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Domain wall fermion zero modes on classical topological backgrounds

P. Chen, N. Christ, G. Fleming, A. Kaehler, C. Malureanu, R. Mawhinney, C. Sui, P. Vranas, and Y. Zhestkov
Physics Department, Columbia University, New York, New York 10027

~Received 25 September 1998; published 8 February 1999!

The domain wall approach to lattice fermions employs an additional dimension, in which gauge fields are
merely replicated, to separate the chiral components of a Dirac fermion. It is known that, in the limit of infinite
separation in this new dimension, domain wall fermions have exact zero modes, even for gauge fields which
are not smooth. We explore the effects of finite extent in the fifth dimension on the zero modes for both smooth
and nonsmooth topological configurations and find that a fifth dimension of around ten sites is sufficient to
clearly show zero mode effects. This small value for the extent of the fifth dimension indicates the practical
utility of this technique for numerical simulations of QCD.@S0556-2821~99!04803-1#

PACS number~s!: 11.15.Ha, 11.30.Rd, 12.38.Gc
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I. INTRODUCTION

The anomalous breaking of the flavor singlet axial sy
metry of QCD,UA(1), hasimportant physical consequence
It is responsible for the relatively large mass of theh8 @1,2#
and effects the order of the finite temperature phase tra
tion @3#. A central role in this is played by the index theore
@4# which relates the winding of the gauge field with th
number of zero modes of the Dirac operator.

On the lattice the winding of the gauge field cannot
defined unambiguously and the index of a finite-dimensio
lattice Dirac operator is necessarily zero. Therefore, stri
speaking, the index theorem is not valid on the lattice. Ho
ever, an approximate form of this theorem may still
present and govern anomalous effects. Some time ago
issue was investigated in Ref.@5# for the case of staggere
and Wilson fermions. A first step in that direction was to a
to what extent the lattice Dirac operator for staggered
Wilson fermions develops the appropriate number of z
modes for a fixed smooth gauge field background with giv
winding. It was found that for a particular background t
appropriate number of zero modes was generated but
were not robust when high frequency noise was super
posed. Furthermore, the background chosen was of a
special nature and did not have the spatial variation pres
for example, in an instantonlike background. Recent w
@6#, with more realistic instantonlike backgrounds, has de
onstrated that staggered fermions do not develop zero m
unless the lattice spacinga becomes very small (a/D!0.1,
whereD is the instanton diameter!. These difficulties sugges
that for QCD, staggered fermions may fail to reprodu
anomalous effects unless the lattice spacing is made q
small—considerably smaller than that used in present Q
thermodynamics studies, performed withNT<8 and stag-
gered fermions.

Current numerical results for the order of the finite te
perature phase transition for two flavor QCD with lig
quarks show that it is not first order@7#. This is consistent
with the analysis in Ref.@3#, provided UA(1) is broken.
However, current lattice discretizations manifestly break
symmetry of the classical action at finite lattice spacing a
the corresponding discretized Dirac operators have diffic
seeing zero modes for nonsmooth topological configuratio
0556-2821/99/59~5!/054508~8!/$15.00 59 0545
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This raises the possibility that the present apparent sec
order character of the two-flavor QCD phase transition m
be a result of lattice artifacts rather than physical, anomal
symmetry breaking. A recent explicit calculation of a
anomalous difference of susceptibilities near the two-fla
QCD phase transition, using a spectral sum-rule sensitiv
zero modes, showed effects at or below the 15% level@8#.
However, in other work@9#, suggestions of anomalous zer
mode effects were seen. Clearly, a lattice fermion formu
tion whose action has the full global symmetry content of
continuum theory at finite lattice spacing would be a ve
useful tool for studying anomalous symmetry breaking
fects.

