PHYSICAL REVIEW D, VOLUME 59, 054508

Domain wall fermion zero modes on classical topological backgrounds

P. Chen, N. Christ, G. Fleming, A. Kaehler, C. Malureanu, R. Mawhinney, C. Sui, P. Vranas, and Y. Zhestkov
Physics Department, Columbia University, New York, New York 10027
(Received 25 September 1998; published 8 February)1999

The domain wall approach to lattice fermions employs an additional dimension, in which gauge fields are
merely replicated, to separate the chiral components of a Dirac fermion. It is known that, in the limit of infinite
separation in this new dimension, domain wall fermions have exact zero modes, even for gauge fields which
are not smooth. We explore the effects of finite extent in the fifth dimension on the zero modes for both smooth
and nonsmooth topological configurations and find that a fifth dimension of around ten sites is sufficient to
clearly show zero mode effects. This small value for the extent of the fifth dimension indicates the practical
utility of this technique for numerical simulations of QC[50556-282(99)04803-1

PACS numbes): 11.15.Ha, 11.30.Rd, 12.38.Gc

[. INTRODUCTION This raises the possibility that the present apparent second-
order character of the two-flavor QCD phase transition may
The anomalous breaking of the flavor singlet axial sym-be a result of lattice artifacts rather than physical, anomalous
metry of QCD,U (1), hasimportant physical consequences. Symmetry breaking. A recent explicit calculation of an
It is responsible for the relatively large mass of the[1,2] ~ anomalous difference of susceptibilities near the two-flavor
and effects the order of the finite temperature phase transRCD phase transition, using a spectral sum-rule sensitive to
tion [3]. A central role in this is played by the index theorem z€ro modes, showed effects at or below the 15% Ig8¢I
[4] which relates the winding of the gauge field with the However, in other work9], suggestions of anomalous zero-
number of zero modes of the Dirac operator. mode effects were seen. Clearly, a lattice fermion formula-
On the lattice the winding of the gauge field cannot betion whose action has the full global symmetry content of the
defined unambiguously and the index of a finite-dimensionagontinuum theory at finite lattice spacing would be a very
lattice Dirac operator is necessarily zero. Therefore, stricthyseful tool for studying anomalous symmetry breaking ef-
speaking, the index theorem is not valid on the lattice. Howfects.
ever, an approximate form of this theorem may still be
present and govern anomalous effects. Some time ago this Il. DOMAIN WALL FERMIONS
issue was investigated in Rd6] for the case of staggered
and Wilson fermions. A first step in that direction was to ask A novel approach with spectacular zero mode properties
to what extent the lattice Dirac operator for staggered andhas been developed during the past few years. Domain wall
Wilson fermions develops the appropriate number of zerdermions were first introduced ifl0] and a variant suitable
modes for a fixed smooth gauge field background with giverfor vector gauge theories was introduced in R¢id-13.
winding. It was found that for a particular background the(For reviews sed14] and references therejnin this ap-
appropriate number of zero modes was generated but thgyoach an extra space-time dimensi@menceforth to be
were not robust when high frequency noise was superimealled “s”) is introduced with free boundary conditions on
posed. Furthermore, the background chosen was of a vetyhe two four-dimensional boundaries=0 ands=Lgs—1,
special nature and did not have the spatial variation preseniyherel ¢ is the extent of this new fifth dimension in lattice
for example, in an instantonlike background. Recent workunits. The fermion fields are defined in this extended space
[6], with more realistic instantonlike backgrounds, has demtime but the gauge fields are still defined on the ordinary
onstrated that staggered fermions do not develop zero modepace time and have r@dependence and r®component
unless the lattice spacirgbecomes very smallafD<0.1, [15]. In this sense, the extra direction can be thought of as a
whereD is the instanton diameterThese difficulties suggest sophisticated “flavor” space. Along the direction the fer-
that for QCD, staggered fermions may fail to reproducemion field develops surface modes that are exponentially
anomalous effects unless the lattice spacing is made quitgound to the two free boundariédomain wall$ with the
small—considerably smaller than that used in present QCplus chirality component of the Dirac spinor on one bound-
thermodynamics studies, performed with<8 and stag- ary and the minus chirality on the other. As the size in lattice
gered fermions. spacings Is) of this direction is increased the two chiral
Current numerical results for the order of the finite tem-components get separated with only an exponentially small
perature phase transition for two flavor QCD with light overlap remaining. For finité ¢ this overlap breaks chiral
quarks show that it is not first ord¢r]. This is consistent symmetry by an exponentially small amount and_asends
with the analysis in Ref[3], provided U,(1) is broken. to infinity chiral symmetry is restored. Therefore, pro-
However, current lattice discretizations manifestly break thevides a new parameter that can be used to control the regu-
symmetry of the classical action at finite lattice spacing andarization induced chiral symmetry breaking ay lattice
the corresponding discretized Dirac operators have difficultyspacing. For the first time the approach to the chiral limit has
seeing zero modes for nonsmooth topological configurationdeen separated from the approach to the continuum limit.

