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One loop calculation in lattice QCD with domain-wall quarks
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One loop corrections to the quark propagator are calculated in massless QCD with a domain-wall fermion.
We adopt the Shamir type domain-wall fermion with an infinitely large extra dimension to describe the
massless fermion. It is shown that no additative counterterm to the current quark mass is generated in this
theory with infinitely many flavors, and the wave function renormalization factor of the massless quark is
explicitly evaluated. We also show that an analysis with a simple mean-field approximation can explain the
properties of the massless quark in numerical simulations of QCD with domain-wall quarks.
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PACS number~s!: 12.38.Gc, 11.15.Ha, 11.30.Rd, 12.38.Bx
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I. INTRODUCTION

The formulation of the lattice fermion in QCD with chira
symmetry is one of the most fascinating problems theor
cally and practically. Although both Wilson and Kogu
Susskind~KS! fermion formulations have been popular
used for the lattice QCD simulations, some disadvanta
remain in these formulations: In the Wilson fermion form
lation the quark mass has an additive quantum correction
the chiral limit is reached only by fine tuning the mass p
rameter. As a general rule we have to take the continu
limit tuning the mass appropriately in order to simula
massless QCD. In the KS fermion formulation the numbe
flavors is restricted and the original flavor symmetry is b
ken explicitly to some residual one.

The domain-wall fermion formulation, which was orig
nally proposed to define lattice chiral gauge theories@1#, has
been applied to lattice QCD@2#. This formulation is expected
to have a great advantage over the previous two form
tions: An advantage over the KS fermion is that the num
of flavors is not fixed. This is manifest from its definitio
The other advantage over the Wilson fermion is that m
renormalization is multiplicative (meff5Zmmtree). In other
words, if a massless mode exists at the tree level it is st
against the quantum correction. The additive mass correc
exists when the length of the extra dimensionNs of the
domain-wall fermion is finite, however, it is expected to
suppressed exponentially inNs . The stability of the massles
mode is thought to be valid when we set the extra dimens
to be infinitely large. This property of mass renormalizati
is not a trivial one, but only an intuitive discussion on it h
been given so far@2#. On the other hand, recent numeric
simulations suggests that the stability of the zero mode h
even nonperturbatively@3#. Therefore an analytical under
standing of domain-wall QCD is now needed. The aim
this paper is to confirm the stability of the massless mod
Ns→` by lattice perturbation theory and to give explicit
the wave function renormalization of the quark field.

This paper is organized as follows. In Sec. II we will giv
0556-2821/99/59~5!/054510~14!/$15.00 59 0545
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the basic tools for the perturbative calculation with t
domain-wall fermion. It is enough to present only the fe
mion propagator because other Feynman rules of the ga
interaction and gauge propagator are exactly identical to
of the ordinary Wilson fermion. In Sec. III we calculate on
loop corrections to the fermion propagator. Section IV is t
main part of this paper, where we discuss the renormaliza
of the zero mode or massless quark field. We take the d
onal basis of the mass matrix of the domain-wall fermi
and see that the zero mode is stable against the one
correction atNs→`. The wave function renormalization
factor of the massless quark field is also given explicit
Section V is devoted to a mean field analysis with finiteNs .
We show that properties of the zero mode observed in
numerical simulation@3# are well explained in this approxi
mation. In Sec. VI we give our conclusions and a discussi
In the appendixes some derivations of formulas used in
text are presented.

In this paper we set the lattice spacinga51 and recover it
through dimensionful variables as the need arises. We
the SU(Nc) gauge group with the gauge coupling constang
and the second CasimirC25(Nc

221)/2Nc . We setNc53 in
the numerical calculations.

II. PERTURBATION THEORY WITH DOMAIN-WALL
FERMION

A. Action

We adopt a domain-wall fermion of Shamir type@2# to
describe massless quarks. The domain-wall fermion is a v
ant of the Wilson fermion with sufficiently many flavors an
a special form of the mass matrix. Although it is also inte
preted as a five-dimensional Wilson fermion@1#, we prefer to
treat it as a multiflavor system@4#.

From this point of view the only difference from the Wi
son fermion action is the fermion bilinear term. If we sep
rate the QCD action for lattice perturbation theory into fe
mion and gauge parts,
©1999 The American Physical Society10-1



-

tu

es

ic

le

an

a

re

o
o
ac

s-
s-
s

al

ter

ase

.
em
nge
en-

c-
up
n-

ain-
ary
f

SINYA AOKI AND YUSUKE TANIGUCHI PHYSICAL REVIEW D 59 054510
S5Sfermion1Sgauge1SGF1SFP1Smeasure, ~1!

the lattice gauge actionSgauge, the gauge fixing and Fadeev
Popov~FP! ghost termSGF1SFP, the invariant measure term
Smeasure, and the gauge-fermion interaction terms inSfermion
are exactly same as those in ordinary Wilson fermion per
bation theory@5,6# with many flavors.

The domain-wall fermion actionSfermion is written as

Sfermion5(
n,m

c̄m,s~gmDm!m,ncn,s

1c̄m,sWm,n
1 s,tP1cn,t1c̄m,sWm,n

2 s,tP2cn,t

1mqc̄m,s~dm,nds,Ns
d t,1P11dm,nds,1d t,Ns

P2!cn,t ,

~2!

where m,n is four-dimensional space index, ands,t
51, . . . ,Ns is the flavor index, for which we will takeNs
→` limit in the one loop calculation to discuss the massl
mode. Here the Dirac operator is given by

~gmDm!n,m5(
m

1

2
gm~Un,mdn1m̂,m2Um,m

† dn2m̂,m!, ~3!

and mass matrixWs,t
6 is defined as

Wn,m
6 s,t5ds61,tdn,m2Wn,mds,t , ~4!

where

Wn,m5~12M !dn,m

1
r

2(m ~Un,mdn1m̂,m1Um,m
† dn2m̂,m22dn,m! ~5!

is a sum of the Dirac mass term and the Wilson term, wh
contain gauge fields at this stage, andr is the Wilson param-
eter, which we setr 521. The parametermq is the current
quarks mass, but in this paper we only treat the mass
QCD takingmq50.P6 is a projection operator defined by

P65
16g5

2
. ~6!

In our domain-wall fermion action~2! we have Dirac
massM besides the current quark massmq . Here we have to
notice thatM is not the physical quark mass but is rather
unphysical mass of the cutoff order (1/a)-like Wilson term.
As will be mentioned laterM has an important role as
parameter of the theory: choosing a suitable value forM we
have a massless fermion mode for the vanishing cur
quark mass (mq50) at Ns→`.

