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Multicanonical hybrid Monte Carlo algorithm: Boosting simulations of compact QED
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We demonstrate that substantial progress can be achieved in the study of the phase structure of four-
dimensional compact QED by a joint use of hybrid Monte Carlo and multicanonical algorithms through an
efficient parallel implementation. This is borne out by the observation of considerable speedup of tunnelling
between the metastable states, close to the phase transition, on the Wilson line. We estimate that the creation
of adequate samples~with order 100 flip-flops! becomes a matter of half a year’s run time at 2 Gflops sustained
performance for lattices of size up to 244. @S0556-2821~99!04403-3#

PACS number~s!: 11.15.Ha, 12.20.Ds
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I. INTRODUCTION

It appears exceedingly intriguing to define variants
QED by studying vacuum states other than the usual pe
bative vacuum. Lattice techniques have the potential po
to deal with this situation, whenever they provide us w
phase transition points of second and higher orders.

It is embarrassing that lattice simulations of comp
QED still have not succeeded to clarify the order of t
phase transition nearb51, the existence of which was es
tablished in the classical paper of Guth@1#. This is mainly
due to the failure of standard updating algorithms, such
metropolis, heat bath, or metropolis with reflections@2–5#, to
move the system at a sufficient rate between the obse
metastable states near its phase transition. The tunne
rates decrease exponentially inL3 and exclude the use o
lattices large enough to make contact with the thermo
namic limit by finite size scaling~FSS! techniques@6#.

In this paper, we propose to make use of the multicano
cal algorithm~MUCA! @7# within the hybrid Monte Carlo
~HMC! updating scheme@8# in order to boost the tunneling
rates. Since both algorithms are inherently of a global nat
their combination will facilitate the parallelization of th
MUCA which could not be achieved otherwise.

In the early days of simulations on the hypertorus,
U~1! phase transition was claimed to be second order@9–12#,
however, with increasing lattice sizes, metastabilities a
double-peak action distributions became manifest, stron
hinting at its first-order character@13–15#. This picture is in
accordance with various renormalization group stud
@16,17#.

However, the latent heat is found to decrease with
lattice size and the critical exponentn is neither 0.25~first
order! nor 0.5~trivially second order! @18#. These facts allow
for two possible propositions:~1! the double-peak structur
is a finite size effect and might vanish in the thermodynam
limit, leading to the signature of a second-order phase tr
sition; ~2! the phase transition is weakly first order; i.e., t
correlation lengthj is finite, but large in terms of the avail
able lattice extentL. This would fake, on small lattices, th
signature of a second-order transition, and a stabilized v
0556-2821/99/59~5!/054509~9!/$15.00 59 0545
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of the latent heat would only become visible in the therm
dynamic limit L.j.

In the search for a lattice formulation of QED with
second-order transition point, the action was generalized
include a piece in the adjoint representation with couplingg
@19#, in the expectation that the phase transition would
driven towards second order, at sufficiently small negat
values ofg. However, simulations on the hypertorus, up
g520.4, revealed the reappearance of a double peak
large enough lattices@20,21#. Thus, the hypothesis of a
second-order phase transition at some finite negative valu
g @22–24# is again doubted; furthermore, renormalizatio
group investigations indicated that the second-order ph
transition is located atg→2` @17#.

Reference@25# has speculated that the mechanism beh
the lattice heuristics of metastabilities is driven by monop
loops that wrap around the hypertorus. According to t
scenario, the inefficiency of local updating algorithms to c
ate and annihilate such monopole constellations causes
slowing down, in agreement with the earlier proposition~1!.
Results were presented in support of this view by switch
to spherical lattices with trivial homotopy group where su
wrapping loops are no more topologically stabilized@26–
29#. But on spherical lattices equivalent toL526 at g
520.2, double-peak structures have recently been repo
to reappear@20,21#, corroborating earlier observations wit
periodic boundary conditions atg50: the suppression o
monopole loop penetration through the lattice surface tur
out to be incapable of preventing the incriminated doub
peak signal from showing up on large lattices, say,L532
@30–32#.

