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We demonstrate that substantial progress can be achieved in the study of the phase structure of four-
dimensional compact QED by a joint use of hybrid Monte Carlo and multicanonical algorithms through an
efficient parallel implementation. This is borne out by the observation of considerable speedup of tunnelling
between the metastable states, close to the phase transition, on the Wilson line. We estimate that the creation
of adequate sampléwith order 100 flip-flopsbecomes a matter of half a year’s run time at 2 Gflops sustained
performance for lattices of size up to®24S0556-282(99)04403-3

PACS numbes): 11.15.Ha, 12.20.Ds

[. INTRODUCTION of the latent heat would only become visible in the thermo-
dynamic limitL>¢.

It appears exceedingly intriguing to define variants of In the search for a lattice formulation of QED with a
QED by studying vacuum states other than the usual pertuisecond-order transition point, the action was generalized to
bative vacuum. Lattice techniques have the potential poweinclude a piece in the adjoint representation with coupting
to deal with this situation, whenever they provide us with[19], in the expectation that the phase transition would be
phase transition points of second and higher orders. driven towards second order, at sufficiently small negative

It is embarrassing that lattice simulations of compactvalues ofy. However, simulations on the hypertorus, up to
QED still have not succeeded to clarify the order of they=—0.4, revealed the reappearance of a double peak on
phase transition neg=1, the existence of which was es- large enough lattice$20,21). Thus, the hypothesis of a
tablished in the classical paper of GUth]. This is mainly  second-order phase transition at some finite negative value of
due to the failure of standard updating algorithms, such ay [22-24 is again doubted; furthermore, renormalization
metropolis, heat bath, or metropolis with reflectipBs5], to  group investigations indicated that the second-order phase
move the system at a sufficient rate between the observedansition is located ay— —« [17].
metastable states near its phase transition. The tunneling Referencd25] has speculated that the mechanism behind
rates decrease exponentially lif and exclude the use of the lattice heuristics of metastabilities is driven by monopole
lattices large enough to make contact with the thermodyloops that wrap around the hypertorus. According to this
namic limit by finite size scalingFSS techniqueg6]. scenario, the inefficiency of local updating algorithms to cre-

In this paper, we propose to make use of the multicanoniate and annihilate such monopole constellations causes their
cal algorithm(MUCA) [7] within the hybrid Monte Carlo slowing down, in agreement with the earlier propositi@n
(HMC) updating schemg8] in order to boost the tunneling Results were presented in support of this view by switching
rates. Since both algorithms are inherently of a global naturgp spherical lattices with trivial homotopy group where such
their combination will facilitate the parallelization of the wrapping loops are no more topologically stabilizE2b—
MUCA which could not be achieved otherwise. 29]. But on spherical lattices equivalent 10=26 at y

In the early days of simulations on the hypertorus, the= —0.2, double-peak structures have recently been reported
U(1) phase transition was claimed to be second oféled. 2], to reappeaf20,21], corroborating earlier observations with
however, with increasing lattice sizes, metastabilities angberiodic boundary conditions ag=0: the suppression of
double-peak action distributions became manifest, stronglynonopole loop penetration through the lattice surface turned
hinting at its first-order charact¢t3—15. This picture isin  out to be incapable of preventing the incriminated double-
accordance with various renormalization group studiegpeak signal from showing up on large lattices, shy; 32
[16,17. [30-32.

However, the latent heat is found to decrease with the It appears that a clarification of the situation of the Wilson
lattice size and the critical exponentis neither 0.25first  line is mandatory for further progress in the understanding of
orden nor 0.5(trivially second order[18]. These facts allow compact lattice QED. This challenge requires the design of
for two possible propositiong1) the double-peak structure more powerful updating algorithms. A promising method is
is a finite size effect and might vanish in the thermodynamidased on simulated temperii@3—39, enlarging the La-
limit, leading to the signature of a second-order phase trangrangian by a monopole term whose coupling is treated as an
sition; (2) the phase transition is weakly first order; i.e., theadditional dynamical variable. Multiscale update schemes in
correlation lengtke is finite, but large in terms of the avail- principle can alleviate the critical slowing dow(CSD)
able lattice extent. This would fake, on small lattices, the which is associated with the increase of the correlation
signature of a second-order transition, and a stabilized valuength¢ (as measured in a nonmixed phaeear the critical
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coupling B. [36]. However, the exponential supercritical difference AS, being small enough to be frequently ac-
slowing down(SCSD which is a consequence of the surface cepted. Within the HMC algorithm, all degrees of freedom
tension at first-order phase transitions cannot be overcomean be changed simultaneously and hence in parallel. This
by such type of scale-adapted methods. In that instance, orieen provides a straightforward path to implement the
expects the autocorrelation times to grow exponentially withMUCA as part of the HMC algorithm on parallel machires:
the system size due to the occurrence of two 3-dimensionane just uses the values of the global action, as provided by
interfaces, leading to the HMC algorithm, to compute the bias functiar{S) for
the MUCA.
7'5(:S|5>C eXF(20'L3) .

