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One loop calculation in lattice QCD with domain-wall quarks
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One loop corrections to the quark propagator are calculated in massless QCD with a domain-wall fermion.
We adopt the Shamir type domain-wall fermion with an infinitely large extra dimension to describe the
massless fermion. It is shown that no additative counterterm to the current quark mass is generated in this
theory with infinitely many flavors, and the wave function renormalization factor of the massless quark is
explicitly evaluated. We also show that an analysis with a simple mean-field approximation can explain the
properties of the massless quark in numerical simulations of QCD with domain-wall quarks.
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PACS numbses): 12.38.Gc, 11.15.Ha, 11.30.Rd, 12.38.Bx

[. INTRODUCTION the basic tools for the perturbative calculation with the
domain-wall fermion. It is enough to present only the fer-
The formulation of the lattice fermion in QCD with chiral mion propagator because other Feynman rules of the gauge
symmetry is one of the most fascinating problems theoretiinteraction and gauge propagator are exactly identical to that
cally and practically. Although both Wilson and Kogut- Of the ordinary Wilson fermion. In Sec. Ill we calculate one
Susskind (KS) fermion formulations have been popularly l00p corrections to the fermion propagator. Section IV is the
used for the lattice QCD simulations, some disadvantage®ain part of this paper, where we discuss the renormalization
remain in these formulations: In the Wilson fermion formu- Of the zero mode or massless quark field. We take the diag-
lation the quark mass has an additive quantum correction arenal basis of the mass matrix of the domain-wall fermion
the chiral limit is reached only by fine tuning the mass pa-and see that the zero mode is stable against the one loop
rameter. As a general rule we have to take the continuurgorrection atNs—o. The wave function renormalization
limit tuning the mass appropriately in order to simulate factor of the massless quark field is also given explicitly.
massless QCD. In the KS fermion formulation the number ofSection V is devoted to a mean field analysis with fimite
flavors is restricted and the original flavor symmetry is bro-We show that properties of the zero mode observed in the
ken explicitly to some residual one. numerical simulatiof3] are well explained in this approxi-
The domain-wall fermion formulation, which was origi- mation. In Sec. VI we give our conclusions and a discussion.
nally proposed to define lattice chiral gauge theofldshas  In the appendixes some derivations of formulas used in the
been applied to lattice QC[2]. This formulation is expected text are presented.
to have a great advantage over the previous two formula- In this paper we set the lattice spacig 1 and recover it
tions: An advantage over the KS fermion is that the numbethrough dimensionful variables as the need arises. We take
of flavors is not fixed. This is manifest from its definition. the SUN.) gauge group with the gauge coupling consiant
The other advantage over the Wilson fermion is that masand the second Casirrﬁr2=(N§—1)/2NC. We setN.=3 in
renormalization is multiplicative e=Z,,Myed. In other  the numerical calculations.
words, if a massless mode exists at the tree level it is stable
against the quantum correction. The additive mass correction
exists when the length of the extra dimensibg of the Il. PERTURBATION THEORY WITH DOMAIN-WALL
domain-wall fermion is finite, however, it is expected to be FERMION
suppressed exponentially k. The stability of the massless
mode is thought to be valid when we set the extra dimension
to be infinitely large. This property of mass renormalization We adopt a domain-wall fermion of Shamir typ2] to
is not a trivial one, but only an intuitive discussion on it hasdescribe massless quarks. The domain-wall fermion is a vari-
been given so faf2]. On the other hand, recent numerical ant of the Wilson fermion with sufficiently many flavors and
simulations suggests that the stability of the zero mode holda special form of the mass matrix. Although it is also inter-
even nonperturbatively3]. Therefore an analytical under- preted as a five-dimensional Wilson fermidd, we prefer to
standing of domain-wall QCD is now needed. The aim oftreat it as a multiflavor systeifa].
this paper is to confirm the stability of the massless mode at From this point of view the only difference from the Wil-
Ns— by lattice perturbation theory and to give explicitly son fermion action is the fermion bilinear term. If we sepa-
the wave function renormalization of the quark field. rate the QCD action for lattice perturbation theory into fer-
This paper is organized as follows. In Sec. Il we will give mion and gauge parts,

A. Action
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S= Sfermion+ Sgauge+ SGF+ SFP+ Smeasure (1) d4p — . .
Stermion™ J' ?lﬁ(_ Ps 2 Iy, SINP,
the lattice gauge actio8y,,4e the gauge fixing and Fadeev- (2) ”

Popov(FP) ghost termSge+ Sgp, the invariant measure term

Sheasure @Nd the gauge-fermion interaction termsSgmion

are exactly same as those in ordinary Wilson fermion pertur-

bation theory[5,6] with many flavors.
The domain-wall fermion actiofmion IS Written as

Stermion= ;n Em,s( ')’,uD,u) m,n'ﬁn,s

+ Y Wi P i1+ Y Wi P iy

+ qum,s( 5m,n55,N85t,1P+ + 5m,n55,15t,NsP—)¢n,t ’

2
where m,n is four-dimensional space index, anslt
=1,... Ng is the flavor index, for which we will takég

— oo limit in the one loop calculation to discuss the massless

mode. Here the Dirac operator is given by

1 T
(VD nm=2 5 YulUnubosjum=Unudn-jum)s (3

and mass matrixVg, is defined as

+

W7 st

nm — sil,tén,m_Wn,m‘ss,ta (4)
where

Wn,m: (1- M)én,m

r t
+§E (Un,M5n+,;,m+Um,ﬂ5n—,&,m_25n,m) (5)
o

+W'(p)siP+ +W_(p)s,tp} H(P)i+ Sine.»

Y
where the mass matrix has the following form,
W (P)s,= 85t 1.~ W(P) 8 ¢
—W(p) 1
—W(p) .
= 1 , (8)
—W(p)
W™ (p)st= 6s—14— W(P) Js ¢
—W(p)
1 —W(p)
- - ©
1-W(p)
W(p)=1-M-r2, (1—-cosp,). (10)
M

The gauge interaction terr§,, is identical to that of the
Wilson fermion perturbation theory witNg flavors.

