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Consistency in regularizations of the gauged NJL model at the one loop level
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In this work we reexamine questions recently raised in the literature associated with relevant but divergent
amplitudes in the gauged NJL model. The questions raised involve ambiguities and symmetry violations which
concern the model’s predictive power at the one loop level. Our study shows, by means of an alternative
prescription to handle divergent amplitudes, that it is possible to obtain unambiguous and symmetry preserving
amplitudes. The procedure adopted makes use solely ofgeneral properties of an eventual regulator, thus
avoiding an explicit form. We find, after a thorough analysis of the problem, that there are well established
conditions to be satisfied by any consistent regularization prescription in order to avoid the problems of
concern at the one loop level.@S0556-2821~99!00403-8#

PACS number~s!: 12.60.Rc, 11.55.Fv
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I. INTRODUCTION

The Nambu–Jona-Lasinio~NJL! model @1# has been ex-
tensively studied in the context of low energy hadron phys
@2–5#. Because of the presence of the four fermion inter
tion the model is nonrenormalizable in weak coupling exp
sion ford22 dimensions. Therefore a regularization sche
is called for whenever divergent amplitudes appear. F
quently, regularization prescriptions adopted in the calcu
tion of divergent amplitudes destroy the symmetries of
original Lagrangian and introduce nonphysical behavior s
as unitarity violation or unphysical thresholds. This is u
avoidable if finite integrals are regularized. An elegant w
to circumvent this problem has been proposed in@6# where
dispersion relations are used. This however requires the
tension of all integrals to infinity. This can be justified at t
one loop level, since, as has been shown in Refs.@7–9#, the
NJL model constitutes a perfectly renormalizable field the
in mean field expansion, also ford22. This naturally avoids
unitarity violation and the appearance of nonphysical thre
olds. There remains, however, the problem of ambigui
and symmetry violations. In fact, Ward identities have be
used to constrain regularization of the NJL model@10,11#. In
the present work we want to investigate the source of am
guities and symmetry violations in the NJL model in a w
which is as little as possible committed to a given regul
ization scheme. We therefore only assume the existence
implicit regularization scheme and derive the properties
should have in order to avoid such problems. The existe
of such a scheme has been proven in Ref.@12# and given
here in Appendix A, for the sake of completeness.

The context of our discussion and physical motivation
the following. Recently the NJL model has been used
provide for a possible mechanism to generate dynam
symmetry breaking in the context of the standard model,
reason for this being that the top quark mass is much hea
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than that of the gauge bosons. Bardeen, Hill, and Lind
~BHL! used the NJL model, in one loop approximation,
order to predict the top quark and the Higgs boson mas
@13#. Given the nonrenormalizability of the NJL model, th
calculations made use of a particular regularization sche
Later, Wiley@14# argued that the regularization scheme us
by BHL turns the evaluated amplitudes ambiguous, due
their divergent character. The conclusion of Wiley’s work
that the BHL results are consequently not consistent.

More recently Ghergheta@6# returned to this discussion
emphasizing that the qualitative equivalence of the N
model and the standard model is strongly dependent on
choice of an adequate regularization scheme. The autho
gues that the sharp cutoff method is not consistent sinc
breaks gauge invariance and introduces ambiguities rel
to the choices of momentum routing in the internal lines
the loops. On the other hand, dimensional regularization
spite of being a consistent prescription from the point
view of symmetry considerations and ambiguities, cannot
used since it eliminates the quadratic divergence essentia
the model. The problems were circumvented in Ref.@6# by
using dispersion relations and Cutkosky’s rules.

In the present paper we revise the question of the pre
tive power of the NJL model at the one loop level. Havin
this in mind we adopt a different strategy for the manipu
tion and calculation of divergent amplitudes which clea
displays the sources of all ambiguities and symmetry vio
tions in a way which is independent of the specific regul
ization prescription. We show that there exists very gene
conditions to be obeyed byany regularization prescription in
order to obtain consistent results.

Section II contains the explicit calculation of by poin
functions necessary for the discussion of Ref.@6#. We test the
prescription verifying all Ward identities related to the am
plitudes and by considering the possibility of ambiguities.
Sec. III we present the conclusions and final remarks.

II. TWO POINT FUNCTIONS AND AMBIGUITIES

The first two point function to be considered is the scal
scalar one, which is necessary for the description of thet t̄

s,
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channel of the fermion-fermion scattering amplitude. It
defined by

TSS5E d4k

~2p!4
TrH 1̂

1

@~k”1k” 1!2mt#
1̂

1

@~k”1k” 2!2mt#
J ,

~1!

wheremt is the top quark mass andk1 andk2 are arbitrary
internal momentum routings. The choicek15(12a)p and
k252ap corresponds to that of@6#. Note that only the dif-
ferencek12k2 is a physical quantity~external momentum
q). The sumk11k2 or the productk1k2 are ambiguous
quantities.

After taking the Dirac trace and reorganizing the expr
sion we get

TSS52H E d4k

~2p!4

1

@~k1k1!22mt
2#

1E d4k

~2p!4

1

@~k1k2!22mt
2#

1@4mt
22~k12k2!2#E d4k

~2p!4

3
1

@~k1k1!22mt
2#@~k1k2!22mt

2#
J . ~2!