II. DOMAIN WALL FERMIONS

A novel approach with spectacular zero mode proper
has been developed during the past few years. Domain
fermions were first introduced in@10# and a variant suitable
for vector gauge theories was introduced in Refs.@11–13#.
~For reviews see@14# and references therein.! In this ap-
proach an extra space-time dimension~henceforth to be
called ‘‘s’’ ! is introduced with free boundary conditions o
the two four-dimensional boundaries,s50 and s5Ls21,
whereLs is the extent of this new fifth dimension in lattic
units. The fermion fields are defined in this extended sp
time but the gauge fields are still defined on the ordin
space time and have nos dependence and nos component
@15#. In this sense, the extra direction can be thought of a
sophisticated ‘‘flavor’’ space. Along thes direction the fer-
mion field develops surface modes that are exponenti
bound to the two free boundaries~domain walls! with the
plus chirality component of the Dirac spinor on one boun
ary and the minus chirality on the other. As the size in latt
spacings (Ls) of this direction is increased the two chira
components get separated with only an exponentially sm
overlap remaining. For finiteLs this overlap breaks chira
symmetry by an exponentially small amount and asLs tends
to infinity chiral symmetry is restored. Therefore,Ls pro-
vides a new parameter that can be used to control the r
larization induced chiral symmetry breaking atany lattice
spacing. For the first time the approach to the chiral limit h
been separated from the approach to the continuum limi
©1999 The American Physical Society08-1



la

te

e

um
e

ll

k-
nt
to

e

e

s
n
ro
t b
lly
ira
ia

cit
ib
a

th
al

th

ov

e

th

rg
m
la
ct
ds

r
a
e-

ht-

er

dy

ith
was
see

lity
o-

ero
-

oit
per-

tan-

an
is

in

.

n-
of

on

a
re.

tly
ton

P. CHENet al. PHYSICAL REVIEW D 59 054508
An appealing aspect of the domain wall fermion formu
tion is the fact that the chirally symmetric,Ls→` limit can
be analyzed in some detail using the overlap formalism@15#.
Central to this overlap method are two Fock space sta
designatedu0H& andu08& in the notation of@12#, constructed
from four-dimensional, single-particle, fermionic states. B
cause the gauge field is independent ofs, it is possible to
develop ans-independent transfer matrix~T! and an associ-
ated Hamiltonian along this direction. Now in theLs→`
limit, TLs becomes a projection operator onto the vacu
state, defined asu0H&, the Fock-space state in which all th
negative energy states ofH are filled. The second stateu08&
is a much simpler, kinematic construction in which a
single-particle eigenstates of position andg5, with negative
g5 eigenvalue, are filled.

A fermion Green’s function for a given gauge field bac
ground can then be expressed as a simple matrix eleme
the appropriate number of creation and annihilation opera
inserted between the statesu08& and u0H&. In particular, the
five-dimensional fermion determinant in the massless cas
simply proportional tou^08u0H&u2 which, for a finite space-
time volume, can be calculated explicitly numerically. If th
number of filled levels inu0H& and u08& is the same then
u^08u0H&u2Þ0. However, if these filling levels differ, then
u^08u0H&u250 for zero mass and finite volume. This implie
the presence of exact zero modes in the five-dimensio
formulation. For a Green’s function to be nonzero, an app
priate number of creation and annihilation operators mus
inserted to balance the deficit. The deficit is natura
integer-valued and is defined as the index of the lattice D
operator. Therefore, this method provides a way to assoc
an index with the lattice fermion operator in the limitLs
→` but at fixed lattice spacing@15#.

More specifically it was found@15,16# that for classical
backgrounds these zero modes are exact, that the defi
equal to the winding of the gauge field, and that they exh
all the properties that are expected in the continuum. It w
also found in@15# that these modes are robust under
addition of high frequency noise. Using the overlap form
ism, numerical simulations of the massless@17# and massive
@18# vector Schwinger model gave the expected value for
anomalously generated ’t Hooft vertex@17#. Furthermore, the
index of the Dirac operator was calculated in SU~2! pure
gauge theory slightly above the zero temperature cross
region @19#. The index agreed within ones with the topo-
logical charge as calculated in@20# indicating that the index
theorem holds in a statistical sense. Similar studies w
done in Ref.@21# for pure SU~3! gauge theory.

