PHYSICAL REVIEW D, VOLUME 59, 055010

Consistency in regularizations of the gauged NJL model at the one loop level
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In this work we reexamine questions recently raised in the literature associated with relevant but divergent
amplitudes in the gauged NJL model. The questions raised involve ambiguities and symmetry violations which
concern the model's predictive power at the one loop level. Our study shows, by means of an alternative
prescription to handle divergent amplitudes, that it is possible to obtain unambiguous and symmetry preserving
amplitudes. The procedure adopted makes use solelyenéral properties of an eventual regulator, thus
avoiding an explicit form. We find, after a thorough analysis of the problem, that there are well established
conditions to be satisfied by any consistent regularization prescription in order to avoid the problems of
concern at the one loop lev¢50556-282(199)00403-9

PACS numbegs): 12.60.Rc, 11.55.Fv

[. INTRODUCTION than that of the gauge bosons. Bardeen, Hill, and Lindner
(BHL) used the NJL model, in one loop approximation, in

The Nambu-Jona-LasinidNJL) model[1] has been ex- order to predict the top quark and the Higgs boson masses
tensively studied in the context of low energy hadron physic§13]. Given the nonrenormalizability of the NJL model, the
[2-5]. Because of the presence of the four fermion interaccalculations made use of a particular regularization scheme.
tion the model is nonrenormalizable in weak coupling expanLlater, Wiley[14] argued that the regularization scheme used
sion ford— 2 dimensions. Therefore a regularization schemedy BHL turns the evaluated amplitudes ambiguous, due to
is called for whenever divergent amplitudes appear. Fretheir divergent character. The conclusion of Wiley's work is
quently, regularization prescriptions adopted in the calculathat the BHL results are consequently not consistent.
tion of divergent amplitudes destroy the symmetries of the More recently Gherghetg6] returned to this discussion,
original Lagrangian and introduce nonphysical behavior sucgmphasizing that the qualitative equivalence of the NJL
as unitarity violation or unphysical thresholds. This is un-model and the standard model is strongly dependent on the
avoidable if finite integrals are regularized. An elegant waychoice of an adequate regularization scheme. The author ar-
to circumvent this problem has been propose@6hwhere  gues that the sharp cutoff method is not consistent since it
dispersion relations are used. This however requires the efreaks gauge invariance and introduces ambiguities related
tension of all integrals to infinity. This can be justified at theto the choices of momentum routing in the internal lines of
one loop level, since, as has been shown in R&s9], the the loops. On the other hand, dimensional regularization, in
NJL model constitutes a perfectly renormalizable field theoryspite of being a consistent prescription from the point of
in mean field expansion, also fdr- 2. This naturally avoids View of symmetry considerations and ambiguities, cannot be
unitarity violation and the appearance of nonphysical threshused since it eliminates the quadratic divergence essential for
olds. There remains, however, the problem of ambiguitie$he model. The problems were circumvented in R6f.by
and symmetry violations. In fact, Ward identities have beertising dispersion relations and Cutkosky’s rules.
used to constrain regularization of the NJL mofdi®,11]. In In the present paper we revise the question of the predic-
the present work we want to investigate the source of ambitive power of the NJL model at the one loop level. Having
guities and symmetry violations in the NJL model in a waythis in mind we adopt a different strategy for the manipula-
which is as little as possible committed to a given regulartion and calculation of divergent amplitudes which clearly
ization scheme. We therefore only assume the existence of@splays the sources of all ambiguities and symmetry viola-
implicit regularization scheme and derive the properties itions in a way which is independent of the specific regular-
should have in order to avoid such problems. The existenc&ation prescription. We show that there exists very general
of such a scheme has been proven in R&2] and given conditions to be obeyed bynyregularization prescription in
here in Appendix A, for the sake of completeness. order to obtain consistent results.

The context of our discussion and physical motivation is  Section I contains the explicit calculation of by point
the following. Recently the NJL model has been used tdunctions necessary for the discussion of Réf. We test the
pro\/ide for a possib|e mechanism to generate dynamicayrescription verifying all Ward identities related to the am-
symmetry breaking in the context of the standard model, th@litudes and by considering the possibility of ambiguities. In
reason for this being that the top quark mass is much heavié¥ec. Ill we present the conclusions and final remarks.