It appears that a clarification of the situation of the Wils
line is mandatory for further progress in the understanding
compact lattice QED. This challenge requires the design
more powerful updating algorithms. A promising method
based on simulated tempering@33–35#, enlarging the La-
grangian by a monopole term whose coupling is treated a
additional dynamical variable. Multiscale update scheme
principle can alleviate the critical slowing down~CSD!
which is associated with the increase of the correlat
lengthj ~as measured in a nonmixed phase! near the critical
©1999 The American Physical Society09-1
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G. ARNOLD, K. SCHILLING, AND TH. LIPPERT PHYSICAL REVIEW D59 054509
coupling bc @36#. However, the exponential supercritic
slowing down~SCSD! which is a consequence of the surfa
tension at first-order phase transitions cannot be overc
by such type of scale-adapted methods. In that instance,
expects the autocorrelation times to grow exponentially w
the system size due to the occurrence of two 3-dimensio
interfaces, leading to

tSCSD} exp~2sL3!. ~1!

Valleau and co-workers@37–40# have shown how to gen
erate arbitrary ‘‘nonphysical’’ sampling distributions. The
method, termed ‘‘umbrella sampling,’’ has been introduc
to span large regions of phase diagrams. The method is
pable of improving the efficiency of stochastic sampling
situations when dynamically nearly disconnected parts
phase space occur by biasing the system to frequent the
namically depleted, connecting regions of configurat
space. They interpreted their method as sampling ‘‘a wh
range of temperatures’’@37#.

In recent years the idea of ‘‘umbrella sampling’’ has be
popularized and extensively applied under the name ‘‘mu
canonical algorithm’’~MUCA! by Berg and Neuhaus@7,41–
44# to the simulation of a variety of systems exhibiting firs
order phase transitions@45–50#. In this procedure, the
biasing weightw(S) of a configuration with actionS is dy-
namically adjusted~bootstrapped! such as to achieve a nea
constant overall frequency distribution over a wide range
S within a singlesimulation.

Obviously, the MUCA in principle offers a powerfu
handle to deal with SCSD. It remains then a practical qu
tion whether one can indeed proceed to large lattices
boosting tunneling rates from the SCSD behavior@Eq. ~1!# to
the peak efficiency of local Monte Carlo methods~character-
ized byO„(L4)2

… complexity#. This leads us to the key poin
of this paper: it is a severe shortcoming of the multicanon
algorithm that its implementation is seemingly restricted
sequential computers, as it requires knowledge of theglobal
action, even during local updating. We will show that t
HMC algorithm is from the very outset able to impleme
the MUCA in a parallel manner.

In Secs. II A and II B, we will give a short review of th
MUCA and the HMC algorithms. In Sec. II C, we merge th
MUCA with the HMC algorithm. From our ongoing simula
tion project of U~1! theory on the Wilson line@51#, we de-
termine the tunneling efficiency compared to the stand
metropolis algorithm which in our case is complemented
three reflection steps. In Sec. III, we shall present our res
for lattice sizes up to 164 and predict the tunnelling rates fo
lattice sizes up to 244, as would be required for a prope
FSS.

II. MULTICANONICAL HYBRID
MONTE CARLO ALGORITHM

The hybrid Monte Carlo algorithm@8,52,53# produces a
global trial configuration by carrying out a molecular dyna
ics evolution of the field configuration very close to the s
face of constant action. Subsequently, a Monte Carlo d
sion is imposed which is based on the global act
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difference DS, being small enough to be frequently a
cepted. Within the HMC algorithm, all degrees of freedo
can be changed simultaneously and hence in parallel. T
then provides a straightforward path to implement t
MUCA as part of the HMC algorithm on parallel machines1

one just uses the values of the global action, as provided
the HMC algorithm, to compute the bias functionw(S) for
the MUCA.

A. Multicanonical algorithm

The ‘‘canonical’’ Monte Carlo algorithm generates
sample of field configurations$f%, within a Markov process
according to the Boltzmann weight

Pb~S!5
1

Zcan
e2bS~f!, ~2!

which follows from maximizing the entropy with respect
all possible probability distributionsP@f#. The partition
function Z normalizes the total probability to 1,

Zb5E @df#e2bS[f] . ~3!

S is the action~the energy in the case of statistical mecha
ics! andb the coupling~or inverse temperature 1/kT).