As will be discussed in Appendix C, in spite of the pres-
ence of the Dirac magdd this fermion system has one mass-
less fermion mode anll;— 1 excited modes with the mass
of cutoff order in theNg—oo limit by virtue of this mass
matrix form, provided thatW(p~0)|<1 is satisfied by a

is a sum of the Dirac mass term and the Wilson term, whictsuitable choice of the Dirac masé. Here we take the mo-

contain gauge fields at this stage, and the Wilson param-
eter, which we set=—1. The parametem, is the current

mentum regionp,~0 to see the zero mode with physical
momenta. At the momenturp,~m, where the doubler

QCD takingmy=0.P.. is a projection operator defined by

1+ ys
P.= 5 (6)
In our domain-wall fermion actior(2) we have Dirac
massM besides the current quark masg. Here we have to

condition is not satisfied|W(p~ 7)|>1), so that allNg
fermion modes have masses of the cutoff order. Here please
notice that the mass paramekéris only required to be in the
wide range <M <2 [2] and we need no fine-tuning of it.

As will be seen later, the absence of the fine-tuning problem
remains true at the one-loop order, though the allowed range
of M for the zero mode becomes coupling-constant depen-
dent

notice thatM is not the physical quark mass but is rather an
unphysical mass of the cutoff order &) flike Wilson term.
As will be mentioned lateM has an important role as a
parameter of the theory: choosing a suitable valueMare In the next section we will calculate the one loop correc-
have a massless fermion mode for the vanishing currertion to the fermion propagator. In this subsection we set up
quark massifi;=0) atNg—ce. the lattice Feynman rules for domain-wall fermion with van-
In order to see the massless fermion mode it is more conishing current quark massng=0).

venient to be in the momentum representation and pull out As was discussed in the previous subsection, the domain-
the bilinear term. The fermion action in the momentum spacavall fermion action is almost the same as that of the ordinary
is written as Wilson fermions one withNg flavors. The peculiar feature of

B. Fermion propagator
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the domain-wall fermion is the form of the fermion propaga-and
tor, which is given by

Se(p)s=[i7, sinp,+ W' (p)P,+W (p)P_]5. 1

11 G(st)=| ————
sin® p+W-W*/ _
The explicit form is written as s

Se(P)s=[(—iy, sinp,+W )Gg(s,t)P,

=G%s—t)+B, e*sTV4+ B, _e*s7V
+(—iy,sin pM+W+)GL(S,t)P_]St, (12

+B,+e“(_s+t)+B,,e“(_s_t), (17)
where
Gg(s,t) ! B A
rRSO)=E|—7F ++
i p+WHtw- ( >=
sIn p+ W W=/, B_.) eMs(1-wWe")—e Ns(1-We ?)
=Gs—t)+A, e VLA, e (e“(e“—W)(eZ“NS— 1))
_ , 18
+A_,e*"stOp A gu=sTh (13 W(e*—e ) (18
GO(S_t):A(ea(Ns_\S—tD_{_e—a(Ns—|S—t\)), (14)
B,_ A
S )
=— — - B__/ eNs(1-we¥)—e Ns(1-We ¢
A_i) eNs(1-we)—e *Ns(1-We 9)
(1-We %) (e 22Ns—1) x( Wlet=e ) (19
eY(e*—\W 1_eZOzNS .
( W(eo—e ) ) (15 ("= W)( )
(A+) _ A Here o« andA are defined as
A__] eMNs(1-we*)—e Ns(1-We )
y W(et—e %) 18 e 1+W2+sir? p -
(1-We)(1—e?Ns) | cosETT oW (20
1 2
sinha= W\/\/(1—w2)2+2(1+w2)2 sir? pM—i—(E sir? pM) , (21)
|
B 1 1 > tadpolq ) + 3 half-circle ) - from diagrams in Fig. 1. The 1P|
A= 2W sinh a 2 sinf(aNy) (22 fermion two-point vertex function is given by
. V(l%l)oop( p) st
Note that the argumemt of W and « is suppressed through- ) ) . B
out this paper unless necessary. Since this fermion propaga- =[iy, sinp,+W" ()P +W (p)P_—2(p)]s:
tor is invariant undera— — «, we take thea>0 without (23
loss of generalityGgr and G, are also symmetric ins(t).
See Appendix B for the derivation. In the one-loop calcula-with
tion we use the above propagator in thg—o limit. .
propag & E(p):Etadpoltip)_‘_zhalf—cncle(p)_ (24)
Ill. ONE LOOP CALCULATION In order to investigate the massless modd™§,,(p)s.

in the p,—0 limit, we need only the first few terms in the
p, expansion. Since the only dimensionful quantity is the

In this section we calculate the one loop correction to theexternal momentunp,, in our calculation, the higher order
fermion propagator, which is given by two contributions terms in thep, expansion are also higher orderan

A. Diagrams
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Zhalf—circle:f7T d* 2 (—igTa)
st *17(277)4 “
1 1
X Vu cosE(IMer#)—lr smz(llﬁrp#)

1
XSF(l)s,tX(_igTa){ Yu €085 (1, +py)

(28)

1
—ir sin=(l,+ X—
2UutP) 4 sirt (p—1)/2

cannot be calculated analytically because of its complicated

FIG. 1. Diagrams which contribute to the one-loop correction todependence on the flavor indicgs in the fermion propaga-
the fermion propagator. Above: Tadpole diagram. Below: Half-tor.

circle diagram.