Valleau and co-workerg37—4( have shown how to gen- A. Multicanonical algorithm
erate arbitrary “nonphysical” sampling distributions. Their  The “canonical” Monte Carlo algorithm generates a

method, termed “umbrella sampling,” has been introducedsample of field configurationisp}, within a Markov process
to span large regions of phase diagrams. The method is C3ccording to the Boltzmann weight

pable of improving the efficiency of stochastic sampling for

situations when dynamically nearly disconnected parts of 1

phase space occur by biasing the system to frequent the dy- Ps(S)= S—e P89, @
namically depleted, connecting regions of configuration can

space. They interpreted their method as sampling “a Who'?fvhich follows from maximizing the entropy with respect to

range of temperatures[37]. . - P "
! . N all possible probability distribution$[ ¢]. The partition
In recent years the idea of “umbrella sampling” has beenfunctionz normalizes the total probability to 1,

popularized and extensively applied under the name “multi-

canonical algorithm”(MUCA) by Berg and Neuhay¥,41—

44] to the simulation of a variety of systems exhibiting first- 7 = j [dgple A4, 3)

order phase transition$45-50. In this procedure, the P

biasing weightw(S) of a configuration with actiors is dy-

namically adjustedbootstrappedsuch as to achieve a near- S is the action(the energy in the case of statistical mechan-

constant overall frequency distribution over a wide range ofcs) and 8 the coupling(or inverse temperatureKT).

Swithin a single simulation. The canonical action density, which in general exhibits a
Obviously, the MUCA in principle offers a powerful double-peak structure at a first-order phase transition, can be

handle to deal with SCSD. It remains then a practical quesrewritten as

tion whether one can indeed proceed to large lattices by

boosting tunneling rates from the SCSD behain. (1)] to Nead S,8)=p(S)e PS, (4)

the peak efficiency of local Monte Carlo methgdbaracter-

ized byO((L*)?) complexityl. This leads us to the key point yith the spectral density(S) being independent g8. Usu-
of this paper: it is a severe shortcoming of the multicanonicabyly, N_,{(S,5)dSis set to 1.

algorithm that its implementation is seemingly restricted to “The multicanonical approach aims at generating a flat ac-
sequential computers, as it requires knowledge ofglbeal  tjon density
action, even during local updating. We will show that the
HMC algorithm is from the very outset able to implement
the MUC?A in a parallel manner?/ P Nmuca(S,8)=const  for Syiy=S< Spax, 5

In Secs. Il A and 1l B, we will give a short review of the i
MUCA and the HMC algorithms. In Sec. Il C, we merge the in a range ojSthat covers the double peaks at the first-order
MUCA with the HMC algorithm. From our ongoing simula- Phase transition. , , ,
tion project of 1) theory on the Wilson lind51], we de- _;;I'Sherefore, m_stead of sam_pllng canor_ncally according to
termine the tunneling efficiency compared to the standar§ = » On€ modifies the sampling by a weight fac®yca -
metropolis algorithm which in our case is complemented by

three reflection steps. In Sec. Ill, we shall present our results (1 BS.: .
for lattice sizes up to T6and predict the tunnelling rates for p(Smin) efmnfor S<Sin,
lattice sizes up to 24 as would be required for a proper 1
FSS. V\IMUCA(S7B):< ﬁ eﬁs for Smin$ S< Smaxy
Il. MULTICANONICAL HYBRID 1 8S,
MONTE CARLO ALGORITHM lse0 & for S>Spax,
The hybrid Monte Carlo algorithrh8,52,53 produces a ®)

