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Resummation of cactus diagrams in the clover improved lattice formulation of QCD
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We extend to the clover improved lattice formulation of QCD the resummation of cactus diagrams, i.e., a
certain class of tadpole-like gauge invariant diagrams. Cactus resummation yields an improved perturbative
expansion. We apply it to the lattice renormalization of some two-fermion operators improving their one-loop
perturbative estimates.@S0556-2821~99!03905-3#
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In a previous work@1# we showed how to perform a re
summation of a certain class of gauge invariant diagra
termed cactus diagrams, in the Wilson formulation~for both
gluons and fermions! of lattice QCD. The resummation o
such diagrams led to an improved perturbative expans
essentially by dressing the one-loop calculation of the lat
renormalizations. Applied to a number of cases of inter
this expansion yielded a remarkable improvement wh
compared with the available nonperturbative estimates
this paper we extend such calculations to the case of
clover improved action formulation of lattice QCD@2#,
which is widely used in numerical simulations in order
reduce scaling corrections. In the following we will heavi
refer to Ref.@1# for notation and many analytical results.

Cactus diagrams are tadpole diagrams which become
connected if any one of their vertices is removed~see Fig. 1!.
Our original motivation was the well known observation
‘‘tadpole dominance’’ in lattice perturbation theory. Indee
tadpoles diagrams are often largely responsible for lat
artifacts. This observation has already inspired many prop
als to improve lattice pertubation theory, see e.g.@3,4#. Of
course the contribution of standard tadpole diagrams is
gauge invariant. So we need to further specify the class
gauge invariant diagrams we are considering.

Let us write the so-called clover improved action
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wheref is a flavor index;Ux,mn is the usual product of link
variablesUx,m along the perimeter of a plaquette originatin
at x in the positivem-n directions:
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~Qx,mn2Qx,nm!, ~2!
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The improvement coefficientcSW can be calculated in per
turbation theory as a function ofg0

2 . Its tree-order value is
cSW51; in this case only the leading log scaling correctio
of O(a) are eliminated. More recently a nonperturbative d
termination has also been performed, which allows to co
pletely cancel theO(a) corrections@5,6#.

By the Baker-Campbell-Hausdorff~BCH! formula we
have

Ux,mn5eig0Ax,m eig0Ax1m,n e2 ig0Ax1n,m e2 ig0Ax,n

5exp$ ig0~Ax,m1Ax1m,n2Ax1n,m2Ax,n!1O~g0
2!%

5exp$ ig0Fx,mn
~1! 1 ig0

2Fx,mn
~2! 1O~g0

4!%. ~4!

The diagrams that we propose to resum to all orders are
cactus diagrams made of vertices containingFx,mn

(1) . Terms of
this type come from the pure gluon and clover parts of
lattice action.

FIG. 1. A cactus.
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In Ref. @1# we showed how these diagrams dress
gluon propagator and the gluon vertices@we denote by a
thick ~thin! solid line the transverse dressed~bare! gluon
propagator#:

~5!

where the functionw(g0) can be extracted by an appropria
algebraic equation that has been derived in Ref.@1# and that
can be easily solved numerically; forSU(3), w(g0) satis-
fies

ue2u/3@u2/324u18#52g0
2 , u~g0![

g0
2

4„12w~g0!…
.

~6!

The 3-point vertex dresses as

~7!

and similarly for other vertices. Contributions to vertic
coming from the standard Wilson fermionic action stay u
changed, since their definition contains no plaquettes
which to apply the linear BCH formula. In the clover im
proved action formulation plaquettes appear in the new
mionic term; thus in this case one should also dress the
fermion-gluon vertices originating from this term.

Let us now prove that the fermion-gluon three-point v
tex coming from the clover term gets dressed as the th
gluon vertex, cf. Eq.~7!. Proceeding as in Ref.@1# @cf. Eq.
~20! and Appendix B therein#, we write for the fermion-
gluon three-point vertex:

~8!