B. Contribution from tadpole diagram

The contribution from the tadpole diagram is written as

1 . .
ztadpol%zgzczg (i Y. SINP,—T COS p#)

x f m i L (25)
—=(2m)4 4sirt(1/2) "
2 1- 2
=g°C,T §||23+2 51+ O(p2), (26)
whereT is the tadpole loop integral
T= JW d* ! =0.154612 (27)
—n(2m)* 4siit(1/2) '

The first term in Eq(26) is finite, the second term linearly
diverges, and the third term vanishes in the limit: 0 when
we recover the lattice spaciray We see thab @4°€js di-

It is easily seen that the loop integral of E@8) has
infrared divergence. As is in ordinary lattice perturbation
theory the infrared divergence can be written in an analytic

form. To do this we separa®l3 " as follows:

3 faltciele p) =3 @4(p) + 25" p), (29
where
3@ (p) =3 halreircle p) — 3.2 p), (30

and=S3"(p) is introduced to extract the infrared divergence

d¥  —il(C,P,.+C_P_)g,
con :2 2cf i
2M(p)=29°C, 2t 212
X O(m2—1?)

with
(Ci)si=(1—wWHw§™ 2,

2Ng—s—t

(C)ge=(1—wWHw3 ,

andwy=W(0). In order to have zero modes with the physi-
cal momentumy, should be in the regiow3=<1. This leads
to the condition ofM that 0<M <2 [2]. SinceS2(p) is
infrared finite in thep—0 limit, we can evaluate it in thp
expansion:

lat
st

Py

S¥(p)=320)+p,—=(0)+0(pd). (31

The logarithmically divergent pa&°"(p) can be calculated

agonal in flavor space, and its effect is to modify the mas&nalytically, while a linearly divergent and finite territbe

parameterM —M=M —2g?C,T and the wave function
renormalizationZz=1—1—g?C,T/2.

C. Contribution from half circle diagram

The contribution from the half circle diagram in the Feyn-

man gauge

first and the second terms in E@1)] have to be evaluated
by numerical integrations of loop momenta. After a little
algebra we have

s halteircle— — g2C,[ip(14,Py+15,P-)
+Mg P +MgP_], (32)

wherel = andM * are given by
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lot=iog(S:1) + | nite(S:1), (33)
ju 1 2 1 2
l.og(s,t)=rw(ci)s,t In(%)+ 5 —Inp* |, (34)
o d*l 1 .
|ﬁmte(s,t):f(277) 2971718 —2 [cosl (W~ Gr+W'GL)(s,1)+sir? | (G +GRr)(s,1)]
Sir? |
> w4 1122 IM/2)2 (W~ Grt+W*G)(st)+2 Ey cod ——2 co§ 5 | GuR(s. t)+2 Sif— GR/L(S'[)”
dl 1
_ - 2_|2
<c+,,)s,tf Gy (2201, (35

+/- d* 1 i +1- ol —I+ 1.
Mg =j ———> |cod > (W GL,R)(s,t)—stE(W Gr)(s,t)+ Esmzlﬂ(GLwLGR)(s,t) .

(2m)* 4sirt 1/2°%

(36)
|
By the dimensional counting™ has Ire? divergence and 14 92C2(|tad+||§g+|ﬁimte), (40)
constant terms i, andM * has 14 linear divergence when
lattice spacinga is introduced epr|C|tIy asp,—ap,, > W¢:W¢(0)+92C2(M M) (41)
—3/a. AlthoughM™* may have la? divergence naively, it @
is canceled by the algebraic relation with
W*(p=0 1-M)'=0, 3 1
[WH(p=0) sl ) 37 ledSt)= = 5 T85,= ~0.077308, (42)
[W™(p=0)]s«(1—M)"'=0. (38)
MiadS,t)=—2T 5= —0.309224 ; . (43

The logarithmic divergence 43 in |* is given analyti-
cally. As we can see from the form ofC()s=(1 In Eg. (39) we expand the effective action in external mo-
—wawytt? IIog is localized in the boundary s(t)  mentump, and pick up the relevant terms for renormaliza-
=(1,1). ThIS is because the logarithmic divergence comesion. The expressions fdr, flog » lfinie» @NAM ™= were given in
from the effect of massless fermion mode which is localizedhe previous section. In this section we consider the renor-
in the boundary. The other orig is localized in the other malization of zero modes, which is interpolated by the quark
boundary §,t) =(Ng,Ny). field: q(p)=P.¢(p),+P_ z//(p)N Here we only present

The finite terms and linearly divergent terms should bethe results and give the details of derivations in Appendix C.
calculated by repeating the numerical mtegrau@rQNs)
times. However, as can be seen in the next section, such hugg piagonalization of mass matrix and stability of zero modes
number of integrations can be avoided for the wave-function
renormalization of the quark field. On the other hand, since
the structures of ;. andM . are useful to understand the
domain-wall QCD more deeply, we will give them in a Sepa_matrle These basis are given by the relation that

rate paper. YA(p)=Us P, {(p)+VaP_i(p), (44

IV. RENORMALIZATION OF QUARKS FIELD where unitary matricel andV satisfy

For the renormalization of zero modes, it is better to use
new ba5|5¢d(p) which diagonalize the one loop level mass

The result obtained in the previous section is summarized
in the following form of the effective action for a two-point
function with the scale@?=(una)? at one-loop level:

[UW—V—V+UT]s,t: Mgés,tv
[VWV_V_VT]SJZ Mgés,t-

(2):_ _ . + —
r Y(=P)eliYupu(27P +27P-) In our notation the mass eigenvalue squemﬁiis arranged
+WH P++V_V‘P,]S,t¢(p)1, (39)  in such a way thaM 'ﬁ,szo, and we can tak& andV real

matrices without loss of generality.
where We calculateU andV at one-loop level:
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U=(1+g°UpUo, V=(1+g?Vy)Vo, (49 (MDs=2(Wp)ss(Mo)s,  (Upss=(V1)ss=0, (49)
yvhere tree Ievgl matricdso andV, are analytically obtained \here \7V1=V0W1U$- The mass eigenvalue squardd
in the largeNs limit as follows: =(M3)s+g*(M?), obtained above leads to the mass eigen-
value Mg itself: Mg=(Mg)s+g*(W1)ss. Note thatMy =0
(2/IN9Y2 sin ag(Ng+1—1t) s#Nq, since a\/IO)sto and (\Nl)NS,sto in the largeN; limit as is
[Uols = (1—wd) Y2t s=N, (46)  shownin Appendix C. This result explicitly demonstrates the

stability of the zero modes against one-loop corrections in
domain-wall QCD afN,—«. As in the case at the tree level,
it is shown that

and[Vo]st= [Uo]sN +1-t,» wherewo=1—M with M=M

+4(u—1). Hereu= 1 for naive perturbation theory, while
u=1-g°C,T/2 for tadpole improved perturbation theory
[7]. Hereafter we will call both cases “the tree level” and
will not distinguish the two cases unless necessary. Note that ~ B. Wave function renormalization for quark fields

the allowed range for the zero mode now becomesM) After diagonalization of the mass matrix, the effective
<2, which is theg? dependent condition fo¥l in the latter  action for the zero mode fiel¢?(p)n = xo(p) becomes
case. If we expand the mass eigenvalue squaredViE( °