global trial configuration by carrying out a molecular dynam-

ics evolution of the field configuration very close to the sur-

face of constant action. Subsequently, a Monte Carlo deci- !A first attempt in this direction has been made in R&#] in the
sion is imposed which is based on the global actionframework of the Higgs-Yukawa model.
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which is constant outside the relevant action range. This is B. Hybrid Monte Carlo algorithm
equivalent to a net sampling according to tfet unknown

orobabilty distribution The HMC algorithm consists of two parts: the hybrid mo-

lecular dynamic§HMD) algorithm evolves the degrees of
1 freedom by means of molecular dynami@dD) which is
w(S)= (9 for Spin<S< Snax- (7)  followed by a global metropolis decision to render the algo-
rithm exact.
SinceW(S, B) is unknown at the begin of the simulation, it In addition to the gauge fieldg,(x) one introduces a set
is instrumental for the MUCA to follow Maochhausen and of statistically independent canonical momemta(x), cho-
start from good ‘“guesstimates{43]. We shall do so by sen at random according to a Gaussian distribution exp
starting from an observed histogram of the canonical actiori—7%/2). The actionS[ ¢] is extended to a guidance Hamil-

density,N.a(S. Bc), [see Eq(4)] at the supposed location of tonian
the phase transitién3.. From the action density, we com- 1 5
pute Wyuca(S,B) according to Eq(6). The sampling then Hl ¢, m]= E% () + B ] (10

proceeds with the full MUCA weight, ) ) ] ) )
Starting with a configurationd, ) at MD time t=0, the

Pumuca(S)<e PeSWyyca(S, B e et SIS als), system moves through phase space according to the equa-
(8  tions of motion

This latter formulation can be interpreted as a simulation : OH
proceeding at varying couplingéemperatures hence the b= o, =Ty,
name ‘“multicanonical’
In order to compute expectation values of observables . oH d
one has to reweight the resulting action density eventually by Tu=" W 0 ——LBS],
the factorWyca(S,Bc), which reconstitutes the proper ca- g g (12)

nonical density: . . . .
y leading to a proposal configuratiorp(,7’) at timet=r.

i 1 Finally this proposal is accepted in a global metropolis step
> Op ==+ with probability

Oy = ' *Wmuca(Si, Be) 9

(Op)= 1 : O p . =min(Le ), with AH=H[¢',7']—H[b,7].

2 U (12

T Wiuca(Si,Bc)
The equations of motion are integrated numerically with
Additionally, ((93) simulated at3, can be reweighted to finite step sizeAt along the trajectory fromt=0 up tot
any desired3 (following [55]), given that the corresponding =Npyp . Using the leapfrog scheme as symplectic integrator
region of phase space has been covered by the MUCA simdibe discretized version of Eq11) reads
lation. We emphasize that E9) is only useful comple- ’
mented by a proper error analysis. The canonical error com- S =N+ At - At (,5'5[¢ 1)
puted from the multicanonical ensemble has been elaborated 2 dd
in Ref.[56].
Note that there are many possible choices for the form of nel
the multicanonical weight. Just for technical reasons we re- = ¢(,6’S[¢ D
quire it to be continuous i One can either guess an ana-
Iytic function, or choose a polygonal approximation such as At N1
given in Eq.(8). In this case, the multicanonical weight is - ?ﬁ(ﬁs[‘ﬁ D (13

expressed in terms of the functiof$S) anda(S) which are . he sch - both th
actually characteristic functions of the binB(S) can be Here we have presented the scheme with both the momenta

considered as an effective temperati8@]. and the gauge fields defined at full time stéps=nAt.

The computation of the weights requires knowledge of the
global and not just the local change in action for each single
update step. For this reason, even for a local action, one®Note that the actual implementation computes the momenta at
cannot perform local updating moves in parallel, such as théalf time steps according to the sequence
well-known checkerboard pattern. As a consequence, the
MUCA is not able to be made parallel for local update algo- 7T(t+At/2)=ﬂ(t*At/Z)*Ati{,BS[qﬁ(t)]},
rithms. For a remedy, we propose herego global and do
utilize the HMC updating procedure.