The canonical action density, which in general exhibits
double-peak structure at a first-order phase transition, ca
rewritten as

Ncan~S,b!5r~S!e2bS, ~4!

with the spectral densityr(S) being independent ofb. Usu-
ally, *Ncan(S,b)dS is set to 1.

The multicanonical approach aims at generating a flat
tion density

NMUCA~S,b!5const for Smin<S<Smax, ~5!

in a range ofS that covers the double peaks at the first-ord
phase transition.

Therefore, instead of sampling canonically according
e2bS, one modifies the sampling by a weight factorWMUCA :

WMUCA~S,b!55
1

r~Smin!
ebSmin for S,Smin ,

1

r~S!
ebS for Smin<S<Smax,

1

r~Smax!
ebSmax for S.Smax,

~6!

1A first attempt in this direction has been made in Ref.@54# in the
framework of the Higgs-Yukawa model.
9-2
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MULTICANONICAL HYBRID MONTE CARLO . . . PHYSICAL REVIEW D 59 054509
which is constant outside the relevant action range. Thi
equivalent to a net sampling according to theyet unknown
probability distribution

w~S!5
1

r~S!
for Smin<S<Smax. ~7!

SinceW(S,b) is unknown at the begin of the simulation,
is instrumental for the MUCA to follow Mu¨nchhausen and
start from good ‘‘guesstimates’’@43#. We shall do so by
starting from an observed histogram of the canonical ac
density,N̂can(S,b̂c), @see Eq.~4!# at the supposed location o
the phase transition2: b̂c . From the action density, we com
puteŴMUCA(S,b̂c) according to Eq.~6!. The sampling then
proceeds with the full MUCA weight,

P̂MUCA~S!}e2b̂cSŴMUCA~S,b̂c!}e2[ b̂c1b̂~S!]S2â~S!.
~8!

This latter formulation can be interpreted as a simulat
proceeding at varying couplings~temperatures!, hence the
name ‘‘multicanonical.’’

In order to compute expectation values of observablesO,
one has to reweight the resulting action density eventually
the factorŴMUCA(S,b̂c), which reconstitutes the proper ca
nonical density:

^Ôb̂c
&5

(
i
O b̂c

i 1

ŴMUCA~Si ,b̂c!

(
i

1

ŴMUCA~Si ,b̂c!

. ~9!

Additionally, ^Ôb̂c
& simulated atb̂c can be reweighted to

any desiredb ~following @55#!, given that the correspondin
region of phase space has been covered by the MUCA s
lation. We emphasize that Eq.~9! is only useful comple-
mented by a proper error analysis. The canonical error c
puted from the multicanonical ensemble has been elabor
in Ref. @56#.

Note that there are many possible choices for the form
the multicanonical weight. Just for technical reasons we
quire it to be continuous inS. One can either guess an an
lytic function, or choose a polygonal approximation such
given in Eq.~8!. In this case, the multicanonical weight
expressed in terms of the functionsb̂(S) andâ(S) which are
actually characteristic functions of the bins.b̂(S) can be
considered as an effective temperature@37#.

The computation of the weights requires knowledge of
global and not just the local change in action for each sin
update step. For this reason, even for a local action,
cannot perform local updating moves in parallel, such as
well-known checkerboard pattern. As a consequence,
MUCA is not able to be made parallel for local update alg
rithms. For a remedy, we propose here togo global and
utilize the HMC updating procedure.

2Quantities with carets refer to stochastic estimates.
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B. Hybrid Monte Carlo algorithm

The HMC algorithm consists of two parts: the hybrid m
lecular dynamics~HMD! algorithm evolves the degrees o
freedom by means of molecular dynamics~MD! which is
followed by a global metropolis decision to render the alg
rithm exact.

In addition to the gauge fieldsfm(x) one introduces a se
of statistically independent canonical momentapm(x), cho-
sen at random according to a Gaussian distribution
(2p2/2). The actionS@f# is extended to a guidance Hami
tonian

H@f,p#5
1

2(m,x
pm

2 ~x!1bS@f#. ~10!

Starting with a configuration (f,p) at MD time t50, the
system moves through phase space according to the e
tions of motion

ḟm5
]H
]pm

5pm ,

ṗm52
]H
]fm

52
]

]fm
@bS#,

~11!

leading to a proposal configuration (f8,p8) at time t5t.
Finally this proposal is accepted in a global metropolis s
with probability

Pacc5min~1,e2DH!, with DH5H@f8,p8#2H@f,p#.
~12!