In order to see the massless fermion mode it is more c
venient to be in the momentum representation and pull
the bilinear term. The fermion action in the momentum sp
is written as
05451
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Sfermion5E d4p

~2p!4
c̄~2p!sF(

m
igm sin pm

1W1~p!s,tP11W2~p!s,tP2Gc~p! t1Sint. ,

~7!

where the mass matrix has the following form,

W1~p!s,t5ds11,t2W~p!ds,t

5S 2W~p! 1

2W~p! �

� 1

2W~p!
D , ~8!

W2~p!s,t5ds21,t2W~p!ds,t

5S 2W~p!

1 2W~p!

� �

12W~p!
D , ~9!

W~p!512M2r(
m

~12cospm!. ~10!

The gauge interaction termSint is identical to that of the
Wilson fermion perturbation theory withNs flavors.

As will be discussed in Appendix C, in spite of the pre
ence of the Dirac massM this fermion system has one mas
less fermion mode andNs21 excited modes with the mas
of cutoff order in theNs→` limit by virtue of this mass
matrix form, provided thatuW(p;0)u,1 is satisfied by a
suitable choice of the Dirac massM . Here we take the mo-
mentum regionpm;0 to see the zero mode with physic
momenta. At the momentumpm;p, where the doubler
emerges in the naive fermion formulation, the parame
condition is not satisfied„uW(p;p)u.1…, so that allNs
fermion modes have masses of the cutoff order. Here ple
notice that the mass parameterM is only required to be in the
wide range 0,M,2 @2# and we need no fine-tuning of it
As will be seen later, the absence of the fine-tuning probl
remains true at the one-loop order, though the allowed ra
of M for the zero mode becomes coupling-constant dep
dent.

B. Fermion propagator

In the next section we will calculate the one loop corre
tion to the fermion propagator. In this subsection we set
the lattice Feynman rules for domain-wall fermion with va
ishing current quark mass (mq50).

As was discussed in the previous subsection, the dom
wall fermion action is almost the same as that of the ordin
Wilson fermions one withNs flavors. The peculiar feature o
0-2
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the domain-wall fermion is the form of the fermion propag
tor, which is given by

SF~p!s,t5@ igm sin pm1W1~p!P11W2~p!P2#s,t
21 .

~11!

The explicit form is written as

SF~p!s,t5@~2 igm sin pm1W2!GR~s,t !P1

1~2 igm sin pm1W1!GL~s,t !P2#st , ~12!

where

GR~s,t ![S 1

sin2 p1W1W2D
st

5G0~s2t !1A11ea~s1t !1A12ea~s2t !

1A21ea~2s1t !1A22ea~2s2t !, ~13!

G0~s2t !5A~ea~Ns2us2tu!1e2a~Ns2us2tu!!, ~14!

S A11

A21
D 5

A

eaNs~12Wea!2e2aNs~12We2a!

3S ~12We2a!~e22aNs21!

W~ea2e2a!
D , ~15!

S A12

A22
D 5

A

eaNs~12Wea!2e2aNs~12We2a!

3S W~ea2e2a!

~12Wea!~12e2aNs!
D , ~16!
-
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s
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GL~s,t ![S 1

sin2 p1W2W1D
st

5G0~s2t !1B11ea~s1t !1B12ea~s2t !

1B21ea~2s1t !1B22ea~2s2t !, ~17!

S B11

B21
D 5

A

eaNs~12Wea!2e2aNs~12We2a!

3S e2a~e2a2W!~e22aNs21!

W~ea2e2a!
D , ~18!

S B12

B22
D 5

A

eaNs~12Wea!2e2aNs~12We2a!

3S W~ea2e2a!

ea~ea2W!~12e2aNs!
D . ~19!

Herea andA are defined as

cosha[
11W21sin2 p

2W
, ~20!
sinh a5
1

2W
A~12W2!212~11W2!( sin2 pm1S ( sin2 pm D 2

, ~21!
I

e
he
r

A[
1

2W sinh a

1

2 sinh~aNs!
. ~22!

Note that the argumentp of W anda is suppressed through
out this paper unless necessary. Since this fermion prop
tor is invariant undera→2a, we take thea.0 without
loss of generality.GR and GL are also symmetric in (s,t).
See Appendix B for the derivation. In the one-loop calcu
tion we use the above propagator in theNs→` limit.

III. ONE LOOP CALCULATION

A. Diagrams

In this section we calculate the one loop correction to
fermion propagator, which is given by two contribution
a-

-

e

S tadpole(p)1Shalf-circle(p), from diagrams in Fig. 1. The 1P
fermion two-point vertex function is given by

V1-loop
~2! ~p!s,t

5@ igm sin pm1W1~p!P11W2~p!P22S~p!#s,t

~23!

with

S~p!5S tadpole~p!1Shalf-circle~p!. ~24!

In order to investigate the massless mode ofG1-loop
(2) (p)s,t

in the pm→0 limit, we need only the first few terms in th
pm expansion. Since the only dimensionful quantity is t
external momentumpm in our calculation, the higher orde
terms in thepm expansion are also higher order ina.
0-3
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B. Contribution from tadpole diagram

The contribution from the tadpole diagram is written a

S tadpole5
1

2
g2C2(

m
~ igm sin pm2r cospm!

3E
2p

p d4l

~2p!4

1

4 sin2 ~ l /2!
ds,t ~25!

5g2C2TS 1

2
ip”12D ds,t1O~p2!, ~26!

whereT is the tadpole loop integral

T5E
2p

p d4l

~2p!4

1

4 sin2 ~ l /2!
50.154612. ~27!

The first term in Eq.~26! is finite, the second term linearl
diverges, and the third term vanishes in the limita→0 when
we recover the lattice spacinga. We see thatS tadpole is di-
agonal in flavor space, and its effect is to modify the m

parameterM→M̃5M22g2C2T and the wave function
renormalizationZ51→12g2C2T/2.

C. Contribution from half circle diagram

The contribution from the half circle diagram in the Fey
man gauge

FIG. 1. Diagrams which contribute to the one-loop correction
the fermion propagator. Above: Tadpole diagram. Below: Ha
circle diagram.
05451
s

Ss,t
half-circle5E

2p

p d4l

~2p!4(m ~2 igTa!

3H gm cos
1

2
~ l m1pm!2 ir sin

1

2
~ l m1pm!J

3SF~ l !s,t3~2 igTa!H gm cos
1

2
~ l m1pm!

2 ir sin
1

2
~ l m1pm!J 3

1

4 sin2 ~p2 l !/2
~28!

cannot be calculated analytically because of its complica
dependence on the flavor indicess,t in the fermion propaga-
tor.