B(t+A1) = (1) + At 7(t+At/2),

initialized and finished by a half-step im [8]. Each sequence ap-
2Quantities with carets refer to stochastic estimates. proximates the corredt with an error ofO(At®).
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To ensure that the Markov chain of gauge field con- 1 .
figurations reaches aunique fixed point distribution HMD=§E m+S,
exp(—9 ¢]) one must require the updating procedure to ful-
fill detailed balancewhich is guaranteed by the iterative inducing an additional drift term
map of Eq.(13), f:(¢,7)— (o', 7") being, time reversible
f(¢',—7')=(¢,—7) and measure preservingde'] . 9 . .
x[dx']=[d¢][dm]. m(x)=F(X)—WVMucA(SM(X)],BC)

It is easy to prove that these two conditions also hold for #
the multicanonical action. Note that the guidance Hamil-

tonian, Eq.(10), defining the MD may differ from the accep- =[Bc+B(S)] ; [sind,,,(x—v)=sind,,,(x)],
tance Hamiltonian in Eq(12), which produces the equilib- T
rium distribution proper. In the following, we shall exploit (18
this freedom to develop two variant mergers of the MUCA R
and HMC algorithm. with the effectiveB as defined in Eq(8).
For both options, the Hamiltonian governing the accept/
C. Merging the MUCA and HMC algorithm for compact reject decision, Eq(12), reads equally,
QED (MHMC) 1
We consider a multicanonical HMC for pure four- HaCC=§2 m?+S. (19
dimensional W1) gauge theory with standard Wilson action
defined as The latter method is governed by the dynamics underlying
the very two peak structure: as one can see from Fig. 5,
S é]= 2 {1—co46,,(x)1}, (14 below, Vyuca is repelling the system out of the htold)
x> p phase towards the colghot) phase, thus increasing its mo-

bility and enhancing flip-flop activity.
We comment that the implementation of method 2 re-
_ AL AL quires the computation of the global actipiw adjust the
= + + + . ; . ; .
01 (0 =300+ (Xt 1) = (X + 1) = $u(X) correct multicanonical weight, Eq8)] at each integration
is the sum of link angles that contribute to one of six Step along the trajectory of molecular dynamics to guarantee

where

plaquettes interacting with the link angie, (x). reversibility. In the polygon approximation, this amounts to a
Equation (8) suggests to consider an effective actign determination gf the effective couplingat each time step in
including the “multicanonical potential’Vyyca : MD. Note thata does not influence MD but enters into the
o A A global metropolis decision, E412). Method 1 is much sim-
S= LSt Vuca(S,Be), (15  pler, running afixedtrial coupling 3, and avoiding the effort

of computingNyp— 2 global sums while traveling along the
trajectories. It turned out that of both versions of the MHMC
algorithm, method 2 performs better than method 1, when
Vuuea(S, ,éc)=|09< _ _ ) autocqrrelation and difference in_ computationalieffor_t are
Wyuca(S, Be) takep into account. Thus, we continue our analysis by inves-
tigation of method 2.

with

=B(S)S+a(9). (16)

There are two natural options to proceed from here. Il RESULTS

Method 1performs molecular dynamics using the canoni- In order to evaluate the efficiency of the MHMC algo-
cal guidance Hamiltonian rithm and to set the stage for a proper extrapolation, we
generated time series of thé1) action on lattices of size’6
HMDZEE 72+ B.S up to 16. The runs are summarized_in Table I. We applied
2 e method 2 as being the more promising one on real large
. . . _ o lattices.
with standard actiors. The resulting gluonic force is given To arrive at an action densitMy,ca(S,3) which is ap-
by proximately flat in the desired region between the two peaks
it is crucial to find a good estimaté,,{S,3,) of the canoni-
cal action density. However, it becomes more and more deli-
R R cate for large volumes to find the proper multicanonical
=,8C§ [sind,,(x—v)=sing,,(x)]. (A7) weight Pk, ,cA(S) [Eq. (8)]. Figure 1 shows the evolution of
e the action density as the lattice size increases.
Method 2makes use of the multicanonical potential as a  For lattices<16* it was sufficient to perform a short ca-
driving term within the Hamiltonian nonical run to generate an action dendity,c, suitable to

F(X)=1,(x)