@solid ~dashed! lines represent gluons~fermions!#. No other
dressed vertices are necessary in most of the interesting
plications, that essentially amount to a dressing of the p
turbative one-loop calculation. In these cases the dressin
the fermion-gluon three-point vertex in the one-loop calcu
tion is equivalent to a rescaling of the constantcSW:

cSW→ c̄SW[cSW•„12w~g0!…. ~9!

One can apply the resummation of cactus diagrams to
calculation of the renormalizations of lattice operators. A
proximate expressions are obtained by dressing the co
sponding one-loop calculations. In the case of opera
whose anomalous dimension is zero in the modified minim
05750
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subtraction (MS) renormalization scheme, a consiste
means of implementing the cactus dressing is to apply i
the one-loop difference between lattice and continuum c
tributions that determine the finite renormalization. Cas
with nonzero anomalous dimension can be dealt with in
analogous manner, by setting the scalem51/a and dressing
the finite renormalization coefficients as before.

In the following we present a few examples of lattic
renormalizations for which non-pertubative evaluations
available in the literature. Let us consider the non-sing
vector and axial currents Vm

a 5c̄lagmc and Am
a

5c̄lagmg5c and the renormalization of their lattice coun
terparts. So far, essentially three nonperturbative meth
have been successfully implemented in the computation
such renormalizations:~i! use of the Ward identities@7#
~WI!; ~ii ! nonperturbative renormalization on external qua
and gluon states@8# ~NP!; ~iii ! use of finite size scaling tech
niques @9# ~FSS!. The major source of systematic error
these calculations is due toO(a) scaling violations. Already
for the tree clover improved action they turn out to be rath
small atg0

2.1, where simulations are actually done. So no
perturbative estimates are quite reliable. In the case of
tree clover improved action, scaling corrections are estima
to be less than 5% atg0

2.1 using the WI approach@10,11#.
Lattice renormalizations can be also calculated in pertur
tion theory. Most perturbative calculations have been p
formed to one loop. Thus their use as approximation of
lattice renormalizations introducesO(g0

4) errors in the final
estimates of physical quantities@to be compared with the
O(a) scaling corrections of the nonperturbative method#.
Many recipes of improvement have been proposed~see e.g.
@4#, and@11# for a review of them! that essentially consist in
a better choice of the expansion parameter. Among them
mention the so-called tadpole improvement@4# ~MFI! moti-
vated by mean-field arguments, in which one scales the
variable withu0(g0

2)[^(1/N)Tr Ux,mn&
1/4 as measured in the

Monte Carlo simulation. Accordingly one rescales the co
pling constant: g0

2→gmf
2 5g0

2/u0
4 . Thus, if at one loop:

Z511z1g0
21O(g0

4), one obtains a mean-field improved e
pansion by

Z5u0F11gmf
2 S z11

1

12D1O~gmf
4 !G . ~10!

For example, forSU(3) in the quenched approximation an
at g0

251 one findsu0.0.878 andgmf
2 .1.68. A more naive

and simple recipe of improvement consists just in the cha
of variableg0→gmf in the standard perturbative expansio
~NMFI!.

In the context of the clover action, the following im
proved lattice operators have been considered@12#:

c̄F11
1

4
~gaDQ a2m0!GlaGF12

1

4
~gbDW b1m0!Gc ~11!

whereG5gm ,gmg5 for Vm
a andAm

a respectively, andDm is
the symmetric lattice covariant derivative. Their one-lo
renormalization is known@13#
3-2
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ZV,A511zV,Ag0
21O~g0

4!, ~12!

where

zV~cSW!5
cF

16p2 ~214.3613.30cSW20.75cSW
2 !, ~13!

zA~cSW!5
cF

16p2 ~6.87212.54cSW13.55cSW
2 !.

~14!

The cactus dressing of the above one-loop expressions
be simply obtained by using the dressed transverse g
propagator~5! and by rescalingcSW according to Eq.~9!. We
thus obtain the following approximate expressions:

ZV,A'11g0
2 zV,A~ c̄SW!

12w~g0
2!

. ~15!