Il. TWO POINT FUNCTIONS AND AMBIGUITIES
*On leave from Univ. Federal de Santa Maria, Santa Maria, Rs, ) ) ) ) )
Brazil, CP 5093, CEP 97119-900. Email address: The first two point function to be considered is the scalar-
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channel of the fermion-fermion scattering amplitude. It isduced by usual regularization procedures, i.e., by modifying

defined by the external momentum dependence of the fifiteysica)
part of the amplitudes. The direct integration, in this case,
ss. d*k - 1 - 1 yields an important exact cancellation. The remaining inte-
T —f (277)4Tr 1[(Ik+k1)—mt]1[(lk+k2)—mt] ; grals will be left as they appear. In this specific case our

(1) philosophy is equivalent in spirit to the usual Bogolubov-
Parasiuk-Hepp-Zimmermann(BPHZ) procedure which
wherem, is the top quark mass arid andk, are arbitrary ~Makes use of successive subtractions around a fixed external
internal momentum routings. The choikg=(1—a)p and Momentum. It is worth noticing that the arbitrary choice for
k,= — ap corresponds to that ¢B]. Note that only the dif- the internal lines does not allow us to attribute any physical

q). The sumk,+k, or the productk;k, are ambiguous the difference between our procedure and the BPHZ subtrac-

quantities. tion scheme in the case of_ different masses are stﬁll more
After taking the Dirac trace and reorganizing the expres-markEd- From our point _Of view any convenient |_dent|ty can
sion we get be used. Taylor expansions are a possible choice when ad-
equate.
d%k 1 The other integral logarithmically divergent may be reor-
Ss_ f 5 ganized as follows:
(2m)* [(k+kq)?—m{]
f d*k 1 f d*k 1
(2m)* [(K+kp)2—m] A2m)* [(k+ky)2—m2][ (k+ky)2—m2]
d*k 4
A= okl [ -
(2m) A(2m)* (K2—mP)
1

d*k (k34 2k, -k)
x P~ e NG -
[(k+ky)™=mi][(k+kz)"=mi] (2m)* (K2=md)?[(k+ky)?—m¢]
At this point the usual procedure is to adopt a regulariza- dk (k§+ 2k,-K) dk
tion scheme. Instead of doing this at this stage we adopt a —j T 35 > +j Z
different strategy. We implicitly assume some generic regu- (2m)" (k*=m) [ (k+kp)“—m] (2m)

lating function in all steps and indicate with the lettér 2 2

under the integral sign. The existence of the connection limit % (kit2ky-K) (ko + 2kz- k) )

is used for removing the subscriegularization from finite (k2—m2)?[ (k+kq)2—m2][ (k+kp)2—m?]

integrals. All we need from this function is that it is an even

function of loop momentum and that a connection limitex- _ _ _ o

ists. This identity is not unique but is convenient to maintain the
We first consider the quadratically divergent integral, Symmetry betweek; andk; explicitly. Now we perform the

which we reorganize using a convenient identity at the levefhree last integrations to obtain

of the integrands

4

d%k 1 f d*k 1
fA(zw)“ [(k+ky)2—m?] A2m)* [(K+ky)2=mEI[(K+kz)?—m¢]
4 4 i
- LI Jﬂﬂ =l|og<m?>—< | [Zo(m2 2 (ks — ko) 5D, (6)
A(2m)* (k2—m?) A(2m)* (K2—m?)3 (47)
4 4 2
_f dk _ Oap + f d’k —(kl) where we have introduced the definitions, the basic divergent
A2m)* (K =mp)? A2m)* (K=mf)® logarithmic object
f d*k (K2+ 2k, - k)3 } -
_ _ A
A2m)* (K= m2)3 (k+ ky)?—m?] oot = [ St ©®)
’ A(2m)* (K2—mp)?

The last two integrals thus obtained are finite. They are
integrated without restrictions. It is precisely at this point
that nonphysical thresholds and unitarity violations are intro-and the one loop structure functigh5]
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Z (AT N3;0%502) :
TS(m?)= f il , (13)
1 9%2(1-2)+ (\2=\2)z—\? (27) [k“—mt]
=f dzZIn . (7)
0 —\? .
we get for it
Collecting all results together we have, taking;{k,)
=q, 5 d*k 1
Ts(mt):4mtf 2 PYY (14
, [4mt2_q2] (2’77) (k+|) —
TSS:4r|quad(mt)+Tllog(mt)

where | is an arbitrary internal momentum. The notation
[4mt2—q2] ) adopted indicates the mass carried by the propagator of the
5 k(MM ;9% me) internal line. As we can see, this leads to an ambiguity in the

gap equation itself if the result of this integrallidependent.
+2Kq Ky gA B(mt)+2k2ak2ﬂA B(mt) (8) Using the results obtained previously in this integral:

where we define the basic quadratically divergent object
g y clvergent ob) 5= 4mi{ | quad M) +1 ] 52 p(m)}. (15

d*k 1
l quad M7) = f PRI (9)  Up to this point the use of a gap equation in the two point
(2m)* (k m function may be mathematically dangerous from the point of
and view of ambiguities.
So far we have not yet made use of any regularization
4k 4k K 4%k g scheme. We ha_ve simply noticed a certain re_gula_rity in the
f B _f @B form of the ambiguous terms. One could at this point search
P a2m)* (K2 )2 Ja2m* (KR—m?)? for a regularization scheme capable of eliminating all these
(10 ambiguities. However, our argument is that ambiguities are
not the only problematic point to be circumvented in order to
We stress that the results of R¢é], Eq. (6), is still con-  have the full predictive power of the underlying model still
tained in the above results. We will return to this point |ater.present in the so far calculated quadratica”y divergent am-
The next two point function to be considered is theplitudes. The other only major aspect to be considered is the
pseudoscalar-pseudoscalar pair, defined by symmetry relationsvhich involve all necessary two point
functions. Therefore we next consider all two point functions