054509-4



MULTICANONICAL HYBRID MONTE CARLO ... PHYSICAL REVIEW D 59 054509

TABLE |. Total numbers of sweeps carried out both for the 0.025 T T . : r : .
MRS and MHMC algorithm at different lattice sizésand cou- 16
plings 8. 0.02 |
14*
No. sweeps No. sweeps
L B (MRS) (MHMC) At Nwpo = 0015 12
6 1.001600 1.460.000 1.650.000 0.120 10 (‘g’ 001 | 10*
8 1.007370 1.320.000 1.430.000 0.093 13 g*
10  1.009300 1.030.000 560.000 0.071 17 0,005 | 6
12 1.010150 680.000 0.060 20
1.010143 1.790.000 1.160.000 ) . . .
14 1.010300  1.430.000 0050 24 032 034 036 038 04 042 044 046
1.010668 900.000 990.000 s
16 1.010800 1.210.000 0.045 26
1.010753 750.000 760.000 FIG. 1. The canonical action densities, E4), on 6* up to 16

lattices, reweighted to their respecti)&)@ values, here defined via
the equal height of the histograms.

compute a proper weight factyyc, - On the 16 system, (flop) is given when the system travels frolg to I, (and

however, the resulting multicanonical distribution becomesv. . . .
. T . . . ice vers iv is defined as the inverse number of the sum
guite sensitive to the choice of the weight. Therefore, in the % Thip

case of large latticesL&=16) we cannot rely on canonical O.f flips and flops mul'tipli(.ed by the total qumber c.)f rajecto-

simulations to start with. Even if we perfor@(10°) sweeps o In Table I, 7qj, IS given for the various lattices. The
. ) . . ._error in Ty, has been computed by a jackknife error analysis.

using a standard metropolis update with three reflection P

steps’ SCSD prevents a sufficiently accurate determination

of the phase weight. Therefore, we install a recursive proce-
dure: from a previous gueds;(S,3.) we go through the With the results forrg;, on lattices up to 1bwe are in the
; ; N i . ition to estimate the scaling behavior of the MHMC al-

MHMC algorithm and arrive aNi+1(S,/8'C+1). This compu- posI . ) .
tational scheme is initialized by a standard canonical “shorgﬁmhm n gog:pfnstc;]n t&jtlar(]:darld Mtis upc(ijatl\(jlsFéSngre 6
run.” We found that one such learning cycle is sufﬁcient.fS ows Tf”Pf r? | or the ¢ at th algornthm an | as a
Figure 2 illustrates the evolution of the multicanonical actionl.uncgqn _Icf E)Ie ”attlce Sizé at their respectives values, as
density on the 15lattice. isted in Table I. . . s

On larger volumes the determination of a good guess can According to the expected exponential behawc_)rrkﬂf
be considerably boosted by a crank-up extrapolation thaghich, in the asymptgtlp regime—c2, should be given by
starts from smaller systenfg3]. In Fig. 3, we display the EQ: 1, we perform &~ fit with the ansatz
quality of “flatness” of Nyuca(S,8) achieved in our inves- AMRS_ 2| boel® (20)
tigations for the various lattice sizes. flip '

B. Scaling behavior

It yields the following parameter values:
A. Tunneling behavior

With our estimate forNig ..(S) at B=1.010753, de-
picted in Fig. 2, we have generated the time history of the 0.01
action per sites= S/6V, as shown in the upper part of Fig. 4.
For reference, we have included the time history from them 0008 |
MRS algorithm on the same lattice. The figure demonstrates2

0.012 T T T T T T

the success of the MHMC algorithm: the method provides us § 0006 1 T

with a gain factor in tunneling rate of about one order of =

magnitude on the Télattice. 0.004 1 |
In order to quantify this achievement, we introduce the 0.002 | |

average flip timerg;, , a quantity that is readily measurable.

Tip IS defined as follows: we histogram the time series of 0 . . . .

using N bins, as illustrated in Fig. 5. A suitable number is 033 034 035 036 037 038 039 04

N=28. The total binning range is adjusted such that 99.9% of s

the events are covered symmetrically by the eight bins. A flip FIG. 2. Evolution of multicanonical action density. Starting

from a canonical run a first MHMC simulation is performed
(dashed ling and, based on this result, the final r(golid line) is
“The metropolis algorithm with reflection stefldRS) is consid-  carried out. Both curves are computed on thé lditice at 8
ered as a very effective local update algorithm fga)J5]. =1.010753.
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A

200000 300000

039 F
0.38 Fii
0.37 HiF
0.36 H
0.35 | |
034 |

0.39
0.38 i
0.37 [itAf
0.36
0.35
0.34

100000 200000 300000

FIG. 4. Time history of the 1%system ai8=1.010753 for the
MHMC algorithm (top) and MRS(bottom).