At this point the usual procedure is to adopt a regulari
tion scheme. Instead of doing this at this stage we ado
different strategy. We implicitly assume some generic re
lating function in all steps and indicate with the letterL
under the integral sign. The existence of the connection li
is used for removing the subscript~regularization! from finite
integrals. All we need from this function is that it is an ev
function of loop momentum and that a connection limit e
ists.

We first consider the quadratically divergent integr
which we reorganize using a convenient identity at the le
of the integrands

E
L

d4k

~2p!4

1

@~k1k1!22mt
2#

5E
L

d4k

~2p!4

1

~k22mt
2!

1k1ak1bH E
L

d4k

~2p!4

4kakb

~k22mt
2!3

2E
L

d4k

~2p!4

dab

~k22mt
2!2J 1H E

L

d4k

~2p!4

~k1!2

~k22mt
2!3

2E
L

d4k

~2p!4

~k1
212k1•k!3

~k22mt
2!3@~k1k1!22mt

2#
J . ~3!

The last two integrals thus obtained are finite. They
integrated without restrictions. It is precisely at this po
that nonphysical thresholds and unitarity violations are int
05501
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duced by usual regularization procedures, i.e., by modify
the external momentum dependence of the finite~physical!
part of the amplitudes. The direct integration, in this ca
yields an important exact cancellation. The remaining in
grals will be left as they appear. In this specific case o
philosophy is equivalent in spirit to the usual Bogolubo
Parasiuk-Hepp-Zimmermann~BPHZ! procedure which
makes use of successive subtractions around a fixed ext
momentum. It is worth noticing that the arbitrary choice f
the internal lines does not allow us to attribute any physi
meaning tok1 andk2 . As will become clear in what follows
the difference between our procedure and the BPHZ subt
tion scheme in the case of different masses are still m
marked. From our point of view any convenient identity c
be used. Taylor expansions are a possible choice when
equate.

The other integral logarithmically divergent may be reo
ganized as follows:

E
L

d4k

~2p!4

1

@~k1k1!22mt
2#@~k1k2!22mt

2#

5E
L

d4k

~2p!4

1

~k22mt
2!2

2E d4k

~2p!4

~k1
212k1•k!

~k22mt
2!2@~k1k1!22mt

2#

2E d4k

~2p!4

~k2
212k2•k!

~k22mt
2!2@~k1k2!22mt

2#
1E d4k

~2p!4

3
~k1

212k1•k!~k2
212k2•k!

~k22mt
2!2@~k1k1!22mt

2#@~k1k2!22mt
2#

. ~4!

This identity is not unique but is convenient to maintain t
symmetry betweenk1 andk2 explicitly. Now we perform the
three last integrations to obtain

E
L

d4k

~2p!4

1

@~k1k1!22mt
2#@~k1k2!22mt

2#

5I log~mt
2!2S i

~4p!2D @Z0~mt
2 ,mt

2 ;~k12k2!2;mt
2!#, ~5!

where we have introduced the definitions, the basic diverg
logarithmic object

I log~mt
2!5E

L

d4k

~2p!4

1

~k22mt
2!2

, ~6!

and the one loop structure function@15#
0-2
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Zk~l1
2 ,l2

2 ;q2;l2!

5E
0

1

dzzklnS q2z~12z!1~l1
22l2

2!z2l1
2

2l2 D . ~7!

Collecting all results together we have, taking (k12k2)
[q,

TSS54H I quad~mt
2!1

@4mt
22q2#

2
I log~mt

2!

1
@4mt

22q2#

2
Zk~mt

2 ,mt
2 ;q2;mt

2!J
12k1ak1bnab~mt

2!12k2ak2bnab~mt
2!, ~8!

where we define the basic quadratically divergent object

I quad~mt
2!5E

L

d4k

~2p!4

1

~k22mt
2!

, ~9!

and

nab5E
L

d4k

~2p!4

4kakb

~k22mt
2!3

2E
L

d4k

~2p!4

gab

~k22mt
2!2

.

~10!

We stress that the results of Ref.@6#, Eq. ~6!, is still con-
tained in the above results. We will return to this point lat

The next two point function to be considered is t
pseudoscalar-pseudoscalar pair, defined by

TPP5E d4k

~2p!4
TrH g5

1

@k”1k” 12mt#
g5

1

@k”1k” 22mt#
J ,

~11!

which is necessary in the neutralt t̄ channel of the scattering
amplitude. Using the same ingredients as in the previ
calculation we obtain

TPP54H (2)@ I quad~mt
2!#1

q2

2
@ I log~mt

2!#

2S i

~4p!2D q2

2
@Z0(mt

2 ,mt
2 ,q2;mt

2#J
22k1ak1b@nab~mt

2!#22k2ak2b@nab~mt
2!#.

~12!