Tpp_f d*k T 1 1 which are necessary to construct the gauge vector boson
~J (2m? r ys[k_l—kl_mt] 7’5[k+ Ky—my] propagator fofEq. (9) of Ref.[4])
11
. . . " . 1 1_ 2 W(Q)
which is necessary in the neuttal channel of the scattering —[Dy (@] ——(Q,Lqu 9,09+ ——
amplitude. Using the same ingredients as in the previous 95 9
calculation we obtain 1
. - gJ#(q)Fp(qz)Jy(q), (16)
TPP= 4[( )[lquad<m5>]+ [Hog(m?)]
whereg, is the SU(2) coupling constant and
i )qz
- —[Zo(m?,m? g% m?] dk 1
2
((477) 2 FF(qz)Iif 2 )4Tr{(1_75)—[(lk+k —m]
— 2Ky Kypl A g (ME)] = 2Kaukpgl A s(MP)]. " v
12 X(1+ 75) ] , (17)
. . . [(k+kz) —my]
At this point most of the calculations with the NJL model
including that of Ref[6] use the gap equation to replace the
guadratic divergence. However, if the matter is ambiguities it d*k 1
is important to ask the following question: how unambiguous (Q)—'f > 4Tr{ Yu(1- YS)W
is the gap equation itself? In principle nothing prevents us m) [(K+Ky)=m]
from using an arbitrary momentum routing also in the scalar
one point function, which originates the gap equation. Defin- X(1+ s —} , (18
ing the one point scalar function as [(K+Kz) —my]
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@)= [ L 5,1 g [ () Kook ()
AQ)=i | ——=Tr — Yy ——————— = m o (M)}
AV @ 17T k) —my A2y [(ktky2—m?] - T TR e
(23
XYL+ yg)—————. (19 . . .
[(K+Ky)—my] But the same integral can be written in a completely equiva-
lent way:
Thus we need to calculatd@Ss TP, TSP T'S, T)F,
7,5 T.", T, andT,). Letus then calculate these ingre- . 44 1
dients. TakingTPP [Eq. (11)], with different masses now, f .
after Dirac trace and some reorganization we get A2m)* [(k+ky)?=mP]
4
= - 4 2_y\2\2
(2m)* [(k+kp)2—m?] M2m)T (k=A%)
—f (A7=mp) A2 (K2—\2)2
(2m)" [(k+ky)?— ] (2m)” (k=2
d*  4kk
d*k +Kyok J — B
+[(mt_mb)2_(k1_k2)2]f(277)4 L A (2m)* (K2—22)3
1 [ ﬂL]
X . 20 4 2_\2\2
kPl (krr—mgl) 2 MEmEETAD
_ : d*k  (Ki—mf+2?)?
Note that the propagator that carries magss rotated by + J 2 T 53
k, and those with mass, rotated byk,. (2m)"  (k°=\9)
The important question now is how do we perform the 4 2 N
separation of the divergent and finite parts? Specifically, _f d'k  (K{+2ky-k+A"—mp) (24)
which one of the masses will be left in the divergent objects? (2m)* (2= \2)3[(k+ky)2—m?] '

This question is related to an important matter related to the

manipulation and calculation of divergent integrals: The in_the riaht hand side is i .
choice of the scale parameter which will remain in the diver- @i, the right hand side is identical to the left except by

gent objects. In fact, one can use an arbitrary scale, since tﬁge Od? factors. A_fterhpbtaining the solution of the finite
following equations relating them and which can be derivedt€gral we can write this
algebraically are valid:

| 2y — | 2\ 4 (m2—m)l 2 d*k 1
quad(ml)_ quad(mz) (ml mz) Iog(mz) A(27T)4 [(k+k1)2—mt2]
: 2
I 1
+ m2—mi—m?in| = | |, (21
((477)2) P ( %) =1 Tquad A2+ (ME =221 166(A2)
2 .
log(M2) = lag(m2) — | —— |In[ 2|, (22) LI | PP
og 1 og 2 (477)2 mg (47T)2 t t
The above relations are valid in dimensional regularization A2 N
and can also be obtained by a straightforward manipulation XIn m_tz +KiaK1p ap(N5); (29