= (M(Z))S+ gz(Mf)S, the tree level one is related to the phase ;O(_ p)[i 7,up,u(z+P+ +27P7)]Xo(p). (51)
factor ag such that &, cosas=1+w3—(M3),. This phase

factor, which also satisfies siaN;=w sin ag(Ns+1), is ex-  where

plicitly given asas=7s/Ng in the largeNg limit. It is also

shown thatU, andV, dlagonallze the tree level mass matrix

(VW UT) = (UW V) ;=M +0(gh. (50

W5 =W=(0) itself such thaf VoWg Ulls=[UoWo Vls. ~ ,. T gC , 1
=(Mg)s0s; - B Z:=1-9°Co5 + 1672 logw +——Iog(Ma)
We now considgr one-loop level mass matwi&, which » 4
is denoted as W* =W, +g?W;, where g3(Wj)s; +97°()Ng N (52

=g2C,(M™ +MudstT4(1—u)ds, is the one Ioop correc-

tion given in the previous section. To d|agonaIWé W* at o I q .
one-loop orderlJ; andV, should satisfy with 17 =C,(Ugl 4hieUo) andlZ =Cy(VolinieVo) - Since the
interpolating quark fieldq(p) is expressed asq(p)

=(UngP++Vn NP -)xo(p),  and (xo(P)xo(—P))

(UD)se(MB)i+ (M) (U 1+ (UgWy VE- VoWg U ) ¢ =[(1Z,) P, + (LZ_) P_1(~iv,p,/p?), we obtain
+ (UgWo Vo VoW Ug)s, = (M3)sd5, 47 ,
Uy NGl VN Ng —iy.P,
(a(p)a(—p))= 5 Pt °P_ 0z
(V1)s (M) (ME)s(VD)s 1+ (VoW UG UgWo Vi), : i (53

+(VoWg UG UgWy VE) 5= (M7) 535, (48)
Therefore, the renormalized quark fie@p), which satis-

Using the fact that{1,V1)s = —(U1,V1), s implied bythe fies <Q£/F2’)Q( p)>1/2 17,p,./p% s given by Q(p)
unitarity and the reality, and/oWg U} and UgW, Vi are [(ZF) P, +(Z£)"P Ja(p) with zf=Z,/U%, and

diagonal, we can easily solve the above equation as Z—/VNSVNS' Since an explicit evaluation shows that
(I‘i)NS,N;(l‘i)NS,NSEId, thus Z.=Z_=Z7, and Un,)?
~ ~ _ 2_1_ 2 1 : +_ 5
(U, = MO Wo)rt (Mo)s(Wo), ‘E\/’NSVNJ 2—1hWo, we finally —obtain Zp =Z¢ =Z¢
Ust™ ' =Z/(1—wp) where
S (MD)s—(MB); (17wo)
2
Z 2 T 9 2 1 2 2)d
(Vy) (Wy)st(Mo)e+ (Wy), f(Mo)s Z=1-9g CzE‘*‘@Cz logm®+ 5 —log(na)” |+ 971"
Ust™
S (M3)s=(MG), (54)
for s#t, and Here one unknown constattt is given by
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d* 1 , -~ o~ ~
Idzczf (277)4{ 37 o ”2%: {sir? 1 ,(Gg+G_)+2 cosl ,[wo—W(I)]Gg}

Sire | ~ ~ ~ 1
+> ———— A [wo—W(1)]Gr+| 2, cof |, 2—2cod | ,/2|G + > (siP1,/2)Gr|— —— 6(m2—12) ¢,
T 2(4sif 122 " R4 O Rl (12)2
(55)
|
where lated with finiteNg and result is identical to the tree level one
given in Appendix B with the replacement such tlat ux
~  |=x =W 1 and cogp,—u cosp,. In perturbation theory this is equiva-
< G- e T—W (e“—wp)? lent to the tree level analysis with the tadpole improvement
0 [7], which has been shown in the previous section to give
1 about 90% of the wave function renormalization factor at
Gr=A|G- one-loop level.
(e*—wp)? Since we are interested in the zero modes-atl, we set

, s=t=1 in the propagator. In this case the zero mode appears

with in B__e~?* of G, which is given at nonzerm, by
N (1-We )(1-m?)
- _ ~We )(1-m
2W sinh o’ B__e 2a= : @ (56)
2W sinh a)F
& sinh a¢g—sinh &
~ 2w, sinh ag(coshay—cosha)’ where
ande™ “o=w,. The numerical value d is given in Table | F=We*—1+ mg(l—We*”‘)—4mq-W~ sinh(a)e™ *Ns
at severgl v.alues oM, tggetherzwnh the total one-loop +e‘2“Ns[1—We‘“+m§(We”‘—1)]. (57)
renormalization factoZ, (Z=1+g9“Z;) at ua=1 and the
ratio of the nontadpole contribution Z()nonac=!® Co
1 (C,/1672) (logm?+0.5)= 19+ 0.02355 to the total one, ' the small momentum limit, this leads to
Note also that the tadpole contribution givg=—C,T/2 § - .
=—0.1031. From this table, we see thidtis small and ZTAB'—EZ . Value of 1% vs M, together with Z, and
depends oM very weakly: The valugd%= —0.01945 atv (Z2)nontad/ Z1.-
=0.05 mc;notonlcally mcrgase(siecreases in the absolute v d z, (Z) nonad Z1
value to |1“=—-0.01222 atM =0.95. Furthermore the non-
tadpole contributionZ,o.q is relatively small: 4% at\ 8-(1)3 _g-gigigg _8-8222; 8-82;
=0. 12% ail =0. hat th | ibuti : e e '