0556-2821/99/5%)/0545088)/$15.00 59 054508-1 ©1999 The American Physical Society



P. CHENet al. PHYSICAL REVIEW D 59 054508

An appealing aspect of the domain wall fermion formula-ment of this method will be. On the other hand, a straight-
tion is the fact that the chirally symmetric,— limit can  forward approach is to kedp finite. This method was used
be analyzed in some detail using the overlap formali$s).  in Ref.[18] to simulate the dynamical two-flavor Schwinger
Central to this overlap method are two Fock space statespodel. In that work a detailed analysis of thgdependence
designated0y) and|0’) in the notation 0f12], constructed indicated that for the massive theory thg= value of the
from four-dimensional, single-particle, fermionic states. Be-chiral condensate and of the 't Hooft vertex was already
cause the gauge field is independentspft is possible to  reproduced within a few percent af~ 10. Furthermore, the
develop ans-independent transfer matrid) and an associ- rate of approach was consistent with exponential decay with
ated Hamiltonian along this direction. Now in thg—«~  a decay rate that became faster as the continuum limit was
limit, T's becomes a projection operator onto the vacuurrapproached. Also, for an application to quenched QCD see
state, defined al0,,), the Fock-space state in which all the [25].
negative energy states bf are filled. The second staté’)
is @ much simpler, kinematic construction in which all . NUMERICAL RESULTS
single-particle eigenstates of position apt] with negative

¥ eigenvalue, are filled. These promising results indicate the important possibility

A fermion Green’s function for a given gauge field back- of practical, chirally-consistent QCD simulations with do-

ground can then be expressed as a simple matrix element H}a'nl wall ferm|0|jsh at f_|n|teL§. In prepsraﬂon for E’UCh
the appropriate number of creation and annihilation operato@'mg ations we W'Sf hto Tvesﬂgate to what extent the zero
inserted between the stat ) and|0,). In particular, the ~M0J€ properties of thes=2c theory are maintained at nu-

five-dimensional fermion determinant in the massless case {yerically accessible values dfs(~10-20). If a much
simply proportional t(0’|0,,)|2 which, for a finite space- arger L is needed then one would not be able to exploit

time volume, can be calculated explicitly numerically. If the these impo.rtan.t features. On_the other hand, if these proper-
number of filled levels in0y) and |0’ is the same then ties are maintained e_lt accgss@le valuek gthen anom_alous
(0"]0,)|2#0. However, if these filling levels differ, then eff(_acts can be studied with firm control over the finitg
{0"|0y)|2=0 for zero mass and finite volume. This implies &rtifacts.

the presence of exact zero modes in the five-dimensional Here we investigate this question using a classical instan-

formulation. For a Green'’s function to be nonzero, an appro:[Onlike background6] with a prescribed winding of one

priate number of creation and annihilation operators must pnit T_h|5 IS a compactlfleq, singular-gauge Instanton W'th an
inserted to balance the deficit. The deficit is naturally©"9in in the center of a unit hypercube. The instanton field is
integer-valued and is defined as the index of the lattice Dira&ut Of,f smoc.)thlly at some radiuyay SO th"’.‘t. it is entirely :
operator. Therefore, this method provides a way to associafeP"tained within the lattice volume. Specifically, we begin
an index with the lattice fermion operator in the lintit
—oo but at fixed lattice spacinfl5]. 3