It is easily seen that the loop integral of Eq.~28! has
infrared divergence. As is in ordinary lattice perturbati
theory the infrared divergence can be written in an analy
form. To do this we separateSs,t

half-circle as follows:

Ss,t
half-circle~p!5Ss,t

lat~p!1Ss,t
cont~p!, ~29!

where

Ss,t
lat~p!5Ss,t

half-circle~p!2Ss,t
cont~p!, ~30!

andSs,t
cont(p) is introduced to extract the infrared divergen

Ss,t
cont~p!52g2C2E d4l

~2p!4

2 i l”~C1P11C2P2!s,t

l 2~p2 l !2

3u~p22 l 2!

with

~C1!s,t5~12w0
2!w0

s1t22,

~C2!s,t5~12w0
2!w0

2Ns2s2t ,

andw05W(0). In order to have zero modes with the phys
cal momentum,w0 should be in the regionw0

2<1. This leads
to the condition ofM that 0<M<2 @2#. SinceSs,t

lat(p) is
infrared finite in thep→0 limit, we can evaluate it in thep
expansion:

Ss,t
lat~p!5Ss,t

lat~0!1pm

]Ss,t
lat

]pm
~0!1O~p2!. ~31!

The logarithmically divergent partScont(p) can be calculated
analytically, while a linearly divergent and finite terms@the
first and the second terms in Eq.~31!# have to be evaluated
by numerical integrations of loop momenta. After a litt
algebra we have

Ss,t
half-circle52g2C2@ ip” ~ I s,t

1 P11I s,t
2 P2!

1Ms,t
1 P11Ms,t

2 P2#, ~32!

whereI 6 andM 6 are given by

-

0-4
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I s,t
6 5I log

6 ~s,t !1I finite
6 ~s,t !, ~33!

I log
6 ~s,t !5

1

16p2
~C6!s,tS ln~p2!1

1

2
2 lnp2D , ~34!

I finite
1/2~s,t !5E d4l

~2p!4

1

4 sin2 l /2
H 1

8(m @cos l m~W2GR1W1GL!~s,t !1sin2 l m~GL1GR!~s,t !#

1(
m

sin2 l m

4~4 sin2 l /2!2 F ~W2GR1W1GL!~s,t !12S (
n

cos2
l n

2
22 cos2

l m

2 DGL/R~s,t !1(
n

sin2
l n

2
GR/L~s,t !G J

2~C1/2!s,tE d4l

~2p!4

1

~ l 2!2
u~p22 l 2!, ~35!

Ms,t
1/25E d4l

~2p!4

1

4 sin2 l /2
(
m

Fcos2
l m

2
~W1/2GL/R!~s,t !2sin2

l m

2
~W2/1GR/L!~s,t !1

1

2
sin2 l m~GL1GR!~s,t !G .

~36!
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By the dimensional countingI 6 has lna2 divergence and
constant terms ina, andM 6 has 1/a linear divergence when
lattice spacinga is introduced explicitly aspm→apm , S
→S/a. Although M 6 may have lna2 divergence naively, it
is canceled by the algebraic relation

@W1~p50!#s,t~12M ! t50, ~37!

@W2~p50!#s,t~12M !2t50. ~38!

The logarithmic divergence lna2 in I 6 is given analyti-
cally. As we can see from the form of (C1)s,t5(1
2w0

2)w0
s1t22, I log

1 is localized in the boundary (s,t)
5(1,1). This is because the logarithmic divergence com
from the effect of massless fermion mode which is localiz
in the boundary. The other oneI log

2 is localized in the other
boundary (s,t)5(Ns ,Ns).

The finite terms and linearly divergent terms should
calculated by repeating the numerical integrationO(Ns

2)
times. However, as can be seen in the next section, such
number of integrations can be avoided for the wave-funct
renormalization of the quark field. On the other hand, sin
the structures ofI finite

6 and M 6 are useful to understand th
domain-wall QCD more deeply, we will give them in a sep
rate paper.

IV. RENORMALIZATION OF QUARKS FIELD

The result obtained in the previous section is summari
in the following form of the effective action for a two-poin
function with the scalep25(ma)2 at one-loop level:

G~2!5c̄~2p!s@ igmpm~Z1P11Z2P2!

1W̄1P11W̄2P2#s,tc~p! t , ~39!

where
05451
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Z6511g2C2~ I tad1I log
6 1I finite

6 !, ~40!

W̄65W6~0!1g2C2~M tad1M 6! ~41!

with

I tad~s,t !52
1

2
Tds,t520.077306ds,t , ~42!

M tad~s,t !522Tds,t520.309224ds,t . ~43!

In Eq. ~39! we expand the effective action in external m
mentumpm and pick up the relevant terms for renormaliz
tion. The expressions forI log

6 , Ifinite
6 , andM 6 were given in

the previous section. In this section we consider the ren
malization of zero modes, which is interpolated by the qu
field: q(p)5P1c(p)11P2c(p)Ns

. Here we only presen
the results and give the details of derivations in Appendix

A. Diagonalization of mass matrix and stability of zero modes

For the renormalization of zero modes, it is better to u
new basis,cd(p) which diagonalize the one loop level ma
matrix W̄6. These basis are given by the relation that

cs
d~p!5Us,tP1c~p!1Vs,tP2c~p!, ~44!

where unitary matricesU andV satisfy

@UW̄2W̄1U†#s,t5Ms
2ds,t ,

@VW̄1W̄2V†#s,t5Ms
2ds,t .

In our notation the mass eigenvalue squaredMs
2 is arranged

in such a way thatMNs

2 50, and we can takeU and V real

matrices without loss of generality.
We calculateU andV at one-loop level:
0-5
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U5~11g2U1!U0 , V5~11g2V1!V0 , ~45!

where tree level matricesU0 andV0 are analytically obtained
in the largeNs limit as follows:

@U0#s,t5H ~2/Ns!
1/2 sin as~Ns112t ! sÞNs,

~12w0
2!1/2w0

~ t21! s5Ns , ~46!

and @V0#s,t5@U0#s,Ns112t , wherew0512M̃ with M̃5M

14(u21). Hereu51 for naive perturbation theory, while
u512g2C2T/2 for tadpole improved perturbation theo
@7#. Hereafter we will call both cases ‘‘the tree level’’ an
will not distinguish the two cases unless necessary. Note
the allowed range for the zero mode now becomes 0,M̃
,2, which is theg2 dependent condition forM in the latter
case. If we expand the mass eigenvalue squared as (M2)s

5(M0
2)s1g2(M1

2)s , the tree level one is related to the pha
factor as such that 2w0 cosas511w0

22(M0
2)s. This phase

factor, which also satisfies sinasNs5w0 sinas(Ns11), is ex-
plicitly given asas5ps/Ns in the largeNs limit. It is also
shown thatU0 andV0 diagonalize the tree level mass matr
W0

65W6(0) itself such that@V0W0
1U0

†#s,t5@U0W0
2V0

†#s,t

5(M0)sds,t .
We now consider one-loop level mass matrixW̄6, which

is denoted as W̄65W0
61g2W1

6 , where g2(W1
6)s,t

5g2C2(M 61M tad)s,t14(12u)ds,t is the one loop correc
tion given in the previous section. To diagonalizeW̄7

•W̄6 at
one-loop order,U1 andV1 should satisfy

~U1!s,t~M0
2! t1~M0

2!s~U1
†!s,t1~U0W1

2V0
†
•V0W0

1U0
†!s,t

1~U0W0
2V0

†
•V0W1

1U0
†!s,t5~M1

2!sds,t , ~47!