of integrals. When used in connection with physical ampli-
tudes, they correspond to a parametrization of the freedom
we have when separating the finite from the divergent congiven the relation21), the term between brackets is simply
tent of the amplitude. When considering Ward identities  |quadm?) and thus for the unambiguous term we get the
renormalization procedurgene resorts to Eq21) and Eq.  same result. Note that with these manipulations we can gen-
(22) in order to recover the adequate mass for that case. No@rate another kind of ambiguitiscale ambiguitigs In this

we treat our divergent integral in such a way to show explic-manipulationh2 was taken as an arbitrary massalg but, if

itly these aspects. First the quadratic divergence. If we mainwe want, the value can be chosen equal to the other mass
tain the same mass in the divergent objeatfor example, m2. The same operations can be performed in the logarith-
we can use the result so obtained, Etp), mically divergent integral. We can write
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dk 1 equation explicitly shows the independence of the results on
f 5 5 the choice of\?, i.e.,
A2m)* [(k+ky)?=miL(k+kp)?—mg]
al
2 2 — =0 (27
=11og(N%) — [Zo(mf,mp s (Ky—k2)%A2)] I\
(4)?

It is now appropriate to say that the above property will be

) i — o equally valid for the unambiguous part of any divergent in-

=liog(My) — a2 [Zo(mg,mp;(ki—k2)5Mp)]  tegral. This is an extra ingredient for our forthcoming analy-
(4m) sis. At this point differences between our procedure and the

i BPHZ subtraction scheme become clear. From our point of
:|log(mt2)—(—2)[Zo(mf,mﬁ;(kl—kz)z:mf)]- view any identity can be used, which is adequate for the
reorganization we have in mind. Taylor expansions are one
(26) of the possibilities, useful in some restricted casegual
masses, etg.
The above relations clearly show the role played by the After these important remarks we use the results to write
scale parameter, left inside the divergent integral. The firsTP? as

TPP= —2{ quad M)+ quad M3) + [ (M= m3) 2= (ky— k) 2]l 104(MF)

i
- ( ( 477)2)[(mt—mb>2—<k1—k2>2][zo<m$,m§;<k1—kz>2;m$)]
= 2K1aK1p2 4p(MF) = 2KaoKap /A o p(M). (28)

With the same ingredients the caseTot [Eq. (1)], now with different masses, can be written in the form

TSS= 2[ quad M2 + 1 quad M3) + [ (My+MZ)2— (K — Kp) 2]l o q(M?)

) ( <4;>2) L(metm = (ko= ko) Zo(me my ;<k1—k2>2;mf>]]

+2K1 K1 A aﬁ(mtz)—"_ZkZakZ,BA as(mﬁ)- (29

In the last two results we can immediately obtain the corresponding equal masses res8said.Eq.(12). Following
the same strategy we obtain ﬁiﬁs, defined by

4
o= f Tr[ YV I . ] (30)
(2m)* [(K+ky)—mg] [(K+Kg)—mp]

with the result

(mp—my) |
TYS=4(ky~ kz>“|%l (M) = (Mt mb)2< (4m)?

[Zy(mZ,mZ;(ky—kp) % md)]

(4;{2) [Zo(m? ;<k1—kz>2;m$>]} = 2(myt mo) (kg ko), A, (M), (3D

Note that the unambiguous terms vanish when the masses are equal, as they should, to be compatible with a conservation
of corresponding vector current:
Now for TP,
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PA f 4 Tr{ 1 1 ] @2
v Vs YvYs
(2m)* [(K+Ky)—mg] [(K+kp) —mp]
we have
(mp+m,) i
T5A=—4<k1—kz>Vle.og<mt> (M=) | 3 | [Za(mE (ks —kp)5m)]
[
+ml( @ )2>[Zo(mtz,mkz,;(kl_kz)z?mtz)]] +2(my=my) (kg +Kp) A, (M7). (33
o
From which the unambiguous result for equal masses becomes apparent.
Now let us consider the two point functions with two Lorentz indices. First
d* 1 1
o= f —Tr[ Yu¥s Y ] (34)
b @emt U I k) —m] (K k) —mg]
for which we get
. k k2a 2 k @
Th= —4lsmﬁ[ TS o(MD) + A g(m 2)} (39

The above expression vanishes identically if we make the chpidefor the internal momentsk;=aq, k,=(a
—-1)q. TAV should then contain two Ward identities related to the contractibnsKy) , and k;—kj),, with the amplitude.
The only consistent possibility is obtained ff,, =0