0.05 and _o am=0 9§, o) t_ at_t e_ .tadpo e contribution 0.15 —0.018045) _0.09756 0.056
tbecolmesI domll?an.tthatt r?1N/Ii gh'ﬁ jU.StIers the u';sest')rfE the 0.20 —0.017445) 0.09696 0.063
L e oo 000 Corraction 1o tHaor o aboLt 100e g 025 0016889 ~0.09640 0.069
=0. 1, : e one-loop correction to tixefactor is abou b a 0.30 —0.016365) 0.09589 0075
9 o 0.35 —0.015885) —0.09541 0.080

0.40 —0.015445) —0.09496 0.085
V. MEAN FIELD ANALYSIS AT FINITE Ng 0.45 ~0.015025) ~0.09454 0.090

As seen in the previous sections, due to the presence of 0.50 —0.014635) —0.09415 0.095
off-diagonal terms in the extra dimension, analysis of the 0.55 —0.014265) —0.09378 0.099
one-loop correction to domain-wall quarks becomes too 0.60 —0.013925) —0.09345 0.103
complicated to be easily applied to results of the numerical 0.65 —0.013615) —0.09313 0.107
simulations, which should be performed on finlg. In this 0.70 —0.013325) —0.09284 0.110
section we adopt an approximated but simpler method to 0.75 —0.0130%5) —0.09257 0.113
analyze the effect of one-loop corrections at firfite. We 0.80 —0.012815) —0.09233 0.116
call the method the mean fieldMF) analysis since the link 0.85 —0.012595) —0.09211 0.119
variableU, , in the fermion action is simply replaced by the  0.90 —0.012395) —0.09191 0.121
mean fieldu which is independent on and w. After this 0.95 —0.012275) —0.09174 0.124

replacement the fermion propagator can be explicitly calcu
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7-1 (1-wW2)2+ p2uw} m. vs M

p?+m2 (1—w3)2+p2u(1+wj)’

limB__e 2=
p2—-0

(58

where Z~'=(1-mi)/Au, mZ=B/Au, and wo=1-M
+4(1-u)=1-M with

1
_ 2.2 02y 2 N
A= 1_Wé[lerqwo Wo(1—wg)mg+mgw,*

X {2Ng(1—W3) — 1 — W3+ 2wo(1—w3)

— Ng(1—w3)2/wo} + w2 's{wi+m2— 2Ng(1—w3)

—Wo(1—w3) + Ng(1—w3)2/wo} ], 25
_ 2\ a2 Ng, . 2N
B=(1—wp)[mg—2mqwy°+w, ~]. FIG. 2. The fermion masmy obtained in the mean-field ap-
. ) proximation as a function d¥1 for Ng=4 (solid lineg andNg=10
Since the pole in the second factor of £§8), (dashed ling atm,= 0,0.01,0.02,0.03 from below to above around
M=1.5.

(W pung
(1-w2)2+p2u(1+wd)’

(59 state appears &l <1.0, as observed in the simulation. Fur-

thermore the order of the fermion mass is reversed to the
is of the cutoff order and is larger than the physical pole inorder of the current quark masg, at M <1.0:mg is largest
the first factor atm,=0. The plot also supports the fact that the zero mode
is observed aM =1.7 in the simulation.
z! As seen in the above the behavior of the numerical simu-
(60) lation is understandable by the MF analysis, which can sup-
ply useful informations on the tuning of parameters in nu-
we neglect the second factor in the latter analysis. merical simulations such &, M, or m, beforehand. For
Now we use the above formula to understand the behaviggxample, we may takBls=4 for the simulations, which re-
of the zero mode observed in Ré8]. For the value ofu  duces the cost of both CPU time and memory a loMifs

there are several choices. The tadpole diagram alone give@PPropriately chosenM =1.5 forU=0.872). Here we have
to stress again that this tuning is not a fine-tuning, which is

u=1-9g?C,T/2=1-0.1030%%=exq —0.1030%2], necessary in the case of the Wilson fermion, for massless
quarks.

p*+mg’

where we may take the bare couplindl2 8 or the renor-

. . 2 .
malized couplingg,,s(m/a) for g? in the above formula. VI. CONCLUSION AND DISCUSSION
Alternatively we may also use the “observed” value of _ )
u: u=P¥ where P is the average value of the plaquette N this paper we calculated one-loop correction to the fer-

normalized to unity. We adopt the latter one in our analysisMion propagator in the massless lattice QCD formulated via
The configurations in Ref[3] generated at3=5.7 and domaln-wa}ll fermions. We showeq that the zero mode is
mea=0.01 by the dynamical Kogut-Susskind quark actionStable against the one-loop correction: no additative counter-
give P=0.5772, which leads to=0.872. In Ref[3] two  term to the quark mass is generated in the laigéimit, and

remarkable features are found for the zero mode: no zerBP fine-tuning ofM is necessary to obtain massless quarks.

mode is observed fd,=4 and the zero mode is observed at | NiS Property is very different from and superior to the or-
M =1.7 but not aM<1.0 for N;=10. To explain these we dinary Wilson fermion formulation. We explicitly calculated

calculateme as a function oM for bothN.=4 and 10 am the wave-function renormalization factor fpr the massless
= 0, 0.01, 0.02, 0.03, and plot the results in Fig. 2, veher&”arks and show that the tadpole contribution becomes
solid lines are foiN;=4 and dashed lines fdd,=10. Four ~dominant at allM. We also adopted the mean-field analysis
lines for eachN, correspond tan,=0, 0.01, 0.02, 0.03 from to this model, demonstrating that it can qualitatively explain
below to above aroun¥ =1.5. The result tells us the fol- data obtained in the numerical simulatigsy.