The above-mentioned body of work indicates that
overlap (Ls→` limit of domain wall fermions! successfully
incorporates exact zero modes at finite and relatively la
lattice spacings. This suggests that with domain wall fer
ons, lattice QCD describes anomalous effects with regu
ization artifacts under firm control. Unfortunately, a dire
implementation of the overlap formalism in QCD nee
computing resources that are beyond the capabilities
present day supercomputers. While a new proposal for
ducing the computational cost of the overlap has been m
@23,24#, it is not yet clear what the QCD computing requir
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ment of this method will be. On the other hand, a straig
forward approach is to keepLs finite. This method was used
in Ref. @18# to simulate the dynamical two-flavor Schwing
model. In that work a detailed analysis of theLs dependence
indicated that for the massive theory theLs5` value of the
chiral condensate and of the ’t Hooft vertex was alrea
reproduced within a few percent atLs'10. Furthermore, the
rate of approach was consistent with exponential decay w
a decay rate that became faster as the continuum limit
approached. Also, for an application to quenched QCD
@25#.

III. NUMERICAL RESULTS

These promising results indicate the important possibi
of practical, chirally-consistent QCD simulations with d
main wall fermions at finiteLs . In preparation for such
simulations we wish to investigate to what extent the z
mode properties of theLs5` theory are maintained at nu
merically accessible values ofLs(;10– 20). If a much
larger Ls is needed then one would not be able to expl
these important features. On the other hand, if these pro
ties are maintained at accessible values ofLs then anomalous
effects can be studied with firm control over the finiteLs
artifacts.

Here we investigate this question using a classical ins
tonlike background@6# with a prescribed winding of one
unit. This is a compactified, singular-gauge instanton with
origin in the center of a unit hypercube. The instanton field
cut off smoothly at some radiusr max so that it is entirely
contained within the lattice volume. Specifically, we beg
with

Am~x!52 i (
j 51

3

h j mnl j
xn

x21r~r !2 ,

r~r !5r0S 12
r

r max
DQ~r max2r !, ~1!

whereAm is the gauge field potential,xn is the space-time
coordinate,r is the magnitude ofx, l j , j 51,2,3 are the first
three Gell-Mann matrices,h j mn is as in Ref.@1#, Q is the
usual Heavyside function, andr0 is the instanton radius
Outside the fixed radiusr max the configuration is strictly a
gauge transformation. This continuum field is then tra
scribed in the standard way to a lattice configuration
group elementsUm(x) defined on the lattice linksx, m. Fi-
nally, the lattice equivalent of the continuum transformati
to singular gauge is applied:

Um~x!→g~x!Um~x!g21~x1am!, g~x!5(
j 50

3
xjl

j

uxu
, ~2!

wherel0 is the identity matrix andam is a unit vector along
the directionm. Provided that the instanton center is not on
lattice site, this transformation is well defined everywhe
After the transformation, all links lying entirely outsider max
are equal to the unit matrix so the configuration exac
obeys the usual periodic boundary conditions. This instan
8-2
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DOMAIN WALL FERMION ZERO MODES ON CLASSICAL . . . PHYSICAL REVIEW D 59 054508
field is implemented on an 84 lattice with r0510,r max53
and on a 164 lattice with r0520,r max57. Thus, upon mov-
ing from the smaller to the larger lattice, we have reduced
lattice spacing, measured in units of the instanton radius
nearly a factor of 2. In order to study the robustness of z
modes, random fluctuations with a given amplitudez are
superimposed. In particular, at each link a different SU~3!
matrix is constructed by exponentiating a linear combinat
of Gell-Mann matrices with random coefficients in the ran
@2z,z#. The gauge field at each link is then multiplied b
these matrices.

The operator used to study the effects of the winding
the gauge field background on the fermion sector is
chiral condensatêq̄q& calculated on that background. Fo
staggered fermionŝ q̄q&5(1/3V)Tr@D21#, where D is
the standard staggered Dirac operator andV is the four-
dimensional volume. For domain wall fermionŝq̄q&
5(1/12V)Tr@(D21)4d#, where D is the five-dimensiona
Dirac operator of@12#, (D21)4d is its inverse with the fifth
dimension indices fixed so that it corresponds to a propag
between four-dimensional quark fields that are projection
the five-dimensional fields as prescribed in Ref.@12#, andV
is the four-dimensional volume. In particular, a fou
dimensional Dirac spinor field is formed by combining t
two upper spin components of the five-dimensional Di
spinor field ats50 with the lower two spin components a
s5Ls21. This Dirac operator contains an explicit mass te
that mixes the right and left chiralities with strengthmf .
Antiperiodic boundary conditions along the time directi
were implemented for both staggered and domain wall
mions. The inversion was done using the conjugate grad
algorithm. The stopping condition~ratio of the residual
over the norm of the source! was set to 1025 for masses
in the range @1021,1022#, 1026 for masses in
the range (1022,1023#, 1027 for masses in the rang
(1023,1024#, and 1028 for masses in the rang
(1024,1025#.

