

sponses of the plus and minus modes while its signal P _Z(w+)5'”90039(1+6) (45)
responsdthe height of its peak in Fig.)5s relatively small. + \/mw+ 2

No third mass and spring added to the antenna-transducer

using reasonable effective masses and spring constants to .

describe the detector produces this behavior. Furthermore, an P o Z(w-)sin ‘9005‘9(1+ ). (46)
additional resonance added to the model of the antenna- Vmimyow _

transducer near the minus mode frequency lowers the ampli-

tude of the minus mode rr—;lative to the am.plitude of the P'Usl'he ratio of Eqs(45) and (46), using the measured values
mode; the observed fact is that the amplitude of the minug,, P. andP_, along with Eqs(43) and(44), provide three
mode is always larger than the amplitude of the plus mode iRquations for the three unknowi v ), Z(w_), andé.
response to an excitation. The large driving point response 'The modified expressions for voltage-to-force constants

from the extra mode results from the fact that the current irhnd mixing angle due to the resonant force generator are
Eq. (24) is being measured with an instrument which is reso-

nant at the frequency of the extra mode. Finally, during the P2
original assembly of ALLEGRO, a resonance was observed Z(w,)= \/m1 v+ ( s +) y_ (47)
at approximately 865 HZat room temperatujeafter the w_P_

force generator was mounted on the bar. Since resonant fre-
guencies change as a function of temperature, it is not un- _P_
likely that this resonance moved upward towards the de- Zw-)= 5 Z(w), (48
signed modes of the detector. A
A resonance in the force generator implies that the value
of Z(w) is not constant near the extra mode’s resonant fre- o Py Jy (49

guency; the behavior of the force generator must be de- tan6= w_P_ Ny’

scribed by a voltage-to-forckinctionrather than a voltage-
to-force constant Qualitatively, the resonance in the force ysing the corrected value for the mixing angle, the un-
generator does not change how we describe the mechanicgupled ALLEGRO parameters can be determined from Eq.
relationships between the plus and minus modes; it onlyg). The results are shown in Table I. They are in good agree-
changes the ratio of force generated to voltage applied whefent with previous measurements made on the sy5iéin
applying calibration signals. This is quantitatively demon-  wjith the generator constant determined, we normalize the
strated in the Appendix. output of the digital filter in terms of dimensionless strain
Although each mode now has its own voltage-to-forcecreated by the reference waveform defined in Sec. V. The
constant, the reciprocity relation still holds. The voltage-to-sensitivity of either mode is defined by its noise amplitude,
force function of the force generator is identical to itsthe average of a large number of filtered output samples in
velocity-to-current function. The driving point responses ofthe absence of any abnormally large bursts. As the results

the modes are characterized by from the two modes provide two independent estimates of
22 the size of the signal, statistically combining them improves
= & 2 the accuracy of our estimate. The expected distributions for a
Vi (cos 6+ ¢€,), (43 )
my two-mode detector and how to combine the results from the
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TABLE |. Measured ALLEGRO parameters.

Antenna mass m;=1148 kg

Plus mode frequency o, =2m7X(919.659 Hz)
Minus mode frequency w_=2m7X(895.414 Hz)
Extra mode frequency wy=2mX(887.742 Hz)

v, =(2.22+0.09)X 10" *mho/s
v_=(1.17=0.05)x 10" *mhols

Plus/minus signal response ratio P, /P_=0.82-0.03
Minus/extra signal response ratio P_/Py=4.4+0.2

Plus mode generator constant Z(w,)=(5.9+0.1)x10" 8 N/V
Minus mode generator constant Z(w_)=(7.0£0.2)xX10 8 N/V
Two-mode mixing angle 0=(30.5+2.5)°