~V1!s,t~M0
2! t1~M0

2!s~V1
†!s,t1~V0W1

1U0
†
•U0W0

2V0
†!s,t

1~V0W0
1U0

†
•U0W1

2V0
†!s,t5~M1

2!sds,t . ~48!

Using the fact that (U1 ,V1)s,t52(U1 ,V1) t,s implied by the
unitarity and the reality, andV0W0

1U0
† and U0W0

2V0
† are

diagonal, we can easily solve the above equation as

~U1!s,t5
~M0! t~W̃1! t,s1~M0!s~W̃1!s,t

~M0
2!s2~M0

2! t

,

~V1!s,t5
~W̃1!s,t~M0! t1~W̃1! t,s~M0!s

~M0
2!s2~M0

2! t

for sÞt, and
05451
at

~M1
2!s52~W̃1!s,s~M0!s , ~U1!s,s5~V1!s,s50, ~49!

where W̃15V0W1U0
† . The mass eigenvalue squaredMs

2

5(M0
2)s1g2(M1

2)s obtained above leads to the mass eige
valueMs itself: Ms5(M0)s1g2(W̃1)s,s . Note thatMNs

50

since (M0)Ns
50 and (W̃1)Ns ,Ns

50 in the largeNs limit as is
shown in Appendix C. This result explicitly demonstrates t
stability of the zero modes against one-loop corrections
domain-wall QCD atNs→`. As in the case at the tree leve
it is shown that

~VW̄1U†!s,t5~UW̄2V†!s,t5Msds,t1O~g4!. ~50!

B. Wave function renormalization for quark fields

After diagonalization of the mass matrix, the effectiv
action for the zero mode fieldcd(p)Ns

5x0(p) becomes

x̄0~2p!@ igmpm~ Z̃1P11Z̃2P2!#x0~p!, ~51!

where

Z̃6512g2C2

T

2
1

g2C2

16p2S logp21
1

2
2 log~ma!2D

1g2~ I 6
d !Ns ,Ns

~52!

with I 1
d 5C2(U0I finite

1 U0
†) andI 2

d 5C2(V0I finite
2 V0

†). Since the
interpolating quark field q(p) is expressed asq(p)
5(UNs1

P11VNs ,Ns
P2)x0(p), and ^x0(p)x̄0(2p)&

5@(1/Z̃1) P11 (1/Z̃2) P2#(2 igmpm /p2), we obtain

^q~p!q̄~2p!&5FUNs1
2

Z̃1

P11
VNs ,Ns

2

Z̃2

P2G2 igmpm

p2
.

~53!

Therefore, the renormalized quark fieldQ(p), which satis-
fies ^Q(p)Q̄(2p)&5 2 igmpm /p2, is given by Q(p)
5@(ZF

1)1/2P11(ZF
2)1/2P2#q(p) with ZF

15Z̃1/UNs1
2 and

ZF
25Z̃2/VNs ,Ns

2 . Since an explicit evaluation shows th

(I 1
d )Ns ,Ns

5(I 2
d )Ns ,Ns

[I d, thus Z̃15Z̃2[Z̃, and (UNs1
)2

5(VNs ,Ns
)2512w0

2, we finally obtain ZF
15ZF

2[ZF

5Z̃/(12w0
2) where

Z̃512g2C2

T

2
1

g2

16p2
C2S logp21

1

2
2 log~ma!2D1g2I d.

~54!

Here one unknown constantI d is given by
0-6
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I d5C2E d4l

~2p!4 H 1

32 sin2 l /2
(
m

$sin2 l m~G̃R1G̃L!12 cosl m@w02W~ l !#G̃R%

1(
m

sin2 l m

2~4 sin2 l /2!2 F @w02W~ l !#G̃R1S (
n

cos2 l n/222 cos2 l m/2D G̃L1(
n

~sin2 l n/2!G̃RG2
1

~ l 2!2
u~p22 l 2!J ,

~55!
.

te
-

n

t

e
th
to
ica

e

cu

e

-
ent
ive
at

ars
where

G̃L5AF G̃2
ea2W

e2a2W

1

~ea2w0!2G ,

G̃R5AF G̃2
1

~ea2w0!2G
with

A5
12w0

2

2W sinh a
,

G̃5
sinh a02sinh a

2w0 sinh a0~cosha02cosha!
,

ande2a05w0 . The numerical value ofI d is given in Table I
at several values ofM̃ , together with the total one-loop
renormalization factorZ1 (Z̃[11g2Z1) at ma51 and the
ratio of the nontadpole contribution (Z1)nontad[I d

1(C2 /16p2) (logp210.5)5I d10.02355 to the total one
Note also that the tadpole contribution givesZtad[2C2T/2
520.1031. From this table, we see thatI d is small and
depends onM̃ very weakly: The valueI d520.01945 atM̃
50.05 monotonically increases~decreases in the absolu
value! to I d520.01222 atM̃50.95. Furthermore the non
tadpole contributionZnontad is relatively small: 4% atM̃
50.05 and 12% atM̃50.95, so that the tadpole contributio
becomes dominant at allM̃ . This justifies the use of the
tree-level result with the tadpole improvement. SinceZ1
.0.1, the one-loop correction to theZ factor is about 10% a
g2;1.0.

V. MEAN FIELD ANALYSIS AT FINITE Ns

As seen in the previous sections, due to the presenc
off-diagonal terms in the extra dimension, analysis of
one-loop correction to domain-wall quarks becomes
complicated to be easily applied to results of the numer
simulations, which should be performed on finiteNs . In this
section we adopt an approximated but simpler method
analyze the effect of one-loop corrections at finiteNs . We
call the method the mean field~MF! analysis since the link
variableUn,m in the fermion action is simply replaced by th
mean fieldu which is independent onn and m. After this
replacement the fermion propagator can be explicitly cal
05451
of
e
o
l

to

-

lated with finiteNs and result is identical to the tree level on
given in Appendix B with the replacement such thatx→ux
and cospm→u cospm . In perturbation theory this is equiva
lent to the tree level analysis with the tadpole improvem
@7#, which has been shown in the previous section to g
about 90% of the wave function renormalization factor
one-loop level.