The trace is over space time, spin and color. A stocha
estimator was used to calculate the trace. To get reason
estimates of the average and error one would have to u
large number~;50! of Gaussian random vectors. Howeve
in this paper the interest is not so much in the actual valu
the trace since it is only used as a device in studying
smallest eigenvalue~topological zero mode! of the domain
wall fermion Dirac operator. To the extent that the Dir
propagator which enterŝq̄q& is dominated by this single
eigenvector of interest, the complete trace might be repla
by a single diagonal element taken in a random directi
This would give the desired trace, multiplied by the overl
between the random vector and the dominant zero mod
the same random vector is used for all values ofm0 , mf , and
Ls , it is expected that this overlap will be essentially co
stant and the variations seen will be those present in the
trace@6#. This strategy is followed in the calculation. How
ever, in order to reduce the chance that the contribution
the single eigenvector of interest is accidentally suppres
by an unfortunate choice of random diagonal element,
same set of ten Gaussian random vectors is used to app
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mate the trace for all values ofm0 , mf , andLs . The error
bars shown in the figures represent the fluctuations s
among these ten random vectors. Given this small numbe
samples, it is not certain that these error estimates are a
rate. However, additional calculation suggests that this p
ticular sample probably underestimates the errors by
than a factor of 2.

At infinite Ls the explicit overlap formula for this formu
lation was derived in Ref.@12#. Using that it can be shown
that ^q̄q& diverges aŝ q̄q&;unu/mf , wheren is the index of
the Dirac operator as defined by the overlap formalism.
finite Ls the two chiralities do not completely decouple a
therefore there is a residual mass. In free field theory
mass decreases exponentially withLs and the effective quark
mass is proportional to the sum of the residual mass and
explicit massmf . In particular@18#,

meff5m0~22m0!@mf1~12m0!Ls#, ~3!

where m0 is the mass~domain wall height! of the five-
dimensional theory. In free field theory one-flavor physics
obtained form0 in the interval@0,2! @10#. In the interacting
theory the boundaries of this interval will be renormalize
Assuming a similar modification of the effective quark ma
for the case of the instantonlike background one would
pect that at finiteLs , ^q̄q& would behave aŝq̄q&;unu/@mf

1(12m08)
Ls#, wherem085m08(m0) is a ‘‘renormalized’’ do-

main wall height.
As mentioned above, the index of the Dirac operator

the overlap formalism is naturally integer valued. A meth
to measure this index was developed in Ref.@15# and used in
Refs. @19,16,21,22#, The index is half the difference of th
numberN1 of positive minus the numberN2 of negative
eigenvalues of the HamiltonianH associated with the trans
fer matrix T. This number is the same as half the differen
of the number of positive and negative eigenvalues of
operatorD5g5Dw , whereDw is the standard Wilson-Dirac
operator evaluated at a mass which is the negative of
domain wall height, i.e.,2m0 @15,12#. For m0,0 it can be
shown thatN15N2 for any background gauge field. There
fore, by monitoring a few of the small positive and negati
eigenvalues ofD(m0) asm0 is varied between zero and th
positive value of interest, one can determine the numbe
positive eigenvalues that crossed zero and became neg
and the number of negative eigenvalues that crossed zero
became positive. The difference of the number of the t
types of crossings is the index.

For the classical backgrounds that we studied we fou
that on the 84 lattice the index changed from zero to one
m0'0.28 and back from one to zero atm0'2.14. For the
164 lattice the index changed atm0'0.05 andm0'2.01.
~Note this approach to the free-field values of 0 and 2
expected as one goes to the smaller lattice spacing imp
by our 164 instantonlike configuration.! These values
changed by less than 1% when noise was added. There
in these intervals one expects^q̄q& to diverge asmeff is made
small. At the crossing points the transfer matrix has a u
eigenvalue and even atLs5` the two chiralities do not de-
8-3
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P. CHENet al. PHYSICAL REVIEW D 59 054508
couple @15#. Therefore, near a crossing larger values ofLs
may be needed to see the expected 1/m behavior@12#.