At this point most of the calculations with the NJL mod
including that of Ref.@6# use the gap equation to replace t
quadratic divergence. However, if the matter is ambiguitie
is important to ask the following question: how unambiguo
is the gap equation itself? In principle nothing prevents
from using an arbitrary momentum routing also in the sca
one point function, which originates the gap equation. De
ing the one point scalar function as
05501
.

s

it
s
s
r
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TS~mt
2!5E d4k

~2p!4
TrH 1̂

1

@k”1 ł 2mt#
J , ~13!

we get for it

TS~mt
2!54mtE d4k

~2p!4

1

~k1 l !22mt
2

, ~14!

where l is an arbitrary internal momentum. The notatio
adopted indicates the mass carried by the propagator of
internal line. As we can see, this leads to an ambiguity in
gap equation itself if the result of this integral isl-dependent.
Using the results obtained previously in this integral:

TS54mt$I quad~mt
2!1 l al bnab~mt

2!%. ~15!

Up to this point the use of a gap equation in the two po
function may be mathematically dangerous from the poin
view of ambiguities.

So far we have not yet made use of any regularizat
scheme. We have simply noticed a certain regularity in
form of the ambiguous terms. One could at this point sea
for a regularization scheme capable of eliminating all the
ambiguities. However, our argument is that ambiguities
not the only problematic point to be circumvented in order
have the full predictive power of the underlying model st
present in the so far calculated quadratically divergent a
plitudes. The other only major aspect to be considered is
symmetry relationswhich involve all necessary two poin
functions. Therefore we next consider all two point functio
which are necessary to construct the gauge vector bo
propagator for@Eq. ~9! of Ref. @4#!

1

g2
2 @Dmn

v ~q!#215
1

g2
2 ~qmqn2gmnq2!1

Pmn~q!

8

2
1

8
Jm~q!GF~q2!Jn~q!, ~16!

whereg2 is theSU(2) coupling constant and

GF~q2!5 i E d4k

~2p!4
TrH ~12g5!

1

@~k”1k” 1!2mt#

3~11g5!
1

@~k”1k” 2!2mb#
J , ~17!

Jm~q!5 i E d4k

~2p!4
TrH gm~12g5!

1

@~k”1k” 1!2mt#

3~11g5!
1

@~k”1k” 2!2mb#
J , ~18!
0-3
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Jmn~q!5 i E d4k

~2p!4
TrH gm~12g5!

1

@~k”1k” 1!2mt#

3gn~11g5!
1

@~k”1k” 2!2mb#
J . ~19!

Thus we need to calculateTSS, TPP, TSP, Tm
VS, Tm

VP ,
Tm

AS, Tm
AP , Tmn

VV andTmn
AA . Let us then calculate these ingr

dients. TakingTPP @Eq. ~11!#, with different masses now
after Dirac trace and some reorganization we get

TPP52H ~2 !E d4k

~2p!4

1

@~k1k1!22mt
2#

2E d4k

~2p!4

1

@~k1k2!22mb
2#

1@~mt2mb!22~k12k2!2#E d4k

~2p!4

3
1

@~k1k1!22mt
2#@~k1k2!22mb

2#
J . ~20!

Note that the propagator that carries massmt is rotated by
k1 and those with massmb rotated byk2 .

The important question now is how do we perform t
separation of the divergent and finite parts? Specifica
which one of the masses will be left in the divergent objec
This question is related to an important matter related to
manipulation and calculation of divergent integrals: T
choice of the scale parameter which will remain in the div
gent objects. In fact, one can use an arbitrary scale, since
following equations relating them and which can be deriv
algebraically are valid:

I quad~m1
2!5I quad~m2

2!1~m1
22m2

2!I log~m2
2!

1S i

~4p!2D Fm1
22m2

22m1
2lnS m1

2

m2
2D G , ~21!

I log~m1
2!5I log~m2

2!2S i

~4p!2D lnS m1
2

m2
2D . ~22!

The above relations are valid in dimensional regularizat
and can also be obtained by a straightforward manipula
of integrals. When used in connection with physical amp
tudes, they correspond to a parametrization of the freed
we have when separating the finite from the divergent c
tent of the amplitude. When considering Ward identities~or
renormalization procedures! one resorts to Eq.~21! and Eq.
~22! in order to recover the adequate mass for that case. N
we treat our divergent integral in such a way to show exp
itly these aspects. First the quadratic divergence. If we m
tain the same mass in the divergent object,mt for example,
we can use the result so obtained, Eq.~15!,
05501
,
?
e

-
he
d

n
n
-
m
-

w
-
n-

E
L

d4k

~2p!4

1

@~k1k1!22mt
2#

5$I quad~mt
2!1k1ak1bnab~mt

2!%.

~23!

But the same integral can be written in a completely equi
lent way:

E
L

d4k

~2p!4

1

@~k1k1!22mt
2#

5E
L

d4k

~2p!4

1

~k22l2!2

2~l22mt
2!E

L

d4k

~2p!4

1

~k22l2!2

1k1ak1bH E
L

d4k

~2p!4

4kakb

~k22l2!3

2E
L

d4k

~2p!4

gab

~k22l2!2J
1H E d4k

~2p!4

~k1
22mt

21l2!2

~k22l2!3

2E d4k

~2p!4

~k1
212k1•k1l22mt

2!3

~k22l2!3@~k1k1!22mt
2#
J . ~24!

Again, the right hand side is identical to the left except
the odd factors. After obtaining the solution of the fini
integral we can write this

E
L

d4k

~2p!4

1

@~k1k1!22mt
2#

5H I quad~l2!1~mt
22l2!I log~l2!