The equations of motion are integrated numerically w
finite step sizeDt along the trajectory fromt50 up to t
5NMD . Using the leapfrog scheme as symplectic integra
the discretized version of Eq.~11! reads

fn115fn1Dt•pn2
Dt2

2

]

]f
~bS@fn# !

pn115pn2
Dt

2

]

]f
~bS@fn# !

2
Dt

2

]

]f
~bS@fn11# !. ~13!

Here we have presented the scheme with both the mom
and the gauge fields defined at full time steps,3, t5nDt.

3Note that the actual implementation computes the moment
half time steps according to the sequence

p~ t1Dt/2!5p~ t2Dt/2!2Dt
]

]f
$bS@f~ t !#%,

f~ t1Dt !5f~ t !1Dt p~ t1Dt/2!,

initialized and finished by a half-step inp @8#. Each sequence ap
proximates the correctH with an error ofO(Dt3).
9-3
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G. ARNOLD, K. SCHILLING, AND TH. LIPPERT PHYSICAL REVIEW D59 054509
To ensure that the Markov chain of gauge field co
figurations reaches aunique fixed point distribution
exp(2S@f#) one must require the updating procedure to f
fill detailed balance, which is guaranteed by the iterativ
map of Eq.~13!, f :(f,p)→(f8,p8) being, time reversible
f (f8,2p8)5(f,2p) and measure preserving@df8#
3@dp8#5@df#@dp#.

It is easy to prove that these two conditions also hold
the multicanonical action. Note that the guidance Ham
tonian, Eq.~10!, defining the MD may differ from the accep
tance Hamiltonian in Eq.~12!, which produces the equilib
rium distribution proper. In the following, we shall explo
this freedom to develop two variant mergers of the MUC
and HMC algorithm.

C. Merging the MUCA and HMC algorithm for compact
QED „MHMC …

We consider a multicanonical HMC for pure fou
dimensional U~1! gauge theory with standard Wilson actio
defined as

S@f#5 (
x,n.m

$12cos@umn~x!#%, ~14!

where

umn~x!5fm~x!1fn~x1m̂ !2fm~x1 n̂ !2fn~x!

is the sum of link angles that contribute to one of s
plaquettes interacting with the link anglefm(x).

Equation ~8! suggests to consider an effective actionŜ
including the ‘‘multicanonical potential’’VMUCA :

Ŝ5b̂cS1V̂MUCA~S,b̂c!, ~15!

with

V̂MUCA~S,b̂c!5 logS 1

ŴMUCA~S,b̂c!
D

5b̂~S!S1â~S!. ~16!

There are two natural options to proceed from here.
Method 1performs molecular dynamics using the cano

cal guidance Hamiltonian

HMD5
1

2( p21b̂cS,

with standard actionS. The resulting gluonic force is given
by

F~x!5ṗm~x!

5b̂c (
nÞm

@sinumn~x2 n̂ !2sinumn~x!#. ~17!

Method 2makes use of the multicanonical potential as
driving term within the Hamiltonian
05450
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HMD5
1

2( p21Ŝ,

inducing an additional drift term

ṗm~x!5F~x!2
]

]fm~x!
V̂MUCA„S@f~x!#,b̂c…

5@b̂c1b̂~S!# (
nÞm

@sinumn~x2 n̂ !2sinumn~x!#,

~18!

with the effectiveb̂ as defined in Eq.~8!.
For both options, the Hamiltonian governing the acce

reject decision, Eq.~12!, reads equally,

Hacc5
1

2( p21Ŝ. ~19!

The latter method is governed by the dynamics underly
the very two peak structure: as one can see from Fig
below, VMUCA is repelling the system out of the hot~cold!
phase towards the cold~hot! phase, thus increasing its mo
bility and enhancing flip-flop activity.