Since we are interested in the zero mode ats51, we set
s5t51 in the propagator. In this case the zero mode appe
in B22e22a of GL , which is given at nonzeromq by

B22e22a5
~12We2a!~12mq

2!

2W sinh~a!F
, ~56!

where

F5Wea211mq
2~12We2a!24mq•W• sinh~a!e2aNs

1e22aNs@12We2a1mq
2~Wea21!#. ~57!

In the small momentum limit, this leads to

TABLE I. Value of I d vs M̃ , together with Z1 and
(Z1)nontad/Z1 .

M̃ I d Z1 (Z1)nontad/Z1

0.05 20.01945~5! 20.09897 0.041
0.10 20.01871~5! 20.09822 0.049
0.15 20.01804~5! 20.09756 0.056
0.20 20.01744~5! 20.09696 0.063
0.25 20.01688~5! 20.09640 0.069
0.30 20.01636~5! 20.09589 0.075
0.35 20.01588~5! 20.09541 0.080
0.40 20.01544~5! 20.09496 0.085
0.45 20.01502~5! 20.09454 0.090
0.50 20.01463~5! 20.09415 0.095
0.55 20.01426~5! 20.09378 0.099
0.60 20.01392~5! 20.09345 0.103
0.65 20.01361~5! 20.09313 0.107
0.70 20.01332~5! 20.09284 0.110
0.75 20.01305~5! 20.09257 0.113
0.80 20.01281~5! 20.09233 0.116
0.85 20.01259~5! 20.09211 0.119
0.90 20.01239~5! 20.09191 0.121
0.95 20.01222~5! 20.09174 0.124
0-7



in

vi

ve

of
te
sis

on

e
a

er

-
ry

la
i

r-

de

u-
up-
u-

is
less

er-
via
is

ter-

ks.
r-
d
ss
es
is
in

in-
rk
for-
oof
u-

-

d

SINYA AOKI AND YUSUKE TANIGUCHI PHYSICAL REVIEW D 59 054510
lim
p2→0

B22e22a5
Z21

p21mF
2

~12w0
2!21p2uw0

2

~12w0
2!21p2u~11w0

2!
,

~58!

where Z215(12mq
2)/Au, mF

25B/Au, and w0512M

14(12u)512M̃ with

A5
1

12w0
2 @11mq

2w0
22w0~12w0

2!mq
21mqw0

Ns

3$2Ns~12w0
2!212w0

212w0~12w0
2!

2Ns~12w0
2!2/w0%1w0

2Ns$w0
21mq

222Ns~12w0
2!

2w0~12w0
2!1Ns~12w0

2!2/w0%#,

B5~12w0
2!@mq

222mqw0
Ns1w0

2Ns#.

Since the pole in the second factor of Eq.~58!,

~12w0
2!21p2uw0

2

~12w0
2!21p2u~11w0

2!
, ~59!

is of the cutoff order and is larger than the physical pole
the first factor

Z21

p21mF
2

, ~60!

we neglect the second factor in the latter analysis.
Now we use the above formula to understand the beha

of the zero mode observed in Ref.@3#. For the value ofu
there are several choices. The tadpole diagram alone gi

u512g2C2T/25120.10307g2.exp@20.10307g2#,

where we may take the bare coupling 2Nc /b or the renor-
malized couplinggMS̄

2 (p/a) for g2 in the above formula.
Alternatively we may also use the ‘‘observed’’ value
u: u5P1/4 where P is the average value of the plaquet
normalized to unity. We adopt the latter one in our analy
The configurations in Ref.@3# generated atb55.7 and
mqa50.01 by the dynamical Kogut-Susskind quark acti
give P50.5772, which leads tou50.872. In Ref.@3# two
remarkable features are found for the zero mode: no z
mode is observed forNs54 and the zero mode is observed
M51.7 but not atM<1.0 for Ns510. To explain these we
calculatemF as a function ofM for bothNs54 and 10 atmq
5 0, 0.01, 0.02, 0.03, and plot the results in Fig. 2, wh
solid lines are forNs54 and dashed lines forNs510. Four
lines for eachNs correspond tomq50, 0.01, 0.02, 0.03 from
below to above aroundM51.5. The result tells us the fol
lowings. The allowed range for the light fermion is ve
narrow forNs54 ~roughly 1.4,M,1.6). This may be the
reason why the light state could not be found in the simu
tion @3#. Note that the allowed range for the zero mode
0.512,M,2.512 in theNs→` limit. Although the allowed
range becomes larger forNs510 (1.1,M,1.9), no light
05451
or

s

.

ro
t

e

-
s

state appears atM<1.0, as observed in the simulation. Fu
thermore the order of the fermion massmF is reversed to the
order of the current quark massmq at M<1.0:mF is largest
at mq50. The plot also supports the fact that the zero mo
is observed atM51.7 in the simulation.

As seen in the above the behavior of the numerical sim
lation is understandable by the MF analysis, which can s
ply useful informations on the tuning of parameters in n
merical simulations such asNs , M, or mq beforehand. For
example, we may takeNs54 for the simulations, which re-
duces the cost of both CPU time and memory a lot, ifM is
appropriately chosen (M.1.5 for U50.872). Here we have
to stress again that this tuning is not a fine-tuning, which
necessary in the case of the Wilson fermion, for mass
quarks.

VI. CONCLUSION AND DISCUSSION

In this paper we calculated one-loop correction to the f
mion propagator in the massless lattice QCD formulated
domain-wall fermions. We showed that the zero mode
stable against the one-loop correction: no additative coun
term to the quark mass is generated in the largeNs limit, and
no fine-tuning ofM is necessary to obtain massless quar
This property is very different from and superior to the o
dinary Wilson fermion formulation. We explicitly calculate
the wave-function renormalization factor for the massle
quarks and show that the tadpole contribution becom
dominant at allM̃ . We also adopted the mean-field analys
to this model, demonstrating that it can qualitatively expla
data obtained in the numerical simulation@3#.