1S i

~4p!2D Fmt
22l21mt

2

3 lnS l2

mt
2D G J 1k1ak1bnab~l2!; ~25!

given the relation~21!, the term between brackets is simp
I quad(mt

2) and thus for the unambiguous term we get t
same result. Note that with these manipulations we can g
erate another kind of ambiguity~scale ambiguities!. In this
manipulationl2 was taken as an arbitrary mass~scale! but, if
we want, the value can be chosen equal to the other m
mb

2 . The same operations can be performed in the logar
mically divergent integral. We can write
0-4
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E
L

d4k

~2p!4

1

@~k1k1!22mt
2#@~k1k2!22mb

2#

5I log~l2!2S i

~4p!2D @Z0„mt
2 ,mb

2 ;~k12k2!2;l2
…#

5I log~mb
2!2S i

~4p!2D @Z0„mt
2 ,mb

2 ;~k12k2!2;mb
2
…#

5I log~mt
2!2S i

~4p!2D @Z0„mt
2 ,mb

2 ;~k12k2!2;mt
2
…#.

~26!

The above relations clearly show the role played by
scale parameter, left inside the divergent integral. The
05501
e
st

equation explicitly shows the independence of the results
the choice ofl2, i.e.,

]I

]l2
50. ~27!

It is now appropriate to say that the above property will
equally valid for the unambiguous part of any divergent
tegral. This is an extra ingredient for our forthcoming ana
sis. At this point differences between our procedure and
BPHZ subtraction scheme become clear. From our poin
view any identity can be used, which is adequate for
reorganization we have in mind. Taylor expansions are
of the possibilities, useful in some restricted cases~equal
masses, etc.!.

After these important remarks we use the results to w
TPP as
nservation
TPP522H I quad~mt
2!1I quad~mb

2!1@~mt2mb
2!22~k12k2!2#I log~mt

2!

2S i

~4p!2D @~mt2mb!22~k12k2!2#@Z0„mt
2 ,mb

2 ;~k12k2!2;mt
2
…#J

22k1ak1bnab~mt
2!22k2ak2bnab~mb

2!. ~28!

With the same ingredients the case ofTSS @Eq. ~1!#, now with different masses, can be written in the form

TSS52H I quad~mt
2!1I quad~mb

2!1@~mt1mb
2!22~k12k2!2#I log~mt

2!

2S i

~4p!2D @~mt1mb!22~k12k2!2#@Z0„mt
2 ,mb

2 ;~k12k2!2;mt
2
…#J

12k1ak1bnab~mt
2!12k2ak2bnab~mb

2!. ~29!

In the last two results we can immediately obtain the corresponding equal masses results, Eq.~8! and Eq.~12!. Following
the same strategy we obtain forTm

VS, defined by

Tm
VS5E d4k

~2p!4
TrH gm

1

@~k”1k” 1!2mt#
1̂

1

@~k”1k” 2!2mb#
J , ~30!

with the result

Tm
VS54~k12k2!mH ~mb2mt!

2
I log~mt

2!2~mt1mb!2S i

~4p!2D @Z1„mt
2 ,mb

2 ;~k12k2!2;mt
2
…#

1mtS i

~4p!2D @Z0„mt
2 ,mb

2 ;~k12k2!2;mt
2
…#J 22~mb1mt!~k11k2!nnnm~mt

2!. ~31!

Note that the unambiguous terms vanish when the masses are equal, as they should, to be compatible with a co
of corresponding vector current:

Now for Tn
PA ,
0-5
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Tn
PA5E d4k

~2p!4
TrH g5

1

@~k”1k” 1!2mt#
gng5

1

@~k”1k” 2!2mb#
J ~32!

we have

Tn
PA524~k12k2!nH ~mb1mt!

2
I log~mt

2!2~mb2mt!S i

~4p!2D @Z1„mt
2 ,mb

2 ;~k12k2!2;mt
2
…#

1mtS i

~4p!2D @Z0„mt
2 ,mb

2 ;~k12k2!2;mt
2
…#J 12~mb2mt!~k11k2!mnnm~mt

2!. ~33!

From which the unambiguous result for equal masses becomes apparent.
Now let us consider the two point functions with two Lorentz indices. First

Tmn
AV5E d4k

~2p!4
TrH gmg5

1

@~k”1k” 1!2mt#
gn

1

@~k”1k” 2!2mb#
J ~34!

for which we get

Tmn
AV524i«mnabH k1jk2a

2
nja~mt

2!1
k2jk1a

2
njb~mt

2!J . ~35!

The above expression vanishes identically if we make the choice@6# for the internal momentak15aq, k25(a
21)q. Tmn

AV should then contain two Ward identities related to the contractions (k12k2)m and (k12k2)n with the amplitude.
The only consistent possibility is obtained forTmn

AV50.
Now we consider the vector-vector two point function defined by

Tmn
VV5E d4k

~2p!4
TrH gm

1

@~k”1k” 1!2mt#
gn

1

@~k”1k” 2!2mb#
J . ~36!