More specifically it was found15,1§ that for classical A, (x)= —i>, plurn
backgrounds these zero modes are exact, that the deficit is j=1
equal to the winding of the gauge field, and that they exhibit
all the properties that are expected in the continuum. It was
also found in[15] that these modes are robust under the
addition of high frequency noise. Using the overlap formal-
ism, numerical simulations of the massl¢$3] and massive WhereA, is the gauge field potentiak, is the space-time
[18] vector Schwinger model gave the expected value for th€oordinatey is the magnitude ok, N, j=1,2,3 are the first
anomalously generated 't Hooft vertgk7]. Furthermore, the three Gell-Mann matricesy'#” is as in Ref.[1], O is the
index of the Dirac operator was calculated in (8Upure  usual Heavyside function, angy, is the instanton radius.
gauge theory slightly above the zero temperature crossovéputside the fixed radiusg,, the configuration is strictly a
region[19]. The index agreed within one with the topo- gauge transformation. This continuum field is then tran-
logical charge as calculated [&0] indicating that the index scribed in the standard way to a lattice configuration of
theorem holds in a statistical sense. Similar studies wergroup elementsJ, (x) defined on the lattice linkg, u. Fi-
done in Ref[21] for pure SU3) gauge theory. nally, the lattice equivalent of the continuum transformation

The above-mentioned body of work indicates that theto singular gauge is applied:
overlap Ls—< limit of domain wall fermion$ successfully 3 N
incorporates exact zero modes at finite and relatively lar _ Xj
lattice spacings. This suggests that with domain wall):‘ermgi]-%ﬂ(x)_“J(X)l‘l#(x)g H(x+ay), g(x):,ZO x|
ons, lattice QCD describes anomalous effects with regular-
ization artifacts under firm control. Unfortunately, a direct wherex® is the identity matrix and,, is a unit vector along
implementation of the overlap formalism in QCD needsthe directionu. Provided that the instanton center is not on a
computing resources that are beyond the capabilities dattice site, this transformation is well defined everywhere.
present day supercomputers. While a new proposal for reAfter the transformation, all links lying entirely outsideg,,,
ducing the computational cost of the overlap has been madare equal to the unit matrix so the configuration exactly
[23,24,, it is not yet clear what the QCD computing require- obeys the usual periodic boundary conditions. This instanton
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field is implemented on an“lattice with po=10,r =3  Mate the trace for all values ofi;, m;, andLs. The error
and on a 16 lattice with pg=20,r .,=7. Thus, upon mov- Pars shown in the figures represent the fluctuations seen

ing from the smaller to the larger lattice, we have reduced th&@meng these ten random vectors. Given this small number of
lattice spacing, measured in units of the instanton radius, by@MPIes, it is not certain that these error estimates are accu-
nearly a factor of 2. In order to study the robustness of zerd@te. However, additional calculation suggests that this par-
modes, random fluctuations with a given amplitug@re ticular sample probably underestimates the errors by less
superimposed. In particular, at each link a different(®u  than a factor of 2. o _
matrix is constructed by exponentiating a linear combination At infinite Ls the explicit overlap formula for this formu-
of Gell-Mann matrices with random coefficients in the rangelation was derived in Ref12]. Using that it can be shown
[—¢£,¢]. The gauge field at each link is then multiplied by that(qq) diverges agqq)~|v|/m;, wherev is the index of
these matrices. the Dirac operator as defined by the overlap formalism. At
The operator used to study the effects of the winding offinite L4 the two chiralities do not completely decouple and
the gauge field background on the fermion sector is théherefore there is a residual mass. In free field theory this
chiral condensatéqq) calculated on that background. For Mass decreases exponentially wifhand the effective quark
staggered fermions(aq)z(1/3V)Tr[D*1], where D is mass is proportional to the sum of the residual mass and the