We comment that the implementation of method 2
quires the computation of the global action@to adjust the
correct multicanonical weight, Eq.~8!# at each integration
step along the trajectory of molecular dynamics to guaran
reversibility. In the polygon approximation, this amounts to
determination of the effective couplingb̂ at each time step in
MD. Note thatâ does not influence MD but enters into th
global metropolis decision, Eq.~12!. Method 1 is much sim-
pler, running atfixedtrial couplingb̂c and avoiding the effort
of computingNMD22 global sums while traveling along th
trajectories. It turned out that of both versions of the MHM
algorithm, method 2 performs better than method 1, wh
autocorrelation and difference in computational effort a
taken into account. Thus, we continue our analysis by inv
tigation of method 2.

III. RESULTS

In order to evaluate the efficiency of the MHMC algo
rithm and to set the stage for a proper extrapolation,
generated time series of the U~1! action on lattices of size 64

up to 164. The runs are summarized in Table I. We appli
method 2 as being the more promising one on real la
lattices.

To arrive at an action densityNMUCA(S,b) which is ap-
proximately flat in the desired region between the two pe
it is crucial to find a good estimateN̂can(S,b̂c) of the canoni-
cal action density. However, it becomes more and more d
cate for large volumes to find the proper multicanonic
weight P̂MUCA

L (S) @Eq. ~8!#. Figure 1 shows the evolution o
the action density as the lattice size increases.

For lattices,164 it was sufficient to perform a short ca
nonical run to generate an action densityN̂MUCA suitable to
9-4
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MULTICANONICAL HYBRID MONTE CARLO . . . PHYSICAL REVIEW D 59 054509
compute a proper weight factorŴMUCA . On the 164 system,
however, the resulting multicanonical distribution becom
quite sensitive to the choice of the weight. Therefore, in
case of large lattices (L>16) we cannot rely on canonica
simulations to start with. Even if we performO(106) sweeps
using a standard metropolis update with three reflec
steps,4 SCSD prevents a sufficiently accurate determinat
of the phase weight. Therefore, we install a recursive pro
dure: from a previous guessN̂i(S,b̂c

i ) we go through the

MHMC algorithm and arrive atN̂i11(S,b̂c
i 11). This compu-

tational scheme is initialized by a standard canonical ‘‘sh
run.’’ We found that one such learning cycle is sufficie
Figure 2 illustrates the evolution of the multicanonical acti
density on the 164 lattice.

On larger volumes the determination of a good guess
be considerably boosted by a crank-up extrapolation
starts from smaller systems@43#. In Fig. 3, we display the
quality of ‘‘flatness’’ of N̂MUCA(S,b) achieved in our inves-
tigations for the various lattice sizes.

A. Tunneling behavior

With our estimate forN̂MUCA
16 (S) at b51.010753, de-

picted in Fig. 2, we have generated the time history of
action per site,s5S/6V, as shown in the upper part of Fig. 4
For reference, we have included the time history from
MRS algorithm on the same lattice. The figure demonstra
the success of the MHMC algorithm: the method provides
with a gain factor in tunneling rate of about one order
magnitude on the 164 lattice.

In order to quantify this achievement, we introduce t
average flip timetflip , a quantity that is readily measurabl
tflip is defined as follows: we histogram the time series os
using N bins, as illustrated in Fig. 5. A suitable number
N58. The total binning range is adjusted such that 99.9%
the events are covered symmetrically by the eight bins. A

4The metropolis algorithm with reflection steps~MRS! is consid-
ered as a very effective local update algorithm for U~1! @5#.

TABLE I. Total numbers of sweeps carried out both for t
MRS and MHMC algorithm at different lattice sizesL and cou-
plings b.

L b
No. sweeps

~MRS!
No. sweeps
~MHMC! Dt NMD

6 1.001600 1.460.000 1.650.000 0.120 10
8 1.007370 1.320.000 1.430.000 0.093 13

10 1.009300 1.030.000 560.000 0.071 17
12 1.010150 680.000 0.060 20

1.010143 1.790.000 1.160.000
14 1.010300 1.430.000 0.050 24

1.010668 900.000 990.000
16 1.010800 1.210.000 0.045 26

1.010753 750.000 760.000
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~flop! is given when the system travels fromI 8 to I 1 ~and
vice versa!. tflip is defined as the inverse number of the su
of flips and flops multiplied by the total number of traject
ries. In Table II,tflip is given for the various lattices. Th
error intflip has been computed by a jackknife error analys

B. Scaling behavior

With the results fortflip on lattices up to 164 we are in the
position to estimate the scaling behavior of the MHMC
gorithm in comparison to standard MRS updates. Figur
showstflip both for the MHMC algorithm and MRS as
function of the lattice sizeL at their respectiveb values, as
listed in Table II.