After Dirac trace we can write the above equation in the convenient form

Tmn
VV5Tmn1gmn@TPP#, ~37!

where we have introduced the definition

Tmn5E d4k

~2p!4

@~k1k1!m~k1k2!n1~k1k1!n~k1k2!m#

@~k1k1!22mt
2#@~k1k2!22mb

2#
. ~38!

The calculation ofTmn is lengthy but straightforward. The result is~choosingmt as scale!

Tmn5
4i

~4p!2
$2~q2gmn2qmqn!@Z2~mt

2 ,mb
2 ;q2;mt

2!2Z1~mt
2 ,mb

2 ;q2;mt
2!#

1gmn~q21mt
22mb

2!@Z0~mt
2 ,mb

2 ;q2;mt
2!2Z1~mt

2 ,mb
2 ;q2;mt

2!#%

14H gmn@ I log~mt
2!#2Fq2

6
1

~mt
22mb

2!

2 GgmnI log~mt
2!2

qmqn

3
I log~mt

2!J 1wmn , ~39!

where

wmn5
k2ak2b1k1ak1b1k1ak2b

3
$habmn~mt

2!1gabnmn~mt
2!1gamnbn~mt

2!1gannmb~mt
2!%

2
~k1m1k2m!~k1a1k2a!

2
nan~mt

2!2
~k1n1k2n!~k1b1k2b!

2
nbm~mt

2!1¹mn~mt
2!2

~k1
21k2

21mt
22mb

2!

2
nnm~mt

2!,

~40!
055010-6
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and we have introduced the definitions

¹mn~mt
2!5E

L

d4k

~2p!4

2kmkn

~k22mt
2!2

2E
L

d4k

~2p!4

gmn

~k22mt
2!

~41!

and

habmn~mt
2!5E

L

d4k

~2p!4

24kmknkakb

~k22mt
2!4

2gabE
L

d4k

~2p!4

4kmkn

@~k22mt
2!3#

2gamE
L

d4k

~2p!4

4kbkn

@~k22mt
2!3#

2ganE
L

d4k

~2p!4

4kbkm

@~k22mt
2!3#

. ~42!

Using Eqs.~39! and ~28! we obtain forTVV, after some reorganization,

Tmn
VV5Qmn2

4i

~4p!2H ~q21mt
22mb

2!

2q2 Fmt
22mb

21mb
2lnS mb

2

mt
2D G2

~mt2mb!2@q22~mt1mb!2#

2q2
Z0~mt

2 ,mb
2 ;q2;mt

2!J gmn

14H @ I quad~mt
2!#2@ I quad~mb

2!#

2
2mt~mt2mb!@ I log~mt

2!#J gmn1fmn , ~43!

where we introduced the definition

Qmn5
4i

~4p!2
$2~q2gmn2qmqn!@Z2~mt

2 ,mb
2 ;q2;mt

2!2Z1~mt
2 ,mb

2 ;q2;mt
2!#%1

4~q2gmn2qmqn!

3
@ I log~mt

2!#, ~44!

which represents the gauge invariant part of the amplitude, and

fmn5wmn22k1ak1bnab~mt
2!22k2ak2bnab~mb

2!, ~45!

which represents the ambiguous part of the amplitude. Now we consider the last two point functions: we needTmn
AA , defined

by

Tmn
AA5E d4k

~2p!4
TrH gmg5

1

@~k”1k” 1!2mt#
gng5

1

@~k”1k” 2!2mb#
J . ~46!

After Dirac trace we write

Tmn
AA5Tmn2gmn@TSS#. ~47!

Then, using Eqs.~39! and ~29! we obtain

Tmn
AA5Qmn1

4i

~4p!2H @q22~mt2mb!2#~mb1mt!
2

2q2
Z0~mt

2 ,mb
2 ;q2;mt

2!J gmn

2
4@q22~mt2mb!2#~mb1mt!

2

2q2
@ I log~mt

2!#gmn1
4~mt

22mb
2!

2q2
@ I quad~mb

2!2I quad~mt
2!#gmn1fmn . ~48!

The other possible two point functions, not considered explicitly, are all identically zero (TSP, Tm
VP , Tm

AS).
Finally, for use in our future considerations, let us consider the one point functions, defined as

Tm
V~m!5E d4k

~2p!4
TrH gm

1

@~k”1 ł !2m#
J ~49!

or, given by
055010-7
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Tm
V~m!54H ~2 !l a~¹am~m2!!2

l al bl n

3
@habmn~m2!#2

l al bl n

3
@¹bn~m2!#1

l 2l n

3
@nnm~m2!#1 l ml al n@nan~m2!#J . ~50!
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The other one point functions vanish identically@TP(m)
5Tm

A(m)50#.
Before ending this section we call attention to the fact t

the ambiguous character ofall considered amplitudes are co
efficients of one of the three above defined obje
nab , ¹ab , andhabmn .

III. AMBIGUITIES AND WARD IDENTITIES

In the results presented in the previous section we h
only made use of identitiesat the level of the integrandand
integration without restriction in the finite parts. The la
statement can be put in other words: the effect of the re
larization on this finite integrals is neglected, as done in R
@4#.