the standard staggered Dirac operator ahds the four- explicit massm; . In particular[18],

dimensional volume. For domain wall fermion&yq)
=(1/12)Tr[ (DY) ,44], where D is the five-dimensional
Dirac operator of12], (D~ 1),q is its inverse with the fifth ) ] , ]
dimension indices fixed so that it corresponds to a propagatd¥here Mo is the mass(domain wall height of the five-
between four-dimensional quark fields that are projections ofimensional theory. In free field theory one-flavor physics is
the five-dimensional fields as prescribed in Rag], andv ~ obtained formg in the interval[0,2) [10]. In the interacting
is the four-dimensional volume. In particular, a four- theory 'the bquqdanes o'f.th|s. interval will bg renormalized.
dimensional Dirac spinor field is formed by combining the Assuming a similar _mod|f|cat|pn of the effective quark mass
two upper spin components of the five-dimensional Dirad©or the case of the mitantonhke backgrourE one would ex-
spinor field ats=0 with the lower two spin components at pect that at finite ¢, (qq) would behave agqaq)~|v|/[ m;
s=L¢— 1. This Dirac operator contains an explicit mass term+ (1—m{)"“s], wherem{=mj(mo) is a “renormalized” do-
that mixes the right and left chiralities with strengthy . main wall height.
Antiperiodic boundary conditions along the time direction As mentioned above, the index of the Dirac operator in
were implemented for both staggered and domain wall ferthe overlap formalism is naturally integer valued. A method
mions. The inversion was done using the conjugate gradierib measure this index was developed in R&§] and used in
algorithm. The stopping conditiorfratio of the residual Refs.[19,16,21,22 The index is half the difference of the
over the norm of the sourtevas set to 10° for masses numberN, of positive minus the numbeX_ of negative
in the range [10°1,10°2],10°® for masses in eigenvalues of the Hamiltoniad associated with the trans-
the range (102,10 %],10°7 for masses in the range fer matrix T. This number is the same as half the difference
(10°310°4], and 108 for masses in the range of the number of positive and negative eigenvalues of the
(1074107 °]. operatorD = ysD,,, whereD,, is the standard Wilson-Dirac
The trace is over space time, spin and color. A stochastioperator evaluated at a mass which is the negative of the
estimator was used to calculate the trace. To get reasonab®main wall height, i.e..-mq [15,12. For my<O it can be
estimates of the average and error one would have to useshown thatN, =N_ for any background gauge field. There-
large number~50) of Gaussian random vectors. However, fore, by monitoring a few of the small positive and negative
in this paper the interest is not so much in the actual value ogigenvalues oD(my) asmj is varied between zero and the
the trace since it is only used as a device in studying thgositive value of interest, one can determine the number of
smallest eigenvaluéopological zero modeof the domain  positive eigenvalues that crossed zero and became negative
wall fermion Dirac operator. To the extent that the Dirac and the number of negative eigenvalues that crossed zero and

propagator which enterégq) is dominated by this single became p05|t|ye. The difference of the number of the two
eigenvector of interest, the complete trace might be replacetyPes of crossings is the index. _

by a single diagonal element taken in a random direction. FOr the classical backgrounds that we studied we found
This would give the desired trace, multiplied by the overlapthat on the 8 lattice the index changed from zero to one at
between the random vector and the dominant zero mode. fo~0.28 and back from one to zero al,~2.14. For the

the same random vector is used for all valuemgf m;, and 16 lattice the index changed an,~0.05 andmg~2.01.