lowings. The allowed range for the light fermion is very  Although our results strongly indicate that the domain-
narrow forNg=4 (roughly 1.4<M<1.6). This may be the Wall QCD can avoid the fine-tuning problem of the quark
reason why the light state could not be found in the simulamass, the mechanism which gives the zero mode in this for-
tion [3]. Note that the allowed range for the zero mode ismulation has not been fully understood yet. Since our proof
0.512<M<2.512 in theN;— 2 limit. Although the allowed for the stability of the zero mode contains an explicit calcu-
range becomes larger fod =10 (1.1<M<1.9), no light lation at one IooQ(W'l)NS,NS: 0], it cannot be easily carried

054510-8
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over to higher orders. The result of numerical simulafidh 1
suggests that the zero mode is also stable against the nonper- Smeasure — 52 2 trin
turbative dynamics. There may be a yet unknown symmetry nos

which ensures the existence of zero mode in the l&ige 1—codgAS[n+ (1/2) nllad TC
limit. Finding such a symmetry is important for our under- s9 uln ( )'u ] dz i ,
standing of the formulatioh. {gAS[n+ (L2 p]ad TO)} ab

In this paper only the wave-function renormalization fac-
tor is explicitly evaluated. Based on the method developed in
this paper, it is possible to calculate more complicated quan. \hereg is the coupling of the SUY.) gauge 8= 2N, /g2. a
tities such as renormalization factors for the quark mass, cut- the gauge parameter. The actids and S,, is not
rents, and four-fermi operators, which are necessary to gen?eedeg m%urpcalculatlon at one-loop level. easure
the continuum physics from numerical simulations. The re- P .

The momentum representation of gauge part is
sults of this paper also suggest that the smeared quark opera-
tor o= 3 (WP, ¢+ Whs °P_y) may give better sig- 4
. . 11 d
nals thanq=P, 1 +P_¢y_ does, since it has a larger S +S =—
s gauge F 2 2 )4 "
overlap to zero modes. (

Note added After this work was completed, there ap-
peared a new pap¢f0], in which the stability of the zero
mode is generally considered.

(A4)

AL(=P)

2K 2 2

1 v
4sm2 8 (1—;)4sin&sinp—
XA (p)+---, (A5)
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—(2m)* stk p iyt )
APPENDIX A: ACTION AND FEYNMAN RULES (2m)

The gauge part of the action is exactly same as that of the gnAa1(| ) ( )lﬂ( k) T2 - Tan
ordinary lattice QCD actiof6]: !
; % %[eiIZ(pﬂ—kﬂ)_(_)ne—i/2(pM—k'u)]
SgaugeZEn: (2) - N_Re t(y, ,uUn+,u VUn+V;L ) ;
2% s . .
(A1) — 5[ Pk 4 (—)Ne” T2 PTKIT y(p)s.

(A6)

1. 2
o VMAZ( n+ EM” : (A2)  The domain-wall fermion propagator was already given by
Eq. (12.
The fermion gluon interaction vertices are given by Eq.
(A6). Although there are an infinite number of interactions in
} lattice perturbation theory, only two of them are needed for
the present purpose. One of them is the fermion interaction
vertex with one gluon field, which is given by

1.
n+ =,

gA[ N+ 5

n+u

_ —a P b -1
Se=2 (Ch, o Ch){Cy, 2Ena
nu

- Eab

o1 gAM(nnL;) cﬁ], (A3)

] 1
Vi(k,p;l,a;p)= —|gTa[ Y cosz(—klﬁ P.)

!after this work was completed, it was pointed out that the —ir sin 1(—k +p,)
Ginsparg-Wilson relatiof8] implies an exact symmetry to forbid 2
the current quark mass terfA]. The unknown symmetry may be
related to it. The other is the vertex with two gluon fields, given by

(A7)
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Vy(k,p;ly,a,l,,b;u) We first consideGg . The following equation is satisfied for
Gg:
1,1 1 R
= Eg E{T TR iy, sin 5(_k’*+ P.)

zt [(X+ W+W_)s,t+ mq(W;—latNS+ 5S,NSW1_t)

1
—r cosz(—klﬁp#) S - (A8)

+ M3 85 n_Oin JGR(t,U) = sy (B2)
The gluon propagator is given by
with x=sir? p. Therefore, except= N, or 1, this equation is
satisfied by
4sinp,/2 sinp,/2

4 sir? p/2

G2o(p)= 8~ (1—a) ab-

(A9)

4 SII’\2 p/2 GR(S,t):G(S,t)+A++ea(S+t)+A+_ea(sft)
+A_ e St A eal(=sU (B3)
We seta=1 in this paper.
where
APPENDIX B: DERIVATION OF FREE FERMION

PROPAGATOR (5. = A(e M5t 4 g atNe-ls—1)) 84)

In this appendix we derive the free fermion propagator,
used in the text. For later use in perturbative analyses of thisecomes a special solution to the equatigr W W~)Gg
model, nonzero current quark masg for finite Ng is con- =1, with
sidered. See also Refgl,11,13. We also derive the propa-
gator with Majorana mass terms, which becomes important

for the lattice definition of theN=1 supersymmetric model coshy= 1+W2+x
via domain-wall fermion$13,14. 2w
1. Propagator with nonzerom, 1 1
The free fermion propagator has the following form: =
propag g A 2W sinh a 2 sini(aNg)’ (BS)
IS —[(—iv, sinp,+W-)Gx(st)P and other terms are general solutions to the equation (
F(P)s =L 17, SN Pyt Wen ) Gr(S, P+ +W"W™)Ggr=0. We can fix their coefficientd. . by a
+(—iy, sinp,+Wy)G(s,H)P_]q, boundary condition a$=1:
where
(X+W2+1)Gr(1t) —W-Gg(2}t)
—W- mq'GR(NSVt):ﬁl’[i (BG)
GR(S'”E(sz p+w;w,;) which is simplified to
st
and Gr(04)—MyGr(Ns,t) =0, (B7)
and another boundary condition &t Ng:
GL(S,t)E(.—+)
S Pt Wi W (X+W?)Gg(Nq,t) ~ W- Gr(Ng— 1)
with —W-my- Gg(1) + MiGr(Ns,t)=8y_ ¢, (B8)
(Win)s,t=(W")s+MgSsn b1 which is reduced to
and GR(NSIt)_W' GR(NS+1!t)
+W-mgGgr(11) —M;Gg(Ns, 1) =0. (B9)
(Wi)st=(W7)s ¢ +Mgds 16 N (B1) Plugging Eq.(B3) into Egs.(B7) and(B9) leads to