Although our results strongly indicate that the doma
wall QCD can avoid the fine-tuning problem of the qua
mass, the mechanism which gives the zero mode in this
mulation has not been fully understood yet. Since our pr
for the stability of the zero mode contains an explicit calc
lation at one loop@(W1̃)Ns,Ns

50#, it cannot be easily carried

FIG. 2. The fermion massmF obtained in the mean-field ap
proximation as a function ofM for Ns54 ~solid lines! andNs510
~dashed line!, at mq5 0,0.01,0.02,0.03 from below to above aroun
M51.5.
0-8
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over to higher orders. The result of numerical simulation@3#
suggests that the zero mode is also stable against the no
turbative dynamics. There may be a yet unknown symme
which ensures the existence of zero mode in the largeNs
limit. Finding such a symmetry is important for our unde
standing of the formulation.1

In this paper only the wave-function renormalization fa
tor is explicitly evaluated. Based on the method develope
this paper, it is possible to calculate more complicated qu
tities such as renormalization factors for the quark mass,
rents, and four-fermi operators, which are necessary to
the continuum physics from numerical simulations. The
sults of this paper also suggest that the smeared quark o
tor qsmear5(s(w0

sP1cs1w0
Ns2sP2cs) may give better sig-

nals than q5P1c11P2cNs
does, since it has a large

overlap to zero modes.
Note added: After this work was completed, there ap

peared a new paper@10#, in which the stability of the zero
mode is generally considered.
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APPENDIX A: ACTION AND FEYNMAN RULES

The gauge part of the action is exactly same as that of
ordinary lattice QCD action@6#:

Sgauge5(
n

(
~mn!

2
b

Ns
Re tr~Un,mUn1m̂,nUn1 n̂,m

†
Un,n

† !,

~A1!

SGF5(
n

1

2a F¹mAm
a S n1

1

2
m̂ D G2

, ~A2!

SFP5(
n,m

~ c̄n1m̂
a

2 c̄n
a!H cn1m̂

b
Eba

21FgAmS n1
1

2
m̂ D G

2Eab
21FgAmS n1

1

2
m̂ D Gcn

bJ , ~A3!

1After this work was completed, it was pointed out that t
Ginsparg-Wilson relation@8# implies an exact symmetry to forbid
the current quark mass term@9#. The unknown symmetry may b
related to it.
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er-
ry
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in
n-
r-
et
-
ra-

a-
g-

e

Smeasure52
1

2(n
(
m

tr ln

3S 12cos$gAm
c @n1 ~1/2!m̂1#ad~Tc!%

$gAm
c @n1 ~1/2!m̂#ad~Tc!%2 D

ab

,

~A4!

whereg is the coupling of the SU(Nc) gauge,b52Nc /g2. a
is the gauge parameter. The actionsSFP and Smeasureis not
needed in our calculation at one-loop level.

The momentum representation of gauge part is

Sgauge1SGF5
1

2E d4p

~2p!4
Am

a ~2p!

3F4 sin2
p

2
dmn2S 12

1

a D4 sin
pm

2
sin

pn

2 G
3An

a~p!1•••, ~A5!

here the ellipsis denotes the gluon self-interactions which
not come into play in our calculation.

The fermion-gauge interaction terms in the moment
representation is

Sint5 (
n51

` E d4k

~2p!4

d4p

~2p!4

d4l 1

~2p!4
•••

3
d4l n

~2p!4
~2p!4d4~k1p1 l 11•••1 l n!

3
i n

n!
gnAm

a1~ l 1!•••Am
an~ l n!c̄~k!sT

a1•••Tan

3Fgm

2
@ei /2 ~pm2km!2~2 !ne2 i /2 ~pm2km!#

2
r

2
@ei /2 ~pm2km!1~2 !ne2 i /2 ~pm2km!#Gc~p!s .

~A6!

The domain-wall fermion propagator was already given
Eq. ~12!.

The fermion gluon interaction vertices are given by E
~A6!. Although there are an infinite number of interactions
lattice perturbation theory, only two of them are needed
the present purpose. One of them is the fermion interac
vertex with one gluon field, which is given by

V1~k,p; l ,a;m!52 igTaH gm cos
1

2
~2km1pm!

2 ir sin
1

2
~2km1pm!J . ~A7!

The other is the vertex with two gluon fields, given by
0-9
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V2~k,p; l 1 ,a,l 2 ,b;m!

5
1

2
g2

1

2
$Ta,Tb%H igm sin

1

2
~2km1pm!

2r cos
1

2
~2km1pm!J dmn . ~A8!

The gluon propagator is given by

Gmn
ab~p!5

1

4 sin2 p/2
Fdmn2~12a!

4 sin pm/2 sin pn/2

4 sin2 p/2
Gdab .

~A9!

We seta51 in this paper.

APPENDIX B: DERIVATION OF FREE FERMION
PROPAGATOR

In this appendix we derive the free fermion propagat
used in the text. For later use in perturbative analyses of
model, nonzero current quark massmq for finite Ns is con-
sidered. See also Refs.@4,11,12#. We also derive the propa
gator with Majorana mass terms, which becomes impor
for the lattice definition of theN51 supersymmetric mode
via domain-wall fermions@13,14#.

1. Propagator with nonzeromq

The free fermion propagator has the following form:

SF~p!s,t5@~2 igm sin pm1Wm
2!GR~s,t !P1

1~2 igm sin pm1Wm
1!GL~s,t !P2#st ,

where

GR~s,t ![S 1

sin2 p1Wm
1Wm

2D
st

and

GL~s,t ![S 1

sin2 p1Wm
2Wm

1D
st

with

~Wm
1!s,t5~W1!s,t1mqds,Ns

d t,1

and

~Wm
2!s,t5~W2!s,t1mqds,1d t,Ns

. ~B1!
05451
,
is

nt

We first considerGR . The following equation is satisfied fo
GR :

(
t

@~x1W1W2!s,t1mq~Ws1
1 d tNs

1ds,Ns
W1t

2!

1mq
2ds,Ns

d tNs
#GR~ t,u!5dsu ~B2!

with x5sin2 p. Therefore, excepts5Ns or 1, this equation is
satisfied by

GR~s,t !5G~s,t !1A11ea~s1t !1A12ea~s2t !

1A21ea~2s1t !1A22ea~2s2t !, ~B3!

where

G~s,t !5A~ea~Ns2us2tu!1e2a~Ns2us2tu!! ~B4!

becomes a special solution to the equation (x1W1W2)GR
51, with

cosha[
11W21x

2W
,

A[
1

2W sinh a

1

2 sinh~aNs!
, ~B5!

and other terms are general solutions to the equationx
1W1W2)GR50. We can fix their coefficientsA66 by a
boundary condition ats51:

~x1W211!GR~1,t !2W•GR~2,t !

2W•mq•GR~Ns ,t !5d1t , ~B6!

which is simplified to

GR~0,t !2mqGR~Ns ,t !50, ~B7!

and another boundary condition ats5Ns :

~x1W2!GR~Ns ,t !2W•GR~Ns21,t !

2W•mq•GR~1,t !1mq
2GR~Ns ,t !5dNs ,t , ~B8!

which is reduced to

GR~Ns ,t !2W•GR~Ns11,t !

1W•mqGR~1,t !2mq
2GR~Ns ,t !50. ~B9!