L, it is expected that this overlap will be essentially con-(Note this approach to the free-field values of 0 and 2 is
stant and the variations seen will be those present in the fugXPected as one goes to the smaller lattice spacing implied
trace[6]. This strategy is followed in the calculation. How- by our 16 instantonlike configuration. These values
ever, in order to reduce the chance that the contribution ofhanged by less than 1% when noise was added. Therefore,
the single eigenvector of interest is accidentally suppresseit these intervals one expecisq) to diverge asngg; is made

by an unfortunate choice of random diagonal element, themall. At the crossing points the transfer matrix has a unit
same set of ten Gaussian random vectors is used to approxigenvalue and even at=cc the two chiralities do not de-

Megr= Mo(2— Mg)[ Mg+ (1—mg)"s], (3
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A “sketch” of the expected behavior dfgq) versusmg 107107 107 107 107" 107107107 107 107!
in the presence of a gauge field background with net winding my Iy

is presented in Fig. 1. In order to facilitate the comparison FIG. 3. Same as Fig. 2 but for domain wall fermionsnaj

with staggered .fermlons we will also use for the usual =1.2. Four different values olLs are shown with the circles,
staggered fermion mass. It is useful to analyze the mass dgquares crosses, and diamonds correspondlngztm 6, 8, 10.
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o L V=gt ¢oor o L v=iet, ¢=00t 3 domain wall fermions. We can distinguish four distinct re-
N Ceo ] E oL, R gions suggested by this functional form. In the largere-
2 10 7 o’ _ 102 _@ 0 . _ gion (1), we expect the propagator to be dominated by the
v of o 3 F ] mass term and therefokgq)~1/m;. This behavior is ex-
0re 0 E 107 E pected and seen for both domain wall and staggered fermi-
10 Lo st sl sl ad vt bl vl cd ol il ONS. Next, we define regiofill) for staggered fermions, as
S 10P g o e g ey (1€ MASS range within whiaimy is small but larger than the
v_at, ¢ E o otet ce0n smallest eigenvalug ,. Here, \ iy is presumably shifted
107 - o3 107! = o3 away from zero by finite lattice spacing effects. For stag-
A LF PR F o° ] gered fermions\ ,;, is fourfold degenerate or near degener-
3 o3 3 afoa® 3 ate for the case where noise has been added. s
g 107 : - o ] te for th h has b dded. Régio
0= o ] ool Lo ] defined similarly for domain wall fermions, except the con-
o X dition m¢=X\ i, is replaced bym;=m,g, the residual mass
e 107 budssd rsud vswd sl J due to the mixing of chiralities between the wallEor the
107710 1’101 010 o710 ;01 107710 free field case, this is the (Amy)ts term in Eq.(3).] Al-
f f

though, domain wall fermions in the;— oo limit have \ i,

=0 its effects at finitd_g are cut off by this residual mass.
for an & volume and the right columns for a 4@olume. Thez=0 Thus, for both staggered and domain wall fermions, one ex-
figures correspond to the compactified singular-gauge instantoRECtS the small eigenvalue magleto dominate the value of
background. The¢=0.01, 0.1 figures correspond to the same back-(qq) in region(lll) and thereforé(qq)~1/(me) whereV is
ground but random noise has been superimposed with amplitude the lattice volume. Regiofill) is the crossover region be-

FIG. 2. (Eq} vs m; for staggered fermions. The left columns are
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mass is much larger than,,, but is small enough to be 0 1 2 0 1 2

relatively unimportant when compared with the rest of the Mg mg
eigenvalue spectrum. Therefore, referring to E4), one _ i
9 P g &4 FIG. 5. Same as Fig. 3 but now s, at fixedm;=5x10"*.

would expect(qq)~m; in much of region(ll). The index of the Dirac operator changes at the vertical lines from
The expected behavior in regidlV) is different for stag-  zerg 1 one and then back from one to zero. Four different values of

gered and domain wall fermions. For staggered fermlongs are shown with the circles, squares, crosses, and diamonds cor-
(solid lin€) A, is small but not zero. Thus, in regidiV),  responding td_.=4, 6, 8, 10.

where m;<\ i, the effects of the factor ofn; in the nu- ) i _ . .
merator of Eq.(4) will dominate and therefore one would added the divergent behavior begins to disappear. At noise
expect (qq)~m. In contrast, for domain wall fermions amplitudes of 0.1 the divergent behavior is not present in the