Uncoupled antenna frequency 01=(913.83£0.76) Hz
Uncoupled transducer frequency w,=(902.58:0.79) Hz
Transducer effective mass m,=(0.64=0.05) kg

different modes are discussed in detail elsewlidieAs of  detector while applying white voltage noise to the force gen-
1998, the average strain noise amplitude of ALLEGRO iserator. Because of the resonance in the force generator, the
1x10 18 white voltage noise produces different forces at different fre-
Using the modified expressions for mixing angle andquencies. By combining Eq32) with the force generator's
voltage-to-force constant, E42) can be used to determine transfer functionEq. (A28), derived in the Appendilx we
the sensor constant. In its current operating state, one digitaletermine the spectrum of input strain created by the white
unit of ALLEGRO output is equal to 1410 "m of trans-  noise. The output spectrufin digital units\/Hz) divided by
ducer displacement. This same constant is calculated for bothe input strain spectruitin strainA/Hz) yields the detector’s
modes. Given the mechanical gain due to the transducer, thiggnal transfer function in digital units/strain.
is equivalent to measuring a strain creating a displacement of Next, we measure the noise spectra under normal detector
2.6x 10 *m with a bare bar. operating conditiongin digital unitsh/Hz) and divide the
The ratio of the mean-squared displacements is approxiesult by the experimentally determined signal response
mately 6.5, consistent with a mixing angle of 29.4°, within transfer function. This yields the equivalent input strain noise
the experimental uncertainty of the driving point measurespectrum in units of strain/Hz. Near the resonant modes,
ment of 6. Assuming that the noise force is given by the the strain noise spectrum is limited by transducer force noise.
fluctuation-dissipation theorem, this driving force has a specaway from the resonances, it is limited by the SQUID white
tral density of Syy(w) =4k Tmyw . /Q;, whereQ; is the  nojse. The strain noise spectrum dips to a local minimum at
mechanical quality factor of the transducer, equal to approXieach of the mode frequencies, indicating that, as expected,
mately 1.5<1C°, and T is the physical temperature of the the detector is most sensitive at those frequencies. The cur-
bar, 4.2 K. Given the set of antenna parameters determina@ént sensitivity of ALLEGRO as of 1998 is shown in Fig. 11.

from the three-mode model, Eq88) and(39) predict values The dip in the strain noise spectrum at frequencies below
of 1.2x1073'm? in the plus mode and 6:010 3'm? in the

minus mode. The measured values are within the experimen- 16—
tal uncertainty determined by uncertainties in the mixing
angle and the quality factor of the transducer.

VIIl. STRAIN-NOISE SPECTRUM

Finally, we present the current sensitivity of the
ALLEGRO detector. A useful way to characterize the sensi-
tivity of a gravity wave detector is to determine its equiva-
lent input strain noise. A plot of the equivalent input strain
noise displays the noise of the detector in terms of the quan- u
tity that the detector is designed to measure, the strain of a 10
passing gravitational wave. The equivalent input strain noise
is the gravity wave spectrum that would produce the ob-
served output spectrum in a noiseless detector. 22

strain/rt(Hz)
S

) o 10 . . . .
The most straightforward way to calculate the strain noise 870 880 890 900 910 920 930 940 950

. LS . . frequency (H
spectrum is to divide the output noise spectrum by the signal quency (Hz)

transfer function. Experimentally, the signal transfer function FIG. 11. The equivalent input strain-noise spectrum of the
can be determined by measuring the output spectrum of theLLEGRO detector as of 1998.
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the extra mode frequency is an artifact of the unwanted force APPENDIX: THE COMPLETE
generator resonance and the SQUID white noise. It is not a  ANTENNA-TRANSDUCER-FORCE GENERATOR
useful frequency for gravity wave detection. The artifact is SOLUTION

unde'rstood by hoting that EQAZS) produces less force at Equationg12) and(17) completely describe the dynamics
certain frequencies immediately below the extra mode fréy the coupled antenna-transducer-force generafor system.
quency. Although the force applied by the force generator isthe coupled antenna-transducer is treated as a load con-
less than for other frequencies in this region, the output iiected to the mechanical port of the force generator. To this
dominated by the white noise of the SQUID which is insen-point, we have ignored effects produced by the coupling of
sitive to the magnitude of force applied by the force generathe force generator to the antenna-transducer system. Physi-
tor. Our calculated response thus produces a big artificiadally, the coupling of the force generator to the systemen
peak here. In the absence of SQUID white noise, the rein the absence of a resonahchanges the mode frequencies
sponse here would also be small, and no dip would be oband amplitudes measured at the readout system. This appen-
served. dix discusses the deviations from the ideal created by a force