Plugging Eq.~B3! into Eqs.~B7! and ~B9! leads to
0-10
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S 12mqeaNs 12mqe2aNs

eaNs~12Wea2mq
21Wmqea~12Ns!! e2aNs~12We2a2mq

21Wmqea~Ns21!!
D S A11 A12

A21 A22
D

52AS e2aNs2mq eaNs2mq

12We2a2mq
21Wmqe2a~Ns11! ~12Wea2mq

21Wmqea~Ns11!!
D . ~B10!
e
he

e
g

a

the
Solving this we obtain

S A11

A21
D 5

A

F S ~e22aNs21!~12We2a!~12mq
2!

2W sinh~a!@122mqcosh~aNs!1mq
2#
D ,

S A12

A22
D 5

A

F S 2W sinh~a!@122mqcosh~aNs!1mq
2#

~12e2aNs!~12Wea!~12mq
2!

D ,

where

F5eaNs@12Wea1mq
2~We2a21!#

14Wmq sinh~a!1e2aNs@We2a211mq
2~12Wea!#.

~B11!

Similarly, plugging the general solution forGL

GL~s,t !5G~s,t !1B11ea~s1t !1B12ea~s2t !

1B21ea~2s1t !1B22ea~2s2t ! ~B12!

into the boundary conditions

GL~Ns11,t !2mqGL~1,t !50, ~B13!

GL~1,t !2W•GL~0,t !1W•mqGL~Ns ,t !2mq
2GL~1,t !50,

~B14!

we finally obtain

S B11

B21
D 5

A

F S ~e22aNs21!e2a~e2a2W!~12mq
2!

2W sinh~a!@122mqcosh~aNs!1mq
2#
D ,

S B12

B22
D 5

A

F S 2W sinh~a!@122mqcosh~aNs!1mq
2#

~12e2aNs!ea~ea2W!~12mq
2!

D .

2. Propagator with the Majorana mass term atNs

For an application of the free fermion propagator obtain
in the domain-wall model, we consider a model with t
Majorana mass term on the antiboundary ats5Ns , which
has been proposed for a lattice definition of theN51 super-
Yang-Mills theory@13,14#. In this subsection we derive th
fermion propagator with the Majorana mass term, thou
some of the results have already been used in Ref.@14#. We
setmq50 hereafter.

A free fermion action of the model with the Majoran
massm0 can be written in momentum space as
05451
d

h

S5
1

2
C̄~2p!sDs,t~p!C~p!, ~B15!

where

Cs~p!5@cs~p!,c̄s~p!#, C̄s~p!5S c̄s~p!

cs~p!
D , ~B16!

and

D~p!5T0~p!1m0X

5S D0~p! 0

0 2D0~2p!TD 1m0d2P1IP2

~B17!

with (d2)s,t[ds,Ns
dNs ,t , and

P15S P1 0

0 P2
D , P25S P2 0

0 P1
D ,

I 5S 0 I 2

I 2 0 D 5S 0 0 s2 0

0 0 0 s2

s2 0 0 0

0 s2 0 0

D
in terms of 838 matrices. Here

D0~p!5 igm sin pm1W1P11W2P2 , ~B18!

is an inverse of the massless free fermion propagator in
domain-wall QCD.

By expandingD21 in m0 and rearranging it we obtain

D215 (
n50

`

~2T0
21m0P1IP2d2!nT0

21

5 (
n50

`

~2m0!nT0
21dP1Zn21IP2dT0

21 , ~B19!

whereZ5IP2dT0
21dP1 .

Using Z252x@GR(p)Ns ,Ns
#2P1 and summing overn,

we finally get
0-11
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D215T0
211@2m0T0

21dP1IP2dT0
21

1m0
2T0

21dP1ZIP2dT0
21#

1

11m0
2x@GR~p!Ns ,Ns

#2
.

~B20!

Explicitly this formula gives, in terms of 232 block no-
tations,

D~p!11
2152D~2p!22

215^c~p!c̄~2p!&

5~2 igm sin pm!@Z1~p!P11Z2~p!P2#

1M 1~p!P11M 2P2 , ~B21!

where

Z1~p!s,t5GR~p!s,t2
m0

2xG

11m0
2xG2

GR~p!s,Ns
GR~p!Ns ,t ,

Z2~p!s,t5GL~p!s,t1
m0

2G

11m0
2xG2

3@W2GR~p!#s,Ns
@GR~p!W1#Ns ,t ,

M 1~p!s,t5@W2GR~p!#s,t2
m0

2xG

11m0
2xG2

3@W2GR~p!#s,Ns
GR~p!Ns ,t ,

M 2~p!s,t5@W1GL~p!#s,t2
m0

2xG

11m0
2xG2

3GR~p!s,Ns
@GR~p!W1#Ns ,t

with G[GR(p)Ns ,Ns
. Similarly

@D~p!12
21#s,t5^c~p!sc~2p! t&

5
m0

11m0
2xG2

@xGR~p!s,Ns
GR~p!Ns ,tI 2P2

2 i sin pmgmGR~p!s,Ns
@GR~p!W1#Ns ,tI 2P1

1 i sin pmgm@W2GR~p!#s,Ns
GR~p!Ns ,tI 2P2

1@W2GR~p!#s,Ns
@GR~p!W1#Ns ,tI 2P1#,

~B22!

and
05451
@D~p!21
21#s,t5^c̄~p!sc̄~2p! t&

5
m0

11m0
2xG2

@xGR~p!s,Ns
GR~p!Ns ,tI 2P1

1 i sin pmgm
TGR~p!s,Ns

@GR~p!W1#Ns ,tI 2P2

2 i sin pmgm
T@W2GR~p!#s,Ns

GR~p!Ns ,tI 2P1

1@W2GR~p!#s,Ns
@GR~p!W1#Ns ,tI 2P2#.

~B23!

See Ref.@14# for an application of this result.

APPENDIX C: PROPERTIES OF DIAGONALIZATION
MATRICES

In this appendix we derive several properties of diagon
ization matricesU and V which are used for the renorma
ization of quarks fields. Let us consider the tree level dia
nalization of matrices (W0

7
•W0

6). To diagonalize
(W0

7
•W0

6), we have to solve the eigenvalue problem
(W0

7
•W0

7)s,tf6
i (t)5(M0

2) if6
i (s), thenU0 andV0 are given

by normalized eigenvectorsf6 : (U0)s,t5f1
s (t) and

(V0)s,t5f2
s (t). The two eigenstate equations lead to t

same equation

2w0@f6
i ~s11!1f6

i ~s21!#

1@11w0
22~M0

2! i #f6
i ~s!50, ~C1!

but with different boundary conditions

2w0f1
i ~0!1f1~1!50, f1

i ~Ns11!50 ~C2!

or

2w0f2
i ~Ns11!1f2~Ns!50, f2

i ~0!50. ~C3!