According to the expected exponential behavior oftflip
MRS

which, in the asymptotic regimeL→`, should be given by
Eq. 1, we perform ax2 fit with the ansatz

tflip
MRS5aLbecL3

. ~20!

It yields the following parameter values:

FIG. 1. The canonical action densities, Eq.~4!, on 64 up to 164

lattices, reweighted to their respectiveb̂c values, here defined via
the equal height of the histograms.

FIG. 2. Evolution of multicanonical action density. Startin
from a canonical run a first MHMC simulation is performe
~dashed line!, and, based on this result, the final run~solid line! is
carried out. Both curves are computed on the 164 lattice at b
51.010753.
9-5
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G. ARNOLD, K. SCHILLING, AND TH. LIPPERT PHYSICAL REVIEW D59 054509
a511.9~3.7!,

b52.01~18!,

c56.7~8!31024, ~21!

with xper DOF
2 50.897. As a result, we find a clear exponent

SCSD behavior for the MRS algorithm.5

On the other hand, for the tunneling times of the MHM
algorithm, we expect a monomial dependence inL:

tflip
MHMC5p Lq. ~22!

We obtain, for the fit parameters,

p511.6~1.6!, ~23!

q52.238~68!. ~24!

The power law ansatz is well confirmed by the fit qual
with xper DOF

2 50.795.
We also took the pessimistic ansatz and tried to dete

potentially exponential increase oftflip
MHMC. The exponential

fit givesxper DOF
2 50.975. As can be seen in Fig. 6, the exp

nential contribution remains suppressed in the extrapolat
A potentially dominating exponential behavior for th
MHMC algorithm can only be detected in future MHM
simulations on larger lattices. In other words, the para
MHMC algorithm is capable of overcoming SCSD in com
pact QED in practical simulations, at least up to lattices si
'244.

IV. COST ESTIMATES FOR A FSS STUDY

Finally, we try to assess the computer effort required
perform a FSS study on a series of lattices ranging up to 24.

tflip being readily accessible, we relate this quantity to

5One is tempted to extract the interfacial surface tensions from
the fit to the MRS data. We finds53.35(39) 1024.

FIG. 3. N̂MUCA(S,b) at the run-parameterb as given in Table
II.
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effectiveintegrated autocorrelation time,teff , defined in Ref.
@56# by

sMUCA
2 5scan

2 2teff

Nts
. ~25!

sMUCA
2 is the squared error of the observableO computed

from the multicanonical ensemble; see Eq.~12!. scan
2 denotes

the canonical variance ofO ~computed from the reweighte
canonical ensemble! andNts is the length of the multicanoni
cal time series. We can determinesMUCA

2 in a numerically
quite stable way from jackknife blocking. From the time s
ries of S on the 144 and a 164 MUCA system, with about
550000 and 300000 entries, respectively, we have de
minedteff to be

teff
14535~10!310233tflip

14 ,

teff
16541~12!310233tflip

16 . ~26!

FIG. 4. Time history of the 164 system atb51.010753 for the
MHMC algorithm ~top! and MRS~bottom!.

FIG. 5. Action density of the 164 system atb51.010753 as a

function ofs5S/6V from which V̂MUCA is derived@the dashed line

shows exp(V̂MUCA)]. The subdivision of the support of the actio
density into eight intervals is introduced in order to definetflip .
9-6
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As a result, we foundtflip'0.038(8)3teff .
6 From here on

we can estimate the number of decorrelated subsamples~in-
dependent measurements! out of a time series of lengthNts to
be roughly

Nindep5
Nts

2teff
5

Nts

79~16! 1023tflip

. ~27!

Assuming the inverse square root ofNindep to be an upper
bound to the relative errorr of an observableO, we arrive at

K5
79~16!31023

r 2
, ~28!

with K being the required number of flips to achieve a re
tive error,r .

We thus conclude thatO(100) flip-flops might allow one
to determine quantities like the specific heat and the Bind
Landau cumulant with a relative error of 3%.