054510-10
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1-mgeNs 1-mge” N A, A,_
eNs(1-We'—mi+Wmye* V) e Ns(1-We *—mi+Wme*™s V) [IA_, A~
T e, (B10)
1-We “—mi+Wme “NstD (1-We—mi+Wmye*Ms*1) °
|
Solving this we obtain 1
S= 5V (=p)Ds (P ¥ (P), (B15)
(A++ A[ (672 M= 1)(1-We *)(1—-mj)
A_.) F\2W sini(a)[1-2mgcosiaNy)+m:])’ where
A\ A[2W sini(a)[1-2mycost{aNg)+m;] WP
_ — - Tr S
A )Tl a-e M (1-wen(1-m) ' Vo(p)=[vs(p). (P, \Ps(m:(ws(p)), (B16)
where and
F=eN{1-We*+mi(We “—1)]
D(p)=To(p) +mpX
+AWny, sinh(a) +e” *N{We *—1+mi(1-We)]. Do(P) 0
0
(B11) =( 0 —Dy(—p)T +mgd?P,IP_
Similarly, plugging the general solution f&, (B17)
G (s,t)=G(s,t)+B, e+ B, sV with (52)S’t555,N55Nsxt1 and
+B_,e¥ stUrp__ea(=s7Y (B12)
P, O P. 0
into the boundary conditions P,= o p |’ P_= o P,/
GL(Nsg+1t)—myG(1t)=0, (B13) 0 0 0
02
GL(l,t)_WGL(O,t)+WquL(NS,t)_mgGL(l,t):o, | 0 |2 0 0 0 (o)
(B14) 11, 0/ |o, 0 0 0
we finally obtain 0 oo 0O O
Bir| A (e72*Ns—1)e™*(e”*~W)(1-mj) in terms of 8<8 matrices. Here
B_./ F|2W sinh(a)[1-2m,costiaNg)+m3])’
Do(p)=iy, sinp,+W"'P,.+W P_, (B19)

( B+_) A(ZW sinh(a)[ 1—2mgcosh{aNg) +m?]
F

E _ a2aN QA0 2
B (1-e™Ts)e?(e"=W)(1—mg) domain-wall QCD.
By expandingD ! in my and rearranging it we obtain
2. Propagator with the Majorana mass term atNg

For an application of the free fermion propagator obtained _ _ _
in the domain-wall model, we consider a model with the D 1220 (=To lm0P+|P—52)nT01
Majorana mass term on the antiboundarysatN, which
has been proposed for a lattice definition of Me 1 super-
Yang-Mills theory[13,14. In this subsection we derive the
fermion propagator with the Majorana mass term, though
some of the results have already been used in [Rdf. We 4
whereZ=IP_6T, 6P .

setm,=0 hereafter. > 5 ) )
A free fermion action of the model with the Majorana  Using Z°= —x[Ggr(p)n_,n P+ and summing oven,

massmg can be written in momentum space as we finally get

8

=> (—m)"Ty 6P,z UP_sT,t, (B19
n=0

054510-11
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D =Ty +[—moTy 6P, IP_6T, !
1
1+ m3x[Gr(p)n, n %

(B20)

+miTotoP,LZIP_6Ty 1]

Explicitly this formula gives, in terms of 2 block no-
tations,

D(p)if=—D(—p)or=(s(p)h(—p))
=(—ivy, sinp,)[Z:(p)P,+Z_(p)P_]

M. (P)P.+M_P_, (B21)
where
2 ()ar= G o — G p)en CelP)
+(P)st=OGr(P)st 1+ mixG? R(P)s,NGRIPING 15
2 ()= G (ot —TEC
-(P)st=6GL(P)st 11 mexG?

X[W™Ggr(P)Isn[GrPIW " In, 15

M () oi— WG )]s = —2C
+(P)st= R(P) Ist 1+ m2xG?
X[W™Gr(P)IsnGr(PIN, t»

M (0)ar=[W* G (p)]or— 8
-(P)st L(P) st 1+m§xG2

XGr(P)sn[GrIPIW Iy, 1

with G= GR(p)Ns N Similarly

[D(P) 12 1st={(P(P)sth(—P)r)

Mo
=——7F—[xG G 1,P_
1+mng2[ R(P)sNGRPIN 12

—i sin p;f}’MGR(p)s,NS[GR(p)W+]NS,t|2P+
+i sinp,y[W”Gr(P)Isn.Gr(PIn, il 2P -

+[W™Gr(P)Isn[GrPIW" Iy, 1l 2P +1,
(B22)

and

PHYSICAL REVIEW D 59 054510
[D(P) 21 ]se=(¥(P)sih(—P)y)
D [XGr(P)snGr(PIn. il 2P
=——IX
1+ mixG? RUP)s,NgGORIPIN t 2P +

+i sin p;L'Y;FLGR(p)S,Ns[GR(p)W+]NS,t|2P7
—i SN P,y [W Gr(pP)]snGr(P)N, il 2P+

+[W™Gr(P)Isn[Gr(PIW Iy, il 2P-1.
(B23)

See Ref[14] for an application of this result.

APPENDIX C: PROPERTIES OF DIAGONALIZATION
MATRICES

In this appendix we derive several properties of diagonal-
ization matricedJ andV which are used for the renormal-
ization of quarks fields. Let us consider the tree level diago-
nalization of matrices \Wg-Wy). To diagonalize
(Wg-Wg), we have to solve the eigenvalue problems
(W5 - Wg )5 (1) = (M) 4L (s), thenU, andV are given
by normalized eigenvectorse. : (Ug)s = ¢S5 (t) and
(Vo)st=¢° (t). The two eigenstate equations lead to the
same equation

—Wo[ p(s+1)+ ¢ (s—1)]

+[1+wWg— (M)i1%(s)=0, (CY
but with different boundary conditions
~We! (0)+6.(1)=0, ¢.(Ns+1)=0 (C2
or
~Wod (Ng+1)+¢_(Ng)=0, ¢ (0)=0. (C3)

Therefore, oncep', (s) is known, the other is easily obtained
through ¢ (s)=¢' . (Ng+1—s). Hereafter we consider
@', (s) only and drop the suffices andi.