Notice that in all results, ambiguous terms appear as
efficients of only three relations between divergent integr
of the same degree of divergence. It is a simple matte
obtain the results of Ref.@4# from ours. For example if we
use some regularization~like sharp cutoff! in the relation
nab(mt

2)

nab
Reg~mt

2!5E d4k

~2p!4H 4kakb

~k22mt
2!3

2
gab

~k22mt
2!3J GL~k2,L2!

~51!

we can immediately usekmkn5k2gmn/4 and get, takingL2

@m2,

nab
Reg~mt

2!5S i

~4p!2D F21

2 G , ~52!

and the results forTSSandTPP of Ref. @4# are obtained. The
same procedure can be applied to the other two relati
habmn and¹mn , with corresponding results. The full conta
with the results of Ref.@4# is made by expressingI log and
I quad in their regularization scheme. As discussed befo
this procedure obviously leads to ambiguities and violatio
of gauge invariance. We can ask ourselves, at this po
what could be done with our expression to avoid such pr
lems. We remind the reader that we have not made us
any regularization prescription so far. In order to decide t
we invoke the Ward identities whichmust besatisfied in
order to preserve gauge invariance. They are exact relat
between the various two point amplitudes and can be dire
established from their definition through simple algebr
manipulations in the trace operation. Let us consider
example. We contractTm

VS with (k12k2)m5qm
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qmTm
VS5E d4k

~2p!4
TrH 1̂

1

@~k”1k” 1!2mb#

3~k” 12k” 2!
1

@~k”1k” 2!2mt#
J . ~53!

Now we use the identity

~k” 12k” 2!5~k” 11k”2mt!2~k” 21k”2mb!1~mt2mb!
~54!

in order to get

qmTm
VS5~mt2mb!TSS1TS~mb!2TS~mt!, ~55!

where we have identified the two point functionsTSS, Eq.
~1!, and scalar one point functions, Eq.~13!. By means of
this procedure one can easily get other relations:

qmTmn
VV5~mt2mb!Tn

SV1Tn
V~mb!2Tn

V~mt!, ~56!

qmTmn
AA5~mt1mb!Tn

PA1Tn
V~mb!2Tn

V~mt!,
~57!

qmTm
AP52~mt1mb!TPP1TS~mb!2TS~mt!,

~58!

qmTmn
AV5~mt1mb!Tn

PV1Tn
A~mb!2Tn

A~mt!, ~59!

qmqnTmn
VV5~mt2mb!2TSS1~mt2mb!

3@TS~mb!2TS~mt!#, ~60!

qmqnTmn
AA52†~mt1mb!2TPP1~mt1mb!

3@2TS~mb!1TS~mt!#‡. ~61!

These relationships are exact and must be satisfied by
regularization scheme employed in the calculations. Oth
wise the method is inconsistent. We then proceed to inve
gate general conditions to be satisfied by any consistent r
larization prescription. As will become clear in what follow
it is quite simple to find the set of conditions to be impos
from the point of view of symmetries and ambiguities on
regularization scheme.

The above conclusions can be drawn already from
analysis of the calculated divergence, namely, the one p
vector function. As a consequence of Furry’s theore
Tm

V(m2) must vanish identically. A regularization prescrip
tion not capable of fulfilling the identity will immediately
violate gauge invariance in QED’s vacuum polarization te
sor @Eq. ~56! for equal masses#. We could takel 50 in Eq.
~50! and this would be individually satisfied forTm

V(m2).
0-8
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However in the Ward identities we have the difference
tween two of these amplitudes with different momenta wh
cannot be simultaneously put to zero. Thus, in order to h
Tm

V(m2)50, an adequate regularization prescription sho
satisfy

habmn
Reg ~m2!50,

nab
Reg~m2!50, ~62!

¹ab
Reg~m2!50.

The above relations can therefore be viewed as mini
consistency conditions for regularizations prescriptio
They are necessary and sufficient in order to simultaneo
enforce symmetry preservation in the perturbative analy
As discussed before the physical root of the above con
tency conditions is translational invariance of the origin
Lagrangian. Let us then assume the conditions~62! as part of
our strategy. All ambiguities are thus avoided. It is theref
crucial to prove that at least one such regularization sch
exists. This has been done in@12#, and shown here in Ap-
pendix A for the sake of completeness.

The relevant question now is are the conditions~62! suf-
ficient to preserve the Ward identities? The answer to
question is nontrivial, as can be gathered from an analysi
the identity related toTm

VS Eq. ~55!, as compared to the resu
obtained from the direct calculation of such amplitude~31!.
In order to satisfy the Ward identity, we need the differen
between two quadratically divergent integrals, since the
TS one point functions are part of the identity. Note, ho
ever, that in the result obtained forTm

VS quadratic divergence
are completely absent. However, when we use the~exact!
mathematical relation between the functionsZ1 andZ0 ,

Z1~mt
2 ,mb

2 ,q2;mb
2!

5Z0~mt
2 ,mb

2 ;q2;mt
2!

~q21mt
22mb

2!