Obviously, the costs of MHMC and MRS simulations i
crease with the volume of the lattice,V5L4. Additionally,
for the MHMC algorithm, we want to keep the average a
ceptance probability of the leapfrog scheme constant. To
end, we have to lower the step size according toDt
;V21/4. In a detailed tuning investigation we have co
firmed that the scaling rule of constant acceptance proba
ity @57# leads to optimal performance. From a spectral ana
sis of the molecular dynamics we can find an optimiz
trajectory lengthNMD ~in the sense that the average acce
tance probability is maximized! fulfilling Dt NMD
5const(b), with only a slight dependence onb near the
phase transition. We choose step-sizeDt according to

^Pacc&5erfc@c~b!V1/2Dt2#5const, ~29!

adjusted such that the productt intNMD is minimized finally.
In our case, the optimal acceptance probability is 65%@58#.

Figure 7 confirms the scaling of the MHMC algorithm
the ratio of measured CPU times for a sweep,tMUCA /tMRS,

6Note thattflip strongly depends on the difference betweenI 8 and
I 1 in Fig. 5. It remains to be confirmed that the ratio betweenteff

andtflip does not vary too much going to larger lattices.

TABLE II. tflip for the MRS and MHMC algorithm measured
the simulatedb ’s.

L b tflip
MRS tflip

MHMC

6 1.001600 508~12! 650~20!

8 1.007370 1023~60! 1173~50!

10 1.009300 2474~117! 2006~84!

12 1.010143 5470~770! 3260~440!
14 1.010668 16400~3300! 5090~630!
16 1.010753 44800~9700! 6350~860!
05450
-

r-

-
is

il-
-

d
-

increases quite linear withL5V1/4. Minor deviations from
this behavior stem from the use of suboptimal run parame
Dt andNMD .

The producttflip3tMUCA reflects the efficiency of the
MHMC algorithm. Table III lists the effective gain factor
achieved taking the MHMC algorithm instead of the MR
The two columns refer to the power law and exponen
extrapolations for the MHMC algorithm.

Let us finally translate these factors into real costs: in F
8, we extrapolate the sustained CPU time in Tflop ho
required to generate one flip. We conclude that the integra
CPU time to generate the required 100 flips with the MHM
algorithm on a 244 lattice amounts to about 3 Tflop hours o
sustained CPU time.

V. SUMMARY AND OUTLOOK

We have demonstrated that the fully parallel MHMC a
gorithm is a very effective tool which is able to overcom
SCSD as present in the pronounced metastabilities of fo
dimensional U~1! gauge theory. A FSS study up to a lattic
size of L524 with about 100 flip events for each lattice

FIG. 6. Tunneling times for the MRS~exponential fit! and
MHMC algorithm ~lower convex curve is power law; upper conve
curve is exponential fit!. The errors of the two exponential fits ar
depicted as dotted lines. The error of the power law fit, Eq.~22!, is
not visible on this scale.

FIG. 7. Ratio of CPU times per sweep,tMUCA /tMRS and linear
fit. Errors are not visible on this scale.
9-7
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feasible within half a year run time, given a sustained p
formance of about 2 Gflops, due to the improveme
achieved by the MHMC algorithm. These performance fi
ures should be obtainable on a 32-node partition of a C
T3E-600.

Less well known is the influence of the delicate part of t
MHMC algorithm, i.e., the determination of a suitable es
mate forVMUCA , which is carried out in an iterative manne
So far, we have encouraging experiences on the 164 lattice.
The success of the crank-up procedures described in
@43# gives us hope that thePMUCA determination will carry
through with only marginal deterioration of the improveme
factors estimated here.

The investigations presented form part of an ongo

TABLE III. Gain factor for the MHMC algorithm over the MRS
as function of the linear lattice extension. The prediction fortflip

MHMC

is based on a power law ansatz~row 1! and an exponential ansat
~row 2!.

L power exponential

16 1.9~3! 1.9~3!

18 5.5~1.5! 5.1~1.6!
20 21.0~8.7! 18.4~9.0!
22 112~67! 92~65!

24 856~700! 652~638!
.

cl.

05450
r-
s
-
y

ef.

t

g

study that aims at a conclusive FSS analysis of comp
QED on the Wilson line@51#.
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