4 . . . . . . e
(dashed lingandm,<m,.., we expecim,.to play the role 8% lattice while in the 16 lattice it has been significantly

. . . reduced.
of min Eq. ) SO that n reglor_(IV) <qq>~const. For ,d(_)' Figure 3 is the same as Fig. 2 but now for the domain wall
main wall fermions, regior(lV) is dominated by the finite = .
L, residual mixing of the two four-dimensional boundariesferm'on {9g) with mo=1.2. Results are shown for the two
[see Eq(3)]. In the numerical results of this paper region ~ YOlUMes 8 and 16 and forL;=4,6,8,10. As can be seen,
and part of region(ll) are not present because the largestdd)~1/m; for smallm;. As expected, whem; becomes
mass ism;=10"1. The focus is on regiofilll), where the smaller than some value, the residual mixing between the
divergent 1 behavior is expected and on the beginning oftwo chiralities becomes the dominant contribution rigy
region(IV) whose onset signals the need for larger values ofand(qq) stops changing. This value is the border between
L. regions(IV) and(lll) sketched in Fig. 1. For the %8attice

The numerical results are presented in Figs. 2—8. In Fig. And forL —6 8,10 one finds thagq) ~ 1/m; for m; as small
the staggeredqq) is plotted versus the quark masg in the  as ~10°. For L,=4 there is no signal of a divergence
presence of the compactified, singular-gauge instanton backecause the effective guark mass is dominated by the finite
ground. Two lattice volumes and three different noise ampliL ¢ residual mass. For the*8attice similar behavior is ob-
tudes, =0, 0.01, 0.1, are shown. For the case of tife 8 served but now fot.=8,10. ForL.=6 a divergence is ob-
lattice with no noise, one may be able to recognize divergenserved but only fom; down to~10"3. When noise is added
1/m; behavior m(qq) for 10 °<m;=<10"?! indicating the ~ Wwith amplitudes{=0.01 and{=0.1 the behavior remains
presence of a near-zero mode. This divergent behavior doé#affected for all practical purposes indicating robustness
not extend to smallem; presumably because of the zero under high frequency noise. Fgr=1 the zero modes disap-
mode shift effecf5]. As can be seen when the lattice size ispear(not shown herebut this level of noise is so large that
increased from 8 to 16' the instanton field becomes it presumably destroys the winding. In particular, the index
“smoother” (lattice spacing is reduced by a factor ofghd ~ ©f the Dirac operator, as defined by the overlap formalism,
the divergent behavior becomes more pronounced now exas found to be zero.
tending to the region I0'<m;<10 2. For a detailed analy- In Fig. 4 the 16 lattice of Fig. 3 for{=0.1 andL,=10is
sis the reader is referred to RE8]. However, when noise is plotted again, this time with Qqq) c_,/m; fit for 107°
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strating quantitatively the expected. ! behavior.

In order to study then, dependence,qq) versusmg is
plotted in Fig. 5 for fixedm;=5x10*. The vertical lines
indicate the values af,, whereysD,,(my) has a crossing.
One can see that near the crossing points larger valukeg of

are required beforéqq) becomes independent bf. How-
ever, there is a large rangeof, in between the crossings for
which (qq) does not change much whég is changed from
8 to 10. This means that no fine tuningraf is needed even
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FIG. 7. Same as Fig. 6 but fan,=0.5 for the 8 and mq
=0.25 for the 16, The circles, squares, crosses, and diamond sym-
bols correspond th =8, 12, 16, 24, respectively. The plus sym-
bols on the 8 graph correspond th,=48.

If my is allowed to get close to the crossing point one
would expect that in order to maintain the zero mode effects
much larger values of; may be needed. Figure 7 is the
same as Fig. 6, except that heng is chosen a fixed distance
of 0.2 from the crossing point. For thé &tticemy,=0.5 and
for the 16' latticemy=0.25. The plots fot.,=8, 12, 16, and
24 are shown. Also for the“lattice the plot forL =48 is
presented. As can be seen for both volurgs 24 is barely
adequate to maintain the zero mode effect for masses 5
X10 3<m;. In order to maintain zero mode effects for
masses 10*<m;<5x10 % anL =48 is needed for the’d

when large amounts of ultraviolet noise are added. The shapattice.

of the curves can be attributed to the wave function normal-
ization factor which is a function ofng. In the free theory

this factor ismg(2—mg) [18].