Therefore, oncef1
i (s) is known, the other is easily obtaine

through f2
i (s)5f1

i (Ns112s). Hereafter we conside
f1

i (s) only and drop the suffices1 and i .
There are two types of solutions to the eigenstate eq

tion. For (M0
2) i<(12w0)2 we have a damping solution

f(s)5Ae2as with cosha5 @11w0
22(M0

2)i#/2w0 . The first
boundary condition leads toe2a5w0 . This implies (M0

2)
50, and thereforef(s) is nothing but the zero mode solu
tion of the domain-wall QCD. For this solutionw0 should
satisfy w0

2<1 (0<M<2). The other boundary condition
can be satisfied in the largeNs limit. The normalization con-
stant becomesA5(12w0

2)1/2. Note that there are no othe
damping solutions which satisfy the first boundary conditio

If the eigenvalue is in the region (12w0)2<(M0
2) i<(1

1w0)2, we have an oscillating solutionf(s)5Aeias

1Be2 ias with cosa5 @11w0
22(M0

2)i#/2w0 . The two bound-
ary conditions imply
0-12
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S eia2w0 e2 ia2w0

eia~Ns11! e2 ia~Ns11!D 3S A

BD 50. ~C4!

The existence of the nontrivial solution requir
w0 sina(Ns11)5 sinaNs, which leads to f(s)
52Aeia(Ns11) sina(Ns112s)[A0 sina(Ns112s). With-
out loss of generality we can take realA0 , and the normal-
ization condition givesA05(2/Ns)

1/2@11O(1/Ns)#. Setting
a5a/Ns we reduce the equation fora to w0 sina5 sina in
the largeNs limit. The solutionsa5pn with integern to this
equation is translated toNs21 independent solutions:a
5pn/Ns with n51,2, . . . ,Ns21. ~Note that 0<a<p since
sina>0.) Therefore, all eigenvalues and eigenvectors
now obtained, giving

@U0#s,t5H ~2/Ns!
1/2 sin as~Ns112t ! sÞNs ,

~12w0
2!1/2w0

~ t21! s5Ns , ~C5!

whereas5ps/Ns , and@V0#s,t5@U0#s,Ns112t .

Next we prove some properties ofU0 andV0 . It is noted
that U0 andV0 can also diagonalizeW0

6:

~V0W0
1U0

†!s,t5ds,t f s , ~C6!

where

f s5H w0 cosas~Ns11!2cosasNs sÞNs ,

0 s5Ns . ~C7!

Using the equation foras (sÞNs) we can show

f s
25w0

21122w0@sin asNs sin a~Ns11!

1cosasNs cosas~Ns11!#

5w0
21122w0 cosas5~M0

2!s . ~C8!

This provesf s5(M0)s for all s.
It is also important to note thatU0 (V0) diagonalizes

I log
1 (I log

2 ) terms, since

~U0w0
s1t22U0

†!s,t5ds,tds,Ns
~12w0

2!

3(
s,t

w0
2~s1t22!1O~1/Ns!

5ds,tds,Ns
~12w0

2!211O~1/Ns!.

~C9!

Now let us consider quantities includingg2 contributions.
We first show thatU andV diagonalizeW̄6 at this order:

V•W̄1
•U†5~11g2V1!V0~W0

11g2W1
1!U0

†~11g2U1
†!

5V0•W0
1U0

†1g2$V1V0W0
1U0

†

1V0W0U0
†U1

†1W̃1
1%, ~C10!
05451
e

where the coefficient of theg2 term is simplified to

~V1!s,t~M0! t1~M0!s~U1
†!st1~W̃1

1!s,t

5~W̃1
1!s,tS 11

~M0
2! t2~M0

2!s

~M0
2!s2~M0

2! t
D 50 ~C11!

for sÞt, and becomes (W̃1
1)s,s for s5t. Equation~C10!

then becomes

V•W̄1
•U†5~M01g2W̃1

1!1.

It is necessary for the stability of the zero mode to show t
(W̃1

1)Ns ,Ns
50. This can be proven as follows:

~W̃1
1!Ns ,Ns

5~12w0
2!(

s,t
w0

Ns2s
~W1

1!s,tw0
t21 ,

~C12!

where W1
1 is composed of the sumGL , GR , W0

1GL and
W0

2GR but

(
s,t

w0
Ns2sG~s,t !w0

t215O~Nsw0
Ns!→0

for all G5GL , GR , W0
1GL andW0

2GR in the largeNs limit.
Therefore Eq.~C12! vanishes.

For the wave-function renormalization factor we have
know

UNs,1
5VNs ,Ns

5~U0!Ns,1
1g2 (

tÞNs

~U1!Ns ,t~U0! t,1 .

Fortunately, since (U0) t,15(2/Ns)
1/2 sinat(121)50, there is

no orderg2 contribution and it becomesUNs,1
5(12w0

2)1/2.

Finally we would like to evaluateI 6
d from I finite

6 . If we
define

^F~s,t !&U[(
s,t

~U0!Ns ,sF~s,t !~U0!Ns ,t ,

and

^F~s,t !&V[(
s,t

~V0!Ns ,sF~s,t !~V0!Ns ,t ,

we can show

^e2aus2tu&U,V5~12w0
2!

sinh a02sinh a

2w0 sinh a0~cosha02cosha!

with e2a05w0 ,

^e2a~s1t22!&U5^e2a~2Ns2s2t !&V5~12w0
2!

e2a

~ea2w0!2
,

and

^e2a~s1t22!&V5^e2a~2Ns2s2t !&U50.
0-13
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Using these formulas we obtain

^GL~s,t !&U5
12w0

2

2W sinh aF sinh a02sinh a

2w0 sinh a0~cosha02cosha!
2

ea2W

e2a2W

1

~ea2w0!2G5^GR~s,t !&V[G̃L, ~C13!

^GR~s,t !&U5
12w0

2

2W sinh aF sinh a02sinh a

2w0 sinh a0~cosha02cosha!
2

1

~ea2w0!2G5^GL~s,t !&V[G̃R, ~C14!

and

^W0
1GL~s,t !&U,V5^W0

2GR~s,t !&U,V5~w02W!G̃R.

The explicit expression forI finite
6 is reduced to the final result in terms ofG̃L/R : I 1

d 5I 2
d [I d where

I d5C2E d4l

~2p!4H 1

32 sin2 l /2
(
m

$sin2 l m~G̃R1G̃L!12 cosl m@w02W~ l !#G̃R%

1(
m

sin2 l m

2~4 sin2 l /2!2F @w02W~ l !#G̃R1S (
n

cos2 l n/222 cos2 l m/2D G̃L1(
n

~sin2 l n/2!G̃RG2
1

~ l 2!2
u~p22 l 2!J .

~C15!
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