FIG. 3. NMUCA(S,,B) at the run-paramete8 as given in Table o ) ] ) ]
I effectiveintegrated autocorrelation time,;, defined in Ref.

[56] by
a=11.93.7),
27' ff
b=2.01(18), o uea= aganN—e. (25)
ts
c=6.7(8)x 104, (21)

ouca is the squared error of the observaldlecomputed
from the multicanonical ensemble; see EtpR). o2,,denotes

the canonical variance @ (computed from the reweighted
canonical ensembl@ndN is the length of the multicanoni-
cal time series. We can determing, ., in a numerically
quite stable way from jackknife blocking. From the time se-
ries of Son the 14 and a 16 MUCA system, with about
550000 and 300000 entries, respectively, we have deter-
mined 7.5 to be

with x2 per por= 0.897. As a result, we find a clear exponential
SCSD behavior for the MRS algorlth?n

On the other hand, for the tunneling times of the MHMC
algorithm, we expect a monomial dependencé.:in

eV =p LA (22)

We obtain, for the fit parameters,

p=11.61.6), (23
=3510)X 103X 71,
q=2.23868). (24) 510 7
The power law ansatz is well confirmed by the fit quality Teﬁ 41(12)x1073x 74 Tﬂ.p (26)

With X5er por= 0.795.

We also took the pessimistic ansatz and tried to detect a
potentlally exponential increase offt!"'“. The exponential 0.025
fit gives x2 per por= 0.975. As can be seen in Fig. 6, the expo-
nential contrlbutlon remains suppressed in the extrapolation 0.02
A potentially dominating exponential behavior for the
MHMC algorithm can only be detected in future MHMC 445
simulations on larger lattices. In other words, the parallel =
MHMC algorithmis capable of overcoming SCSD in com- %

pact QED in practical simulations, at least up to lattices sizes 0.01
~24%
0.005
IV. COST ESTIMATES FOR A FSS STUDY
. . 0 .
Finally, we try to assess the computer effort required to 032 0.33 034 035 036 037 0.38 039 04

perform a FSS study on a series of lattices ranging up fo 24
Tip Deing readily accessible, we relate this quantity to the
FIG. 5. Action density of the 6system ai8=1.010753 as a

function of s=S/6V from which VMUCA is derived[the dashed line

One is tempted to extract the interfacial surface tensidinom shows exrf(MUCA)]. The subdivision of the support of the action
the fit to the MRS data. We find=3.35(39) 104. density into eight intervals is introduced in order to defiRg.
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TABLE Il. 7y, for the MRS and MHMC algorithm measured at 1e+09
the simulateds’s. 10108 | .
L B h Thp 1e+07 |
6 1.001600 508.2) 650(20) _ tes08 | o
8 1.007370 102®0) 117350) S 100000 | ]
exp
10 1.009300 2474.17) 200684) r
12 1.010143 547070 3260440 10000 f ™ power
14 1.010668 16408300 5090630 1000 L
16 1.010753 44800700 6350860 =

100

6 8 10 12 14 16 18 20 22 24

As a result, we foundry,~0.038(8)X 75 2 From here on )

we can estimate the number of decorrelated subsaniples FIG. 6. Tunneling times for the MR%exponential fit and

dependent measurementsit of a time series of lengtN, to MHMC algorithm (lower convex curve is power law; upper convex

be roughly curve is exponential fit The errors of the two exponential fits are
depicted as dotted lines. The error of the power law fit, §), is
not visible on this scale.

Nis Nis
indep:2 = ) . (27) . . . . 14 . _
Teff  79(16) 10 g increases quite linear with=V~*. Minor deviations from
this behavior stem from the use of suboptimal run parameters

Assuming the inverse square root Nf,qe, to be an upper At andNyp .

bound to the relative errarof an observabl®, we arrive at The product 7, Xtyyca reflects the efficiency of the
MHMC algorithm. Table Il lists the effective gain factors

achieved taking the MHMC algorithm instead of the MRS.
(28)  The two columns refer to the power law and exponential
extrapolations for the MHMC algorithm.