Now we consider the vector-vector two point function defined by

vV J' 4 T [ 1 1 ] 39
V: r 'y "yv .
g (2m* [ Lkt k) —m] T [(k+Kp) —mp]
After Dirac trace we can write the above equation in the convenient form
VV_
Tuv_Tuv+g;Lv[TPP]a (37)

where we have introduced the definition

_f d*k [(K+ky),(k+kp),+(k+ky),(k+kp),] 39
ol @emt o [krk)2-m [kt k)2 -mg]
The calculation ofT,, is lengthy but straightforward. The result(ishoosingm; as scalg
T,uv (4 )2{ (q g;.w q,u.qv)[ZZ(mt 1mb q mt) Zl(mt 1mb q m’[)]
+ 0,07+ i = mE)[ Zo(mF ,mg ;0% me) — Zy (¢, mg ;g% my) ]}
2
q (m? _mb) q.9y
4 gp.v[llog(mtz)]_ _+tT g,uvllog(mt) ’u Ilog(mt) +(P,u,1/1 (39)
where
KooKopt KioKigtKioko
(ID,U.V: £ 3 £ B{Daﬁuv(mtz)+gaﬁAﬂv(mt2)+ga;f,Aﬁv(mt2)+gaVA,u,,B(mt2)}
(Ky,tKa,) (kg + ko) (Ky,+ka,) (Kyg+kop) (kit+ko+mi—mg)
T N () e N (M) Y (M) - (M),
(40
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and we have introduced the definitions

, d 2Kk, dk gy,
V/W(mt):f 42 2 2_f 42 2 (42)
A(2m)" (ke—my) A(2m)" (ke—my)
and
d*k 24Kk kK d*k  4kk,
Da,B,uv(mtz): 4 2!”‘ 2 4ﬁ_gaﬁj' 4 2 - 2\3
A(2m)" (ke—my) A(2m)" [(ke—mg)”]
f d%k  4kgk, f dk  Akgk,, @)
o ) \2m L0@—m2] 2 a2 [(C—md)]

Using Egs.(39) and(28) we obtain forTVV, after some reorganization,

2
m,

my—mp)?[g— (M +my)?
mf—m§+mg|n(—2> (M= M) 2 ¢~ (M + my)?]
m

_ 2 2. 2. 2
2q2 Zo(mtvmbiq !mt) g,u.l/

w_g A [@rmi-m)f
224 My (471_)Zl 2q2 L

+4{[lquau<m$>]—[lquad<m§>]

5 = My(Me=My)[1j0g(M{)]

gp,v+ d),u,vv (43)

where we introduced the definition

4i 4(9°9,,—9,,)
®W=(4ﬂ)2{2<ngw—q,Lq»[zz(mf.mﬁ;qz:mtz)—zl(m?,m%:qz:m$>]}+%[uog(m?)], (44)
which represents the gauge invariant part of the amplitude, and
d)p,V:()DMV_2k1ak1BAaﬁ(mt2)_2k2ak2ﬁAalB(m§)l (45)

which represents the ambiguous part of the amplitude. Now we consider the last two point functions: Wéfneédfined
by

TAAZJ d*k Tr{ 1 1 } 49
) et | T Lk k) —mg T Lk k) —my] )

After Dirac trace we write
AA_ SS
T,uV_T,uV_gp,V[T ] (47)
Then, using Eqs(39) and (29) we obtain

4 [[g?=(m—mp)?(my+my)?
(am)?| 2q?

T;Aué:@,uv—’— Zo(mtzymg,qzamtz)]g,uv
B 4[ 92— (m— mp) 2] (mMy+my)?

4(mZ—m2)
o [og(MA)19,,+ ————

2092

[ quad M3) =l quad M) 19, + &, - (48)

The other possible two point functions, not considered explicitly, are all identically 619 (T}", T/9).
Finally, for use in our future considerations, let us consider the one point functions, defined as

TV(m)= f d'k Tr ! (49
ST 2w | ke —my

or, given by
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I o

l[Aw(rnz)]Jr',Ja'V[Aay(lmz)] . (50

l, , 12
[ D)= <[V 5, () ]+ —

M) =4] ()1 o(V () = 5

Khe other one point functions vanish identicdllj"(m) s d4k A 1
=T/, (m)=0]. gqeT =f Try 1
B ing this sect i “o L emt Tk k) —my]
efore ending this section we call attention to the fact that 1 b
the ambiguous character all considered amplitudes are co-
efficients of one of the three above defined objects X (Kq— Ky) ———————— .
AD‘B’ Vaﬁ' andDaﬁﬂV [(k+k2)_mt]

(53

Now we use the identity

11l. AMBIGUITIES AND WARD IDENTITIES
(ky—Kz) = (ky+Kk—my) — (Ko + k—my) + (m—mp)

In the results presented in the previous section we have (59
only made use of identitieat the level of the integrandnd
integration without restriction in the finite parts. The lastin order to get
statement can be put in other words: the effect of the regu-
larization on this fir?ite integrals is neglected, as done in R%f. Q“T, 5= (me=my) TS5 TS(mp) —T(my), (59
[4].N otice that in all results, ambiguous terms appear as covhere we have identified the two point functiomsS Eq.
efficients of only three reIa’tions between divergent integral 1?’ and scalar one point fu_nct|ons, EQ.3). B_y means of