A ‘‘sketch’’ of the expected behavior of̂q̄q& versusmf
in the presence of a gauge field background with net wind
is presented in Fig. 1. In order to facilitate the comparis
with staggered fermions, we will also usemf for the usual
staggered fermion mass. It is useful to analyze the mass

FIG. 1. The expected functional form of^q̄q& vs mf . The solid
line corresponds to staggered fermions and the dashed line to
main wall fermions.

FIG. 2. ^q̄q& vs mf for staggered fermions. The left columns a
for an 84 volume and the right columns for a 164 volume. Thez50
figures correspond to the compactified singular-gauge insta
background. Thez50.01, 0.1 figures correspond to the same ba
ground but random noise has been superimposed with amplituz.
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pendence of̂ q̄q& by reference to the functional form of th
spectral formula

^q̄q&5@m/V#(
l

$1/~l21m2!%. ~4!

This continuum equation is exact for the case of stagge
fermions and offers a useful framework for discussion
domain wall fermions. We can distinguish four distinct r
gions suggested by this functional form. In the largemf re-
gion ~I!, we expect the propagator to be dominated by
mass term and thereforêq̄q&;1/mf . This behavior is ex-
pected and seen for both domain wall and staggered fe
ons. Next, we define region~III ! for staggered fermions, a
the mass range within whichmf is small but larger than the
smallest eigenvaluelmin . Here,lmin is presumably shifted
away from zero by finite lattice spacing effects. For sta
gered fermionslmin is fourfold degenerate or near degene
ate for the case where noise has been added. Region~III ! is
defined similarly for domain wall fermions, except the co
dition mf>lmin is replaced bymf>mres, the residual mass
due to the mixing of chiralities between the walls.@For the
free field case, this is the (12m0)Ls term in Eq. ~3!.# Al-
though, domain wall fermions in theLs→` limit have lmin
50 its effects at finiteLs are cut off by this residual mass
Thus, for both staggered and domain wall fermions, one
pects the small eigenvalue mode~s! to dominate the value o

^q̄q& in region~III ! and thereforêq̄q&;1/(mfV) whereV is
the lattice volume. Region~II ! is the crossover region be

o-

on
-

FIG. 3. Same as Fig. 2 but for domain wall fermions atm0

51.2. Four different values ofLs are shown with the circles
squares, crosses, and diamonds corresponding toLs54, 6, 8, 10.
8-4
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DOMAIN WALL FERMION ZERO MODES ON CLASSICAL . . . PHYSICAL REVIEW D 59 054508
tween region~I! and region~III !. In much of this region the
mass is much larger thanlmin but is small enough to be
relatively unimportant when compared with the rest of t
eigenvalue spectrum. Therefore, referring to Eq.~4!, one
would expect̂ q̄q&;mf in much of region~II !.

The expected behavior in region~IV ! is different for stag-
gered and domain wall fermions. For staggered fermi
~solid line! lmin is small but not zero. Thus, in region~IV !,
wheremf,lmin , the effects of the factor ofmf in the nu-
merator of Eq.~4! will dominate and therefore one woul
expect ^q̄q&;mf . In contrast, for domain wall fermion
~dashed line! andmf,mres, we expectmres to play the role
of m in Eq. ~4! so that in region~IV ! ^q̄q&'const. For do-
main wall fermions, region~IV ! is dominated by the finite
Ls , residual mixing of the two four-dimensional boundari
@see Eq.~3!#. In the numerical results of this paper region~I!
and part of region~II ! are not present because the larg
mass ismf51021. The focus is on region~III !, where the
divergent 1/mf behavior is expected and on the beginning
region~IV ! whose onset signals the need for larger values
Ls .