There are two types of solutions to the eigenstate equa-
tion. For (M2);<(1—wg)? we have a damping solution
#(s)=Ae s with coshwr=[1+wi—(M3)J/2wy. The first
boundary condition leads te” “=wg. This implies Q\/I(z))
=0, and thereforep(s) is nothing but the zero mode solu-
tion of the domain-wall QCD. For this solutiow, should
satisfy wgsl (0=M=2). The other boundary condition
can be satisfied in the lardé; limit. The normalization con-
stant become# = (1—w3)"2 Note that there are no other
damping solutions which satisfy the first boundary condition.

If the eigenvalue is in the region elwo)zs(Mg)is(l
+Wwy)%, we have an oscillating solutionp(s)=Ae“s
+Be %S with cosa=[1+W5—(M2)/2w,. The two bound-
ary conditions imply

054510-12
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er—w, e '“—w, A

glalNgt1)  g-ia(Ng+1) | X | g | =0. (C4
The existence of the nontrivial solution requires
W sina(Ns+1)=sinaNs,  which leads to ¢(s)
=—Ae*NstD gin o(Ng+1—9)=A, sin a(Ns+1—s).  With-

out loss of generality we can take re®), and the normal-
ization condition givesAy,=(2/Ng)*q1+O(1/N)]. Setting
a=alNg we reduce the equation far to wy sina= sina in
the largeNg limit. The solutionsa= 7n with integern to this
equation is translated td;—1 independent solutionsy
=an/Ngwithn=1,2, ... Ng— 1. (Note that G= a< 7 since

PHYSICAL REVIEW D 59 054510

where the coefficient of thg? term is simplified to
(VD)5 M)+ (Mo)(UD) g (W1 ),

(M3)i— (M)

(M3)s—(MJ),

for s#t, and becomes\'lﬂ(Jﬁ)s,s for s=t. Equation(C10
then becomes

=(W;)sq| 1+ =0 (Cl)

VW UT=(My+g2W, )1

It is necessary for the stability of the zero mode to show that

sina=0.) Therefore, all eigenvalues and eigenvectors areéWﬁ)NS,NS:O. This can be proven as follows:

now obtained, giving

(2IN9)*? sin ag(Ng+1—t) s#Ns,
[Uolst= (1-wd) YA —b s=N,, (C9
whereas=ms/Ng, and[Vo]s:=[Uolsn +1-t-

Next we prove some properties bfy andV,. It is noted
thatU, andV, can also diagonalizeV; :

(VoWg Ug)s,i= 8sfs, (Co)
where
Wq €oS ag(Ng+1)—cosagNg S#Ng,
fs=[ 0 s=Ng. (€7
Using the equation forg (s# Ng) we can show
f2=w3+ 1—2wg[sin asNg sin a(Ng+1)
+cosagNg cosag(Ng+1)]
=W3+1—2W, cos as=(M3)s. (C9

This provesfs=(Mj), for all s.
It is also important to note thatl,(V,) diagonalizes
liog (I 0g) terms, since

(UoWg ™ 72U )= 851 (1~ W)
x 2, w3 2L O(1Ny)
st

= 85,105 n (1= W5) " T+ O(1Ny).
(C9

Now let us consider quantities includimg contributions.
We first show thaty andV diagonalizeW™ at this order:

V-W*-UT=(1+g2V;) V(W +92W; ) U{(1+g2UT)
:VO'W3U3+92{V1V0W§U8

+VoWoUTUT+W, 71, (C10

(W1+)NSvNS:(1_W(2))§ Wgs_s(wf)s,twb_lv
(C12
where W; is composed of the sunG,_, Gg, Wy G, and
W, Gg but

> wys SG(s,Hwh t=0(Ngwy®)—0

s,t

for all G=G_, Gg, Wy G, andW, Gg in the largeN limit.
Therefore Eq(C12 vanishes.

For the wave-function renormalization factor we have to

know
Un,1= Vi, N = (Uoln 1t gzt;\l (Upng t(Uolt1-

Fortunately, sinceW); 1= (2/Ng) Y2 sin a(1—1)=0, there is
no orderg? contribution and it becomed Ns,lz(l—wg)lf%

Finally we would like to evaluaté? from I .. If we
define

(F(s,0)u=2, (Uohn, F(s:D(Uoln, 1

and

(F(s.O)v=2 (Vo sF(s.t)(Voln, 1

st
we can show

sinh ay—sinh «

—als—t| — 2
(e Juv=(1 WO)ZWO sinh aq(coshyy— coshy)

with e~ “0=w,

2a
<87 a(s+t72)>u — <e7 a(2N5737’[)>V: (1_ WS)

(ea_Wo)2
and

<e—a(s+t—2)>V: <e—a(2NS—s—t)>U =0.
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Using these formulas we obtain

. —wO [ sinh a¢g—sinh « e“—W 1 G )= c13
(LS Y= sinn a| 2w sinh ag(coshwg—coshr) e~ a—W (e*—wg)2 =(Cr(s.D)V=CL, (€13
o 1-w3 [ sinh ap—sinh a e : o1
(Cr(S V=5 sinn a| 2w sinh ag(coshg— coshy) (e"—wo)? =(GL(s,1))y=GCr, (C19
and
(WG GL(5,))y,v={Wy G(S,1))y v = (Wo— W) G,
The explicit expression for;,,. is reduced to the final result in terms & z: 19 =19=19 where

Id—cf d4l [ 1 > {sir? | ,(Ggr+Gy)+2 cosl [wy—W(1)]Ggr}
o (ZW)lBZSlr?I/Z pAIZRT L ptWo™ R

Sine 1, ~ ~
+> ———E  [wo—W()]Gr+| D, cof | ,/2—2cod | /2|G + D, (sir?1,/2)Gr|— 12)t.
m 2(4st|/2) o R4 WePLT L R
(C19
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