; i ; his procedure one can easily get other relations:

of the same degree of divergence. It is a simple matter to

obtain the results of Ref4] from ours. For example if we ATV (= ) TSV TV me) = TV(m 56
use some regularizatiofiike sharp cutoff in the relation T = (M= M) T y(Me) =T, (my), (56)
2
SeplTe) Q4T = (Mt mp) T A+ T (my) — Ty(my),
(57)
4
AR m?) = J ] ks 9o GA(K%,A2) qrTR = — (M mp) TPP+TS(mp) — TS(my),
“ (27'r)4l(k2—mt2)3 (k?—m?)3 (59)

(51)
9 Ty = (M mp) TEV+TH(my) = T(my),  (59)

we can immediately usk,k,=k?g,,/4 and get, taking\?
>m?, 9“q" T,y = (My—my) TS5+ (m—my)

X[TS(my) = T(my)], (60)

)[_71}1 (52) quVT’:,ﬁ: —[(mg+mp)2TPP+ (m+my)
X[=TS(mp)+TX(my)]]. (61)

Aiz%mﬁ:((%)z

and the results fof >Sand TP of Ref.[4] are obtained. The These relationships are exact and must be satisfied by any
same procedure can be applied to the other two relationsegularization scheme employed in the calculations. Other-
O upur andV ,,, with corresponding results. The full contact wise the method is inconsistent. We then proceed to investi-
with the results of Ref4] is made by expressing,, and  gate general conditions to be satisfied by any consistent regu-
| quad in their regularization scheme. As discussed beforelarization prescription. As will become clear in what follows
this procedure obviously leads to ambiguities and violationdt is quite simple to find the set of conditions to be imposed
of gauge invariance. We can ask ourselves, at this poinffom the point of view of symmetries and ambiguities on a
what could be done with our expression to avoid such probregularization scheme.

lems. We remind the reader that we have not made use of The above conclusions can be drawn already from the
any regularization prescription so far. In order to decide thisanalysis of the calculated divergence, namely, the one point
we invoke the Ward identities whichmust besatisfied in ~ vector function. As a consequence of Furry’s theorem
order to preserve gauge invariance. They are exact reIatiorEX(mz) must vanish identically. A regularization prescrip-
between the various two point amplitudes and can be directltion not capable of fulfilling the identity will immediately
established from their definition through simple algebraicviolate gauge invariance in QED’s vacuum polarization ten-
manipulations in the trace operation. Let us consider onaor[Eg. (56) for equal massdsWe could takd =0 in Eq.
example. We contra(ft'/\iS with (k1 —k) ., =0, (50) and this would be individually satisfied foTx(mZ).
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However in the Ward identities we have the difference be-Also T, can be cast in the form
tween two of these amplitudes with different momenta which
cannot be simultaneously put to zero. Thus, in order to have W Upr o5
T:(m?)=0, an adequate regularization prescription should T,uV:®,uv+(mt_mb)?{(mt_mb)[-r ]
satisfy

+TS(my) —TS(m 66)
nggv(mz)zo, ( b) ( t)} (
and
AREqm?) =0, (62)
Quv
vRe(m?)=0. Ti0= Ot (M my)- (= (e my) [ T77)
The above relations can therefore be viewed as minimal
consistency conditions for regularizations prescriptions.
They are necessary and sufficient in order to simultaneouslizrom Eqs.(65), (66), and(67) the corresponding Ward iden-
enforce symmetry preservation in the perturbative analysisities follow immediately. It is important to stress that all
As discussed before the physical root of the above consighese relations are exact and are a direct consequence of the
tency conditions is translational invariance of the originalvalidity of the relationg21) and(22) andconsistency condi-
Lagrangian. Let us then assume the conditi@® as part of  tions (62).
our strategy. All ambiguities are thus avoided. It is therefore  Note that the adoption of the consistency conditions im-
crucial to prove that at least one such regularization schemgiies in the validity of the relations
exists. This has been done [ih2], and shown here in Ap-
pendix A for the sake of completeness. f d%k
A

+TS(my) = T(my)}. (67)

2Kk,
The relevant question now is are the conditid6g) suf- R a 55
ficient to preserve the Ward identities? The answer to this (2m)" [(k*=m*)7]

guestion is nontrivial, as can be gathered from an analysis of

:g,uv[lquad(mz)]v (68)

the identity related t@’° Eq. (55), as compared to the result d'k  4k,k, )

obtained from the direct calculation of such amplitu8e). fA(qu)“ [(K2—m?)?] =0l log(mI) ], (69
In order to satisfy the Ward identity, we need the difference

between two quadratically divergent integrals, since the two 4

TS one point functions are part of the identity. Note, how- f dk 24,k k.kKpg ~[0,.005+9ua0

ever, that in the result obtained fB},® quadratic divergences A2m)A [(KR—mR)3] erRel s Seasvp

are completely absent. However, when we use (fhec)
mathematical relation between the functidhsandZ,,
Z,(m¢,mj,q%mp)
(9%+mf—mp)
=Zo(m5,m§:q2:m5)2—qz