Nonperturbative numerical calculations ofZV,A for the
tree-improved clover action~i.e. cSW51) and atg0

251 have
been obtained in quenched theory by imposing vector~V!
and axial~A! WI’s and by nonperturbative renormalizatio
on quark states~NP!. In Table I we list these results an
compare them with the one-loop perturbative calculat
~PT!, our cactus dressing~CI! of the one-loop expression, th
mean-field inspired improvement~MFI! and the result tha
one obtains just by substitutingg0

2 with gmf
2 ~NMFI!. Results

from other recipes can be found in Ref.@11#. In the case of
ZV all improved perturbative estimates get closer to the n
perturbative results, thus improve PT. On the other hand
the case ofZA the simple change of coupling fromg0 to gmf
~NMFI! does not help. Sincegmf.g0 , it increases the one
loop perturbative correction that has the ‘‘wrong’’ sign, th
worsening the plain one-loop estimate. Similarly, a chan
of coupling and momentum scale, in the manner of Lep
and Mackenzie@4#, also worsen the PT estimate as the c
respondingg(q* ) ~defined in@4#! turns out to be larger than
g0 . In the case ofZA the only procedure improving PT i
cactus resummation, but its estimate is still relatively
from the nonperturbative result.

In Ref. @9# the lattice renormalizations of two further la
tice operators corresponding toVm andAm have been calcu

TABLE I. Some estimates ofZV andZA for the operators~11!
and the tree-improved clover action atg0

251 (b56).

Method ZV ZA

PT 0.90 0.98
CI 0.86 1.00
MFI 0.85 0.97
NMFI 0.83 0.97
VWI @11# 0.82
AWI @11# 0.80~2! 1.11~2!

NP @8# 0.84~1! 1.06~8!
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lated nonperturbatively employing finite size scaling tec
niques and using the nonperturbative estimate ofcSW. The
lattice operators were

Vm
L 5c̄lagmc1cV

1

2
~Dm

21Dm
1!i c̄lasmnc ~16!

Am
L 5c̄lagmg5c1cA

1

2
~Dm

21Dm
1!c̄lag5c,

~17!

wherecV,A areO(g0
2) constants, and the corresponding term

serve to obtain on-shell improved operators. Their pertur
tive renormalization is given by formula~12! with @14#

zV~cSW!5
cF

16p2 ~220.6214.75cSW10.54cSW
2 !, ~18!

zA~cSW!5
cF

16p2 ~215.8020.25cSW12.25cSW
2 !.

~19!

In Fig. 2 we compare the nonperturbative calculations
Ref. @9# with the one-loop and the dressed one-loop calcu
tions. A remarkable improvement is observed. In this c
the cactus resummation performs as the mean-field insp
boosted perturbation theory~MFI!. As already noted in Ref
@9#, the nonperturbative data are best reproduced by NM

It is clear that nonperturbative methods are in gene
preferable to approximations based on perturbative calc
tions, due to their better controlled systematic errors@O(a)

FIG. 2. Results forZV and ZA ~from Ref. @9#!, coming from
numerical simulations~filled circles, fitted by a solid line!, bare
perturbation theory~dotted lines! and ‘‘mean field improved’’ per-
turbation theory~crosses!. The dashed lines superimposed on the
figures are our results from cactus dressing.
3-3



es
is

at
re
e
e
ia
de

d in
ads
ice
ari-
is

ay
ra-

BRIEF REPORTS PHYSICAL REVIEW D 59 057503
againstO(g0
n)]. However, improved perturbative estimat

are still quite useful. They indeed provide important cons
tency checks. Further, in those cases where nonperturb
methods are difficult to implement, perturbative methods
main the only source of quantitative information. In this r
port we have shown how to extend to the clover improv
lattice formulation of QCD the resummation of cactus d
grams, which represents a direct implementation of the i
n-
n-

ys

lff,

.

05750
-
ive
-

-
d
-
a

of tadpole dominance. The examples considered here an
Ref. @1# show that the resummation of cactus diagrams le
to a general improvement in the evaluation of the latt
renormalizations based on perturbation theory. The comp
son with the corresponding nonperturbative calculations
globally satisfactory. Of course, cactus resummation m
also be applied to the lattice renormalizations of other ope
tors without further complications.
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