The numerical results are presented in Figs. 2–8. In Fi
the staggered̂q̄q& is plotted versus the quark massmf in the
presence of the compactified, singular-gauge instanton b
ground. Two lattice volumes and three different noise am
tudes,z50, 0.01, 0.1, are shown. For the case of the4

lattice with no noise, one may be able to recognize diverg
1/mf behavior in^q̄q& for 1022<mf<1021 indicating the
presence of a near-zero mode. This divergent behavior d
not extend to smallermf presumably because of the ze
mode shift effect@5#. As can be seen when the lattice size
increased from 84 to 164 the instanton field become
‘‘smoother’’ ~lattice spacing is reduced by a factor of 2! and
the divergent behavior becomes more pronounced now
tending to the region 1024<mf<1022. For a detailed analy-
sis the reader is referred to Ref.@6#. However, when noise is

FIG. 4. Same as the 164 lattice, Ls510, z50.1 plot of Fig. 3.
The solid line is a fit toc21/mf for 1025<mf<1023. The fit has a
x2 per degree of freedom'0.5.
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added the divergent behavior begins to disappear. At n
amplitudes of 0.1 the divergent behavior is not present in
84 lattice while in the 164 lattice it has been significantly
reduced.

Figure 3 is the same as Fig. 2 but now for the domain w
fermion ^q̄q& with m051.2. Results are shown for the tw
volumes 84 and 164 and for Ls54,6,8,10. As can be seen

^q̄q&;1/mf for small mf . As expected, whenmf becomes
smaller than some value, the residual mixing between
two chiralities becomes the dominant contribution tomeff

and ^q̄q& stops changing. This value is the border betwe
regions~IV ! and ~III ! sketched in Fig. 1. For the 164 lattice
and forLs56,8,10 one finds that^q̄q&;1/mf for mf as small
as '1025. For Ls54 there is no signal of a divergenc
because the effective quark mass is dominated by the fi
Ls residual mass. For the 84 lattice similar behavior is ob-
served but now forLs58,10. ForLs56 a divergence is ob-
served but only formf down to'1023. When noise is added
with amplitudesz50.01 andz50.1 the behavior remains
unaffected for all practical purposes indicating robustn
under high frequency noise. Forz51 the zero modes disap
pear~not shown here! but this level of noise is so large tha
it presumably destroys the winding. In particular, the ind
of the Dirac operator, as defined by the overlap formalis
was found to be zero.

In Fig. 4 the 164 lattice of Fig. 3 forz50.1 andLs510 is
plotted again, this time with âq̄q&5c21 /mf fit for 1025

FIG. 5. Same as Fig. 3 but now vsm0 at fixedmf5531024.
The index of the Dirac operator changes at the vertical lines fr
zero to one and then back from one to zero. Four different value
Ls are shown with the circles, squares, crosses, and diamonds
responding toLs54, 6, 8, 10.
8-5
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P. CHENet al. PHYSICAL REVIEW D 59 054508
<mf<1023 superimposed. The coefficientc21 is 1.09(7)
31026 and thex2 per degree of freedom is'0.5, demon-
strating quantitatively the expectedmf

21 behavior.

In order to study them0 dependence,̂q̄q& versusm0 is
plotted in Fig. 5 for fixedmf5531024. The vertical lines
indicate the values ofm0 , whereg5Dw(m0) has a crossing
One can see that near the crossing points larger values oLs

are required beforêq̄q& becomes independent ofLs . How-
ever, there is a large range ofm0 in between the crossings fo
which ^q̄q& does not change much whenLs is changed from
8 to 10. This means that no fine tuning ofm0 is needed even
when large amounts of ultraviolet noise are added. The sh
of the curves can be attributed to the wave function norm
ization factor which is a function ofm0 . In the free theory
this factor ism0(22m0) @18#.

To further verify robustness under changes ofm0 , ^q̄q&
versusmf is studied form050.75. As can be seen from Fig
5 this value ofm0 is in the onset of the region where theLs
dependence becomes stronger. The results forLs
54,6,8,10,12 are presented in Fig. 6. Also,Ls524 is pre-
sented for the 84 lattice. As can be seen, the zero mo
effects are maintained and are robust under high freque
noise but largerLs is needed beforêq̄q& becomes indepen
dent ofLs . For the 164 lattice ^q̄q& becomes independent o
Ls for Ls512, but for the 84 lattice this does not happe
until Ls524. This is expected since the crossing point for
84 lattice is closer tom050.75 than the crossing point for th
164 lattice.