1

292

mj
m;—mi+mgin| — (63)
m,

and the(also exadtscale relations, Eq21) and Eq.(22), we
get

TXS‘:(kl_kZ))Z{(mt—mb>[TSS]+TS<mb>—TS<mt)}

(ki—ka
(64)

by direct identification offSS TS(m,) andTS(m,) given in

Eqg. (29) and Eq.(15), respectively. The same procedure al-

lows us to writeT%” in the following form:
TpA:(kl_kZ)V
T (k)

+TS(my) = T(my)}. (65)

{=(m+my)[T"F]

+ g,u,ﬂg Va]l |0g(m2) ' (70)

These relations in particular show that all the divergent con-
tent of the one loop amplitudes of the NJL model are in one
of the formsl yyaq OF 1104. Therefore the only divergent ob-
jects which need to be calculated are those two. This fact
reduces the role played by an event(@insistent regular-
ization method to that of furnishing a parametrization of such
integrals.

Of course calculations beyond one loop bring in other
structures like overlapping divergences, etc. It is a simple
matter to extend the method in order to deal with them. In
the present work, as mentioned before, we restricted our-
selves to one loop calculations.

It is important to remember that such parametrization
must be consistent with the scale relations and therefore
should satisfy

aIquac()\z)
IN?

el
a2 \@am2/\a2)

One possible such parametrization could be

=1 Iog()\z)u

(71)
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i\ A2 Ofg8,(m?)=0,
Iquad()\z)z((Am)z) —A2+)\2+)\2|n<F + BoN2+ 501, -
' (72) ARSA(mM?)=0, (74)

VEE(m?)=0.

’

| (xZ)—( ! )_In<)\—2)+
log - (477)2 - A2 ,BO

The above relations, as discussed, are enough to eliminate
all possible ambiguities and symmetry violations. In this case
whereA2 plav a role of a reqularization parameftett o the only remaining divergent obj.ects are of thg 'form

iy g : t il Iquad()\z) and I|og()\2). Moreover, in order to explicitly

and B, and &, are constants. 2 ) A
Although the above relations are useful and valid in gen_verlfy the Ward identities it is also necessary that the alge-

eral for any method, in the specific context of the NJL modelPraic relations(21) and (22) are preserved. These relations

they are not necessary, since the gap equation relates t gve been derived algebraically and in the present context

constituent quark masa directly tolquad(mz) and the decay t. eir i;nportan;:t\e/vis gu.z to 'the fact tlr&at thebexplicit't\Jllerifica-
constanig,, directly tol|og(m2). This procedure yields a di- tion of several Ward identities would not be possible were

rect relation between divergent quantities and phenomen&besefrelatl'ons no.t valid. ;I'hhey hallvel beean Ca"?d g mz_inéfesta-
logical physical quantities. tion of scale invariance of the calculated amplitude sinte

It is nowadays a current point of view that in order to plays the role of &cale This interpretation becomes solid if

have a complete definition of a nonrenormalizable model th&"€ Studies the renormalization groliiG) of quantum elec-
specification of a regularization scheme is neces$a#y. trodynamics at the one loop level using the present prescrip-

The results extracted from our analysis allow for the conclu—t'or:_" r’f‘s we know, at t?e ?‘ne Iocr)]p Ievelzthe %nly d|verge|nce
sion that the NJL model within the prescription used exhibits//""!C" appears ;f'o%(m 3 ifwe Ch oosem ‘;’]‘S the renodr_rfr:ca )
its full predictive power. It was shown to be consistent, free'Zation point. The freedom we have in choosing a different

of ambiguities and symmetry violations. The gauge invari-"énormalization point is equivalent to the use of E2p). It

ance of the W-boson propagator is only a consequence g @ S"T‘P'e matter to c_:hegk that the RG co_efficients are ob-
this consistency, but it is not the only one. tained in a regularization independent fashion once(Eg).

In order to conclude this section a comment about thdS Used in the appropriate amplitudes in QED to parametrize
solution proposed by Ref6] is in order: In Ref.[6] the the freedom one has in choosing the renormalization point

proposed solution is via dispersion relations. In this case thE!lﬂ' hi - | hat th dit
starting point is the imaginary part of the amplitudes as dic-_ !N this case itis natural to assume that the conditions Eq.
tated by Cutkosky's rules and the real part is constructed’# are related to some fundamental property of quantum

through dispersion relations. In our results the imaginary part€!d theories. In fact, it can be shown that they are a conse-
is contained in the, functions, given for example byL6]; guence of translational invarian¢&2]. Therefore, a consis-
tent method should automatically incorporate such condi-

tions as in the case of dimensional regularization.