2q2

1
1

2q2Fmt
22mb

21mb
2lnS mb

2

mt
2D G ~63!

and the~also exact! scale relations, Eq.~21! and Eq.~22!, we
get

Tm
VS5

~k12k2!m

~k12k2!2
$~mt2mb!@TSS#1TS~mb!2TS~mt!%

~64!

by direct identification ofTSS, TS(mb) andTS(mt) given in
Eq. ~29! and Eq.~15!, respectively. The same procedure
lows us to writeTn

PA in the following form:

Tn
PA5

~k12k2!n

~k12k2!2
$2~mt1mb!@TPP#

1TS~mb!2TS~mt!%. ~65!
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Also Tmn
VV can be cast in the form

Tmn
VV5Qmn1~mt2mb!

gmn

q2
$~mt2mb!@TSS#

1TS~mb!2TS~mt!% ~66!

and

Tmn
AA5Qmn1~mt1mb!

gmn

q2
$2~mt1mb!@TPP#

1TS~mb!2TS~mt!%. ~67!

From Eqs.~65!, ~66!, and~67! the corresponding Ward iden
tities follow immediately. It is important to stress that a
these relations are exact and are a direct consequence o
validity of the relations~21! and~22! andconsistency condi-
tions ~62!.

Note that the adoption of the consistency conditions i
plies in the validity of the relations

E
L

d4k

~2p!4

2kmkn

@~k22m2!2#
5gmn@ I quad~m2!#, ~68!

E
L

d4k

~2p!4

4kmkn

@~k22m2!3#
5gmn@ I log~m2!#, ~69!

E
L

d4k

~2p!4

24kmknkakb

@~k22m2!3#
5@gmngab1gmagnb

1gmbgna#I log~m2!. ~70!

These relations in particular show that all the divergent c
tent of the one loop amplitudes of the NJL model are in o
of the formsI quad or I log . Therefore the only divergent ob
jects which need to be calculated are those two. This
reduces the role played by an eventual~consistent! regular-
ization method to that of furnishing a parametrization of su
integrals.

Of course calculations beyond one loop bring in oth
structures like overlapping divergences, etc. It is a sim
matter to extend the method in order to deal with them.
the present work, as mentioned before, we restricted o
selves to one loop calculations.

It is important to remember that such parametrizat
must be consistent with the scale relations and there
should satisfy

]I quad~l2!

]l2
5I log~l2!,

~71!
]I log~l2!

]l2
5S i

~4p!2D S 21

l2 D .

One possible such parametrization could be
0-9
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I quad~l2!5S i

~4p!2D F2L21l21l2lnS L2

l2 D 1b0l21d0G ,

~72!

I log~l2!5S i

~4p!2D F lnS l2

L2D 1b0G ,

whereL2 play a role of a regularization parameter~cut off!
andb0 andd0 are constants.

Although the above relations are useful and valid in g
eral for any method, in the specific context of the NJL mo
they are not necessary, since the gap equation relates
constituent quark massm directly to I quad(m

2) and the decay
constantg2 directly to I log(m2). This procedure yields a di
rect relation between divergent quantities and phenome
logical physical quantities.

It is nowadays a current point of view that in order
have a complete definition of a nonrenormalizable model
specification of a regularization scheme is necessary@16#.
The results extracted from our analysis allow for the conc
sion that the NJL model within the prescription used exhib
its full predictive power. It was shown to be consistent, fr
of ambiguities and symmetry violations. The gauge inva
ance of the W-boson propagator is only a consequenc
this consistency, but it is not the only one.

In order to conclude this section a comment about
solution proposed by Ref.@6# is in order: In Ref.@6# the
proposed solution is via dispersion relations. In this case
starting point is the imaginary part of the amplitudes as d
tated by Cutkosky’s rules and the real part is construc
through dispersion relations. In our results the imaginary p
is contained in theZk functions, given for example by@16#:

Im$Z0~mt
2 ,mb

2 ,q2;mt
2!%

52pQ„q22~mt1mb!2
…Aq22~mt1mb!2

3
Aq22~mt2mb!2

2q2
. ~73!

An immediate check reveals the compatibility with Cutk
sky’s rules in such a way that if we had used those rule
construct the amplitudes we would get the same results
the cutoff independent part of the results of Ref.@6#.

IV. CONCLUSIONS

In the present work we revisited the questions raised
Ref. @6# with respect to consistent regularization schemes
treating the gauged NJL model, from a different point
view. In particular we can obtain their results as a particu
case.

From our analysis it is possible to conclude that in ord
to maintain the NJL full predictive power it is crucial that th
eventually used regularization prescription satisfies
05501
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habmn
Reg ~m2!50,

nab
Reg~m2!50, ~74!

¹ab
Reg~m2!50.

The above relations, as discussed, are enough to elimi
all possible ambiguities and symmetry violations. In this ca
the only remaining divergent objects are of the for
I quad(l

2) and I log(l2). Moreover, in order to explicitly
verify the Ward identities it is also necessary that the al
braic relations~21! and ~22! are preserved. These relation
have been derived algebraically and in the present con
their importance is due to the fact that the explicit verific
tion of several Ward identities would not be possible we
these relations not valid. They have been called a manife
tion of scale invariance of the calculated amplitude sincel2

plays the role of ascale. This interpretation becomes solid
one studies the renormalization group~RG! of quantum elec-
trodynamics at the one loop level using the present presc
tion. As we know, at the one loop level the only divergen
which appears isI log(m2), if we choosem2 as the renormal-
ization point. The freedom we have in choosing a differe
renormalization point is equivalent to the use of Eq.~22!. It
is a simple matter to check that the RG coefficients are
tained in a regularization independent fashion once Eq.~22!
is used in the appropriate amplitudes in QED to paramet
the freedom one has in choosing the renormalization p
@17#.