To further verify robustness under changesngf, (Eq)
versusmy is studied formy=0.75. As can be seen from Fig.
5 this value ofm, is in the onset of the region where the

dependence becomes stronger.

The

results far
=4,6,8,10,12 are presented in Fig. 6. Aldg=24 is pre-

Finally, {qq) is plotted versus ¢ in Fig. 8 for zero noise
amplitude, fixedm;=5x10"* and for three values o,
=0.5, 0.75, and 1.2 corresponding to circles, squares, and
crosses. The fits are to a function of the fornic}/
+c,e”%bs]. For the three values af, the fitting range of

L, is [8,48, [6,48], and [4,48], the -coefficient c;
=0.1838), 0.443), and 0.9131), and the y%/Ny is 4

X 1072, 4%x10 2, and 2<10 4. (Note, these fits were per-

sented for the 8 lattice. As can be seen, the zero modefgrmed by minimizing the simples¢?, which did not incor-
effects are maintained and are robust under high frequengyorate the strong correlation between the fluctuations at dif-
noise but larget ¢ is needed beforégq) becomes indepen- ferent values ofLs. The presence of such correlations,
dent ofL. For the 16 Iattice(Eq) becomes independent of resulting_from using_the same random source vectors for
L, for Le=12, but for the & lattice this does not happen €achLs, is reflected in the abnormally small values)gt.)

until L= 24. This is expected since the crossing point for theAgain, the quality of these fits demonstrates the expected
8464Iattice is closer tany=0.75 than the crossing point for the 1/meg~1/[m;+m,g dependence dfgq) but this timem; is

16" lattice.

held fixed while m,.s~e~C2"s is varied. As expected, the
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of region(Il). For mg=0.5 this can be seen fars=4,6 and
for my=0.75 it can be seen fdrs=4. Formy=1.2 presum-
ably m,s does not get large even ftur;=4 and there is no
change in the monotonic behavior.

10° e || I | T || N || T T

v=8* ¢=0.0

11

[ |

-1
10 IV. CONCLUSIONS

PR B DR bR 5P~

T 1 \IIIIII

L L1t

In conclusion, for a classical, instantonlike background
the domain wall fermion chiral condensate diverges as

{qq)~ 1/m; for m; as small as 10° andL ¢ as small as~10
lattice spacings. This behavior was observed on lattices of
size 8 and 16 and was robust under random, high fre-
quency noise with amplitudes as largeZs0.1. This 1
divergence was observed for a wide range of valuesgf
indicating that there is no need for a fine tuning rof.
Furthermore, at fixedn; and m, the chiral condensate ap-
proaches it ;= asymptotic value exponentially fast with
a rate that becomes faster ag is varied away from the
point where the index of the Dirac operator changes. There-
s fore, domain wall fermions continue to show their spectacu-
_ _ ) ] lar Ls= o zero-mode properties even for valueswfandL ¢

FIG. 8. {qq) vs L, for zero noise amplitude, fixed=5  that are practically accessible to contemporary numerical
x 107" and for three values ah,=0.5, 0.75, and 1.2 correspond-  gjmy|ations. Numerical simulations of QCD are currently un-
ing to circles, squares, and crosses. The fits are to a function of thg,, way[26] to study the zero-mode effects of domain wall

form 1/ co+c e %bs]. For the three values oh, the fitting range f ; , ; ot
ermions on gauge field backgrounds with realistic quantum
of Ly is [8,48], [6,48], and[4,48], the coefficientc,=0.183(8), fluctuations gaug 9 q

0.443), and 0.9131), and they?/Ngq is 4X1072, 4x1072, and
2X1074,

1072
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