FIG. 6. Same as Fig. 3 but form050.75. Thecircles, squares
crosses, diamonds, and plus symbols correspond toLs54, 6, 8, 10,
12, respectively. The star symbols on the 84 graph correspond to
Ls524.
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If m0 is allowed to get close to the crossing point o
would expect that in order to maintain the zero mode effe
much larger values ofLs may be needed. Figure 7 is th
same as Fig. 6, except that herem0 is chosen a fixed distanc
of 0.2 from the crossing point. For the 84 latticem050.5 and
for the 164 latticem050.25. The plots forLs58, 12, 16, and
24 are shown. Also for the 84 lattice the plot forLs548 is
presented. As can be seen for both volumesLs524 is barely
adequate to maintain the zero mode effect for masse
31023,mf . In order to maintain zero mode effects fo
masses 1024,mf,531023 an Ls548 is needed for the 84

lattice.
Finally, ^q̄q& is plotted versusLs in Fig. 8 for zero noise

amplitude, fixedmf5531024 and for three values ofm0
50.5, 0.75, and 1.2 corresponding to circles, squares,
crosses. The fits are to a function of the form 1/@c0
1c1e2c2Ls#. For the three values ofm0 the fitting range of
Ls is @8,48#, @6,48#, and @4,48#, the coefficient c0
50.183(8), 0.44~3!, and 0.91~31!, and thex2/Ndof is 4
31022, 431022, and 231024. ~Note, these fits were per
formed by minimizing the simplestx2, which did not incor-
porate the strong correlation between the fluctuations at
ferent values ofLs . The presence of such correlation
resulting from using the same random source vectors
eachLs , is reflected in the abnormally small values ofx2.)
Again, the quality of these fits demonstrates the expec
1/meff;1/@mf1mres# dependence of̂q̄q& but this timemf is
held fixed while mres;e2c2Ls is varied. As expected, the

FIG. 7. Same as Fig. 6 but form050.5 for the 84 and m0

50.25 for the 164. The circles, squares, crosses, and diamond s
bols correspond toLs58, 12, 16, 24, respectively. The plus sym
bols on the 84 graph correspond toLs548.
8-6
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decay rate is fast form051.2 but asm0 gets closer to the
value whereg5Dw has a crossing the decay rate becom
slower. Also, as expected from the discussion relating to
~4! and Fig. 1 whenmresbecomes large the behavior chang
from the monotonic behavior of regions~IV ! and~III ! to that

FIG. 8. ^q̄q& vs Ls for zero noise amplitude, fixedmf55
31024 and for three values ofm050.5, 0.75, and 1.2 correspond
ing to circles, squares, and crosses. The fits are to a function o
form 1/@c01c1e2c2Ls#. For the three values ofm0 the fitting range
of Ls is @8,48#, @6,48#, and @4,48#, the coefficientc050.183(8),
0.44~3!, and 0.91~31!, and thex2/Ndof is 431022, 431022, and
231024.
R
2

05450
s
q.
s

of region ~II !. For m050.5 this can be seen forLs54,6 and
for m050.75 it can be seen forLs54. Form051.2 presum-
ably mres does not get large even forLs54 and there is no
change in the monotonic behavior.

IV. CONCLUSIONS

In conclusion, for a classical, instantonlike backgrou
the domain wall fermion chiral condensate diverges

^q̄q&;1/mf for mf as small as 1025 andLs as small as;10
lattice spacings. This behavior was observed on lattices
size 84 and 164 and was robust under random, high fr
quency noise with amplitudes as large asz50.1. This 1/mf
divergence was observed for a wide range of values ofm0 ,
indicating that there is no need for a fine tuning ofm0 .
Furthermore, at fixedmf and m0 the chiral condensate ap
proaches itsLs5` asymptotic value exponentially fast wit
a rate that becomes faster asm0 is varied away from the
point where the index of the Dirac operator changes. The
fore, domain wall fermions continue to show their specta
lar Ls5` zero-mode properties even for values ofmf andLs
that are practically accessible to contemporary numer
simulations. Numerical simulations of QCD are currently u
der way@26# to study the zero-mode effects of domain wa
fermions on gauge field backgrounds with realistic quant
fluctuations.
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