Im{Zo(mZ,m2,q%;m?)} For the specific case of the NJL model one important
5 ) consequence of the present strategy is that all its divergent
=270 (¢~ (My+my) 2)Vg?— (M +my) content at the one loop level can be expressed in terms of
J=(m=mp)2 two basic objects,q andl a4, Which are usually related to

(73 physical quantities: the constituent quark mégap equa-
tion) and the coupling constamgf,. The predictions of the
model depend only on parameters of the model itself.

The present prescription for the manipulation and calcu-

ion of divergent amplitudegl5] is not restricted to the

JL model and can be also applied to effective theories in

0éeneral and in renormalization programs. It should be em-

phasized that wherever dimensional regularization applies
we get essentially the same results, provided the divergent
objects are written according to the methad investigation

of the existence of 4 dimensional regularizations which obey

In the present work we revisited the questions raised irthis rule has also been provgt2]).

Ref.[6] with respect to consistent regularization schemes for One other important ingredient of the present prescription

treating the gauged NJL model, from a different point ofis the systematization of the finite content of all amplitudes

view. In particular we can obtain their results as a particulain terms of theZ, functions[15]. These functions have a

case. much wider applicability. Indeed, the finite part ahy one

From our analysis it is possible to conclude that in ordefdoop amplitude can be cast into this form. They enormously
to maintain the NJL full predictive power it is crucial that the simplify the analysis of the Ward identities, relevant physical
eventually used regularization prescription satisfies limits, and directly emphasize aspects related to unitarity.

2092

An immediate check reveals the compatibility with Cutko- lat
sky’s rules in such a way that if we had used those rules tQ
construct the amplitudes we would get the same results f
the cutoff independent part of the results of Héfl.

IV. CONCLUSIONS
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APPENDIX J Saq(X,x")I(x")d*x’
As discussed in R_e1_[12] and briefly summarized here, dK ekt aaex') 4
our consistency conditions at the one loop level are but a j d4 /J f ePXJ(p)
consequence of translational invariance. Let us consider the (2m)* v (ktaq)—mJ (27)%
free Green’s function of the theory and require that it is . -
translationally invariant J d*k gl(k+aa)x ket aq)
(2m)* v-(K+ag)—m
d*k ek d%k P aikx
' : Al = f p— ( J(k A6
)f e (A1) (zw)4‘{qaku}vkm” (A6)
where we have introduced the shift operator{eef(d/ok*)}.
The “translated” Green’s function is given by Expanding the shift operator we get that the integrals propor-

tional toa" are surface terms, and fad(x') being a adequate
test function, they will vanish. But on the improper integrals
d?k  elkran(x=x") Saq Will act over a distribution,
-

(2m)* v (K+aq)— (A2)

f d"’xf d?X’ Suq(X,X")D(X,X), (A7)

When acting on a test function, there should be no d'ﬁerenc%hereD(x x') is a distribution, typically the delta function

betweenSandS,q, so we require tha=S,q, for arbitrary o products of single particle Green’s functions:

«q.
f d4xf d*X’ Suq(X,X")D(X,X")

:f d* w9
(2wt R A

1
y‘k_mD(k)). (A8)

f S(x,x")JI(x")d* '=fsaq(x,x')a(x')d4x’. (A3)

The generating functional of the free theory, defined in
the standard way, X

For D(x—x')=8*x—x'), we haveD(k)=1, and thus
ZO[J]:Nexp{—if J(X)S(x,x")I(x")d*x d*x’

d*k d 1
(A4 S,4(0)= f agt—— )
(277)4 okt )\ y-K=m
is independent of the parameter For the generating func- d4k 1
tional of the interacting theory we have (277) y-k—m
dk 9 1
Ry ) Iemew P
Z[J]=ex —|f Lint 15 d*z{Z,[J]. (A5) (2m)" ok#LY
) d'k & [ 1
+aq”q”J 7 gkl yk—m|
All the amplitudes evaluated in the present work can be (2m)" okkok" Y
obtained by means of the convenient functional derivatives (A9)
of the above generating functional. It is straightfoward to
show that when we use the translated Green’s funcigp The above equation will ber independent if and only if
instead ofS, we obtain the amplitudes with the arbitrary relations (74) are satisfied. One possible regularization
momentum routing. scheme which implements this feature is obtained by replac-
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ing the particle’s Green’s function by the sequence of func- d4k  elkx—x") ok?
tions which define the distribution, i.e., Sp(X,x")= f —— ———exg ——|, (All)
(2m)* y-k—m 4n?
’ ’ 4,1 _ i ! ’ 44,1
f S(x,x)I(x")d X _n“_rif Sn(X.x")I(XT)dX’, whereo is a parameter with the appropriate dimension and

(A10) signal to make the sequen{8,(x,x’)} converge to the dis-
tribution S(x,x").
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