generator with non-infinitesimal mass. This calculation is

used to determine the magnitude of the perturbation caused

IX. CONCLUSION by the additional resonance in the force generator.

In this paper, we describe the three normal mode transfer 1. Antenna force-generator interaction
functions needed to d_escrlbe a resonant mass grav@auqnal When a calibration signal is applied, the following condi-
wave antenna. We gain several new insights from this pic-, - ;
ture. The mistuning between the antenna and transducer c&qNS are true(l) V,, is constant, fixed by a voltage source.
be experimentally determined. The uncoupled frequencies ¢£) The only external force acting on the bar comes from the
the antenna and transducer and the effective mass of ttferce generatork-;=—F,. The sign difference arises from
transducer can be inferred from measurements of the mistuthe convention thaf:p andiwX, are defined so that power
ing. The detector transfer functions which include this mis-flows into the mechanical port of a transdug2t]. (3) The
tuning explain whyy, does not equaj_ in either the Stan- mechanical port of the force generator is rigidly attached to
ford or LSU antennas. the antenna fac&; =X, . (4) There is no external force act-

We develop a new set of detector diagnostics based Ofg directly on the transducef,,=0. (It is assumed that the
these transfer functions. The measurement of the Mixinggfects of Brownian noise at the bar-transducer interface can
angle via the driving point response should be consistente neglected Given these 4 conditions, it is possible to

with the measurement of the mixing angle via the autocorregq)ye Eqs(12) and(17) together in order to obtaik, and%,
lation functions. The amplitude of excitation of the two . v Th It
in terms ofV,. The result is

modes after a short burst should be nearly equal in respon
to a broadband impulse. Deviations from the ideal behavior Gy, Gio

can be used to quantify the effects of parasitic resonances X, 1
near the detection modes. The experimental results demon- %» = 4] Gy G +in||G||
strate that the behavior of ALLEGRO is truly that of two 1+ioZ—Gy 22 2
coupled, noise-driven oscillators. 22
This model offers new insight into the conventions used Zio
to describe the output of a resonant antenna in terms of an -5 Vp
S o x| Zp . (A1)
incident excitation. In response to a burst, the total energy 0

deposited into the antenna is not equally divided between the

two modes. The partitioning of the energy depends upon thgz|| is the determinant of the force generator electromechani-
degree of detector mistuning. Conventions derived from thea| impedance matrix.

amount of force applied to the antenna describe the relation- \wnen the bar is operated as a detector, these conditions
ship between an incident excitation and the output of theyre different. In this mode of operatioft) the ac voltage
readout system without any references to antenna dependeaggroSS the force generator is set to z§/rp,=0; (2) the force

mistuning. applied to the antenna is the sum of any external force on the

Finally, an analogue of this model is a starting point forb o ;
L . . ar (such as an incident gravity wav@lus any response
understanding how to interpret results from the multimode ( 9 y wave y P

transducers under development. This model, extended 0™ the short-circuited force generatdfy=—Fp+Fexu;
three modes, will be an important tool in both developing a(3) there may be some exterrfég}=F.,, present. Condition
calibration procedure for and understanding the noisd4), X;=%,, remains the same. In this case, in terms of the

sources of three-mode antennas. external forces,
- Gu1 G -
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FIG. 12. Schematic of the simplest possible configuration for a  FIG. 13. Schematic of a general electromechanical force genera-
capacitive force generator, a parallel plate capacitor whose platasr, which is a system of coupled harmonic oscillators with two of
are free to move under the force of the electric field between themhe masses connected by an electric field instead of springs.

From these equations it is clear that the effect of applying
voltageV,, to the force generator described by E4l) is

exactly the same as applying a force of magnitilg,

Across the plates, respectively. The transducer is operated by
applying a small ac voltage in addition to a large dc voltage.

g Under this condition the relationships betwéen the time-
= —(Z12/Z2)V,, directly to the bar. varying electrical force on the capacitor plates due to the

Ideally, the force generator has no resonances near tl‘@ PR v ; .
o ectric field,V,., the time-varying voltage across the ca-
detection modes of the coupled antenna-transducer. In this ac ying g

case, botH|Z][/Z,, and Z,,/Z,, are approximately constant pacitor plates) .., the time-varying and current across the

within the detection bandwidth and the denominator termC@Pacitor plates, ankl; andX,, the inertial coordinates of
depending on|[Z|/Z,, primarily contributes a small fre- the two capacitor plateghe convent_lons tha’nl represents
quency shift. We recover the relations the antenna andh, represents the inductive transducer are

retained through this appendjare linear:

%1~GyiF ;. (A3) = N o
Lo Fe=CoBoVac~ CoEg(Xs—Xa), (A5)
?Z%GZlﬁl' (A4)
o
In the case of resonances, however, we shall have to more V=22 4 By (X —¥a). (AB)
carefully consider the effect of these denominators. 10Cy

2. General electrostatic transducer Cy andE, are the size of the capacitance and strength of the

The heart of the capacitive force generafitiustrated in  electric field when only the dc field is present.
Fig. 12 is a parallel plate capacitor whose plates are free to Physically, a capacitive force generator is a set of coupled
move. The equations relating the voltages and currents insidgarmonic oscillatorsillustrated in Fig. 13 with two masses
of the transducer to its internal mechanical dynamics are dezonnected by an electric field instead of springs. Its mechani-
rived from the equation for force on the plates of a parallelcal dynamics are described with a Green’s function matrix.
plate capacitorE = CE?Ax/2, and the derivative of the defi- The electrostatic forces enter the problem as a pair of equal
nition of capacitancd,= CV+CV, whereF is the force ona and opposite external forces acting on massgsand m, .
single capacitor plateg is the capacitance of the platéSjs  There is also an external force on the mechanical eyt,
the electric field between the plate&x is the separation resulting from the force generator’s interaction with the an-
between the plates, and and| are the voltage and current tenna. For a system composedMimnasses,
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% Goo Goz Gos ... Gon Fo Eqg. (A10). Rearranging the rgsylt into an impeQar_lce matrix
- ~ form, the general electrostatic impedance matrix is
X3 Gz Gsz Gz ... Ganf| Fe
Xa = G Gaz Gus ... Gun|| —Fel —1 Eo0>
;. . . T:’p inOO i(UGOO Iw?p
XN Gno Gnz Gna o --- G 0 A7) A | EoG, 1 E_S (G5—G1Goo) Tp '
i (,!)GOO i (,()Co i GOO
Equations(A5), (A6), and (A7) completely describe the (A13)

motjon of the forc.e generator resulting from both eIectro—l\Iote that the necessary symmetry property between the off-
static and mechanical forces. In order to form the |mpedancgiagonaI elements is present

matrix for this system, the variables describing motion inside
of the force generator(,, X3, andX,) must be eliminated.
The force and velocity of the capacitor plates are concisely
described in terms of the voltage and current at the electrical Using Eq.(A13), we can determine the frequency depen-
port by rewriting Eqs(A5) and (A6) in their transfer matrix dence of|[|Z|/Z,, and Z(w) without relying on detailed
representation, knowledge of the force generator geometry. From linear net-
work theory, it is known that the inverse of the driving point
0 E response functioG is also a driving point response func-
) Vp tion. This implies that 15, can be written as a partial frac-
“lio -1 Tl (A8)  tion expansion. Since there is only a single additional reso-
— p nance in ALLEGRO, all but one of the terms of this
Eo CoEo expansion can be combined into a single, frequency-
independent constant. The remaining term is written as a
constant coefficient over a resonant denominator.

The first quantity needed i§Z|/Z,,. SinceC, is small,
2, IS nearly constan®Z,,~ 1/i oC,. Under this assumption,

3. Calculating the effect of a resonant force generator

q=X4—Xs. (A9)

Equation(A8) assumes that the voltage and current at th
port are connected to the capacitor plates by an ideal sho
circuit, Vy=Vqc, | ,=1,c. Equation(A7) can also be recast Ilz| 1 B,

in a transfer matrix form relating the force and velocity of = ( o 5 )
the mechanical port to the force and velocity of the capacitor (

plates,

72 (A14)

222 lw — Wy

wherewy is the frequency of the extra resonance in the force
-1 generator. The form of the generator constant in the resonant

E 1 g1 — || Fe case is also a partial fraction expansion with a single
2= Yol gl A0 frequency-dependent term of interest
ioXy]  Gof . ) i 0 q y-aep ,
10(G5—God1)  Goo
fe_p P (A15)
G1=Gy3t G3y— Gy~ Ggs, (A11) Zy, 2 m
G2=G3o~ Gyo. (A12)  All of the B's are real-valued constants. There is no obvious

. ' .__relationship between the differets in this representation.
This assumes that, has been defined as the mechanicalrye genominator frequency is the same in both expressions.
port of the force generator, so thgf=%, andFp=—F,. Substituting Eqs(A14) and(A15) into Eq. (A1), the driv-

The right side of Eq(A8) is used to eliminat&, andg from  ing point response of the system becomes

Gy ( —zlz) _ [Ba(w? = w3®) + B5][cOF B(w'?~ w?) + i 60!~ 0?)]
A Zy | M- 0?) (00302 0)d) +[Bo(w? - 030)+ B1l[cof §(w >~ w?) +Sif 6(w/? - v?)]’