In this case it is natural to assume that the conditions
~74! are related to some fundamental property of quant
field theories. In fact, it can be shown that they are a con
quence of translational invariance@12#. Therefore, a consis
tent method should automatically incorporate such con
tions as in the case of dimensional regularization.

For the specific case of the NJL model one importa
consequence of the present strategy is that all its diverg
content at the one loop level can be expressed in term
two basic objectsI log andI quad, which are usually related to
physical quantities: the constituent quark mass~gap equa-
tion! and the coupling constantg2 . The predictions of the
model depend only on parameters of the model itself.

The present prescription for the manipulation and cal
lation of divergent amplitudes@15# is not restricted to the
NJL model and can be also applied to effective theories
general and in renormalization programs. It should be e
phasized that wherever dimensional regularization app
we get essentially the same results, provided the diverg
objects are written according to the method~an investigation
of the existence of 4 dimensional regularizations which ob
this rule has also been proved@12#!.

One other important ingredient of the present prescript
is the systematization of the finite content of all amplitud
in terms of theZk functions @15#. These functions have a
much wider applicability. Indeed, the finite part ofany one
loop amplitude can be cast into this form. They enormou
simplify the analysis of the Ward identities, relevant physic
limits, and directly emphasize aspects related to unitarity
0-10
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APPENDIX

As discussed in Ref.@12# and briefly summarized here
our consistency conditions at the one loop level are bu
consequence of translational invariance. Let us consider
free Green’s function of the theory and require that it
translationally invariant

S~x,x8!5E d4k

~2p!4

eik~x2x8!

g•k2m
. ~A1!

The ‘‘translated’’ Green’s function is given by

Saq~x,x8!5E d4k

~2p!4

ei ~k1aq!~x2x8!

g•~k1aq!2m
. ~A2!

When acting on a test function, there should be no differe
betweenSandSaq , so we require thatS5Saq , for arbitrary
aq.

E S~x,x8!J~x8!d4x85E Saq~x,x8!J~x8!d4x8. ~A3!

The generating functional of the free theory, defined
the standard way,

Zo@J#5NexpH 2 i E J~x!S~x,x8!J~x8!d4x d4x8J
~A4!

is independent of the parametera. For the generating func
tional of the interacting theory we have

Z@J#5expH 2 i E LintS 2 i
d

dJ~z! Dd4zJ Zo@J#. ~A5!

All the amplitudes evaluated in the present work can
obtained by means of the convenient functional derivati
of the above generating functional. It is straightfoward
show that when we use the translated Green’s functionSaq
instead ofS, we obtain the amplitudes with the arbitra
momentum routing.
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Now we argue that onceZo@J# is a independent, so mus
Z@J# be. However since we are dealing with ill defined qua
tities, a regularization scheme must be defined:

E Saq~x,x8!J~x8!d4x8

5E d4x8E d4k

~2p!4

ei ~k1aq!~x2x8!

g•~k1aq!2mE d4p

~2p!4
eipx8J̃~p!

5E d4k

~2p!4

ei ~k1aq!x

g•~k1aq!2m
J̃~k1aq!

5E d4k

~2p!4
expH aqm

]

]kmJ S eikx

g•k2m
J̃~k! D , ~A6!

where we have introduced the shift operator exp$aqm(]/]km)%.
Expanding the shift operator we get that the integrals prop
tional toan are surface terms, and forJ(x8) being a adequate
test function, they will vanish. But on the improper integra
Saq will act over a distribution,

E d4xE d4x8 Saq~x,x8!D~x,x8!, ~A7!

whereD(x,x8) is a distribution, typically the delta function
or products of single particle Green’s functions:

E d4xE d4x8 Saq~x,x8!D~x,x8!

5E d4k

~2p!4
expH aqm

]

]kmJ
3S 1

g•k2m
D̃~k! D . ~A8!

For D(x2x8)5d4(x2x8), we haveD̃(k)51, and thus

Saq~0!5E d4k

~2p!4
expH aqm

]

]kmJ S 1

g•k2mD
5E d4k

~2p!4

1

g•k2m

1aqmE d4k

~2p!4

]

]kmH 1

g•k2mJ
1a2qmqnE d4k

~2p!4

]2

]km]knH 1

g•k2mJ 1•••.

~A9!

The above equation will bea independent if and only if
relations ~74! are satisfied. One possible regularizati
scheme which implements this feature is obtained by rep
0-11
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ing the particle’s Green’s function by the sequence of fu
tions which define the distribution, i.e.,

E S~x,x8!J~x8!d4x85 lim
n→`

E Sn~x,x8!J~x8!d4x8,

~A10!

where
05501
-
Sn~x,x8!5E d4k

~2p!4

eik~x2x8!

g•k2m
expF2

sk2

4n2G , ~A11!

wheres is a parameter with the appropriate dimension a
signal to make the sequence$Sn(x,x8)% converge to the dis-
tribution S(x,x8).
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