Let us finally translate these factors into real costs: in Fig.
with K being the required number of flips to achieve a rela-8, we extrapolate the sustained CPU time in Tflop hours
tive error<r. required to generate one flip. We conclude that the integrated

We thus conclude thad(100) flip-flops might allow one CPU time to generate the required 100 flips with the MHMC
to determine quantities like the specific heat and the Binderalgorithm on a 24 lattice amounts to about 3 Tflop hours of

79(16)x 103
Ko 916

r2 ’

Landau cumulant with a relative error of 3%. sustained CPU time.
Obviously, the costs of MHMC and MRS simulations in-
. . _ 4 ..
crease with the volume of the lattice=L". Additionally, V. SUMMARY AND OUTLOOK

for the MHMC algorithm, we want to keep the average ac-

ceptance probability of the leapfrog scheme constant. To this We have demonstrated that the fully parallel MHMC al-
end, we have to lower the step size according Ab  gorithm is a very effective tool which is able to overcome
~V~Y In a detailed tuning investigation we have con- SCSD as present in the pronounced metastabilities of four-
firmed that the scaling rule of constant acceptance probabidimensional W1) gauge theory. A FSS study up to a lattice
ity [57] leads to optimal performance. From a spectral analysize of L=24 with about 100 flip events for each lattice is
sis of the molecular dynamics we can find an optimized

trajectory lengthNy,p (in the sense that the average accep- 6.5 — . . ' . . . . .
tance probability is maximized fulfilling At Nyp 6t
=const(B), with only a slight dependence g8 near the 55 |
phase transition. We choose step-sheaccording to '5

@ L

(P.cd =erfd o B)VY2A12] = const, 29 2 45}

S a4l
adjusted such that the produgt;Nyp is minimized finally. = 35 |
In our case, the optimal acceptance probability is §5%. 3l

Figure 7 confirms the scaling of the MHMC algorithm:
the ratio of measured CPU times for a sweBpca /tyrs, 25 1
26 8 10 12 14 16 18 20 22 24
5Note thatry;, strongly depends on the difference betwégand -

I, in Fig. 5. It remains to be confirmed that the ratio betwegp FIG. 7. Ratio of CPU times per sweelyuca/tmrs and linear
and 7, does not vary too much going to larger lattices. fit. Errors are not visible on this scale.
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TABLE lll. Gain factor for the MHMC algorithm over the MRS 100
as function of the linear lattice extension. The predictionrl‘gﬁj”\"C 10 |
is based on a power law ansdtpw 1) and an exponential ansatz it
(row 2). =
Q 01 1 exp
L power exponential E 0.01 | power
[=N
16 1.93) 1.903) 2 0001 ¢
18 5.51.5 5.1(1.6) 1e-04 ¢
20 21.48.7) 18.49.0 1e-05 |
22 11267) 92(65) 1e-06 b
24 85700 652639 16-07

6 8 10 12 14 16 18 20 22 24
L

feasible within half a year run time, given a sustained per-

formance of about 2 Gflops, due to the improvements

achieved by the MHMC algorithm. These performance fig-study that aims at a conclusive FSS analysis of compact

ures should be obtainable on a 32-node partition of a Craf@ED on the Wilson ling51].

T3E-600.

Less well known is the influence of the delicate part of the
MHMC algorithm, i.e., the determination of a suitable esti- \we thank P. Ueberholz and P. Fiebach for their friendly
mate forVyyca, Which is carried out in an iterative manner. support. We are indebted to Thomas Riechmann and Dr.
So far, we have encouraging experiences on tHeldifice.  Claus-Uwe Linster of the Institut “fu Mathematische
The success of the crank-up procedures described in Reflaschinen at the computer center of Erlangen University,
[43] gives us hope that thBy,ca determination will carry  Germany, for providing us a substantial amount of computer
through with only marginal deterioration of the improvementtime on their 32-node connection machine CM5. Without
factors estimated here. this support, the present investigation would not have been

FIG. 8. Sustained CPU time in Tflop hours to generate one flip.
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