(A16)
where A=1+iw0|Z||G1;/Z,, to make the notation more compact. The primed frequeneigsand w’ are the result of
coupling the bare bar to the transducer. They are not observable once the system is assembled. The unprimed f&eguencies
and w_ are the result of coupling the antenna, transducer, and force generator together,

w.=w.+ 6. (A17)

S+ is the frequency shift of the normal modes of the detector created when the force generator is added to the system. Though
this additional frequency shift is physically uninteresting, the unprimed frequencies are known with great accuracy and are
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most useful for comparison between model and experiment. Experimentally it is known that these frequency shifts are small.
There is an analogous frequency shiftwf to a valuewy when the force generator is coupled to the bar.

Consider first the measurementof . In this case, substituting E¢A17) into Eq. (A16), yields a driving point transfer
function of

(A18)

G_n( —212) B [ Bo( 02— 05— 28xwyx) + B3][CoZ (0> +28_w_— w?)+SirP 002 +28, w, — »?)]

A\ Zy ml(wz—wi)(wz,—wz)(wi—wz)
Mathematically, including the correction term in the denominator changes the positions of the poles of the transfer functions
without changing the position of the zeros. The time-domain amplitudg (@j takes the form of Eq925) and(26) plus a
correction term due to the additional residuesgt. The value ofy.. is thus proportional to the product of the frequency
dependen¥,,/Z,, and the amplitude o%4(t):

2

_ (cos O+ e€y) B3
Y T B2(1_63+)+m (1+es4), (A19)
Sir 6—€;) 2
’yZ(—El<IBZ(1_€3)+% (1"‘63,), (AZO)
my (02 wx)
S,w, Sif 6+ 5_w_cos 6
€1= — , (A21)
0l — o
26
s iwwx . (A22)
+ X

We can also evaluate the gamma value for the extra mode,

_[co8 6(w? — }) + i 6w} — wf) + e1(0f — ©?)](Bz—2B20xwx)?

Yx= (A23)

2m, Sy wy( 0% — wy) (W’ — %)

Using a set of masses and spring constants that approximately describe the force generator mounted on ALLEGRO, these
frequency shifts are estimated to be less than 1 Hz. This implies a maximum correctigr= 2. By comparing the
measured ratios ofy/y. to values predicted by Eq§A19)—(A23), we determine thaby<0.1 Hz, ande;. <0.01.

In the case of the mode amplitudes measured after an excitation of the bar, the frequency shifts change the force-generator-
voltage—transducer-motion transfer function to

(A24)

621( —zlz) _Sin6 cost] B P~ wi—28xwx) + Bsll@} — 0’ +2(5 0, — 5w )]
A\ Zy Vmim,(0? — 0f) (02 — 0?) (0} — v?) '

Assuming frequency shifts of approximately 1 Hz, will be on the order of %X 10 *. The measured post-excitation mode
amplitudes are directly proportional to the residues of B®4) evaluated atv, andw_,

—sin# cosh L B3 1 A5
g, (P S Gge e
5 sin 6 cosh L B3 1 A26
T | PR g ) o

g, OBy T O0) (A27)

wi — o’

The important result of this formalism is that the mixing angle is still the only parameter needed to characterize the
mistuning between the antenna and transducer, but the voltage-to-force relationship is no longer described by a constant.
Neglecting the small correctiorifess than 1%caused by the (% e;3.) terms in Eqs(A19) and(A20), we absorb all of the
perturbation created by the extra mode into the voltage-to-force constant. In the notation of the previous s&atieasiow
a function of frequency,
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B3

Z(wi):ﬁ2(1_€3i)+(_2_2_) (A28)

wi—wy)’

Using Eq.(A28), Egs.(A19) and (A20) become Eqs(43) and (44), and Egs(A25) and (A26) become Eqs(45) and (46).
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